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ABSTRACT

Context. With a rapidly rising number of transients detected in astronomy, classification methods based on machine learning are
increasingly being employed. Their goals are typically to obtain a definitive classification of transients, and for good performance they
usually require the presence of a large set of observations. However, well-designed, targeted models can reach their classification goals
with fewer computing resources.
Aims. The aim of this study is to assist in the observational astronomy task of deciding whether a newly detected transient warrants
follow-up observations.
Methods. This paper presents SNGuess, a model designed to find young extragalactic nearby transients with high purity. SNGuess
works with a set of features that can be efficiently calculated from astronomical alert data. Some of these features are static and associated
with the alert metadata, while others must be calculated from the photometric observations contained in the alert. Most of the features
are simple enough to be obtained or to be calculated already at the early stages in the lifetime of a transient after its detection. We
calculate these features for a set of labeled public alert data obtained over a time span of 15 months from the Zwicky Transient Facility
(ZTF). The core model of SNGuess consists of an ensemble of decision trees, which are trained via gradient boosting.
Results. Approximately 88% of the candidates suggested by SNGuess from a set of alerts from ZTF spanning from April 2020 to
August 2021 were found to be true relevant supernovae (SNe). For alerts with bright detections, this number ranges between 92% and
98%. Since April 2020, transients identified by SNGuess as potential young SNe in the ZTF alert stream are being published to the
Transient Name Server (TNS) under the AMPEL_ZTF_NEW group identifier. SNGuess scores for any transient observed by ZTF can be
accessed via a web service https://ampel.zeuthen.desy.de/api/live/docs. The source code of SNGuess is publicly available
https://github.com/nmiranda/SNGuess.
Conclusions. SNGuess is a lightweight, portable, and easily re-trainable model that can effectively suggest transients for follow-up.
These properties make it a useful tool for optimizing follow-up observation strategies and for assisting humans in the process of selecting
candidate transients.

Key words. methods: data analysis – supernovae: general – cosmology: miscellaneous – cosmology: observations –
astronomical databases: miscellaneous

1. Introduction

The study of transient astrophysical events has made it possible
to understand explosive phenomena not accessible in terrestrial
laboratories, and to map out the evolution of the Universe. Type
Ia supernovae (SNeIa) are particularly important in this context.
Their use as standardizable candles has allowed astrophysicists
for already more than two decades to accurately measure the
distance of remote regions of the Universe, and they provide the
opportunity to gain insight into the mechanisms of stellar death
(Riess et al. 1998).

A new generation of astronomical surveys, including the cur-
rently operating Zwicky Transient Facility (ZTF; Bellm et al.
2018), the All-Sky Automated Survey for SuperNovae (ASAS-
SN; Kochanek et al. 2017), the Asteroid Terrestrial-impact Last
Alert System (ATLAS; Tonry et al. 2018), the Dark Energy Survey
(DES; Abbott et al. 2019), the Panoramic Survey Telescope and

Rapid Response System (Pan-STARRS; Kaiser et al. 2002), and
the upcoming Legacy Survey of Space and Time (LSST; Ivezić
et al. 2019) conducted on the Vera C. Rubin Observatory, give
the community unprecedented real-time access to observations of
these events.

These facilities perform automated photometric observations
of many sources in large regions of the sky, and then distribute
the data to the community via alert streams. Subsequently, the
observational sources that are deemed to be of particular interest
are inspected in more detail by photometric and/or spectroscopic
follow-up observations. Follow-up observations allow researchers
to precisely identify and characterize astrophysical phenomena.

Spectroscopic resources are limited, especially when com-
pared to the large number of astronomical transients that are
photometrically detected and distributed as alerts. The fraction
of photometric candidates that are spectroscopically classi-
fied is therefore rapidly decreasing with improved photometric
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surveys. Explosive phenomena such as SNe and other fast tran-
sients often have a short lifetime (usually weeks or months) and
their behavior evolves in a matter of days, or even hours.

Early detection and follow-up of explosive transients is par-
ticularly relevant in the study of SNeIa. It is widely agreed upon
in the community that SNe of this kind are the result of ther-
monuclear explosions that originate in the interaction between
two progenitor stars: a white dwarf and a companion. However,
there remain open questions regarding the exact nature of both
these progenitors and of the mechanism of the resulting explosion
(Maoz et al. 2014).

Many of these questions can only be studied from observa-
tions that take place early in the lifetime of the explosive transient
phenomenon. For instance, early photometric observations of a
SNeIa can constrain the radii of the possible progenitor white
dwarf star and its companion (Nugent et al. 2011). The speed of
the increase in luminosity after the explosion and its duration
are a useful probe of the inner and surrounding distribution of
material at the core of the white dwarf (Dessart et al. 2014). Also,
strong emission at certain wavelengths early after explosion may
indicate particular interactions between the ejected material and
the companion star (Kasen 2010).

Having greater insight into the aforementioned physical phe-
nomena would vastly improve the ability of astrophysicists to
calibrate SNeIa for their use as standardizable candles, and allow
a better understanding of the evolution of large-scale structures
of the Universe.

In general, automated methods for the classification of astro-
nomical transients based on photometric data are expected to
become critical tools both for parsing the large alert streams in
real-time streams and for understanding the full, final observed
sample. In recent years, photometric classification challenges
such as PLAsTiCC (Hložek et al. 2020) and SNPhotCC (Kessler
et al. 2010) have succeeded in bringing together the expertise of
both the astronomical and machine learning communities in the
development of new state-of-the-art tools.

Methods commonly used for time-series classification broadly
fall into two groups: feature-based and data-driven (or nonpara-
metric). Feature-based classifiers rely on inferring qualities and
substructures from the measurements, according to previously
defined (or engineered) functions, and then using these as a
representation of the time series. Most features are statistical
and structural metrics that can be calculated over a collection of
measurements in time (Schäfer & Leser 2020). In time-domain
astronomy, feature functions are selected for their application
based on their ability to reflect specific characteristics of time-
variable astrophysical phenomena. We can find some examples of
feature-based classifiers in ALeRCE (Sánchez-Sáez et al. 2021),
Avocado (Boone 2019), and Dai et al. (2018).

On the other hand, data-driven methods operate directly on the
measurements of the time series, and do not depend on explicitly
defined features. Thus, in this case it is the process of building
these features that is explicitly defined, and this is integrated into
the automated learning method itself. We can find some examples
of data-driven methods in Charnock & Moss (2017), Mahabal et al.
(2017), PELICAN (Pasquet et al. 2019), RAPID (Muthukrishna et al.
2019), SCONE (Qu & Sako 2022), snmachine (Alves et al. 2022),
SuperNNova (Möller & de Boissière 2020), and SuperRAENN
(Villar et al. 2020).

Another way to categorize these methods is according to
which phase of the transient explosion they would focus on in
order to classify according to transient type. Methods such as the
one developed by Dai et al. (2018) take light curves that display
the complete life cycle of the explosive transient as input, while

those like SCONE can take partial time series as input (Qu &
Sako 2022). Others such as RAPID are designed for both cases
(Muthukrishna et al. 2019).

Even though they are successful in classifying transient can-
didates according to photometric data, these models are built
on complex architectures (especially in the case of deep neural
networks), which makes it hard for researchers to grasp the under-
lying logic of their decisions. Furthermore, most of these models
require several observations in order to achieve their high classifi-
cation performance, making them less suited to the identification
of young transients.

The astrophysical transient research community has already
recognized the importance of follow-up observation strategy plan-
ning, given the limited resources and the difficulty of obtaining
reliable labels from which supervised classification algorithms
can learn. To this end, active learning strategies have recently
been used to design training sets for machine learning classifiers,
in the context of the peculiar data environment of astronomi-
cal transient detection (Ishida et al. 2019; Kennamer et al. 2020;
Leoni et al. 2022; Carrick et al. 2021).

Some of the classification algorithms previously mentioned,
such as RAPID and snmachine, have the specific use case
of performing fine-grained classification between SN subtypes.
Therefore, they were trained and tested using explosive transient
data only. It is assumed, in these cases, that other types of tran-
sients, such as moving objects, cataclysmic variable stars (CV),
and active galactic nuclei (AGN) can easily be removed by com-
parison with historical observations obtained far back in time.
However, this is hard to do for surveys that are in their starting
phase.

For some surveys, once nontransient sources of variability
such as AGN and variable stars are discarded, the resources avail-
able are sufficient to classify nearly all explosive candidates that
reach a certain peak magnitude. For instance, in the case of
ZTF, the value of this peak magnitude lies around 18. In the
case of LSST, the Time-Domain Extragalactic Survey (TiDES;
Swann et al. 2019) is expected to follow up all explosive transients
detected with magnitudes rAB ≲ 22.5 at peak.

For these reasons, here we study the effectiveness of an alter-
native method that is able to provide an informed guess of whether
a particular variable candidate will become an explosive transient
that is relevant for follow-up. This guess should take place at
early observation times and without the need for many historical
observations or redshift-related catalog information.

This article is structured as follows. In Sect. 2, we introduce
the astronomical and classification concepts (the latter in the
context of machine learning) used in this text. In Sect. 3, we
discuss the motivation and goals taken into consideration when
designing and implementing SNGuess. Sections 4 to 7 describe
the main steps followed in order to train the model that is at
the core of SNGuess (see Fig. 3). Section 8 gives details of how
SNGuess is actively selecting transients and how the results have
been made available to the community and Sect. 9 evaluates
the performance. Finally, in Sect. 10 these results are summa-
rized and we list important challenges to tackle in forthcoming
work.

2. Terminology

This study makes use of terminology both from astronomy
and from computer science; specifically from the domains
of data science and machine learning, and of classification
tasks (or alternatively, information retrieval). In this section, we
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proceed to introduce concepts that are commonly used in transient
astronomy and in the classification process1.

2.1. Astronomical concepts

Hereafter, we refer to “alerts”, which are data packets issued at
a certain point in time by an astronomical survey or a highly
automated observation facility, such as the ZTF. A “stream” or
“alert stream” is a set of alerts generated and distributed by a given
observation facility during an interval of time.

An individual measurement performed by an instrument at
the observation facility is called an “observation”. In optical
astronomy, an observation is represented by an image of a region
of the sky taken by the camera of the instrument at a particular
time. Point sources of variability in the sky are typically identified
from a “difference image”; which is an image that is created
through subtracting a newly made observation from a reference
image. A reference image is an aggregation of observations of the
same region of the sky but generated at previous moments in time.
A variable source is identified by the survey every time a point
source is recognized in a difference image. A point source in the
difference image which exceeds some survey-specific signal-to-
noise-ratio (S/N) threshold is called a “detection”2.

We use the terms “astronomical source” or “astronomical
object” to refer to the astrophysical entity or phenomenon from
which a set of detections of a certain point or region in the sky
seems to have originated. In the context of astronomical alerts,
we call these “candidates”, to reflect the fact that they may or
may not end up being relevant for follow-up observations and
subsequent characterization as a particular kind of astrophysical
phenomenon.

Alerts are generated by an automated survey each time a
detection is made in a difference image. Observational data of
the detection are then complemented with other contextual data
into an alert and distributed (Bellm et al. 2018). The alerts may
contain metadata related to the observation process itself (this
mostly concerns the instrument that was used and the observing
conditions) or related to the candidate (such as its location or its
proximity to other previously identified sources).

The nature of the observations contained in the alert will
depend on the instrument that was used. For instance, ZTF uses an
optical instrument, and therefore its observations are photometric
in nature. By “light curve” we refer to a representation of a time
series as a vector of photometric measurements at a certain band
in wavelength and their associated time-stamps. Light curves
can have measurements in multiple bands, and they usually have
irregular sampling (see Fig. 1).

If a candidate has a recognizable behavior only during a
certain time duration (usually days or weeks) before returning
to a “normal” or baseline behavior, we say that the behavior is
“transient” in nature, or that we observe a transient candidate or
phenomenon. Events, or detections, can be caused by different
phenomena, including “proper” transients (e.g., SNe), reoccurring
variables (e.g., AGN), moving objects in the Solar System, cosmic
rays, or pure noise due to for example misaligned references.

Alerts are represented by binary files containing metadata and
contextual information for a single detection or event. This event
is usually a change in the position or luminosity of a particular

1 These are introductions to terminology for a cross-community context.
Any reader already familiar with these concepts should skip this section
and continue with Sect. 3
2 In Rubin Observatory nomenclature, this is called a “source” instead
of a “detection”. Readers familiar with that nomenclature should bear
this in mind for the remainder of the article.
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Fig. 1. Example of a light curve obtained from a ZTF alert; in this case
candidate ID ZTF21abbyhvw. This particular candidate has detections in
three bands. The irregular sampling that is characteristic in astronomical
observations can be seen. Lightly colored hollow points correspond to
nondetections.

Table 1. Definitions of some common classification assessment
metrics.

Precision
tp

tp + fp
Recall

tp
tp + fn

F1-score
2tp

2tp + fp + fn

MCC
tp × tn − fp × fn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)

Notes. tp stands for true positive examples, tn for true negatives, fp for
false positives, and fn for false negatives.

point in the sky (Masci et al. 2019). Each alert includes at least a
unique identifier and data related to the particular science observa-
tion such as, for instance, a cutout image of the observation region
(Juric et al. 2020). Additionally, in surveys such as ZTF and LSST,
alerts include some listing of prior variability connected to the
same source. ZTF alerts contain the photometry of any prior
detection at the same position during the last 30 days. ZTF alert
packages are represented and structured in JSON format. Some of
its values are: a unique identifier for the alert, candidate-specific
metrics from the image-subtraction process, image-specific meta-
data, nearby astronomical objects according to different catalogs,
and image cut-outs centered on its location. There is typically
a one-to-many relationship between candidates and their alerts.
That is, a new alert for a candidate is issued every time a new valid
observation is made. Therefore, many alerts are usually produced
for a candidate during its transient lifetime.

2.2. Classification concepts

In the context of information retrieval, precision is defined
(Chicco & Jurman 2020) as the fraction of retrieved documents
that are relevant (see Table 1). Its dual metric, recall, is defined
as the fraction of relevant samples that are correctly retrieved.
This definition can be directly applied to classification tasks if
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Fig. 2. Example of ROC curves with their respective AUC. Here, we see
the curves that correspond to the performance of the best possible classi-
fier (AUC = 1.0), a perfectly random or baseline classifier (AUC = 0.5),
and the worst possible classifier (AUC = 0.0).

we interpret relevant and irrelevant samples as positive and neg-
ative classes, respectively. The F1-score, in turn, is defined as
the harmonic mean between precision and recall. The Matthews
correlation coefficient (MCC) is a statistical rate that is used as a
score for classification tasks. It has the advantage of being more
informative and truthful in evaluating binary classifications than
the accuracy or the F1-score (Chicco & Jurman 2020).

The Receiver Operating Characteristic (ROC) curve (see
Fig. 2) is the result of plotting true positive rates against false pos-
itive rates while gradually changing the threshold value returned
by the classification model and used for distinguishing between
classes. A ROC curve is plotted in a two-dimensional Cartesian
coordinate system, where the horizontal axis represents the false
positive rate and the vertical axis represents the true positive rate.
Both rates can take values ranging from 0 to 1; and therefore, the
ROC curve is bounded by the unitary quadrant of the plane.

In a perfect binary classification procedure, if the threshold
condition for class distinction is incrementally relaxed (i.e., sub-
sequently more and more examples start being considered as
belonging to the positive class), almost all marginal increases in
true positive rates occur with no increase in false positive rate. A
classification like this will be represented by a curve in the ROC
diagram that has the highest possible area under it, and it will
have a value very close to (0, 1) at some point. This curve will be
similar to a Pareto cumulative distribution with an infinite shape
(α) value.

In contrast, if a classification is the worst possible, almost all
marginal increases in false positive rate occur with no associated
increase in true positive rate. When plotted in a ROC diagram,
this curve will be very close to y = 0 in most of its points, and it
will have an area under the curve that is close to zero.

A random binary classification where a given example has
the same probability of being assigned to either of the two classes
(e.g., flipping a balanced coin each time to decide which class
to assign an example) should, if statistically significant, increase
the true positive and the false positive rate by the same marginal

amount. This constitutes the baseline performance, and when
plotted in the ROC curve it describes a line that corresponds to
the identity function (it goes from (0, 0) to (1, 1)).

The ROC curve can be summarized by a single number: the
area under the curve (AUC, in this case the ROC AUC). This
number is used by itself as a metric to assess classification perfor-
mance, and its value ranges from 0 (worst possible performance)
to 1 (best possible performance).

3. Motivation

The task of classifying light curves has two different goals,
depending on whether the potentially observed transient is at
an early or late stage of its lifetime. The scope and the challenges
in these two cases are distinct from each other. In the case of late
stage classification, the transient has already faded by definition.
That is, we collected all observations for the full span of the tran-
sient’s life, and the goal is to achieve precise classifications, even
up to the subtype level. How fine-grained the classification should
be depends on the specifics of each science use case. When a
sufficient number of observations are available, it is trivial to
identify Solar System objects, satellites, or other variables simply
by looking at their light curve but not transient sources that are
irrelevant for further analysis.

On the other hand, classifying transients at their early stage
is fundamentally different: the goal here is to find relevant phe-
nomena as early as possible to the beginning of their lifetime in
order to request additional dedicated observations quickly. That
is, we are interested in detecting quickly developing extragalactic
objects in their infant or early phase. For such objects, we possess
a limited number of measurements, and therefore, it is not trivial
to distinguish them from irrelevant candidates. The likelihood of
mistaking a transient for another kind of variable object is even
higher when the survey is just starting its operations. This is also
the case when there are not many historical observations available
overall. In this context, our main sources of contamination are
satellites, Solar System objects, intragalactic objects, and other
types of nontransient variable sources, with the possible added
presence of observation artifacts. Furthermore, if we are only
focused on following-up young SNe, then distant and old but still
bright SNe may be a source of confusion as well.

We investigate if simple but specialized methods could prove
successful in terms of achieving early stage classification. In
particular, the goal is to develop a model that works as a filter
in terms of selecting young SNe as candidates for fast and/or
automatic follow-up. In this case, noise will consist mostly of
artifacts, nonextragalactic transients, and nontransient variable
sources. In our work, the main goal is to reduce the number of
false-positive selections by as much as possible, as the resources
for follow-up observations are highly limited.

The selection of relevant transients for follow-up is a stage
dominated by intense human labor. Any method that may assist
in this process should be a valuable contribution in improving the
efficiency of the whole transient detection and characterization
pipeline.

Our selection method, which we call SNGuess, consists of
extracting a feature vector from each alert of a set, and then
organizing the vectors into a feature matrix. In a next step, a set of
labels that indicate the relevance for follow-up of each one of the
alert candidate objects is obtained (one label for each one of the
feature vectors) and is then used to construct a target vector. The
target vector takes Boolean values (true when the alert candidate
is relevant, false when it is not relevant). The feature matrix and
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Fig. 3. Steps for SNGuess model generation. Each step in the process is described in a separate section, as indicated above the boxes.

the target vector provide the input for supervised training of a
boosted-trees classification model.

Once the model is trained, vectors of the same feature func-
tions are extracted; this time from a different set of alerts to be
analyzed. These vectors are subsequently fed to the trained model
in order to obtain a set of prediction scores. The higher the value
of a particular prediction score, the more interesting and relevant
the candidate is for follow-up.

The main motivation for developing the SNGuess method
is the scientific use case of selecting young, extragalactic, and
nearby SNe for additional follow-up observations. Almost all of
them become bright at the peak of their transient lifetime. For our
present analysis, we assume that the ZTF Bright Transient Survey
(BTS; Fremling et al. 2020; Perley et al. 2020) has classified
most of those transients to date, as this survey aims to classify
all transients that at some point become brighter than 18.5 in
magnitude. We are interested in the feasibility of automatically
detecting those transients even earlier in time. Therefore, we use
labels from BTS to indicate relevance for follow-up of individual
transients.

The process used to generate the core classification model of
SNGuess can be separated into the following phases (see Fig. 3):
1. Alert pre-selection and feature extraction (Sect. 4);
2. Candidate label matching (Sect. 5);
3. Alert processing (Sect. 6);
4. Training and evaluation (Sect. 7).

In the following sections, we discuss details of these steps together
with the data sets used.

4. Alert pre-selection and feature extraction

SNGuess was trained and tested with data from the ZTF survey3.
ZTF generated on average more than 150 000 alerts per night for
its public survey between May 2018 and July 2019. An initial
pre-selection was made to only include alerts located outside the
Galactic plane and with at least two detections and a RealBogus
score larger than 0.3. RealBogus is an automatic classification
system designed to identify observational artifacts. Additionally,
known Solar System objects flagged by the Minor Planet Center
(MPC) are discarded. This filtering process is similar to those
typically performed by real-time observational surveys, and mini-
mizes the impact from Solar System objects and stellar variability
in the Galaxy. The result of this filtering process is a set of 261 417

3 In the future, ZTF alerts will contain forced photometry data. This
study was made based only on alert photometry.

astronomical alerts generated by the ZTF stream. This set con-
tains photometric detections that took place between May 2018
and July 2019.

We define a set of features (numerically measurable proper-
ties) to be extracted from the alert set that are relevant to our
context. These are simple to calculate from alerts, regardless of
whether they contain data for few or for many observations. Table
2 shows the full list of used features and their description.

The feature set can be divided in two subsets. The first one
includes features that are related to the photometric observations
contained in the alert. These are calculated using functions that
depend only on the photometric points. Some examples of this
kind of feature are the slope, color, duration, and peak magni-
tude of the light curves. The second subset contains the features
that consist of values relating to the alert metadata or, more
specifically, related to the transient candidate from which the
photometric observations originate, such as its location in the sky,
or its distance to the nearest astronomical source in a particular
catalog in the PanStarrs (Kaiser et al. 2002) and Gaia (Perryman
et al. 2001) catalogs. Most of these numerical values are already
present in the alert.

In general, the values of the alert metadata features tend to
remain constant between alerts that refer to the same transient
candidate. In contrast, the values of the photometric features
usually differ between two alerts, depending on how the light
curve evolves as more observations of the candidate are received.

The precision of photometric features varies strongly depend-
ing on the candidate luminosity. Even though the 5σ detection
limits of the ZTF is around 20 to 21 magnitudes, there can still be
large uncertainties for detections that are fainter than 19.5. There-
fore, it is not guaranteed that an alert with a detection of that
magnitude will be distributed. For this reason, any calculation
made for these detections will have large uncertainties associated
and problems with incompleteness.

Some of the features take Boolean values, such as the peaked
field, which indicates whether the alert’s light curve has a peak
or not. Other features have integer or floating point values, such
as the number of detections (ndet) or the distance to the nearest
astronomical source (distnr).

The output of the feature calculation phase is one vector of
feature values for each alert. These feature vectors are arranged
as matrix rows to form a feature matrix.

5. Candidate label matching

The classification at the core of SNGuess is performed by a super-
vised model. However, none of the alerts that are generated by
ZTF have information on the type of the observed candidate.
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Table 2. List of features used by SNGuess.

Name Type Description Source

tPredetect Time Time between final good upper limit and first detection Photometric
tLC Time Duration (time between first and most recent detection) Photometric
ndet Int Number of significant detections Photometric
peaked Bool Is the lc estimated to be declining? Photometric
pure Bool No significant nondetections after first detection Photometric
rising Bool Max brightness close to the most recent detection Photometric
norise Bool No (significant) detected rise Photometric
hasgaps Bool The light curve has a gap between detections of at least 30 days Photometric
mPeak Mag Magnitude at peak light (any band). Only calculated if peaked==True Photometric
mDet Mag Magnitude at first detection (any band) Photometric
mLast Mag Magnitude of the current (i.e. latest) detection (any band) Photometric
cPeak g–r Color at peak (if peaked and with g and r) Photometric
cDet g–r Color at detection (if with g+ r) Photometric
cLast g–r Color at last detection (if with g+ r) Photometric
slopeRise g, r Mag/time g or r mag slope between detection and peak (none if norise) Photometric
slopeDecline g, r Mag/time g/r magnitude slope between peak and last detection (none unless peaked) Photometric
rb (med) Float Median Real Bogus (all detections) Photometric
drb (med) Float Median deep Real Bogus (if available, all detections) Photometric
distnr Pixel Distance to nearest astronomical source in reference image Metadata
magnr Mag Magnitude of nearest astronomical source in reference image Metadata
classtar Float Star/Galaxy classification score from SExtractor Metadata
sgscore1 Float Star/Galaxy score of closest astronomical source from PS1 catalog Metadata
distpsnr1 Arcsec Distance to closest astronomical source from PS1 catalog Metadata
sgscore2 Float Star/Galaxy score of next to closest astronomical source from PS1 catalog Metadata
distpsnr2 Arcsec Distance to next to closest astronomical source from PS1 catalog Metadata
neargaia Arcsec Distance to closest astronomical source from Gaia DR1 Metadata
maggaia Mag Gaia (g-band) magnitude of closest astronomical source from Gaia DR1 catalog Metadata

Notes. The features are separated into photometric (created based on the transient light curve provided in the alert) and metadata (created based on
the properties contained in the ZTF alerts of nearby detections in the references and in astronomical catalogues). While most of the features are
self-explanatory, their explicit definitions can be found in Appendix C.

Furthermore, no single metadata field in the alert can be directly
used as a reliable indicator of follow-up relevance. This is why
candidate type information has to be obtained from external data
sources. Then, candidate relevance, and therefore a suitable rele-
vance label, can be inferred from the candidate type, depending
on what type of object should be followed up. In our case, these
objects are young extragalactic SNe.

Two external type lists are used for this purpose. First, a list
of 4578 labeled candidates from the BTS survey is obtained, and
these are then cross-matched with the candidates in the training
set of ZTF alerts. The BTS classifications are mapped into ten
general classes, shown in Table 3. This mapping is required as
some labels have an interrogation mark suffixed, indicating that
the type assigned to the candidate is uncertain. Some labels simply
indicate that no type was found for the candidate (e.g., None,
unknown). Other labels are very similar to each other or may refer
to very specific subtypes (e.g., SLSN-I and SLSN-I.5, SN Ib,
and SN Ib/c, etc). The primary goal of SNGuess is the detection
of SN-like objects, and to do this at an early moment in their life
cycle, when subclassification is highly unreliable. Furthermore,
a training set with overly fine-grained labeling results in classes
with very few examples. Additionally, we use a second set with
495 candidates typed as CV that were retrieved in March 2020
as a source of labels to perform the matching process described
above.

We note that the training sample contains nearby SNe eventu-
ally classified by BTS (and therefore with positive labels), fainter

Table 3. Main types assigned from BTS to the alert data set used for
training SNGuess.

Type No. of candidates No. of alerts

SN Ia 974 16942
SN II 215 5022
AGN 162 5573
CV 58 693
SN IIn 53 1476
SN IIP 45 1790
SN Ic 38 813
SN IIb 34 611
SN Ia 91T-like 31 854
SN Ib 24 611

but real astrophysical sources, and nonastronomical objects (both
without labels).

6. Alert processing

Once the features are extracted from the ZTF alerts and the candi-
date type information is obtained, we process the alerts based on
their observations and metadata. First, if a metadata field contains
a measurement value that is nonphysical, it is replaced with a
null value.
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Table 4. Alert groups by number of detections and their cut values.

No. of detections tPredetect [JD] tLC [JD]

2 ≤3.5 ≤3.5
3 ≤3.5 ≤6.5
4 ≤3.5 ≤6.5
5 ≤3.5 ≤10
6 ≤3.5 ≤10
[7, 100] ≤10 ≤90

Notes. A separate model is trained for each row.

Alerts belonging to candidates with less than six “final” detec-
tions are removed from the training set. Most likely they would
not have been part of any follow-up campaign (e.g., due to poor
weather later), and thus risk biasing the training set. All alerts
of candidates with sufficient data to eventually be classified (if
sufficiently bright) are included individually.

In a subsequent step, alerts are separated into six different
groups according to the number of their detections (ndet). For
each one of these groups, we exclude those alerts that exceed a
preset maximum duration between the first and most recent detec-
tion (tPredetect) and a duration between final good upper limit
and first detection (tLC). These time ranges were chosen to be
longer than the nominal ZTF northern sky survey cadence, mean-
ing that an upper limit (i.e., nondetection) or previous detections
should exist during normal operations. This additional filtering
rejects detections made after a gap in the observations (e.g., due to
visibility, scheduling issues, or weather). We perform this filtering
because we are training SNGuess with mostly human-generated
labels as a gold standard. We assume that an expert human agent
is unable to systematically detect young transients without having
a baseline to which its recent explosive behavior can be compared.
The corresponding groups and their maximum values are shown
in Table 4.

Finally, alerts that had a first detection with a magnitude
below 16 are excluded from the training data set; these alerts were
consistently found to be due to stellar variability and the same cut
is applied in the live ZTF alert stream. Initially, the training set
contains 261 417 alerts for 45 765 different candidates. At the end
of the data processing phase, the resulting set contains 109 587
alerts for 35 883 candidates.

7. Training and evaluation

We use the XGBoost (Chen & Guestrin 2016) implementation
of the Gradient Boosted Trees algorithm to obtain a decision
tree ensemble model for the classification. Models trained by
this algorithm have proven to be state of the art in classification,
showing low out-of-sample errors in a variety of domains (Zhang
et al. 2017). They can handle missing feature values out of the box,
which simplifies the preliminary processing phase by making it
unnecessary to replace them with generic values or to extrapolate
them from existing data.

The Gradient Boosted Trees algorithm receives as input a
series of hyper-parameters that control how the training takes
place, and puts constraints on model parameters to keep the model
from over-fitting to the training data. The first task of the learning
phase is to explore different combinations of hyper-parameter
values in order to estimate how well the models generated by the
training algorithm perform and how this performance changes
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Fig. 4. Ranking of most important features for classification with the
7–100 detections classifier, according to the F1-score metric.

with each one of these combinations, before selecting the best
hyper-parameter values.

Numerical ranges for all of the hyper-parameters are defined
in order to explore the space of possible hyper-parameter com-
binations (see Table 5). Each one of the hyper-parameters is
then assigned a uniform probabilistic distribution within its
range. Next, a randomized search is performed in order to
obtain an optimal hyper-parameter value combination. That is, m
points are randomly sampled from the joint distribution over all
hyper-parameter variables. Each one of these points represents
a combination of values for all hyper-parameters. For each one
of them, training and evaluation of the model is performed with
five-fold cross-validation. The mean and variance of the clas-
sification performance metric for all cross-validation folds are
calculated before continuing with the next point sampled from
the hyper-parameter joint distribution. The model that is selected
as the best is the one that obtains the highest performance metric
across all its cross-validation folds.

This training and evaluation process is performed once for
every group of alerts (alerts grouped by their number of detec-
tions; see Sect. 6). For groups of alerts that have six or fewer
detections, the following features are used as input for train-
ing: mDet, mLast, tLC, rb, cDet, tPredetect, distnr, magnr,
classtar, sgscore1, distpsnr1, neargaia, and maggaia.
For the final group, with alerts that have between 7 and 100
detections, all of the features indicated above are used as input
for training, plus: mPeak, cLast, and cPeak.

After the training and evaluation phase, one set of boosted
trees is produced for each one of the six groups into which the
alerts were separated according to their number of detections.
It is important to note that this division is done on an alert-by-
alert basis, and not on an object-by-object basis. For instance, if
an object has seven detections, one of its alerts will be consid-
ered in the two-detections group to start with, but later another
one of its alerts will be considered in the 7–100 group (and its
other alerts in the respective groups in between). Table 5 shows
the optimal hyper-parameters obtained after performing cross-
validated training and evaluation over every alert group by number
of detections.

XGBoost allows the user to easily generate a ranking of fea-
ture importance for the classification model. Figure 4 shows a
list of the most important features for classification in the 7–100
detections classifier.
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Table 5. Hyper-parameter space used for tuning the XGBoost model.

Hyper-parameter Min. value Max. value 2 det. 3 det. 4 det. 5 det. 6 det. 7 to 100 det.

Column sample by level 0.01 1.0 0.01 1.00 1.00 1.00 1.00 0.00
Column sample by tree 0.1 1.0 0.74 0.75 0.69 0.92 0.75 0.74
Gamma 0.0 40.0 0.14 1.65 3.81 2.49 1.65 0.13
Learning rate 0.0005 0.5 0.38 0.17 0.10 0.32 0.17 0.38
Maximum depth 2 12 12 9 3 11 9 12
Minimum child node weight 0.0001 0.5 0.32 0.04 0.42 0.21 0.04 0.32
Subsample 0.01 1.0 0.79 0.48 0.60 0.36 0.48 0.79

Notes. The tuning process was done via a randomized search, and final optimal hyper-parameters obtained per model by number of detections.
200 points were randomly selected from the joint distribution of uniform probabilities within each hyper-parameter range. A five-fold cross validation
was then performed for each of them and the mean performance was calculated. The point with the highest mean performance was selected as the
optimum combination of hyper-parameter values.

8. Model deployment

SNGuess was designed as a light-weight system that is easy to
both retrain and use. The data and procedures described so far
have been made public in an SNGuess Git repository4. Users
can access Python Jupyter notebooks with all of the steps in the
data processing and training pipeline of SNGuess5. The results
and plots of this article can be locally replicated, or the model
retrained over a different set of features or labels.
SNGuess has been deployed as part of the AMPEL real-time

alert processing platform (Nordin et al. 2019), and has been run-
ning on the servers of DESY in Zeuthen, Germany, since April
2020. Users can directly access the generated SNGuess scores
of ZTF transients through the AMPEL API6. Alternatively, users
can install the core AMPEL packages and run the trained SNGuess
model on raw ZTF light curves directly7.

Finally, SNGuess is used as one of the components of
the selection process for young ZTF transients which are
autonomously submitted to the Transient Name Server (TNS8)
under the sender name AMPEL_ZTF_NEW. The score assigned by
SNGuess is a floating point value between 0 and 1, where a
score closer to 1 indicates that the candidate is more relevant for
follow-up observations than one with a score closer to 0.

9. Testing

We evaluated the performance of SNGuess over a set of 173 402
alerts for 8969 candidates, received from October 8, 2020 to
August 15, 2021. These alerts remained after applying the same
filter for poor-quality observations, as discussed in Sect. 6.

Four classes of alerts were defined in order to generate
performance metrics for SNGuess:

– Actual positive. any alert of a candidate eventually targeted
by BTS;

– Actual negative. any alert of a candidate not targeted by
BTS;

– Predicted positive. any alert with an SNGuess score above
a certain threshold;

4 https://github.com/nmiranda/SNGuess
5 https://github.com/nmiranda/SNGuess/tree/main/
notebooks
6 https://ampel.zeuthen.desy.de/api/live/docs
7 https://github.com/AmpelProject/Ampel-HU-astro/blob/
main/notebooks/ampel_api_run_T2BrightSNProb.ipynb
8 https://www.wis-tns.org/
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Fig. 5. ROC curve for SNGuess with the test data set (see Sect. 2.2).
The area under the curve (ROC AUC) value of 0.93 summarizes a good
performance across different score thresholds for distinguishing between
relevant and nonrelevant candidates. As a comparison point, we also see
the ROC curve for performing a simple logistic regression classification
with just the distance to nearest source as an independent variable. We
can see that SNGuess shows a better performance than this simple clas-
sification (ROC AUC = 0.66).

– Predicted negative. any alert with an SNGuess score
below or equal to the threshold.

The use of BTS labels as a measure of the “true” outcome
assumes that this survey was 100% efficient in terms of selecting
transients by a human scanner. There are several reasons why this
precision is not achieved in practice: observations of transients
might have halted prior to reaching the BTS magnitude threshold
due to weather or visibility, the transient might be intrinsically
faint (or reddened), or it could be located in the core of a bright
galaxy. It is therefore likely that the evaluation carried out here
undervalues the SNGuess performance.

Gradually increasing the SNGuess acceptance threshold while
keeping record of the true-positive and false-positive rates pro-
duces the ROC curve shown in Fig. 5. The ROC AUC value
of 0.93 reflects good performance over a variety of different
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Table 6. Performance metrics for SNGuess over the test data set for different models, by number of detections of their alert training data set.

Metric 2 det. 3 det. 4 det. 5 det. 6 det. 7 to 100 det. All models

Precision (best = 1.0, worst = 0.0) 0.473 0.563 0.642 0.675 0.671 0.962 0.876
Recall (best = 1.0, worst = 0.0) 0.537 0.781 0.827 0.877 0.898 0.830 0.821
F1-score (best = 1.0, worst = 0.0) 0.503 0.655 0.722 0.763 0.768 0.891 0.848
MCC (perfect = +1.0, random = 0.0, inverse = –1.0) 0.398 0.539 0.596 0.641 0.617 0.787 0.728
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Fig. 6. Precision–recall curve for selection by SNGuess from the test data
set. The baseline performance shown by the blue dashed line corresponds
to the ratio between relevant and total number of examples, and is an
indicator of the imbalance between classes.

transient ages and luminosities. We draw the same conclusion
for the precision–recall curve of the selection, as shown in
Fig. 6. We realize that the curve is quite close to that of a perfect
classification.

If we fix the score threshold to 0.5, and define all examples
with a higher score as belonging to the positive selection or predic-
tion class, we obtain a classification that produces the confusion
matrix displayed in Fig. 7. We observe that false positives are
less common than false negatives. As we can see in Table 6,
SNGuess has a good performance in several metrics that are com-
monly used in binary classification tasks. Some of them, such as
the F1-score and the Matthews correlation coefficient (MCC),
are particularly important because of their robustness to class
imbalance (Chicco & Jurman 2020).

Astronomical use cases for a tool like SNGuess would typ-
ically include program limits in terms of the desired age or
brightness of follow-up targets. Figure 8 shows the precision
of the selection by SNGuess from alerts grouped by number of
detections and magnitude of last detection. The number of detec-
tions works as an effective indicator of the potential age of the
transients (which cannot be fully known at the time of the alert
generation) as the nominal ZTF MSIP survey observes each field
twice (g + r) every third day. The number of examples in each bin
is displayed in parentheses in order to give an idea of the statistical
significance. We again note that these are conservative numbers
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Fig. 7. Confusion matrix of the selection by SNGuess from the test data
set. The number in each box corresponds to the number of alerts fulfilling
the SNGuess input criteria (see text for these).

Fig. 8. Precision of the selection from alerts grouped by number of
detections and magnitude of last detection for alerts fulfilling SNGuess
run criteria. The area highlighted in red, with last magnitude below
∼19.5, correspond to alerts that are expected to have small photometric
uncertainties. For fainter objects, ZTF photometry can exhibit significant
uncertainties and variable detection efficiency.

in that a fraction of the negative labels actually correspond to real
extragalactic transients.
SNGuess consistently provides a precision above 90% and

approaching 100% for transients suitable for follow-up with
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Fig. 9. Distribution of SNeIa candidate selection times with respect
to light curve peak time. Two outlier points with extreme values were
excluded from the plot: ZTF21abbxtwv and ZTF18acydlux. Both can-
didates show gaps of more than 30 days around peak magnitude in their
light curves, which likely caused the peak-finding algorithm of BTS to
give an incorrect detection time value. Similar observational irregulari-
ties are found for most SNe with a detection phase after peak.

smaller scale facilities (magnitude <19.5) and of intermediate age
(5+ detections). Our results show that SNGuess in this parameter
range can, for example, efficiently reduce the amount of real-time
scanning needed by human observers.

The numbers obtained in the lower two rows of the table in
Fig. 8 correspond to the area with large statistical uncertainties
(see Sect. 6), which will directly impact the feasibility of classifi-
cation. In particular, due to the ZTF alert distribution mechanism,
measurements in this brightness range might not be reported
(even if eventually recognized by BTS). While the results in Fig.
8 are displayed in terms of the magnitude of last detection, the
mean or typical magnitude of each alert is likely to be even fainter
for the first two columns (as most real transients are increasing
in brightness here), while it is likely to be brighter for the final
column (where most transients have passed their peak).

Science programs looking to target young extragalactic tran-
sients for immediate follow-up could make use of SNGuess to
carry out automatic observations already at first detection for
objects with magnitudes in bands g or r at < 19.5 with reason-
able precision (∼75%). There is a drop in efficiency for young
transients at larger magnitudes, and therefore SNGuess is more
suitable here for use as an efficient first filter prior to a human
decision regarding whether a transient should be targeted by the
larger follow-up facilities.

Finally, the number of significant ZTF detections that caused
an alert to be generated is not identical to the real age of a
transient, which is typically the focus of scientific interest. As
SNeIa have a reasonably well-defined rise time to peak light
(18 ± 2 days), we can use the phase of candidate detection
for transients later classified as SNeIa to estimate the time at
which SNGuess would have selected a transient for follow-up.
Figure 9 shows the distribution of candidate-selection times with
respect to the time of light curve peak. Candidate selection time
is defined as the detection time (jd_last) of the earliest alert
for a particular candidate selected by SNGuess, and this is com-
pared with the time of peak as catalogued by BTS. The median
time of selection for SNIa candidates is close to 10 days before
peak. The early selection purity can easily be improved through,
for example, matching to external catalogs of nearby galaxies, a
step which was not done here in order to maintain the general
applicability of the basic method.
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Fig. 10. Comparison between the distribution of all typed candidates
vs. SNGuess-selected candidates in the test data set; limited to the five
most common types. The distributions are normalized in order to make
it easier to compare relative biases.

One should keep in mind that only a subset of the candidates
that have been selected by BTS have also been assigned a type,
and so by performing any analysis that involves confirmed types of
candidates we are immediately subject to biases in the selection
of BTS. In future work, we will enrich our data with further
sources of labels, and also train and evaluate with data sets from
other surveys, in order to have a more general assessment of the
inherent type biases in the selection performed by SNGuess.

However, we can still compare the type distribution of all the
candidates that have been classified with the type distribution
of the candidates selected by SNGuess from the test data set.
Figure 10 shows this comparison for the five most common types.
We see that even though the selection performed by SNGuess
follows the overall distribution of the selection of BTS, the former
is slightly more biased toward type Ia and type II SNe.

10. Conclusions

SNGuess is a light-weight machine-learning system designed to
assist in the selection of transients for potential follow-up obser-
vation from high-throughput alert streams generated by modern
astronomical surveys. SNGuess was designed to work based on
the alert content alone and without any external information. The
output could therefore easily be further improved, for example,
by taking into account redshift information and/or the rejection
of galaxy core/AGN variability.

The average precision of SNGuess in terms of correctly pre-
dicting a candidate as being an interesting extragalactic transient
is 88%, but this precision increases to 92% to 98% when examin-
ing transients brighter than 19.5 mag with five or more detections.
This shows that SNGuess can be directly used for surveys looking
to streamline the selection of interesting candidates for follow-up
observations. The precision score obtained for transients in the
same brightness class but with fewer detections is slightly lower,
at ∼75%. In addition, SNGuess is being used to search for faint,
infant transients with few detections. However, the lower preci-
sion in this magnitude range (∼30%) means that results need to
be combined with visual inspection or catalog matching. Results
in this magnitude range are affected by the increasing ZTF photo-
metric uncertainties, which make both human and autonomous
detection challenging.
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As precision is a metric that is highly sensitive to class imbal-
ance, we confirm that SNGuess produces good results according
to other metrics, such as recall (0.821), F1-score (0.848), and
MCC (0.728).
SNGuess was developed to help identify candidates of explo-

sive transients for spectroscopic follow-up as detected by the ZTF,
but can easily be retrained to parse transients detected by the
LSST at the Rubin Observatory. TiDES is expected to be able
to follow up all explosive transients detected by the LSST with
magnitudes of rAB ≲ 22.5 at peak (Swann et al. 2019). While
the spectroscopic sample obtained from this may require fur-
ther augmentation or combination with other samples (Carrick
et al. 2021), an algorithm similar to SNGuess may be used to
select appropriate candidates, particularly in the early part of the
survey.

Our evaluation procedure is limited, as our sets of alerts are
not fully labeled (we do not have types for most of the candi-
dates) and that the true labels are only obtained from the BTS
survey. Now that SNGuess is active we plan to carry out a dedi-
cated follow-up of a subset of the SNGuess candidates in order to
further evaluate, calibrate, and refine its results.

Our method may be improved by implementing a better
strategy for hyper-parameter space search when training the
classification model. Furthermore, active learning could be
incorporated in our pipeline. This would allow the use of
human-in-the-loop and automatic follow-up results of transient
observations as feedback for improving the quality of the clas-
sification. It could also allow us to retrain the model with more
transient candidate sources for labeled data. We would also like
to explore different methods for estimating the performance of
selection methods over partially labeled data sets by evaluating
semi-supervised or unsupervised approaches.

The Python source code for SNGuess is fully available in
the public repositories of AMPEL, with additional data sets and
notebooks that generate the results shown in this article9. The
results of the live instance of SNGuess that is running on the
servers at DESY are freely accessible through the AMPEL Open
API10. In addition, the repository contains an example notebook
that shows how to obtain an SNGuess score for any ZTF candidate
alert currently stored in the DESY archives11.
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Appendix A: Data inputs and mathematical
formalization

Chen & Guestrin (2016) define a data set with n examples and m
features D = {(xi, yi)}, |D| = n, xi ∈ R

m, yi ∈ R as input for their
Gradient Boosted Trees learning model. We refer to xi, the input
vector, and yi, the target value.

When trying to set our photometric time-series data to
comply with this format, we immediately face an issue: our
data are composed of l time series of variable length T = {t j},
where t j = (t, v)p j , t ∈ R+, v ∈ R, p j = |t j|, j ∈ [1, l], l ∈ N+∗ .
We denote an astronomical time series, or light curve with t j. In
the previous definition, t is the time stamp of a particular light
curve measurement, and v is the measurement value obtained at
this time. Multiple t j vectors can belong to the same astronomical
candidate. This is due to the fact that photometric measurements
are made for different band pass ranges, and measurements made
in different bands do not necessarily have the same time stamp. In
other words, a particular candidate has one light curve per band.

The approach we took to deal with this issue is to define a
set of functions F = {fk}, k ∈ [1,m], and then to apply this set
of functions to all of the light curves for each candidate. This
means that the i-th candidate will be assigned an input vector
xi = (f1(Ti), (f2(Ti), . . . (fm(Ti)), where Ti is the set of light curves
belonging to the i-th candidate. We refer to F , our set of feature
functions.

Appendix B: Data inputs, data structure
formalization

There are several ways to store multivariate irregular-length time
series as structured data. Let us suppose we have two candidates,
for which we have measurements in at least one of g, r, and i
pass bands. If we want to put these measurements in a data table
format, our first idea would be to assign each one of the candidates
to a single row of the table. This we call a wide table format. The
result would then be of the form shown in Table B.1.

In this case, tm would be the length of the longest light curve
in our data set. The dimensions of this table, in general, would
then be n × b × tm, where n is the number of candidates and b is
the number of pass bands. The advantages of this representation
are its simplicity (all values are readily accessible) and the fact
that it already has a format that can be accepted by most machine
learning models (see Appendix A). In this case the table has one
single obvious index: column id.

A wide table arrangement is useful when it is desirable to
preserve the intuition present in general data science applications,
that is, that each row of a table corresponds to an independent
and identically distributed (i.i.d.) entity in the domain input. The
disadvantage of this representation is the sparsity of the table, as
in most cases we have many fewer measurements in some pass
bands than in others. In addition, the length of the light curves
varies greatly between candidates. Because of this we are forced
to fill the missing values with zeroes.

Another possible configuration would be what is called a
nested table configuration. In this arrangement, as in the wide
table format, each row corresponds to a candidate. However, in
this case the measurements are grouped in columns according to
their type. Thus, we have one column for each band, and each
value of the table contains the entire time series of the correspond-
ing candidate at a certain band. Applying to our example case,
the result would that displayed in Table B.2.

The advantage of this nested configuration is that the data are
much less sparse, as a particular table value is empty only in cases

when one of the candidates does not have any measurements for
a given pass band. Furthermore, we have no constraints on the
length of a given time series, as its full content is saved in a single
cell of our table, and therefore we can easily store light curves of
different lengths.

The disadvantage of this configuration is that we are no longer
storing simple native data types in the table cells, but a composite
series that has to be codified or serialized for storing its values,
and there is no standard way of doing this. Also, we cannot
perform mathematical operations with it directly, as it has no
trivial matrix representation.

We can have a compromise between the two cases if we
use what we call a semi-wide table format. In this arrangement,
there is a row for each combination of candidate and time of
observation. Additionally, it has one column for each one of the
observation bands. This way, each time stamp is associated with
one or more observation values, depending on how many bands
were observed at the very same instant as indicated by the time
stamp. Applying to our example case, the result would be the one
shown in Table B.3.

Again, the advantage of this format is that we have no con-
straint over time series length, and that we have no issues storing
time series of different lengths. Also, it is very easy to append
new values to a table in this format, as any new value is just a new
row in the table, and the rows do not need to be in any particular
order.

The disadvantage of this format is again sparsity, as there
are almost no cases where for a particular instant in time there
are measurements in more that one pass band. In other words,
almost no observations of a particular candidate in different bands
share exactly the same time stamp. Therefore, many rows of the
table will have zeroes in at least two of its columns. Another
disadvantage is that we no longer have a single column index. In
this case we may consider a composite index made out of tuples
of the columns id and time.

Yet another possible configuration is what we call long table
format. In this arrangement, a single row in the table corresponds
to a single observation, and corresponds to a combination of
candidate ID, time stamp, and band. Applying to our example,
the result would be that shown in Fig. B.4.

The advantages of this configuration are the same as the
previous one, with the difference that in this case the flexibility is
even greater. We can arbitrarily append new measurements to the
table as new rows, the rows do not need to be in any particular
order, and we are not forced to fill with empty or zero values at
all.

The disadvantage of this configuration is its length (O(n ×

b × tm)) and the fact that if we want to set an index to the table
this will have to be composite of more than one column. If we
can guarantee that for a single candidate there is not more than
one measurement at a given time, then we can set id and time
as index. If not, then the index will have to be composed of the
columns id, time, and pass band.

Another common format to use for this type of data is what
we call dictionary (or hashed index) format. The idea is to have
one single dictionary entry for each one of the candidates in our
data set. The key of the entry is its id, and its value is a table with
all the measurements for this candidate, as shown in Table B.5.

The advantages of this configuration are that, if we only (or
most of the time) access by the candidate id, then it can be very
efficient to work with this kind of structure. In this case, we retain
the flexibility of the previous cases and we also have the ease of
access of the wide table format.
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Table B.1. Wide table format.

id g_t1 . . . g_tm r_t1 . . . r_tm i_t1 . . . i_tm
A g_t1(A) . . . g_tm(A) r_t1(A) . . . r_tm(A) i_t1(A) . . . i_tm(A)
B g_t1(B) . . . g_tm(B) r_t1(B) . . . r_tm(B) i_t1(B) . . . i_tm(B)

Table B.2. Nested table format.

id g r i
A g_t1(A) . . . g_tA(A) r_t1(A) . . . r_tA(A) i_t1(A) . . . i_tA(A)
B g_t1(B) . . . g_tB(B) r_t1(B) . . . r_tB(B) i_t1(B) . . . i_tB(B)

Table B.3. Semi-wide table format.

id time g r i
A t1 g(A, t1) r(A, t1) i(A, t1)
A t2 g(A, t2) r(A, t2) i(A, t2)
. . .
A tA g(A, tA) r(A, tA) i(A, tA)
B t1 g(B, t1) r(B, t1) i(B, t1)
B t2 g(B, t2) r(B, t2) i(B, t2)

. . .
B tB g(B, tB) r(B, tB) i(B, tB)

Table B.4. Long table format.

id time pass band value
A t1 g g(A, t1)
A t2 g g(A, t2)
A t3 r r(A, t3)
. . .
A tA g g(A, tA)
B t1 g g(B, t1)
B t2 i i(B, t2)
B t3 g g(B, t3)

. . .
B tB r r(B, tB)

Table B.5. Dictionary format.

dict key dict value
id(A) time pass band value

t1 g g(A, t1)
t2 g g(A, t2)
. . . . . . . . .
tA g g(A, tA)

id(B) time pass band value
tA g g(A, tA)
t1 g g(B, t1)
. . . . . . . . .
tB r r(B, tB)

The disadvantage in this case is that, again, we are in the same
case as with the nested table, where the values of the dictionary
entries may not necessarily of the same type of the dictionary;
and thus we need to unpack the data structure of the value in order
to access the individual measurements. Finally, the data structure
that we obtain once we apply our feature function set over our
input data set has the format shown in Table B.6.

We have here a column for each one of our feature functions.
This table may contain null values if the corresponding feature
function cannot be applied to the light curve of that candidate.
The target column contains the target values for classification.

Table B.6. Feature table format.

id f_1 f_2 . . . f_m target
A f_1(A) f_2(A) . . . f_1(A) target(A)
B f_1(B) f_2(B) . . . f_1(B) target(B)

This can be an integer number representing one of the possible
classes, or a Boolean value in the case of a binary classification
task. This data structure is already in a format that is accepted
by most machine learning models, as it can be easily used as an
input matrix and target vector.

For SNGuesswe opted for internally using a dictionary format
for representation of light curve data. This is very easy to derive
from the AVRO format used by ZTF to distribute data via Apache
Kafka streams. Then, after extracting features from the light
curves, we use the feature table format to represent the light
curves. All of the statistical analysis and machine learning model
training, evaluation and testing is done over feature data in this
format.

Appendix C: Feature definition

cut_pp

Number of duplicate detections in the alert. By duplicate we mean
one or more detections that have a time stamp value (floating point
precision), in Julian date, that is the same as the time stamp of
another detection in the alert. When a group of detections with the
same time stamp is detected, the one with the highest real/bogus
score is saved and the rest of them are labeled as duplicates and
removed.

jd_det

Time stamp (floating point, Julian date) of the first (oldest)
detection in the alert.

jd_last

Time stamp (floating point, Julian date) of the most recent
detection in the alert.

ndet

Total number of detections in the alert.

mag_det

Brightness, in apparent magnitude, of the first (oldest) detection
in the alert.
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mag_last

Brightness, in magnitude, of the most recent detection in the alert.

t_lc

Time span (in Julian date, floating point) between the oldest and
the most recent detection in the alert.

{proptype}_med

{proptype} can be rb, drb, distnr, magnr, classtar,
sgscore1, distpsnr1, sgscore2, distpsnr2, neargaia, or
maggaia.

Median values of the properties of a particular detection
across all detections in the alert. These properties are mostly
candidate-related and most of the time they do not vary between
detections.

bool_pure

Indicates absence of upper limits after the first detection.

t_predetect

Time span between the latest upper limit prior to the first detection,
and the first detection in the alert.

bool_peaked

Indicates if the light curve of the alert has reached peak
brightness.

jd_max

Time stamp of the peak brightness detection (when bool_peaked
is true).

mag_peak

Peak brightness, in magnitude, of the alert (when bool_peaked
is true).

bool_rising

Indicates whether the light curve of the alert is rising in
brightness.

bool_norise

Indicates whether there are no significant differences (within an
error margin) between the peak magnitude of the alert and the
detection magnitudes.

bool_hasgaps

Indicates whether there is a significant time gap (30 days) between
consecutive detections in the alert.

slope_rise_{g,r}

When bool_norise is false, the slope of the rising part of the
light curve of the alert.

slope_fall_{g,r}

Slope of the decline part of the light curve of the alert, when this
decline has taken place over less than 30 days.

col_{det,last,peak}

Color (magnitude difference between bands) at first, last, and
peak detections.
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