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1 INTRODUCTION
A pivotal methodological tool behind the analysis of large-scale load

balancing systems is mean-field analysis. The high-level idea is to
represent the system state by aggregate quantities and characterize

their rate of change as the system size grows large. An assumption

for the above scheme to work is that the aggregate quantity is Mar-

kovian such that its rate of change can be expressed as a function

of its current state. If the aggregate quantity is not Markovian, not

only does this technique break down, the mean-field approximation

may even turn out to be highly inaccurate.

In load balancing systems, if servers are exchangeable, then the

aggregate quantity is indeed Markovian. However, the growing

heterogeneity in the types of tasks processed by modern data cen-

ters has recently motivated the research community to consider

systems beyond the exchangeability assumption. The main reason

stems from data locality, i.e., the fact that servers need to store

resources to process tasks of a particular type locally and have only

limited storage space. An emerging line of work thus considers a

bipartite graph between task types and servers [2, 3, 5–7]. In this

compatibility graph, an edge between a server and a task type repre-

sents the server’s ability to process these tasks. In practice, storage

capacity or geographical constraints force a server to process only a

small subset of all task types, leading to sparse network topologies.

This motivates the study of load balancing in systems with suitably

sparse bipartite compatibility graphs.

The analysis of sparse systems poses significant challenges,

mainly due to the fact that the aggregate quantity is no longer

Markovian. One key question to understand here is: Under what
conditions on the (sparse) compatibility graph does the system behav-
ior retain the performance benefits of the fully flexible system? From
a more foundational standpoint, this is equivalent to understand-

ing how far the validity of the mean-field approximation can be

extended to non-trivial graphs.
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2 MODEL DESCRIPTION
Let𝐺𝑁 = (𝑉𝑁 ,𝑊𝑁 , 𝐸𝑁 ) be a bipartite graph, where𝑉𝑁 denotes the

set of servers,𝑊𝑁 denotes the set of task types and 𝐸𝑁 ⊆ 𝑉𝑁 ×𝑊𝑁

denotes the compatibility constraints. Throughout, we will use the

words task-types and dispatchers interchangeably. Here, 𝑁 := |𝑉𝑁 |
equals the number of servers and𝑀 (𝑁 ) := |𝑊𝑁 | equals the number

of task types. Let 𝑑𝑁𝑣 be the number of compatible task types for a

server 𝑣 ∈ 𝑉𝑁 and 𝑑𝑁𝑤 be the number of compatible servers for a

task type𝑤 ∈𝑊𝑁 . Tasks of each type arrive as independent Poisson

processes of rate 𝜆𝑁 /𝑀 (𝑁 ) and each task requires an independent

and exponentially distributed service time with mean one. Thus, the

total arrival rate is 𝜆𝑁 andwe assume 𝜆 < 1 to ensure stability of the

system. If a task arrives at a dispatcher𝑤 ∈𝑊𝑁 , then 𝑑 ≥ 2 servers

are sampled uniformly at random from its compatible servers with

replacement, and the task is assigned to the shortest queue among

the selected servers, breaking ties at random. The tasks in the queue

are handled one at a time in first come, first served order.

We let 𝑋𝑣 (𝑡) denote the queue length of a server 𝑣 ∈ 𝑉𝑁 at

time 𝑡 . Let 𝑞𝑁
𝑖
(𝑡) := ∑

𝑣∈𝑉𝑁
1 {𝑋𝑣 (𝑡) ≥ 𝑖} /𝑁 denote the fraction

of servers with queue length at least 𝑖 ∈ N in the entire system.

3 MAIN RESULTS
The criteria for ergodicity of the queue length process are known

and have been developed, for example by Bramson [1] and Car-

dinaels et al. [3]. However, we work with a slightly stronger, but

simplified condition on the graph as follows. Let

𝜌 (𝐺𝑁 ) := max

𝑣∈𝑉𝑁

𝜆𝑁

𝑀 (𝑁 )
∑︁

𝑤∈N𝑣

1

𝑑𝑁𝑤
. (1)

Using Lyapunov arguments, it is not hard to show that 𝜌 (𝐺𝑁 ) < 1

implies that the queue length process of the system is ergodic for

any 𝑑 ≥ 2. Conceptually, 𝜌 (𝐺𝑁 ) is the maximum load on a server

if each dispatcher uses random routing (𝑑 = 1) and hence it should

seem natural that this condition implies stability also for 𝑑 ≥ 2.

To avoid heavy-traffic behavior as 𝑁 → ∞, we will assume that

𝜌 (𝐺𝑁 ) ≤ 𝜌0 for all 𝑁 ≥ 1 for a constant 𝜌0 < 1 throughout.

We make contributions on four fronts: (a) establish bounds on a

large-scale mixing time of the underlying Markov process; (b) quan-

tify how much the transient behavior deviates from the mean-field

ODE, starting from only empty queues, in terms of certain graph

parameters; (c) combine (a) and (b) to formulate a criterion of when

the global quantity 𝒒𝑁 (𝑡) is asymptotically indistinguishable from

the fully flexible system in steady state; and finally (d) show how

standard generative models for sparse spatial graphs and a large

class of sparse regular graphs satisfy this criterion for convergence.

(a) Large-scale mixing time bounds. Mixing time bounds for

large-scale systems are known to be hard to obtain, even without

compatibility constraints [4]. First, as discussed in [4], a major

challenge is posed by the effect of the starting state. As the state
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space is infinite, if the system starts from a bad corner of the state

space, it may take a very long time to come back to the ‘regular

states’, which may even render a mixing time bound useless for our

purposes. Second, in the presence of a compatibility graph structure,

regenerative arguments, such as bounding the time the Markov

process takes to hit a fixed state, cannot be used either since these

regeneration lengths are typically exponential in 𝑁 . Instead, we

introduce a notion of large-scale mixing time as follows: starting
from a set of suitable states, if we compare the distribution of 𝒒𝑁 (𝑡)
and its steady-state distribution, when can we say that they are

‘close’ in a suitable sense? We show that this large-scale mixing

time is polynomial and does not scale with 𝑁 .

Theorem 3.1. Let 𝑿0 be a random variable such that 𝑿0 ≤𝑠𝑡
𝑿 (∞). Suppose that 𝑿 (1) (0) 𝑑

= 𝑿0 and 𝑿 (2) (0) 𝑑
= 𝑿 (2) (∞). Then

there exist a joint probability space and constants 𝑐1, 𝑐2 > 0, 0 < 𝛼 ≤ 1

(depending only on 𝜌0 and 𝑑) such that, for all 𝑡 ≥ 0,
∞∑︁
𝑖=1

E
[���𝑞𝑁,(2)

𝑖
(𝑡) − 𝑞

𝑁,(1)
𝑖

(𝑡)
���] ≤ 1

(𝑐1 + 𝑐2𝑡)𝛼
. (2)

In the above, the mixing time bound holds in particular from

the empty state, i.e., 𝑿1 (0) = 0. A crucial argument in the proof of

Theorem 3.1 relies on a novel stochastic coupling, which ensures

that the monotonicity of the queue length in the starting state is

maintained throughout for any sample path.

(b) Process-level limit starting from the empty state. Next,
we characterize the asymptotics of the sample path of 𝒒𝑁 (𝑡) start-
ing from a system with only empty queues. Let us introduce two

quantities of the underlying graph:

𝜙 (𝐺𝑁 ) := max

𝑣∈𝑉𝑁

������ 𝑁

𝑀 (𝑁 )
∑︁

𝑤∈N𝑣

1

𝑑𝑁𝑤
− 1

������ ,
𝛾 (𝐺𝑁 ) := 1

𝑀 (𝑁 )
∑︁

𝑤∈𝑊𝑁

1

𝑑𝑁𝑤
.

(3)

Loosely speaking, 𝜙 (𝐺𝑁 ) quantifies the extent to which the bipar-

tite graph is regular and𝛾 (𝐺𝑁 ) describes the average inverse degree
of the task types. We prove that the process-level limit remains

close to the system of ODEs for the fully flexible system, in terms

of the ℓ2-distance, if 𝜙 (𝐺𝑁 ) and 𝛾 (𝐺𝑁 ) are suitably small.

Theorem 3.2. Let 𝑿 (0) = 0 and 𝒒̄(𝑡) = (𝑞𝑖 (𝑡))𝑖≥1 be the unique
solution to the system of ODEs

𝑑𝑞𝑖 (𝑡)
𝑑𝑡

= 𝜆

(
𝑞𝑖−1 (𝑡)𝑑 − 𝑞𝑖 (𝑡)𝑑

)
− (𝑞𝑖 (𝑡) − 𝑞𝑖+1 (𝑡)) for 𝑖 ∈ N. (4)

Then, there exists a constant 𝑐 ≥ 1 (depending only on 𝜌0 and 𝑑) such
that, for all 𝑡 ≥ 0,

E
[

sup

𝑠∈[0,𝑡 ]

∞∑︁
𝑖=1

(
𝑞𝑁𝑖 (𝑠) − 𝑞𝑖 (𝑠)

)
2
]
≤ 2𝜆𝑡𝜙 (𝐺𝑁 )2

+ 12𝑒𝑐𝑡
2

(
𝑡2𝑑2𝜙 (𝐺𝑁 )2 + 4𝑡 (𝜌0𝑑 + 1)𝛾 (𝐺𝑁 )

)
.

(5)

(c) Mean-field approximation. Leveraging the mixing time

bound of Theorem 3.1 and the process-level limit of Theorem 3.2,

we determine the applicability of the mean-field approximation for

any compatibility graph in terms of 𝜙 (𝐺𝑁 ) and 𝛾 (𝐺𝑁 ).

Theorem 3.3. Given any 𝐺𝑁 , if max{𝜙 (𝐺𝑁 ), 𝛾 (𝐺𝑁 )} < 1, then
there exist constants 𝑐, 𝛼 > 0 (depending only on 𝜆, 𝜌0 and 𝑑) such
that

∞∑︁
𝑖=1

E

[(
𝑞𝑁𝑖 (∞) − 𝑞∗𝑖

)
2

]
≤ 𝑐

ln

(
1/max{𝜙 (𝐺𝑁 )2, 𝛾 (𝐺𝑁 }

)𝛼 , (6)

where 𝑞∗
𝑖
= 𝜆

𝑑𝑖−1
𝑑−1 for 𝑖 ∈ N.

In particular, if max{𝜙 (𝐺𝑁 ), 𝛾 (𝐺𝑁 )} → 0 as 𝑁 → ∞, then the

distribution of 𝒒𝑁 (𝑡), in steady state, converges weakly to the Dirac
delta distribution at the fixed point of the ODE corresponding to

the fully flexible system.

(d) Implications for specific graph classes. To show that the

conditions on the graph sequence are satisfied by common graphs,

we consider two sequences of sparse graphs for which the condition
max{𝜙 (𝐺𝑁 ), 𝛾 (𝐺𝑁 )} → 0 as 𝑁 → ∞ is satisfied.

First, let (𝐺𝑁 )𝑁 ≥1 be a sequence of random bipartite geometric

graphs. From a high level, these graphs are obtained by placing

the dispatchers and the servers at uniformly random locations and

connecting a dispatcher and server by an edge if they are at most

a fixed spatial distance 𝑟 (𝑁 ) > 0 apart. We prove that, if 𝑟 (𝑁 ) is
such that

lim inf

𝑁→∞

E
[
𝑑𝑁𝑣

]
ln𝑁

= ∞ and lim inf

𝑁→∞

E
[
𝑑𝑁𝑤

]
max(ln𝑀 (𝑁 ), ln𝑁 ) = ∞, (7)

then indeed max{𝜙 (𝐺𝑁 ), 𝛾 (𝐺𝑁 )} → 0 a.s., and 𝒒𝑁 (𝑡) in steady

state becomes asymptotically indistinguishable from the fully flexi-

ble system. Note that these conditions still ensure sparsity in that

the degree of a server is nearly a factor𝑀 (𝑁 )/ln𝑁 smaller as com-

pared to the complete bipartite graph where the degree is𝑀 (𝑁 ).
Second, the above convergence holds much more generally for a

sequence of regular bipartite graphs. That is, 𝑑𝑁𝑣 is the same for all 𝑣

and 𝑑𝑁𝑤 is the same for all𝑤 within each connected component of the
graph. We prove that the convergence holds whenever 𝛾 (𝐺𝑁 ) → 0,

which happens for example if min𝑤∈𝑊𝑁
𝑑𝑁𝑤 diverges (at any rate)

as 𝑁 → ∞, and thus ensures sparsity. This includes arbitrary
deterministic graph sequences and thus significantly broadens the

applicability of the mean-field approximation significantly.
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