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Abstract

Electromagnetic follow-up of gravitational-wave detections is very resource intensive, taking up hours of limited
observation time on dozens of telescopes. Creating more efficient schedules for follow-up will lead to a
commensurate increase in counterpart location efficiency without using more telescope time. Widely used in
operations research and telescope scheduling, mixed-integer linear programming is a strong candidate to produce
these higher-efficiency schedules, as it can make use of powerful commercial solvers that find globally optimal
solutions to provided problems. We detail a new target-of-opportunity scheduling algorithm designed with Zwicky
Transient Facility in mind that uses mixed-integer linear programming. We compare its performance to gwemopt,
the tuned heuristic scheduler used by the Zwicky Transient Facility and other facilities during the third LIGO-
Virgo gravitational-wave observing run. This new algorithm uses variable-length observing blocks to enforce
cadence requirements and to ensure field observability, along with having a secondary optimization step to
minimize slew time. We show that by employing a hybrid method utilizing both this scheduler and gwemopt, the
previous scheduler used, in concert, we can achieve an average improvement in detection efficiency of 3%—11%
over gwemopt alone for a simulated binary neutron star merger data set consistent with LIGO-Virgo’s third
observing run, highlighting the potential of mixed-integer target of opportunity schedulers for future
multimessenger follow-up surveys.

Unified Astronomy Thesaurus concepts: Gravitational wave astronomy (675); Astronomical methods (1043);
Gravitational waves (678); Transient detection (1957); Transient sources (1851); Time domain astronomy (2109)

1. Introduction

The detection of GW170817 (Abbott et al. 2017a) in 2017
August signaled the beginning of a new era of multimessenger
astronomy, promising advances in r-process nucleosynthesis
(e.g., Chornock et al. 2017; Coulter et al. 2017; Cowperthwaite
et al. 2017; Pian et al. 2017), the neutron star equation of state
(e.g., Abbott et al. 2018; Radice et al. 2018; Coughlin et al.
2019, 2018, 2020; Dietrich et al. 2020a), and the value of the
Hubble constant (e.g., Abbott et al. 2017b; Hotokezaka et al.
2019; Dietrich et al. 2020a). This was thanks to the detection of
GWI170817 (Abbott et al. 2017a) and its electromagnetic
counterparts: a kilonova (ultraviolet/optical /near-IR emission
generated by the radioactive decay of r-process elements; e.g.,
Evans et al. 2017; Kasliwal et al. 2017; Kilpatrick et al. 2017;
Pian et al. 2017; Shappee et al. 2017; Smartt et al. 2017), a
short gamma-ray burst (e.g., Goldstein et al. 2017), and an
afterglow (e.g., Hallinan et al. 2017; Troja et al. 2017).
However, since then, no further electromagnetic counterparts to
gravitational-wave detections have been confirmed, despite
several other detected binary neutron star and neutron star
black hole mergers during LIGO-Virgo’s third observing run
(Abbott et al. 2021). This can mostly be explained by the
localization areas of neutron star containing mergers being
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much larger than expected, (e.g., Coughlin et al. 2020; Petrov
et al. 2022), making efficient observation planning all the more
important. With, on average, a much larger area than previously
thought to search, there are many more choices for potential
schedules, but it will take an optimal scheduler to maximize
scientific output.

Fundamentally, telescope scheduling software determines
which fields to observe in what order, subject to environmental
and programmatic constraints. In the case of the follow-up of
large sky localizations produced by gravitational-wave (e.g.,
Coughlin et al. 2019a; Anand et al. 2020) or gamma-ray burst
(e.g., Coughlin et al. 2019b; Ahumada et al. 2021) events with
wide field-of-view surveys such as the Zwicky Transient
Facility (ZTF; Bellm et al. 2019c; Graham et al. 2019; Dekany
et al. 2020; Masci et al. 2018), the goal is usually to maximize
an objective function, which is typically taken to be the integral
of the probability skymap over the combined footprint of all the
observations, although other choices are possible (Coughlin
et al. 2018). These observations should also be completed in
the minimal amount of time, as many different science
programs time share on the same telescope, and therefore any
time saved can be utilized by other science programs (Bellm
et al. 2019b).

While, in principle, this could be done manually, schedules
designed this way are labor-intensive and sub-optimal, and it is
unclear how the heuristics translate to survey effectiveness.
Another common approach is the use of “greedy” algorithms,
which compute a metric or score for each possible target, select
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the target with the current highest value, observe it, and then
repeat the process. This is a ubiquitous approach, adapted by
commonly used packages ranging from Astroplan (Morris
et al. 2018) to gwemopt (Coughlin et al. 2018, 2019c;
Almualla et al. 2020) for a variety of purposes. Unfortunately,
due to the inability to plan ahead, the fields chosen are not
optimal; instead, an optimal schedule not only accounts for the
current possible observations but also for past and potential
future observations to maximize the scientific output from
those observations, such as the ZTF’s need for a minimum of
30 minutes cadence when searching for transients to rule out
asteroids.

Unfortunately, the scheduling problem is NP-complete and
the number of observing sequences is combinatorially large. A
well-known model that can make these problems computa-
tionally tractable is the use of integer linear programming
(ILP); ILP problems have variables that take only discrete
integer values, linear objective functions, and linear constraints.
In the following, we will also use mixed ILP, which can
include some nonintegral variables. One popular application of
this in astronomy is within the Las Cumbres Observatory
(LCO)’ scheduler, who operate a network of identical imagers
and spectrographs. Their scheduler (Lampoudi et al. 2015) uses
ILP to maximize the total number of observations obtained,
weighted by the priority assigned to them by the Time
Allocation Committee (TAC). Atacama Large Millimeter/
submillimeter Array solves a similar ILP model to maximize
TAC-assigned scientific priorities, program completion, and
telescope utilization (Solar et al. 2016). The ZTF’s time-
allocation scheduler uses ILP to solve both program-level and
global scheduling constraints, and to optimally order individual
observational blocks (Bellm et al. 2019c); however, the
schedulers used to plan within each observation block do not
all use ILP, such as the greedy scheduler gwemopt. Bellm
et al. (2019a), a paper whose authorship spans many surveys
and open-source astronomy software producers, advocate for
community emphasis on the use of quantitative objective
functions and ILP-based scheduling approaches to address the
rapid proliferation of instruments, many of which will benefit
from coordination.

In this paper, we introduce MILP-using scheduler of sky
localization maps (MUSHROOMS), an MILP-based scheduler
for multimessenger follow-up with wide field-of-view surveys.
We structure the paper as follows. We start by describing
requirements faced by the ZTF gravitational-wave follow-up
observations in Section 2. We then introduce MUSHROOMS
and describe the scheduling algorithm in Section 3, laying out
its MILP formalism and the reasoning behind certain design
decisions. In Section 4, we use MUSHROOMS to schedule
simulated skymaps based on LIGO-Virgo’s third observing
run and characterize its runtime, efficiency, and other relevant
metrics, and summarize our results and future outlook in
Section 5.

2. Observing Requirements

Multimessenger astronomy supplements electromagnetic
observations with observations using other information carriers
such as gravitational waves or neutrinos. Since 2018, the
ZTF has been used for target-of-opportunity, multimessenger
follow-up searches, both searching for the sources of
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gravitational-wave detections during the third LIGO-Virgo
observing run (Coughlin et al. 2019a; Anand et al. 2020;
Kasliwal et al. 2020), and gamma-ray bursts from detectors like
the Fermi Gamma-ray Burst Monitor (Coughlin et al. 2019b;
Ahumada et al. 2021). However, there are a number of factors
one has to consider when designing schedules for such
systems, both in terms of general observational requirements
for ground-based surveys and certain ZTF-specific restrictions
or demands. For example, targets are only observable at night
and when they are above a minimum altitude from the
horizontal (i.e., below a minimum airmass). There are also
common sense constraints: for example, the scheduler cannot
schedule more than one field observation at the same time, and
it must restrict observations to the window of time available for
observing. In addition, there are also limits imposed by the
telescope and observing system itself, such as slew speed.

There are also a number of multimessenger transient follow-
up restrictions that must be accounted for. For example, for
the ZTF gravitational-wave follow-up program, there is a
30 minute cadence requirement, observed once in r and g
bands, which serves to both eliminate asteroids and to gain
color information about detected transients. This requirement
imposes not only a limit on the return time, but also must
account for the filter exchange time within the ZTF, which is
2 minutes long. Another special feature of the ZTF follow-up is
that the system uses a fixed grid of reference images, a preset
selection of a limited number of telescope pointings to
choose from.

In addition to the requirements, the goal is to limit the total
amount of time required for these observations through the
selection of an objective function, whose choice we will
describe below.

3. Scheduling Algorithm and MILP Formulation

Due to the design of the ZTF survey and data system, the
ZTF has a fixed grid of 1778 telescope pointings. Given a
probability density map in R.A. and decl., a span of time of #,
to t, + T, and a fixed-exposure time Az, the goal is to produce a
schedule that meets the observing requirements laid out in
Section 2 by selecting a set of fields S to observe and arranging
them in time (with repeats). The objective is to maximize the
total probability density contained in the area observed by at
least one field in S minus a penalty factor proportional to the
amount of fields observed with the proportionality constant p.
We maximize the probability density contained because the
overall goal of this scheduler is to identify new transients that
could potentially be a gravitational-wave source for a follow-up
observation. This is done by comparing observations to
reference images to find new sources, so maximizing the
probability density observed in theory maximizes the prob-
ability of detecting the source for follow-up. We introduced the
penalty factor p with the other survey priorities in mind. It
allows the user to restrict the search to only fields that introduce
more than p to the total probability observed. The expected
range of p is [0, 0.02], though it has to be manually selected for
each skymap. While not making it impractical for use in
scheduling, using it does require some extra effort from the
user to determine the trade-off between observing time and
detection probability best for their situation. This creates
shorter duration schedules that only target the highest-
probability fields and are less intrusive to the other programs;
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with a value of zero for p, the schedule will fill all
available time.

MUSHROOMS (Parazin 2022) is a python-based mixed-
integer scheduler that uses the commercially available software
Gurobi, which is free with an academic license. When the
network of ground-based gravitational-wave detectors localize
a new event, they release a probability map of where in the sky
the source is most likely located (Singer & Price 2016), which
MUSHROOMS takes as one of its inputs. An example
schedule overlaid on its corresponding probability map is
shown in Figure 2. For each given source-localization
probability map, referred to as a skymap from here on, the
MUSHROOMS algorithm works in a three-step process: a
preliminary pruning step, a block-division step, and an
observation sequencing step. A flowchart illustrating the whole
algorithm can be seen in Figure 1.

In the pruning step, MUSHROOMS reduces the field grid to
a user-provided number of fields using a max-weighted
coverage algorithm (Nemhauser et al. 1978). This is done to
reduce the runtime during the block-division step.

In the next step, the block-division step, a number of
observing blocks are constructed out of the field shortlist
produced by the pruning step. MUSHROOMS defines an
observing block by a start time, an expected end time, and a
collection of fields that are visible for the entire expected
duration. To observe each block, all the fields within it are
observed in the same filter, a filter change is executed, and the
fields are observed in another filter. These blocks have a
minimum size that depends on the given exposure time and
ensures that there are at least 30 minutes of observations
between field reobservations. MUSHROOMS calculates the
expected block length using an average slew time assumption
of 10 s since the order of observations, which determines the
actual slew time for each block, is not found until the next step.
We use this block-division heuristic rather than giving the
scheduler complete freedom to order fields and filter changes as
it sees fit due to the computational complexity of complete
freedom, which would require orders of magnitude more
to run.

To minimize slew time within each block, MUSHROOMS
calculates the slew times from each field within a block to all
other fields in that block using a traveling salesperson (TSP)
algorithm to find the order of observations that will minimize
slew time within each block.

Finally, MUSHROOMS postprocesses the schedule to
ensure that it is valid and satisfies all the requirements laid
out in Appendix A.2. Because the block-division algorithm
uses a fixed slew time, if one of the blocks has an average slew
time higher than that, the block will run longer than expected,
and all subsequent blocks will have to be delayed to avoid
scheduling two observations at the same time. There is an edge
case where this delay means MUSHROOMS schedules a field
for observation when it is (barely) below the visibility
requirement and cannot be observed. In this scenario, we
automatically rerun the schedule utilizing a gap parameter to
add more time between the offending blocks. However, in the
951 simulations utilized for this paper (see Section 4), it did not
occur once.

The variables, constraints, and objective function behind
MUSHROOMS are laid out explicitly in the Appendix. This
algorithm is a modification of the classic max-weighted
coverage problem (Nemhauser et al. 1978), with additional
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Figure 1. An illustration of MUSHROOMS’ algorithm. TSP stands for
traveling salesperson.

constraints to allow for the creation of valid observing blocks,
as well as an additional (optional) penalty factor p in the
objective function.

4. Simulated Observing Plans

To assess the efficiency of the generated schedules, we ran
both the MUSHROOMS and gwemopt algorithm on 951
simulated binary neutron star detections consistent with the
third LIGO-Virgo observing run (O3) from Petrov et al.
(2022). Both gwemopt and MUSHROOMS were used to
schedule follow-up observing plans for the 24 hr immediately
following each simulated detection. Without the time to fine-
tune p for each skymap, MUSHROOMS was run with p =0
for all skymaps. An example schedule can be seen in Figure 2.

When performing the block-division algorithm, we recorded
the runtime of all 951 schedules, which can be seen in Figure 3.
The mean and median runtimes for this step were 107 and 15 s,
respectively. The large difference between the mean and
median can be attributed to the 140 schedules that took the
entire time limit of 500 s to complete. In these cases, the solver
would quickly converge on a high-quality solution, but would
then spend the rest of the time limit attempting to narrow the
optimality gap. This 500 s time limit was chosen because when
developing  MUSHROOMS it was observed that most
schedules that converged in a reasonable amount of time did
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Figure 2. Skymap of simulation 119 from Petrov et al. (2022)and the schedule created for it by MUSHROOMS. The fields selected for observation are outlined in

black, and the true location of the kilonova event is highlighted with a green cross.

so before 500 s, though it could easily be lowered to even 100 s
without a substantial decrease in efficiency. Only an additional
64 schedules would be truncated and use the near-optimal
candidate solutions instead of a solution proven to be globally
optimal. Additionally, with a maximum number of six blocks
(and thus a maximum of six filter changes in a night), the
average number of filter changes scheduled was 4.7.

4.1. Comparisons to gwemopt

For all 951 skymaps we first measured the total probability
density observed by each schedule, hereafter referred to as
“probability coverage.” MUSHROOMS saw an average
probability coverage of 0.418, while gwemopt had an average
probability coverage of 0.387, an 8.0% increase in probability
coverage; however, MUSHROOMS’ schedules had an average
runtime of 23,700 s, while gwemopt had an average runtime
of 16,800 s, a 41.5% increase in runtime. This is because
MUSHROOMS was run with p=0, meaning it filled all
available time, while gwemopt has some logic to stop when it
gets diminishing returns by adding more fields to observe.

To make a more equal comparison, we focused on the
skymaps where MUSHROOMS and gwemopt made no more
than six additional observations compared to the other. This
value was chosen because it kept the difference in the average
runtime of the schedules low, while still including a large
amount of skymaps. The average runtimes were 22,900 s for
MUSHROOMS and 22,800 s for gwemopt over this subset of
329 simulated events. An important note here is that there is
selection bias here toward skymaps with a greater 90% credible
area, since they are the ones that gwemopt usually makes
longer schedules for, as well as more well-localized schedules
that, due to the event time and location, MUSHROOMS and
gwemopt both filled almost all available time. A frequency
histogram comparing the area distributions can be seen in
Figure 4.

For this subset, MUSHROOMS has an average probability
coverage of 0.353, while gwemopt has an average probability
coverage of 0.333, only a 5.8% improvement for MUSH-
ROOMS. For a skymap-by-skymap comparison, Figure 5 is a

Runtime of Block Division Algorithm

500

400

300

Count

200

100

0 100 200 300 400 500
Runtime (seconds)

Figure 3. Runtime of the block-division algorithm. The large number of
schedules clustered at 500 s is a result of setting a 500 s time limit for this step
of optimization; all 500 s runtimes are when the MILP solver used would
converge quickly on a high-quality solution but then spend the duration trying
to lower the optimality gap.

scatterplot comparing the probability coverages achieved by
MUSHROOMS and gwemopt over this subset.

An important note, however, is that MUSHROOMS does not
always outperform gwemopt, even if the solution was not
truncated by the 500 s time limit. This is because, even though
the solution found is an optimal solution for MUSHROOMS’
block-division heuristic, it may not be a globally optimal
schedule. The design of MUSHROOMS forces the solutions to
take on a certain format with observing blocks that are repeated
in two different filters. This means the problem is (comparably)
easy to implement using MILP and runs quickly, but if the best
possible schedule does not fit such a format, MUSHROOMS
cannot produce it. gwemopt has more freedom in ordering
filter changes and block observations, meaning it can some-
times surpass MUSHROOMS, even with a greedy algorithm.
Producing a more complex MILP formulation that lacks these
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Figure 4. Frequency histograms of 90% credible area for all 951 simulations
and the 329 where MUSHROOMS and gwemopt produce schedules of a
similar length.

restrictions and can always surpass gwemopt is an avenue for
future research.

For now, this means we can use a hybrid scheduler to
achieve better results than either MUSHROOMS or gwemopt
alone. By running both MUSHROOMS and gwemopt and
using the schedule with a higher probability coverage, we can
get an average coverage of 0.360, an 8.1% improvement over
gwemopt alone and a 2.1% improvement over just
MUSHROOMS.

4.2. Detection Efficiency Characterizations

Probability coverage, however, is not equivalent to the actual
performance a schedule will have, since it fails to capture the
difficulties in identifying a kilonova; even if the field contain-
ing it is observed, a kilonova might not be detected due to it
being too dim to significantly differ from the reference. As fast-
fading transients, kilonovae vary in magnitude significantly
even over the 24 hr both schedules were allotted to search,
meaning that the order of observations has a significant impact
on the schedule’s quality not captured by probability coverage.
To address this, following Petrov et al. (2022), we character-
ized the resulting schedules’ efficiencies with gwemopt’s
simulation and injection recovery suite for two different
kilonova light-curve models. This is done by injecting 10,000
kilonovae into the sky following the skymap’s probability
distribution, and each schedule’s efficiency is the proportion of
those kilonova that the ZTF would have been able to detect
following each schedule. The light-curve models for the
kilonovae used here, an optimistic and a conservative model,
were generated by the radiative transfer code POSSIS
(Bulla 2019) and summarized in Dietrich et al. (2020b). For
details about the physical properties of each light curve, see
Table 1.

Tables 2 and 3 compare the efficiencies of MUSHROOMS,
gwemopt, and the hybrid implementation of the two, for all
skymaps (Table 2), and for just the ones where both schedules
are of a similar length (Table 3). Due to the large number of
simulations, the Monte Carlo uncertainty in these values is
negligible. In both cases, the hybrid method outperforms both
schedulers acting on their own, with an efficiency increase of
about 11.5% (11.1%) for a conservative (optimistic) light curve
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Table 1
Kilonova Light-curve Model Parameters

Optimistic Conservative

Dynamical ejecta mass (M) 0.005 0.01
Wind ejecta mass (M) 0.11 0.01
Half opening angle 45° 45°
Peak g-band absolute magnitude —15.7 —15.1
Peak r-band absolute magnitude —16.0 —15.7

Table 2

Scheduler Efficiencies for All Skymaps

Optimistic Conservative
MUSHROOMS 0.22 0.21
gwemopt 0.21 0.20
Hybrid 0.25 0.23

Table 3

Scheduler Efficiencies for Similar-length Subset

Optimistic Conservative
MUSHROOMS 0.186 0.163
gwemopt 0.180 0.156
Hybrid 0.200 0.174

in the subset where both schedules are of the same length
compared to just using gwemopt alone.

Figure 6 compares the 90% credible area of each skymap to
the percent improvement in efficiency that would result from
utilizing the hybrid method as opposed to gwemopt to
produce a schedule for it. The selection bias against more well-
localized skymaps is clear, as well as MUSHROOMS’
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comparative weakness at scheduling for these more localized
detections. Only 37 out of 97 (38.1%) of detections below 1000
deg? were improved upon by mushrooms, while 131 out of 232
(56.5%) of detections above 1000 deg” were improved upon by
MUSHROOMS.

Because these smaller localizations where MUSHROOMS
does worse make up a larger proportion of the total
observations, this means that in actual use employing a hybrid
MUSHROOMS-gwemopt strategy will result in less than a
11.5% (11.1%) improvement in detection efficiency for a
conservative (optimistic) light curve. Additionally, since the
hybrid strategy will never do worse than gwemopt alone, for a
worst-case scenario, where MUSHROOMS is better for none
of the remaining 622 skymaps when schedule lengths are
equal, that will result in a minimum 3.1% (3.2%) efficiency
increase for a conservative (optimistic) light curve, establishing
an upper and lower bound of 11% and 3% respectively on the
potential performance improvement of applying this hybrid
method in real observing scenarios.

5. Conclusion and Outlook

In this paper, we presented a novel scheduling algorithm for
scheduling a wide field-of-view survey follow-up for multi-
messenger events, outlined its MILP formulation, and com-
pared its performance to gwemopt, the target-of-opportunity
scheduler used by the ZTF and other surveys in recent
observing runs. We focused on the MUSHROOMS block-
division algorithm, outlining the parameters, decision variables,
objective function, and constraints used to define this problem.
Fundamentally, the block-division algorithm is an alteration of
a max-weighted coverage problem, but instead of simply
choosing a certain number of fields to look at, the algorithm
assigns fields to variable-length blocks that are under further
constraints to ensure all fields within them are observable and
that no two blocks overlap. We include an additional optional
penalty factor introduced into the objective function that allows
for one to only observe fields that add enough probability
coverage to overcome the penalty factor, leading to shorter
schedules that infringe less on other programs. We also
introduce a postprocessing step to check for block overlaps that
could be introduced by the fixed slew time approximation.

Next, we compared MUSHROOMS to gwemopt, with
MUSHROOMS achieving similar efficiencies to gwemopt for
both light-curve models used. We showed that when the
differing strengths between MUSHROOMS and gwemopt
mean are used in concert, one is able to achieve efficiencies 3%
to 11% higher than gwemopt alone.

The algorithm behind MUSHROOMS is a comparatively
straightforward one, designed to quickly run on everyday
computer hardware while still producing efficient schedules,
and it already is able to increase the detection efficiency when
used alongside the previous greedy scheduler. This shows not
only the potential of using mixed-integer linear programming
for scheduling a multimessenger target-of-opportunity follow-
up, and for observational scheduling as a whole, but also that
there is significant room for improvement in MUSHROOMS or
another mixed-integer scheduler, since problem formulation’s
rigidity in its schedules means it can still be outdone by
gwemopt for some schedules.

There are a number of planned improvements for MILP
schedulers for multimessenger follow-up. For example,
MUSHROOMS does not account for the moon distance and
lunar phase when scheduling observations. MUSHROOMS
also does not have a straightforward way to respond to weather
and other unexpected events. Currently, one would have to edit
the input skymap, setting probabilities associated with affected
HEALPix to zero before renormalizing and inputting it to
MUSHROOMS. Improving it to account for both of those is
important future work. Potentially more important, it treats the
source as having constant flux for the duration of the schedule,
which is not correct for the fast transient kilonova models
considered here from Dietrich et al. (2020b). The most
straightforward way to address this issue would be to accept
a desired light-curve model as an additional parameter and to
make an alteration to the objective function of the block-
division step, using that model to alter the weight of each pixel
by when it is observed, such as multiplying the weight
associated with that pixel by the ratio of the light-curve
magnitude at the observation time to the maximum magnitude.
As the complete field order is not determined until the traveling
salesman problem step, one may have to use an approximation
of when each pixel is observed, such as the midpoint of the first
block to observe a given pixel.
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The block-division formulation, while a useful heuristic for
limited time and computing power, has some limitations,
especially when variable exposure times are desired. Producing
a model that is not constrained by blocks and can jointly be
optimized over the selection and ordering of all fields, subject only
to the observing and time constraints, would lead to more efficient
schedules. Also, allowing the model to vary the exposure times of
individual observations would lead to higher chances of detection
because it would adjust for time and a position-dependent sky
background. However, both improvements are much more
computationally complex, and will require much greater optim-
ization and application of high-level operation research techniques.
Using the experience gained from working on this project, among
others, several authors of this paper have begun development on a
more general multifacility observation scheduling toolkit, which
will add those considerations into its problem formulation.

We thank Alexander Criswell for their feedback when
writing the abstract. B.P. acknowledges support from a
Northeastern Lawrence Co-op Fellowship. M.W.C. acknowl-
edges support from the National Science Foundation with grant
Nos. PHY-2010970 and OAC-2117997. S.A. acknowledges
support from the GROWTH National Science Foundation
PIRE grant 1545949.

Software: astropy (Astropy Collaboration et al. 2013);
matplotlib; 1ligo.skymap”.

Appendix
MILP Formalism

The following is the variables, objective and constraints used
to mathematically define the MUSHROOMS algorithm.

A.l. Parameters

Nretla  Number of fields received from pruning step  (Al)

Npix  Number of HEALPix pixels (A2)
(S} Set of fields that contain pixel [ (A3)
{wl};\/:”’(')‘ ' The probability associated with HEALPix pixel /
(A4)
(T, Te‘j}yﬁﬁrl The start and end observability times for field j
(A5)
bmax The maximum number of observation blocks to schedule
(A6)
bsi,e The minimum number of fields in an observation block
(A7)
Texps Bslew» trie  The exposure, slew and filter change times
(A8)

fstart> Tend  Start and end times of the observing run ~ (A9)
p Penalty factor for number of fields observed (A10)
{ghizgm?
Additional time gap to be added between blocks i and i+1
(A11)

An important thing to note is that as the specific order of fields
is not yet determined, ty,,, is a fixed slew time approximation.

8 Iscsoft.docs.ligo.org/ligo.skymap
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The specific slew times between each field is determined in the
TSP step.

A.2. Binary Decision Variables
{Bi}ime 23V~ 1 1s fieldj observed in block i?  (A12)

{ y,}f\i"{)fl Is HEALPix pixel / observed? (A13)

{U,'}f»":‘“g’1 Is block i used to make observations? (A14)

A.3. Continuous Decision Variables

{t,.;}oms=1 The starting time of blocki (A15)

A.4. Objective and Constraints

Maximize > w;y; —p>_;;B subject to the following con-
straints:

Vi, > Bj; > b.U Set minimum block size  (Al6)
J

Vi,j, U > B;; Ifablock makes at least 1 observation,

it is being used

(A17)

Vi>0, U < U_; Allunusedblocks are at

the end of the night (A18)
VI, YiesiBijZn
A pixel is observed if it is in any observed field  (A19)
Vi j loi+ 2 (lexp + Liew) Xt Bijr
+iar < Bij[Tej — fstat — fexpl + (1 — Bij)[fend — fstard]

(A20)
A block’s end time must be before the observability
end time of all fields within it (A21)
Vi,j toi= Bijlly; — tyarl (A22)
A block’s start time must be after the observability
start time of all fields within it (A23)

Vi>0, fo;2lhi14 2 (fexp + Isiew) D Bij + frie + &4
J

(A24)
A block’s start time must be
after the previous block finishes (A25)
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