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Abstract—In this paper, we propose a new method for deter-
mining shared features of and measuring the distance between
data sets or point clouds. Our approach uses the joint factor-
ization of two data matrices X, X into non-negative matrices
X1 = AS1, X2 = AS: to derive a similarity measure that
determines how well the shared basis A approximates X, Xo.
We also propose a point cloud distance measure built upon this
method and the learned factoril zation. Our method reveals
structural differences in both image and text data. Potential
applications include classification, detecting plagiarism or other
manipulation, data denoising, and transfer learning.

Index Terms—nonnegative matrix factorization, topic model-
ing, point cloud distance, data set distance

I. INTRODUCTION

Identifying similar or dissimilar features in the underlying
structures of point clouds is a useful technique across a wide
array of fields. There has been significant effort in developing
measures of dataset similarity, but much less in developing
measures that can also provide information about how the
datasets are similar or dissimilar. This paper proposes a
dataset similarity measure that also naturally provides infor-
mation about their primary similarities or dissimilarities.

Point cloud comparison methods and point cloud distances
have applications in document clustering [1], [2] and in
computer vision such as object classification [3], object de-
tection [4], and semantic segmentation [5]. These applications
often turn to classical metrics for dataset or point cloud
comparison, such as the Chamfer distance [6], which is defined
as the sum of the averages of the minimum distances between
points in data matrices X7 and Xo,

depam (X1, X2) = \Xl Z min [ly — 13 M
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where, in a slight abuse of notation, we let x € X mean that
x is a column of the data matrix X. Other popular metrics
include the Hausdorff distance [7], [8], the earth mover’s
distance [9], and recent metrics based on optimal transport [10]
However, these measures can be computationally expensive
or ineffective [11]. Recent efforts for point cloud comparison
include density-aware approaches [12], [13]. Additionally, data
set or point cloud distances have applications in measuring
generalizability of machine learning models [14]-[16] and
transfer learning [17].

Nonnegative matrix factorization (NMF) is a useful tool for
interpretable dimension reduction. Many types of data, includ-
ing documents and images, can be represented by nonnegative
matrices, making NMF a widely applicable method for data
analysis [18]. NMF has been previously used in the creation of
data set similarity metrics: Shahnaz et al. [2] clusters semantic
features or topics in document data and uses NMF to preserve
nonnegativity. Liu et al. [19] introduces a multi-view clustering
approach based on NMF.

Joint non-negative matrix factorization jNMF) allows for
joint factorization of two data sets with a common basis [20],
[21]. Additionally, jNMF for topic modeling has been used to
identify similarities across data sets. Kim et al. [20] proposes a
JNMF method for identifying both common and distinct topics
among document data sets, although they do not use these
topics to measure overall similarity of the datasets.

In this paper, we propose a new method for evaluating
similarity between a pair of distinct point clouds or data
sets. Our method analyzes the outputs of jNMF and measures
the contributions of the basis vectors to each set. In our
method, we first run jJNMF on the two data matrices and
then, motivated by statistical distribution comparison tests,
we compare the empirical distribution functions that represent
the jNMF coefficient factor matrices. We use this learned
information to propose a point cloud distance measure and to
provide information about how the data are structurally similar
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and dissimilar via the learned jNMF basis vectors and their
measured association with each data set.

In Section II, we give a brief overview of NMF and jNMF.
In Section III, we propose a method for determining shared
features in data sets, a distance measure based on this method,
and we list some desirable properties of a distance measure. In
Section IV, we present examples of this method applied to real
world data and experimentally verify our desired properties.

II. OVERVIEW OF NMF AND INMF

Given a nonnegative m X n matrix X, the goal of non-
negative matrix factorization (NMF) is to find nonnegative
matrices A and S such that

X~ AS

where A is m x k and S is k xn [18]. One typically chooses k
so that AS is a low rank approximation of X; there are many
heuristics for choosing the model rank %, which are beyond
the scope of this paper. NMF produces A and S by attempting
to minimize the non-convex objective function,

IX — AS||F = (Xij — (AS)i)*.
ij

NMF models can be trained with many methods. One of
the most popular methods is multiplicative updates, which
is a variant of gradient descent that ensures entrywise non-
negativity in the factors [22]. We typically interpret columns
of A as a set of “basis” vectors and the ith column of S as
the coefficients of the conic combination of those basis vectors
that approximates the ¢th data point. We do not focus on how
basis vectors are combined to create individual elements, but
instead analyze the rows of S to measure the contribution of
each basis vector to the entire data set.

Joint NMF (jJNMF) finds low-rank, non-negative approxima-
tions for two matrices, X and Y, that share a common factor
matrix [20]. When applied to supervised NMF, jNMF typically
factors X (the data) and Y (e.g., class labels) as X ~ A;S
and Y =~ A5S, so that S is shared between the factorizations.
To control the emphasis put on the labels, a weighting factor
A can be introduced into the objective function,

IX = AsS[E + MY = A28]I%,

but we focus on the cases where the approximation terms are
weighted equally, A = 1. When A = 1, the factorization can
easily be learned by performing NMF on the matrix obtained
by stacking X on top of Y, resulting in the factorization

X Ay

bl
Lee et al. [23] and Haddock et al. [24] apply jNMF to
semi-supervised tasks like document classification. Like NMF,
this model is nonconvex and methods typically employ per-
iteration efficient methods that optimize convex alternative
problems for each factor matrix.

We apply jNMF via NMF on the matrix obtained by

stacking data matrices X; and X, side-by-side, denoted by

Fig. 1: Visualization of a joint NMF learned for two datasets
(X1 in red and X5 in blue). Note that the data points in X are
well approximated by the basis elements visualized in black
and red (their conic span is given in red), while the data points
in X5 are well approximated by the basis elements visualized
in black and blue (their conic span is given in blue).

[X1 X3)], which we factorize by [X; X3] = A[S; S2]. This
model may be represented as minimizing objective

1X1 = ASu|[5 + | X2 — AS: % @)

with respect to the factor matrices A, .S7,.S;. For the method
to be well-defined, the data points in the two sets Xj, X5
must have the same dimension. Geometrically, NMF can be
interpreted as learning basis vectors such that the cone of these
vectors best approximates a given data set [25]. Thus, jNMF
attempts to learn basis vectors (columns of A) so that the
cone of these vectors contains good approximations of all data
points in X and X»; see Figure 1 for a visualization of a joint
NMF learned for two datasets (X7 in red and X5 in blue).

III. PROPOSED METHOD AND DISTANCE MEASURE

Our proposed distance measure identifies how well two data
sets, X; € Rgg”” and X, € R’Z”OX”?, can be approximated
by the common basis learned through jNMF. The existence
of such a set of basis vectors implies a similar underlying
structure between the data sets. However, one may obtain a
basis set in which some elements primarily contribute to the
first data set and some contribute to the second, but very
few are shared; see Figure 1 for a visualization of such a
scenario. This scenario suggests some structural differences in
the data. We analyze the contributions of the basis vectors to
the different data sets to identify features in one data set that
are not expressed well by a basis for the other data set.

A. Proposed Similarity Method

Given a rank-k jNMF approximation [X; X5] ~ A[S] Ss],
our method produces a length-k vector p where each element
represents the ratio of the corresponding basis vector’s con-
tribution to each of the data sets. We compute p; from the
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ith rows of S; and Ss, because the magnitudes of the entries
in row 7 of S; and Sy indicate how much A. ;, the ith basis
vector, contributes to each data matrix. The entries of p are
between -1 and 1; p; is positive if A. ; appears more often and
in higher intensity in decompositions of the points in X; and
negative if A.; appears more often and in higher intensity
in decompositions of the points in Xs. Pseudocode for our
method is provided in Algorithm 1.

Algorithm 1 jNMF similarity

Require: data matrices X; € RZ;™ and X, €
number of samples K for averaging, model rank k
1: Scale each column in X, X> to be mean one.'
2: Learn rank-k jNMF approximation via (2),

RTII Xng

s

[Xl X2] ~ A[Sl SQ]
3: Fori=1,---,k, define
$; = max ({s(l) U {3(2) ik 1)
where 351)7 g), SN 5711)1 and s(%), g), SN 5721)2 are the

entries of the ith rows of S7 and Ss, respectively.

4: for j=1,...., K do
5: for:=1,--- ,k do
6: Choose T; ~ unif([0, s;]) for i = 1,2, -
. 0 .— p@ (1)
7: Compute p;”’ := F;”(T;) — (T) where
) 1 (1)
7 ( ) ny Z 1[SZJ < T}
j=1
and
FA(T) = — Zl @ 1)

are the empirical distribution functions (EDFs) of
{sﬁ?}}ﬁl and {5532‘)};‘21 evaluated at T;, respectively.

8 return p = & Z;il pW

We note that Step 7 in the Algorithm 1 compares the fraction
of sample {5(1) 71, below a randomly sampled threshold to

the fraction of sample {s }”2 below the same threshold.
That is, we measure the dlfference between these samples by
calculating the difference between their EDFs Fi(l)(T) and
Fi(Q)(T) [26]; this is akin to the fundamental idea of the
Kolmogorov-Smirnov test [27], [28] and Cramer-von Mises
criterion [29], [30]. See Figure 2 for an example visualization
of the samples {sg)};gl and {s } 72, and their empirical
distribution functions Fi(l)(T) and FZ@( T); these histograms
and EDFs might correspond to the third (blue) basis vector in
Figure 1, as the entries indicate that this basis vector is more
heavily used by the blue data set. Note that p; is simply the
difference between these EDFs averaged over random samples
taken uniformly from the data interval.

ITo address the case where v = 0, we add a threshold so that v € X; is
only normalized if ||v]| > 0.05 * avg,¢ x, |[ul[.

(1)
£ {s;"}1,

(2)
* {s;"H2,

0 12 14 16 2 4 3 8 10 12 14
svalues s values

Fig. 2: Example histogram of the values 551)7 ey E:l)l

g), ey Enl encountered in Step 6 and the corresponding

empirical distribution functions Fi(l)(T) and FZ-(Q)(T).
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We additionally note that while in Step 6 of Algorithm 1
we choose to uniformly sample from the interval [0, s;], one
could instead evenly subdivide this interval and iterate through
these break points or instead iterate through the ordered values
{si/}72, and {s7)}72,.

Example. For 111ustrat1ve purposes, suppose a rank 3 jNMF
approximation of datasets X; and X5 produces the vector
p = [—0.500,0.001,0.998]. The first basis vector contributes
to both data sets, but appears with higher frequency in Xo,
the second basis vector contributes equally to both data
sets, and the third basis vector appears almost exclusively
in X;. In the toy visualization of Figure 1, the entries of
p = [-0.500,0.001,0.998] might correspond to the blue,
black, and red basis vectors, respectively.

B. Distance Measure

Although the basis vectors and the p vector are inter-
pretable, a single scalar value that measures similarity or
distance between two data sets is often useful. We define the
distance measure between the two data matrices X7, X5 as

d(X1, X2) == |Ipl[1,

where p is computed via the Algorithm 1 in Subsection III-A.
We list here a few desirable properties of a distance measure

d(X1, X2), which are satisfied by the Chamfer distance, and of

the vector p. These properties will be experimentally verified

for our proposed measure in Subsection IV-A and could likely

be proven for globally optimal solutions to jJNMF. Let X; be

a data matrix with n columns.

(P1) Symmetry: d(X;,X2) = d(Xq,X1) with p1 = —Po
where Py corresponds to the comparison d(X7, X5) and
P2 corresponds to the comparison d(Xz, X1).

(P2) Self-similarity: d(X;,X;) =0 and p = 0.

(P3) Permutation invariance: If P, is an n X m permutation
matrix, d(X1,X1P;) =0and p = 0.

(P4) Scaling invariance: d(X1,A\X1) =0, p =0 for A > 0.

(PS5) Large subsets: If the columns of X, are a large subset
of those of X, then d(Xj, Xl) ~ 0, and d(Xl,)N(l)
decreases monotonically as the number of columns of
X, approaches n.

(P6) Additive noise: If ¢ > 0 is small and N is a noise
matrix, d(X;, X; +eN) ~ 0 and d(X1, X1 +€eN) grows
monotonically with e.
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IV. EMPIRICAL RESULTS

In this section, we illustrate the proposed method and
distance measure on a toy image dataset called the Swimmer
dataset [31], which is composed of 11 x 20-pixel images such
as that of Figure 6a, and the 20 Newsgroups dataset [32]. Let
X be the matrix with columns that are the vectorized images
from the Swimmer dataset and let N be a noise matrix of the
same size as X;, with entries sampled i.i.d. from unif([0,1]).
All Swimmer jNMF experiments are run with rank £ = 10.

A. Distance measure properties

In this section, we verify some of the desired properties
from Subsection III-B experimentally. We note that our dis-
tance measure d(X1, X») appears to exhibit the self-similarity
property (P2), the permutation invariance property (P3), and
the scaling invariance property (P4). Our measure, like the
Chamfer measure, produces d(X1, X2) =0 and p = 0 when
applied to X; and X5, an identical, permuted, or scaled copy
of X;. Note that we scale the data prior to applying either
distance measure as indicated in Step 1 of Algorithm 1. See
Table 1. We note that when comparing to the Chamfer distance,
we do not seek to produce lower errors, simply to exhibit
that our proposed distance measure exhibits similar qualitative
behavior as the Chamfer distance, which is well-used.

TABLE I: Average value of our distance measure, d(X1, X2),
and the Chamfer distance, deham(X1,X2), over fifty trials,
where P, represents the permutation matrix corresponding to
a randomly sampled permutation 7, and A > 0 represents a
randomly sampled value in {0.1,1, 10,100}, X, is X; with
10% of its columns randomly removed, and N is a matrix
with entries i.i.d. from unif([0, 1]).

Xs | Xi | XhPr [ XX | X1 | Xi+N | N
d(X1,X2) | 0000 | 0.000 | 0.000 | 0.052 | 1509 | 2297
deham (X1, X2) | 0.000 | 0.000 | 0.000 | 0.000 | 0.741 | 1560

It appears that the distance measure exhibits the large
subsets property (P5) since d( X7, X 1) remains small when X,
is formed as a large column subset of X;. While d(Xl,f(l)
is small, our method is still able to distinguish between X;
and X;, whereas denam (X1, Xl) = 0 for all the X; we
examine. To verify this, we form X 1 as a random sample of
q% of columns in X, where ¢ € [88,98] and plot d(X1, X5)
and dcham(Xl,f(l) for each value of ¢; see Figure 3. The
distance measure also appears to exhibit the additive noise
property (P6). In Figure 4, we see that d(X;, X7 + eN), like
denam (X1, X1 + €N), grows monotonically with € € [0,1]. All
experimental values are averaged over fifty trials.

Our method not only satisfies convenient distance properties
like the Chamfer method, but also provides additional insight
into the relationships between the datasets via the basis vectors
produced by jNMF. Figure 5 shows the basis vectors and their
associated p scores produced by our method applied to X3
and X; + N. The images with the dark background are good
approximations for the basis vectors of the Swimmer data set.
The primarily white basis vector is used almost exclusively in

—— iNMF Distance Measure
—— Chamfers Distance Measure

Fig. 3: The jNMF distance measure (blue) and Chamfer
distance (red) d(X;, X 1) where X; is the Swimmer data
matrix and X is formed as a random sample of ¢% of columns
in X7, for ¢ € [88, 98], decrease monotonically as the ¢ grows.
Values are averaged over fifty trials.

—— iNMF Distance Measure

147 —— Chamfers Distance Measure

X; +€eN)

d(x,

Fig. 4: The jNMF distance measure (blue) and Chamfer
distance (red) d(X1, X7 + eN), where X; is the Swimmer
data matrix, IV is a matrix with entries sampled i.i.d. from
unif([0, 1]), and € € [0, 1], grow monotonically with e. Values
are averaged over fifty trials.

the noisy data, so this vector is the primary difference between
our two data sets. The method was able to isolate the basis
vectors for the original dataset from the noise.

B. Swimmer experiments

Before we can use our measure to compare data sets, we
must consider what it means for d(X;,X2) to be small.
Since 0 < |p;| < 1, the maximum value of the proposed
distance measure is the rank of the jNMF approximation,
k. However, d(X1, X2) is frequently significantly below this
value. As a benchmark for considering the significance of
these distance values, we measure the distance between our
structured Swimmer image matrix X; and noise matrix /N to
be d(X;1, N) = 2.297. While this value is larger than other
distance values observed in our previous experiments, is it
far below the upper bound of k£ = 10. Despite this relatively
low distance measure, d(X7, N) can serve as a baseline for
interpreting d(X1, X2) for other matrices Xo.

We measure the distance between X; and a matrix X
formed by swapping the zeros and ones in X7; see Figure 6a.
Note that the data points in X; can be constructed by starting
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Fig. 5: Basis vectors produced by our method applied to
Swimmer data matrix X; and X; + N where the entries in N
are sampled i.i.d. from unif([0, 1]). The associated p values
for each basis image are, reading left to right and top to bot-
tom, [0.063,—0.901,0.076,0.065, 0.069, 0.058, 0.058, 0.069,
0.079,0.079] and d(X1, X;+N) = 1.517 (note that this value
is computed on a single trial while the corresponding entry of
Table I is averaged over 50 trials). All basis vectors contribute
roughly equally to both data sets, with the exception of the
basis vector in the second position of the first row, which
contributes almost exclusively to the noisy data set X; + N.

with the body and adding in limbs, while those in Xy can be
constructed by starting with a body with all possible limbs and
covering the limbs that are not being used in a particular data
point. Figure 6b shows that this data set can be represented
well with eight common basis vectors and two additional basis
vectors, each of which is strongly associated with one data
set. The common basis vectors are used differently by the
two data sets; in X, they are used to add limbs to the body,
while in X5, they are used to cover up limbs. The method
both identifies similar structures between the two datasets and
extracts the features necessary distinguish them.

C. 20 Newsgroups experiments

As a final illustration of the promise of our proposed method
and distance measure, we measure distances between the term
frequency-inverse document frequency (tf-idf) representations
of the various newsgroups (categories) in the 20 Newsgroups
dataset [32]. The 20 Newsgroups dataset is a collection of
approximately 20,000 newsgroup documents. The data set con-
sists of six groups partitioned roughly according to subjects,
with a total of 20 subgroups, and is an experimental benchmark
for document classification and clustering; see e.g., [23].

In Figures 7 and 8, we present heatmaps with colors cor-
responding to average jNMF distances and average Chamfer
distances, respectively, between samples of 100 documents of
each of the twenty newsgroups, averaged over 50 trials. We
remove headers, footers, and quotes from the 20 Newsgroups
dataset, and then apply the tf-idf transformation to the entire
set. In each trial, we sample 100 documents (represented as
tf-idf vectors with length equal to the size of the entire data
corpus) uniformly from each newsgroup and calculate pairwise
distances between each sample. The rows and columns of

N CHREE
T HEREN

(@ (b)

Fig. 6: (a) Sample data points from the Swimmer data
set (top) and the modified swimmer data set, where all
zeros and ones are switched (bottom). (b) Basis vectors
learned by jNMF with rank & = 10 on the Swimmer
data set (X;) with an inverted copy of the Swimmer data
set such that all the zeros and ones are switched (X5).
Ordering the basis vectors left to right and top to bottom,
p = [-0.999,1.000,0.010,—0.017,0.003, —0.004, 0.015,
0.004, —0.001, —0.000] and d(X7, X5) = 2.054. The leftmost
basis vector in the top row contributes almost exclusively to
X5 and the basis vector in the second position of the top row
contributes almost exclusively X;. The other basis vectors
contribute roughly evenly to both, adding limbs to X; and
removing them from Xs.

the resulting distance matrix are then re-ordered and line-
segregated according to cluster labels assigned by k-means
with & = 6 applied to the columns of the distance matrix.

Applying clustering to the jNMF and Chamfer distance
matrices reveals existing block structure. While neither dis-
tance clustering respects the newsgroups divisions, the iden-
tified clusters represent highly related topics. The clustering
applied to the Chamfer distance matrix correctly identifies
“comp” newsgroup, while the jNMF clustering adds the “for
sale” group to this cluster. Both distance clusterings group
the “hockey” and “baseball” groups. Each clustering has an
“atheism”/“politics” cluster, but the j]NMF clustering separates
these into two clusters and includes the ‘“‘sci.med” group,
while Chamfer groups “sci.med” with “sci.space” but places
“sci.crypt” into the “atheism”/“politics” cluster.

Qualitatively, the clusters identified by the jNMF distance
and the Chamfer distance are coherent. However, the j]NMF
distance produces clusters with significantly lower relative
intra-cluster to inter-cluster distance ratio than that of the
Chamfer distance.

CONCLUSION

In this work, we proposed a promising distance measure
for datasets based on shared features learned by jNMF. Our
proposed distance measure indicates similarity of two datasets
and the proposed method learns which basis components are
shared between the datasets and which are not. As one would
hope, our proposed distance measure exhibits permutation and
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Fig. 7: Average jNMF based distance between samples of 100
documents of the twenty newsgroups (averaged over 50 trials).

Fig. 8: Average Chamfer distance

alt.atheism
talk.politics.mideast
talk.politics.guns 0.0014
soc.religion.christian
sci.crypt 0.0013
talk.politics.misc
talk.religion.misc
comp.windows.x 0.0012
comp.sys.mac.hardware
comp.sys.ibm.pc.hardware 0.0011
comp.os.ms-windows.misc -
comp.graphics -
rec.sport.hockey 4 0.001
rec.sport.baseball 4
sci.electronics 0.0009
misc.forsale - || :
sci.med
ci.space 0.0008
rec.autos 4
rec.motorcycles SN LT T ‘ 0.0
£ bR R b R ]
@ es2zlY SRR RIST
2 €5 SwEBSY
£ géév@g%ged_%ﬂg
3 CEE3oEEglaes
s goBgStlos g
cmacfE|2gcE £
EEE 2S5 ala o
3. EEEZS00 g
2 Sys2 ey =
25 FGE 9
£ 8 258
Eag
SEE
8¢S

between samples of 100

documents of the twenty newsgroups (averaged over 50 trials).

sca

ling invariance, symmetry, and monotonicity over subset

relationships and additive noise in the data.

Future work includes applying the measure in tasks like
anomaly or plagiarism detection, investigating hyperparameter
choice, and exploring distance measures derived from different
matrix factorizations or low-dimensional approximations.
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