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ABSTRACT
Recent years have seen an increasing number of Graph Convo-
lutional Network (GCN) models employed in various real-world
applications. However, designing efficient architectures for GCN
acceleration remains challenging due to the varied sparsity across
graph datasets. Despite significant efforts, very few of the existing
works have considered a holistic view of the entire GCN accelerator
design, and therefore, the dynamic interactions between architec-
ture, dataflow (i.e., data reuse and parallelization strategies), and
compression format are not well studied.

In this paper, we endeavor to develop a holistic framework sup-
porting the rapid exploration of GCN design space - synergizing
architecture, dataflow, and sparsity optimizations. Specifically, we
implement a variety of compression formats tailored for handling
extreme and irregular sparsity. Moreover, we propose a generic
GCN architecture capable of supporting various dataflow and com-
pression formats in one combined architecture. Given the exploded
GCN design space, a genetic algorithm is implemented to facilitate
rapid exploration while suggesting an optimal GCN solution with
suitable dataflow and compression formats. Our proposed frame-
work can achieve 12.3×, 2.2×, and 1.37× speedup and 15.3×, 3.7×,
and 1.6× energy efficiency on average as compared to HyGCN [1],
AWB-GCN [2], and GCNAX [3], respectively.
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1 INTRODUCTION
Graph Convolutional Networks (GCNs) [4–7] are being deployed
in a wide range of application domains [8, 9] and pervading many
aspects of our lives. GCNs are considered a variant of traditional con-
volutional neural networks (CNNs) specialized for graph-structured
data, where the data structure is sparse and irregular. Unlike CNN,
the irregular sparsity in GCNmainly stems from the connectivity of
vertices and edges, and thus it can barely be remedied via existing
pruning algorithms [10–13] with even-distributed patterns while
respecting the model accuracy. These intrinsic data characteristics,
accompanied by the complexity inherited from CNNs, are posing a
major challenge to the underlying hardware designs.

Significant research efforts [1–3] have been devoted to address-
ing the design challenges in the presence of GCNs, facilitating their
primitive operations - chain Sparse-Dense Matrix Multiplication
(SpMM) [2]. For example, in HyGCN [1], two dedicated compute en-
gines were designed for distinct GCN computation characteristics
in Aggregation and Combination phases. AWB-GCN [2] architec-
ture addressed the workload imbalance issue that emerged from the
irregular sparsity. GCNAX [3] explored a flexible dataflow with the
ability to alter loop order and fusion, thus reducing off-chip mem-
ory access and improving overall performance. Moreover, prior
work [14] has explored the architecture design to enable dynamic
transformation between various compression formats, and it can
select suitable compression formats for aggregation and combina-
tion phases with varied matrix sparsity. However, relatively few
efforts have carefully examined the combined effects of various
design choices in GCN optimizations.

Though design space exploration has been studied in conven-
tional neural networks [15, 16], it has limited applicability for GCN
accelerators in the presence of extreme sparsity (≥ 99.9%). The spar-
sity in GCNs relies on compression techniques to reduce unneces-
sary data movement (i.e., zero elements), whereas CNN accelerators
are often optimized with various dataflows to exploit data reuse op-
portunities [17]. Unfortunately, these techniques may conflict with
the desired objective, degrading the overall system performance
and energy efficiency. For example, Compressed Sparse Row (CSR)
retains the non-zero elements of a sparse matrix while promising
fast row access. However, CSR could be a major impediment to
efficient outer-product SpMM where the sparse matrix is retrieved
from column to column. The inconsistent access patterns of CSR
and outer-product SpMM could lead to undesirable performance
loss. In addition, by offering various compression options, it is pos-
sible to select the most effective compression format for a given
GCN dataset. However, each compression format requires distinct
processes to accomplish its coordinate reconstruction for SpMM,
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and its impact on the dataflow and architecture design has not been
well studied.

To this end, we endeavor to develop a holistic framework in sup-
port of the design space exploration for GCN accelerators, spanning
architecture, dataflow, and sparsity. Specifically, we formulate a
variety of compression formats and their decompression overhead
in the presence of extreme and irregular sparsity. Moreover, we
propose a generic GCN architecture capable of supporting various
dataflow and compression formats in one combined architecture.
Furthermore, we systematically incorporate a set of design choices
devised for GCN accelerators, including processing unit number,
buffer size, loop optimization, parallelization strategies, compres-
sion formats, and decoding latency. To facilitate the rapid explo-
ration of the GCN design space, we formulate it as an optimization
problem using a genetic algorithm.

The major contributions of this paper are as follows:
• Compression Formats in GCN: We formulate the com-
pression ratio and decompression latency for four generic
compression formats in compliance with GCN computation,
namely Compressed Sparse Row/Column (CSR/CSC), Coor-
dinate List (COO), and Zero-Value Compression (ZVC) [18].

• A holistic Design Space Exploration (DSE):We integrate
a collection of system parameters into a holistic design space
exploration framework. The proposed framework uncov-
ers the dynamic interactions between architecture (e.g., PE
number and buffer size), dataflow (e.g., loop order and par-
allelization strategies), and sparsity (e.g., compression ratio
and decompression latency).

• Genetic Algorithm (GA)-based Search: We formulate
GCN DSE as an optimization problem, and the proposed GA-
based search could suggest viable GCN accelerator designs
that can achieve 12.3×, 2.2× and 1.37× speedup and 15.3×,
3.7×, and 1.6× energy efficiency on average as compared to
HyGCN [1], AWB-GCN [2], and GCNAX [3], respectively.

2 BACKGROUND AND MOTIVATION
2.1 Graph Convolutional Networks
Graph Convolutional Network (GCN) is a variant of traditional
CNNs but specific to graph-structured data. GCNs aggregate infor-
mation from graph structure and learn features from neighboring
nodes. Similar to CNNs, GCN is composed of multiple layers, where
each layer performs an element-wise multiplication. As shown in
Figure 1, the computation in a GCN layer can be formulated as:

𝑎
(𝑘 )
𝑣 = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑘 ) (ℎ (𝑘 )𝑢 |𝑢 ∈ N (𝑣)),

ℎ
(𝑘 )
𝑣 = 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 (𝑘 ) (𝑎 (𝑘 )𝑣 , ℎ

(𝑘−1)
𝑣 )

(1)

where theAggregate function aggregates multiple feature vectors
from neighbors to one single feature vector 𝑎 (𝑘 )𝑣 , and the Combine
function transforms the feature vector, ℎ (𝑘−1)𝑣 , of each vertex to an-
other feature vector using a multi-layer perceptron neural network.
This turns out that the prevalent computation pattern of GCN can
be considered as a chain matrix multiplication:

𝑋 (𝑘+1) = 𝜎 (𝐴𝑋 (𝑘 )𝑊 (𝑘 ) ) (2)

# 
of

 V
er

tic
es

 (V
)

# of Vertices (V)

Adjacency Matrix

A (V, V)

0 0 1 1 0 0
0 0 0 1 1 0
1 0 0 0 0 1
1 1 0 0 0 1
0 1 0 0 0 0
0 0 1 1 0 0 # 

of
 V

er
tic

es
 (V

)

# of Features (F)

Feature Matrix

X(k)(V, F)

# 
of

 V
er

tic
es

 (V
)

# of Features (F)

Intermediate Matrix

Oa (V, F)

Aggregation Phase

# 
of

 F
ea

tu
re

s 
(F

)

Weight Matrix

W(k)(F, C)

# of Outputs (C)

# 
of

 V
er

tic
es

 (V
)

# of Outputs (C)

Feature Matrix

X(k+1)(V, C)

Combination Phase

Figure 1: An example of Chain Matrix Multiplication ((𝐴 ×
𝑋 ) ×𝑊 ) performed in a Graph Convolutional Network Layer.

99.9% 99.5% 95% 90% 80% 50%
Sparsity

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
St

or
ag

e 
Si

ze

0.
00

15
5

0.
00

75
5

0.
07

50
5

0.
15

00
8

0.
30

00
8

0.
75

00
8

0.
00

15
5

0.
00

75
5

0.
07

50
5

0.
15

00
8

0.
30

00
8

0.
75

00
8

0.
00

2

0.
01 0.

1 0.
2

0.
4

1

0.
03

22
5

0.
03

62
5

0.
08

12
5

0.
13

12
5

0.
23

12
5

0.
53

12
5

CSR
CSC
COO
ZVC

(a)

40 20 0 20 40 60
x

40
30
20
10

0
10
20
30

y

Flexible Dataflow Flexible Architecture Holistic Search

(b)

Figure 2: (a) Normalized storage size for different compres-
sion formats with varied sparsity, and (b) tSNE of 1000 ran-
domly selected design choices for dataset Reddit.

where𝑋 (𝑘 ) is thematrix of input features in layer𝑘 ; each column
of 𝑋 represents a feature vector while each row denotes a node.
𝑊 (𝑘 ) is the weight matrix of layer 𝑘 . 𝜎 (·) denotes the non-linear
activation function such as ReLU. 𝐴 is a transformed matrix from
the graph adjacency matrix, and the transformation function varies
across different GCN models.

The order of the chain matrix multiplication determines the
types of matrix multiplication with different sparsity, which varies
in theAggregation phase and Combination phase. In theAggregation
phase, the computation can be generalized as sparse-sparse matrix
multiplication (SpGEMM) or sparse-dense matrix multiplication
(SpMM) operations, whereas the computations of the Combina-
tion phase are considered as SpMM or dense matrix multiplication
(DenseMM) operations. Despite these differences, the computation
order of 𝐴 × (𝑋 ×𝑊 ) has been widely considered for GCN com-
putation, as it can unify the computation in both Aggregation and
Combination phases as SpMM. In this paper, we will also consider
the unified SpMM for both aggregation and combination phases.

2.2 Motivation
We conducted a preliminary study of various compression formats
and their performance in reducing storage size across different spar-
sity ratios. As shown in Figure 2 (a), CSR, CSC, and COO have better
performance in reducing storage size in matrices with higher spar-
sity ratio, whereas ZVC performs better in those matrices of lower
sparsity. Even though different compression formats have shown
distinct performance in reducing storage size, we will analyze their
interactions with different dataflows in what follows.

As mentioned, while significant research efforts have been de-
voted to optimizing GCN performance, they are a few isolated
points in the complexGCNdesign space.We used a tSNE (t-distributed
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Figure 3: Proposed holistic DSE framework for GCN Designs.

stochastic neighbor embedding) [19] to visualize complex, nonlin-
ear relationships between various GCN designs. We observed that
a holistic design exploration could yield a more diversified design
space, which could turn into improved performance.

3 PROPOSED FRAMEWORK FOR GCN DSE
The aim of this work is to capture the dynamic interactions be-
tween a wide range of optimization techniques being used for GCN
designs as shown in Figure 3. The proposed framework is capable of
exploring a collection of system parameters related to architecture
(e.g., area, buffer, and processing elements), dataflow (e.g., paral-
lelization and data reuse), and sparsity (e.g., compression formats).
In addition, we implement a customized genetic algorithm, together
with a generic GCN architecture, in support of various optimization
objectives such as latency, energy, and energy-delay product (EDP).

3.1 Generic GCN Architecture
A number of GCN accelerators have been proposed to expedite
SpMM within both aggregation and combination phases, albeit
in different forms. To exploit design space, in this work, we con-
sider a generic GCN architecture capable of supporting common
SpMM computation characteristics and compression formats. As
illustrated in Figure 4, the generic GCN architecture consists of
DRAM, a global buffer, a task distributor, and an array of processing
elements (PEs). The global buffer consists of a sparse buffer, decom-
pression logic, and a dense buffer. The decompression logic can
support the CSR, CSC, COO, and ZVC compression formats. This
allows the accelerator to take full benefits of compression formats
at their finest granularity with considerable storage savings. The
task distributor delivers paired data to PE arrays as well as balances
the workload [2], which can efficiently manage the unbalanced
workload caused by the irregular sparsity. The PE array is designed
to support SpMM, where PEs can be dynamically partitioned to
support aggregation and combination phases. This allows the si-
multaneous execution of aggregation and combination phases in a
pipeline fashion, which reduces unnecessary off-chip data move-
ments. We note that the partition scheme will be managed by the
proposed GA-based search framework. Each PE has a 16 MAC units
array with 32-bit precision. We note that the buffer size, PE size,
and compression format could be dynamically selected during the
design space exploration.

3.2 Sparsity Optimization for GCNs
The sparse and unstructured connectivity of graphs causes extreme
and irregular sparsity in the adjacencymatrices. Significant research
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Figure 4: A generic GCN architecture consisting of DRAM,
global buffer, task distributor, and processing elements.

efforts have been made to exploit various compression/decompres-
sion techniques from both algorithm [10–12] and hardware [20, 21]
designs. In addition to prior efforts, we target the interaction be-
tween compression formats and existing GCN design choices, which
is being neglected in the literature. In this work, we formulate the
compression ratio and decompression latency of the four most com-
monly used compression formats, CSC, CSR, COO and ZVC, for
generic GCN architectures. These compression formats are opti-
mized for different memory access patterns and sparsity ratios due
to their unique metadata formats.

3.2.1 Compression Formats in GCNs. The major idea of different
compression formats is to eliminate zero elements from sparse ma-
trices, reducing storage size. Despite much-reduced storage size,
the compression formats could potentially jeopardize the data regu-
larity and incur additional latency when reconstructing the original
matrices [14]. For example. as shown in Figure 4, compression for-
mats rely on row ( 1 ) and index ( 2 ) information to locate value
( 3 ), called index and value decompression. The value will be sent
to PEs. In the meantime, the row and index will be sent to the dense
matrix to find its corresponding elements, called dense-sparse ma-
trix matching.

The position information of non-zero elements is used for index-
ing the dense matrix to extract the corresponding value at runtime.
The data structure of position information determines the com-
pression ratio (i.e., 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑖𝑧𝑒

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑠𝑖𝑧𝑒
) and latency for pairing

non-zero elements called decompression latency. In what follows,
we will analyze the compression ratio and decompression latency
for different compression formats specialized for GCN designs. For
simplicity, we take an X by Y matrix as an example, where 𝑋 is
the row size, 𝑌 is the column size, and 𝑑 is the matrix density
(i.e., 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑁𝑜𝑛−𝑧𝑒𝑟𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 (𝑁𝑁𝑍 )

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
) of the matrix. We also

assume the size of each non-zero element is 𝐸 bits.
CSR/CSC stores non-zero values using column and row informa-

tion, where three arrays are required. CSR needs to store 𝑑 ×𝑋 ×𝑌

non-zero elements and their corresponding column indices. In ad-
dition, 𝑋 + 1 of row indices are needed. As a result, the total storage
size is 𝑁𝑁𝑍 × 𝐸/8 (for values) + 𝑁𝑁𝑍 × ⌈⌈𝑙𝑜𝑔𝑌2 ⌉/8⌉ (for col_idx) +
(𝑋 + 1) × ⌈⌊𝑙𝑜𝑔𝑁𝑁𝑍

2 + 1⌋/8⌉ (for row_ptr) bytes. The decompres-
sion of CSR involves two stages - it accesses the row_ptr ( 1 ), and
then col_idx and values ( 2 3 ). We formulate the decompression
latency of CSR as shown in Listing 1. CSC has a very similar data
structure and performance as compared to CSR, but it is optimized
for column access.
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// Loop order: F-V-C
// X: Column-wise; W: Row-wise
for(f=0; f<F; f++) {
  for(v=0; v<V; v++) {
    for(c=0; c<C; c++) {
      Oc[v][c]+=X[v][f]*W[f][c];
}}} irrelevant to loop c

// Loop order: V-C-F
// X: Row-wise; W: Column-wise
for(v=0; v<V; v++) {
  for(c=0; c<C; c++) {
    for(f=0; f<F; f++) {
      Oc[v][c]+=X[v][f]*W[f][c];
}}} irrelevant to loop f X(V, F)
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Figure 5: Dataflow examples for combination phase: (a) Inner-product, (b) Outer-product, (c) CSR for Inner-product, (d) CSC for
Inner-product.

1 function decompress(cur_row , values , col_idx , row_ptr):

2 # cur_row: current row index

3 # nze: number of non -zero elements in cur_row

4 nze = row_ptr[cur_row +1]- row_ptr[cur_row]

5 for i in range(0, nze):

6 de_row[cur_row ][ col_idx[i]] = values[i]

7 return de_row

Listing 1: CSR decompression scheme pseudo code.

COO also stores non-zeros by utilizing the column and row
information but in a different manner. The first array stores the
non-zero elements, whereas the second and third arrays store the
row and column indices for related values. The total storage size
is 𝑁𝑁𝑍 × 𝐸/8 (for values) + 𝑁𝑁𝑍 × ⌈⌈𝑙𝑜𝑔𝑋2 ⌉/8⌉ (for row_idx) +
𝑁𝑁𝑍 × ⌈⌈𝑙𝑜𝑔𝑌2 ⌉/8⌉ (for col_idx) bytes. COO can decode the row
indices, column indices, and values ( 1 2 3 ) at the same time, and
we formulate its decompression latency as depicted in Listing 2.

1 function decompress(cur_row , values , row_idx , col_idx):

2 # cur_row: current row index

3 for i in range(0, len(row_idx)):

4 if row_idx[i] == cur_row:

5 de_row[cur_row ][ col_idx[i]] = values[i]

6 return de_row

Listing 2: COO decompression scheme pseudo code.

ZVC utilizes a bitmap to represent the position information of
non-zero elements. This leads to the total storage size of 𝑁𝑁𝑍×𝐸/8
(for values) + ⌈𝑋 × 𝑌/8⌉ (for bitmap) bytes. To decode a non-zero
element, it has to traverse the bitmap ( 1 2 ) to find the data ( 3 )
as shown in Listing 3.

1 function decompress(cur_row , values , bitmap):

2 # cur_row: current row index

3 for i in range(0, len(bitmap)):

4 # COL: numbers of column

5 # idx: index for values

6 if floor(i/COL) == cur_row

7 de_row[cur_row ][i%COL] = values[idx]

8 idx += 1

9 return de_row

Listing 3: ZVC decompression scheme pseudo code.

The latency overheads can be overlapped in a pipeline manner,
but its performance requires a careful selection of dataflows which
will be discussed in the next section.

3.3 The interaction between dataflow and
compression format

Common dataflow strategies, like loop order and tiling optimiza-
tions, can be effectively applied to facilitate the primitive GCN
operation [3, 22–24]. However, given the unique characteristics of
GCNs, the selection of dataflow, especially the loop order, should
consider the deployment of compression techniques.

Loop interchange is the process of altering the order of a nested
loop as shown in Figure 5 (a) and (b), where three loops, V, C, and
F, could be interchanged. The interchanged loop order can impact
the data movement and the type of matrix multiplication [25, 26].
For example, in Figure 5 (a), loop F is the innermost loop, where
F iterates more frequently than the other two loops (i.e., V and C).
Since matrix 𝑂𝑐 is irrelevant to iterator F, the data of matrix 𝑂𝑐

appears to be reused for multiple multiplications. Similarly, the
matrix 𝑋 is likely to be mostly reused in Figure 5 (b). However, this
raises two potential issues for optimizing GCN accelerations.

First, the loop interchange decides the type of matrix multiplica-
tion, such as inner product and outer product. In the outer product
as shown in Figure 5 (b), each column of the sparse matrix𝑋 will be
multiplied by each row of the weight matrix𝑊 . The inner product
performs in an opposite way as compared to the outer product,
where each row of the sparse matrix 𝑋 will be multiplied by each
column of the weight matrix𝑊 . The difference in access patterns
caused by loop interchange could conflict with the mentioned com-
pression formats. This not only increases the latency overhead
but also affects the storage efficiency. For example, three steps are
required in GCN to perform one computation, namely index and
value decompression (D1), dense sparse matrix matching (D2), and
computation (C). As shown in Figure 5 (c), in an inner product
SpMM, the sparse matrix (X(V,F)) can be decoded in a row-wise
manner when CSR format is selected, and therefore the decoding
latency can be overlapped. However, each row of the sparse matrix
has to be decoded multiple times when CSC is applied, as its meta-
data only records the coordinate information of each column. As
such, the decompression latency is hard to be overlapped as shown
in Figure 5 (d).

Second, the interchange will also affect the data locality of sparse
matrices and later influences the decompression latency overheads.
The root cause of decompression latency is sparse matrices, in
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Table 1: Row-column access patterns and data reuse of vari-
ous loop orders for matrix X and W in combination phase.

Loop
Order

X(V, F) W(F, C) Oc
Row/Column Data Row/Column Data Data
Access Patterns Reuse Access Patterns Reuse Reuse

V-F-C Row High Row Low High
V-C-F Row High Column Low High
F-V-C Column Low Row High Low
F-C-V Column High Row Low Low
C-V-F Row Low Column High High
C-F-V Column Low Column High Low

which non-zero elements have to pair with their associated ele-
ments for SpMM. Frequently iterating sparse matrices could affect
the data locality of sparse matrices. This could lead to redundant
decompression and data paring in SpMM. As such, it could be ben-
eficial to retain the sparse matrices at PE while iterating the dense
matrices. However, this may conflict with the objective of opti-
mizing data movement. Consequently, the competing objectives
of various design choices should be carefully evaluated. Table 1
summarizes the row-column access patterns and data reuse rate
for various loop orders for both sparse (X(V,F)) and dense (W(F,C))
matrices in the GCN combination phase.

4 PROPOSED GENETIC ALGORITHM-BASED
SEARCH MODEL

Given the large design space, we formulate the GCN design space
search as an optimization problem in the form of a Genetic Al-
gorithm (GA) [27]. GA is a search algorithm inspired by the phe-
nomena of evolution, where the fittest individuals are selected to
produce offspring from generation to generation. A variety of de-
sign space choices are formulated as a gene. Each genome will
evaluate its fitness (i.e., performance or energy) through the cost
model. The GA will select those genomes with the highest fitness
to produce their offspring in the next iteration.

The first step of GA is to initialize a set of genomes. In our model,
we initialize 20 genomes for each generation, where each genome is
composed of one random combination of design choices as shown
in Table 2. After this, all the genomes will be ranked according to
their fitness, where only elite genomes will be selected as parents.
The rest unselected genomes will be discarded. In our model, we
use Half Fittest Selection scheme, which will select half of the un-
selected genomes for the next generation. We use Fittest method
by pairing parent candidates from the selected genomes. Upon the
generation of parent candidates, we choose Single Point mechanism
to generate offspring from the above parent genomes. A point on
both parents’ chromosomes is selected randomly, which is called
the "crossover point". Furthermore, we use a method called Reset to
perform mutation to generate better offspring, which is the final
evolution operation. The new generation of offspring would be
further evaluated by the cost model for fitness calculation. The GA
will be terminated when it satisfies a certain condition. For exam-
ple, if latency is selected as the major objective, the genome with
the lowest latency will have higher fitness. Our proposed model
considers latency, energy consumption, or energy-delay product.
In our model, the GA search will be terminated after 3000 iterations
based on our empirical study or when the fitness converges.

Table 2: Design Space for the GCN Accelerator

Description Parameter Set of Values

Tiling factors of different matrix
dimensions for combination phase (i, j,
k) and aggregation phase (u, v, w)

𝑇𝑖 ,𝑇𝑢 ,𝑇𝑣 𝑚𝑖𝑛(21, 22, . . . , 212,𝑉 )
𝑇𝑗 𝑚𝑖𝑛(21, 22, . . . , 212, 𝐹 )

𝑇𝑘 ,𝑇𝑤 𝑚𝑖𝑛(21, 22, . . . , 28,𝐶)
Number of PEs for combination phase 𝑃𝐸𝑐 1, 4, 16, 36, 64, 100
Number of PEs for aggregation phase 𝑃𝐸𝑎 1, 4, 16, 36, 64, 100

Compression format 𝑐 CSR, CSC, COO, ZVC
Loop order for combination phase 𝑙𝑐 Permutation(i, j, k)
Loop order for aggregation phase 𝑙𝑎 Permutation(u, v, w)

Table 3: Dimension and Density of the Graph Datasets

Datasets
Dimension Density (1-Sparsity)

Vertex Feature A X1 X2 W1 W2

CR 2708 1433 0.18% 1.27% 78.0% 100% 100%
CS 3327 3703 0.11% 0.85% 89.1% 100% 100%
NL 65755 61278 0.0073% 0.011% 86.4% 100% 100%
PB 19717 500 0.023% 10.0% 77.6% 100% 100%
RD 232965 602 0.21% 51.6% 60.0% 100% 100%

5 EVALUATION
ASIC Synthesis. To evaluate the area and power consumption, we
model all the PE logic, including theMACArray, buffers, and DRAM
through synthesis. We use the Synopsys Design Compiler with the
TSMC 28𝑛𝑚 library for the synthesis and estimate the power using
Synopsys PrimeTime PX. All the power and area parameters will
be integrated into our cost model for design space exploration.

Hardware Simulator.Webuilt a costmodel, uponMAESTRO [15],
to abstract the behavior of the hardware, dataflow, and compres-
sion technique with an area constraint as 10𝑚𝑚2. The simulator
models the microarchitectural behaviors of all mentioned architec-
tural designs, dataflows, and compression formats. The simulator
counts the number of DRAM reads and writes, which is used to
estimate the DRAM access energy consumption according to [15].
We validate our model against a modified scale-sim [28] for SpMM,
which is an open-source cycle-accurate simulator. The accuracy of
our model is within 1-3% as compared to scale-sim.

Benchmark Graph Datasets. We evaluate the GCN perfor-
mance using Cora (CR), Citeseer (CS), Nell (NL), Pubmed (PB), and
Reddit (RD) datasets. Details of dimensions and matrix density are
shown in Table 3.

5.1 Benefits of Holistic DSE
5.1.1 Performance. The performance benefit of our holistic frame-
work is evidenced by Figure 6(a), which shows that the holistic
framework can achieve 12.3×, 2.2× and 1.37× speedup on average
as compared to HyGCN, AWB-GCN, and GCNAX, respectively.
For a fair comparison, we set the number of processing elements
and buffer size consistent for all the designs. The proposed design
achieves 29.6× improvement on NL when compared to HyGCN as
this dataset has higher sparsity on both adjacency and feature ma-
trices, and only 4.5× improvement on RD since it has lower sparsity.
This is because the decompression latency overheads become more
significant when having more zero elements (higher sparsity).
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Figure 6: (a) Normalized speedup and (b) normalized energy efficiency between different GCN accelerators, (c) latency and
energy consumption analysis with various compression formats of CR, (d) dataflow analysis of CR, and (e) convergence analysis
of GCN design space exploration with different algorithms.

Table 4: Converged GCN designs with the best performance for genetic algorithm and random search

Benchmark
Search Objective Combination Aggregation Compression

Algorithm (Latency, cycles) Ti Tj Tk PE Dataflow Tu Tv Tw PE Dataflow Format

CR GA 9.86E+05 256 256 8 100 j-i-k 2048 256 4 36 v-u-w CSC
RS 1.13E+06 64 128 8 36 j-i-k 256 8 8 36 v-u-w CSC

CS GA 2.24E+06 256 256 8 64 i-j-k 128 2048 8 16 u-v-w CSR
RS 2.38E+06 512 2048 8 100 i-j-k 512 8 2 36 u-v-w CSR

NL GA 1.2E+07 1024 1024 32 100 k-j-i 512 1024 4 64 v-u-w CSC
RS 1.61E+07 1024 512 2 36 j-i-k 4096 512 2 100 v-u-w COO

PB GA 2.58E+06 4096 128 8 64 i-j-k 512 512 8 100 u-v-w CSR
RS 2.99E+06 64 128 8 100 j-i-k 512 512 8 16 v-u-w CSC

RD GA 2.47E+09 64 64 16 16 k-j-i 2048 4096 16 100 v-u-w CSC
RS 2.6E+09 256 128 16 64 i-j-k 2048 4096 4 64 u-v-w CSR

5.1.2 Energy. Figure 6(b) shows the energy consumption of our
holistic exploration, architecture exploration, and dataflow explo-
ration. The result implies that the holistic work can achieve 15.3×,
3.7×, and 1.6× energy efficiency on average as compared to HyGCN,
AWB-GCN, and GCNAX. We achieve 20.7× energy efficiency on
CS, as with well-selected dataflow and compression format, this
dataset reduces the highest percentage of off-chip memory accesses
(up to 89.7%). The proposed design achieves less energy efficiency
improvement (13.4×) on RD also because of the lower sparsity.

5.2 Compression Format Analysis
Figure 6 (c) shows the latency and energy results of selecting dif-
ferent compression formats in various GCN accelerator designs.
Given the limited space, we only present CR benchmark. In CR, the
most energy-efficient GCN design selects COO (up to 67.4% energy
reduction as compared to other compression formats) as the com-
pression format, whereas CSC could deliver the best performance
(73.7% performance improvement as compared to others).

COO is the most energy-efficient compression format, as it is
compatible with both column-wise and row-wise access patterns.
To achieve a better performance, the compression format has to be
tailored to the specific matrix access pattern. ZVC is never selected
in the first layer (X1) of the combination phase, as it performs well
only in those applications with a larger density (> 5%).

5.3 Dataflow Analysis
To study the impact of loop interchange in GCN accelerators, we it-
erated all possible loop combinations via an exhaustive search. Due

to a large number of combinations (i.e., 𝐴3
3 ×𝐴3

3), we only present
those commonly used loop combinations in Figure 6 (d). It should
be noted the loop order is only considered for the off-chip memory
access. Through the simulation, we concluded several interesting
observations. The loop order is mostly altered for the purpose of
reducing off-chip memory access in CNNs. However, the selection
in loop interchange appears to be different when facing GCN appli-
cations. For example, in the CR benchmark, the loop order of the
aggregation phase, v-u-w, is selected for achieving optimal latency.
The order indicates two important trends in optimizing GCN per-
formance. First, the v-u order matches the column access required
by the selection of CSC. This indicates that the access patterns of
sparse matrices and compression formats should be consistent. Sec-
ond, loop w is the innermost loop which is irrelevant to the sparse
matrix. This indicates that loop order could be used to overlap
decompression latency. The loop order of the combination phase
also indicates a similar trend. To further validate this observation,
we applied the conventional CNN loop selection approach [26] to
GCN applications without considering decompression latency, in
which 7.6-26.4 × latency degradation was observed across different
applications if incompatible compression format is selected.

5.4 GA-based Search Model Analysis
5.4.1 Analysis of Optimized Design Space. Our proposed model has
three objectives to guide performance optimization: latency, energy,
and energy-delay product. Though four optimization algorithms,
GA-based (GA), Random Selection (RS), Simulated Annealing (SA),
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and Bayesian Optimization (BO), are deployed, only the perfor-
mance of GA and RS is presented in Table 4. The deployment of GA
can deliver design choices with better performance (up to 25.6%
latency reduction) and energy efficiency (up to 27.2% energy reduc-
tion) as compared to RS.

5.4.2 Convergence Time Study. Convergence is a critical measure
to estimate how long the search will take to find the ultimate re-
sult. In this study, we compare the convergence time of the genetic
algorithm against the other three baseline optimization techniques.
As shown in Figure 6 (e), the genetic algorithm outperforms other
baseline algorithms with an average 41.2% of improvement in con-
vergence time as compared to RS. It can also be noted that the
genetic algorithm can also suggest the design with the best perfor-
mance, energy, and energy-delay product among all algorithms.

6 CONCLUSION
In this paper, we endeavor to develop a holistic framework in sup-
port of the rapid exploration of GCN design space - synergizing
architecture, dataflow, and sparsity optimizations. To accomplish
this, we study and formulate a variety of compression formats
tailored for handling extreme and irregular sparsity in GCN archi-
tectures. Leveraging this study, we develop a comprehensive cost
model with the aim of unraveling the dynamic interactions and
trade-offs among various design choices in architecture, dataflow,
and sparsity. In addition, we apply a genetic algorithm to facili-
tate the rapid exploration of GCN design space. Lastly, through
extensive exploration and observation, we summarize takeaways
for designing and utilizing modern and future GCN accelerators.
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