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1 INTRODUCTION

A pivotal methodological tool behind the analysis of large-scale load
balancing systems is mean-field analysis. The high-level idea is to
represent the system state by aggregate quantities and characterize
their rate of change as the system size grows large. An assumption
for the above scheme to work is that the aggregate quantity is Mar-
kovian such that its rate of change can be expressed as a function
of its current state. If the aggregate quantity is not Markovian, not
only does this technique break down, the mean-field approximation
may even turn out to be highly inaccurate.

In load balancing systems, if servers are exchangeable, then the
aggregate quantity is indeed Markovian. However, the growing
heterogeneity in the types of tasks processed by modern data cen-
ters has recently motivated the research community to consider
systems beyond the exchangeability assumption. The main reason
stems from data locality, i.e., the fact that servers need to store
resources to process tasks of a particular type locally and have only
limited storage space. An emerging line of work thus considers a
bipartite graph between task types and servers (2, 3, 5-7]. In this
compatibility graph, an edge between a server and a task type repre-
sents the server’s ability to process these tasks. In practice, storage
capacity or geographical constraints force a server to process only a
small subset of all task types, leading to sparse network topologies.
This motivates the study of load balancing in systems with suitably
sparse bipartite compatibility graphs.

The analysis of sparse systems poses significant challenges,
mainly due to the fact that the aggregate quantity is no longer
Markovian. One key question to understand here is: Under what
conditions on the (sparse) compatibility graph does the system behav-
ior retain the performance benefits of the fully flexible system? From
a more foundational standpoint, this is equivalent to understand-
ing how far the validity of the mean-field approximation can be
extended to non-trivial graphs.
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2 MODEL DESCRIPTION

Let GN = (VN, Wn;, EN) be a bipartite graph, where Vi denotes the
set of servers, Wy denotes the set of task types and Ey € Vy X Wnr
denotes the compatibility constraints. Throughout, we will use the
words task-types and dispatchers interchangeably. Here, N := |Vy|
equals the number of servers and M(N) := |Wy| equals the number
of task types. Let d)Y be the number of compatible task types for a
server o € Viy and d be the number of compatible servers for a
task type w € Wy Tasks of each type arrive as independent Poisson
processes of rate AN /M(N) and each task requires an independent
and exponentially distributed service time with mean one. Thus, the
total arrival rate is AN and we assume A < 1 to ensure stability of the
system. If a task arrives at a dispatcher w € Wy, then d > 2 servers
are sampled uniformly at random from its compatible servers with
replacement, and the task is assigned to the shortest queue among
the selected servers, breaking ties at random. The tasks in the queue
are handled one at a time in first come, first served order.

We let X,(t) denote the queue length of a server v € Vy at
time ¢. Let qfv(t) = Yoevy 1 {Xo(t) 2 i} /N denote the fraction
of servers with queue length at least i € N in the entire system.

3 MAIN RESULTS

The criteria for ergodicity of the queue length process are known
and have been developed, for example by Bramson [1] and Car-
dinaels et al. [3]. However, we work with a slightly stronger, but
simplified condition on the graph as follows. Let
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Using Lyapunov arguments, it is not hard to show that p(Gy) < 1
implies that the queue length process of the system is ergodic for
any d > 2. Conceptually, p(Gy) is the maximum load on a server
if each dispatcher uses random routing (d = 1) and hence it should
seem natural that this condition implies stability also for d > 2.
To avoid heavy-traffic behavior as N — oo, we will assume that
p(GN) < po for all N > 1 for a constant pg < 1 throughout.

We make contributions on four fronts: (a) establish bounds on a
large-scale mixing time of the underlying Markov process; (b) quan-
tify how much the transient behavior deviates from the mean-field
ODE, starting from only empty queues, in terms of certain graph
parameters; (c) combine (a) and (b) to formulate a criterion of when
the global quantity g (t) is asymptotically indistinguishable from
the fully flexible system in steady state; and finally (d) show how
standard generative models for sparse spatial graphs and a large
class of sparse regular graphs satisfy this criterion for convergence.

(a) Large-scale mixing time bounds. Mixing time bounds for
large-scale systems are known to be hard to obtain, even without
compatibility constraints [4]. First, as discussed in [4], a major
challenge is posed by the effect of the starting state. As the state
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space is infinite, if the system starts from a bad corner of the state
space, it may take a very long time to come back to the ‘regular
states’, which may even render a mixing time bound useless for our
purposes. Second, in the presence of a compatibility graph structure,
regenerative arguments, such as bounding the time the Markov
process takes to hit a fixed state, cannot be used either since these
regeneration lengths are typically exponential in N. Instead, we
introduce a notion of large-scale mixing time as follows: starting
from a set of suitable states, if we compare the distribution of gN (t)
and its steady-state distribution, when can we say that they are
‘close’ in a suitable sense? We show that this large-scale mixing
time is polynomial and does not scale with N.

TueEOREM 3.1. Let X be a random variable such that X, <g
X (00). Suppose thatX(l)(O) d Xo andX(z)(O) d X(Z)(oo). Then
there exist a joint probability space and constantsci,cy > 0,0 < a < 1
(depending only on py and d) such that, for allt > 0,
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In the above, the mixing time bound holds in particular from
the empty state, i.e., X1(0) = 0. A crucial argument in the proof of
Theorem 3.1 relies on a novel stochastic coupling, which ensures
that the monotonicity of the queue length in the starting state is
maintained throughout for any sample path.

(b) Process-level limit starting from the empty state. Next,
we characterize the asymptotics of the sample path of gN (¢) start-
ing from a system with only empty queues. Let us introduce two
quantities of the underlying graph:
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Loosely speaking, ¢(Gn) quantifies the extent to which the bipar-
tite graph is regular and y (Gn) describes the average inverse degree
of the task types. We prove that the process-level limit remains
close to the system of ODEs for the fully flexible system, in terms
of the #-distance, if $(Gy) and y(Gy) are suitably small.

THEOREM 3.2. Let X(0) = 0 and q(t) = (§i(t))i>1 be the unique
solution to the system of ODEs

dq;it) =2 (Qi—l(t)d - q‘i(t)d) — (Gi(t) = Gix1(2)) fori e N. (4)

Then, there exists a constant ¢ > 1 (depending only on py and d) such
that, for allt > 0,

sup i (q?’(s) - qi(s))z] < 22t¢(Gn)*

sel0,t] =1

+ 126t (tzdzgﬁ(GN)z +4t(pod + l)y(GN)).
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(c) Mean-field approximation. Leveraging the mixing time
bound of Theorem 3.1 and the process-level limit of Theorem 3.2,
we determine the applicability of the mean-field approximation for
any compatibility graph in terms of ¢(Gy) and y(Gn).
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THEOREM 3.3. Given any Gy, if max{¢(GN),y(GN)} < 1, then
there exist constants c,a > 0 (depending only on A, po and d) such
that

00 . Niog) _ ot 2] < c ,
2 [(ql (@) -gi) | < In (1/max{$(Gy)? y(Gx})*

i=1

(6)
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where qf = A'd=1 fori e N,

In particular, if max{¢(Gy),y(Gn)} — 0 as N — oo, then the
distribution of ¢V (¢), in steady state, converges weakly to the Dirac
delta distribution at the fixed point of the ODE corresponding to
the fully flexible system.

(d) Implications for specific graph classes. To show that the
conditions on the graph sequence are satisfied by common graphs,
we consider two sequences of sparse graphs for which the condition
max{¢(Gn),y(Gn)} — 0as N — o is satisfied.

First, let (GN)N>1 be a sequence of random bipartite geometric
graphs. From a high level, these graphs are obtained by placing
the dispatchers and the servers at uniformly random locations and
connecting a dispatcher and server by an edge if they are at most
a fixed spatial distance r(N) > 0 apart. We prove that, if r(N) is

such that
N N

lim inf = [dv ] = oo and liminf = [dw] = oo,

N—ow InN N—co max(In M(N),InN)
then indeed max{¢(Gyn),y(Gn)} — 0 as., and gV (¢) in steady
state becomes asymptotically indistinguishable from the fully flexi-
ble system. Note that these conditions still ensure sparsity in that
the degree of a server is nearly a factor M(N)/In N smaller as com-
pared to the complete bipartite graph where the degree is M(N).

Second, the above convergence holds much more generally for a
sequence of regular bipartite graphs. That is, d2Y is the same for all o

™)

and dY is the same for all w within each connected component of the
graph. We prove that the convergence holds whenever y(Gy) — 0,
which happens for example if min,,ewy dN diverges (at any rate)
as N — oo, and thus ensures sparsity. This includes arbitrary
deterministic graph sequences and thus significantly broadens the
applicability of the mean-field approximation significantly.
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