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1 INTRODUCTION

We consider online optimization with switching costs in a normed
vector space (X, ||-]|) wherein, at each time ¢, a decision maker
observes a non-convex hitting cost function f; : X — [0, co] and
must decide upon some x; € X, paying f; (x;) + ||x; — xz-1]|, where
|||l characterizes the switching cost. Throughout, we assume that f;
is globally a-polyhedral, i.e., f; has a unique minimizer v; € X, and,
forall x € X, fi(x) > f;(vs) + @ - ||x — v¢]|. Moreover, we assume
that the decision maker has access to an untrusted prediction x;
of the optimal decision during each round, such as the decision
suggested by a black-box Al tool.

The bulk of the literature on online optimization with switching
costs has sought to design competitive algorithms for the task, i.e.,
algorithms with finite competitive ratios [2, 3]. Although compet-
itive analysis yields strong performance guarantees, it has often
been criticized as being unduly pessimistic, since algorithms are
characterized by their worst-case performance, while worst-case
conditions may never occur in practice. On the other hand, many
real-world applications have access to vast amounts of historical
data which could be leveraged by modern black-box Al tools to
achieve significantly improved performance in the typical case.
Making use of modern black-box Al tools is potentially transfor-
mational for online optimization; however, such machine-learned
algorithms fail to provide any uncertainty quantification and thus
do not have formal guarantees on their worst-case performance.
As such, while their performance may improve upon competitive
algorithms in typical cases, they may perform arbitrarily worse in
scenarios where the training examples are not representative of the
real world workloads due to, e.g., distribution shift.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMETRICS °23 Abstracts, June 19-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0074-3/23/06.

https://doi.org/10.1145/3578338.3593570

71

Nicolas Christianson
nchristianson@caltech.edu
California Institute of Technology
Pasadena, California, United States

Adam Wierman
adamw@caltech.edu
California Institute of Technology
Pasadena, California, United States

This work aims to provide an algorithm that can achieve the best
of both worlds — making use of black-box Al tools to provide good
performance in the typical case while integrating competitive algo-
rithms to ensure formal worst-case guarantees. We formalize this
goal using the notions of consistency and robustness introduced in
[4]. The untrusted predictions are fully arbitrary, i.e., we impose no
statistical assumptions on the predictions, and the decision maker
has no a priori knowledge of the predictions’ accuracy. The goal of
the decision maker is to be both consistent — to achieve performance
comparable to that of the predictions if they are accurate, while
remaining robust — to have a cost that is never much worse than the
hindsight optimal, even if predictions are completely inaccurate.
Thus, an algorithm that is consistent and robust is able to match
the performance of the black-box Al tool when the predictions are
accurate while also ensuring a worst-case performance bound.

2 MAIN CONTRIBUTIONS

We make five main contributions. First, we identify a fundamental
trade-off between consistency and robustness for any deterministic
algorithm. If an algorithm is (1 + §)-consistent, then this implies
a lower bound on its robustness guarantee. In fact, we identify a
region of (a, §), which we term the infeasible region, for which no
algorithm can be simultaneously (1 + §)-consistent and {-robust
for any { < co. Outside of the infeasible region, we prove that there
is an exponential trade-off between consistency and robustness.

THEOREM 2.1. Let A be any deterministic online algorithm. If A
is (1 + &)-consistent, then A is at least L-robust, where

2-a(1-82)

L= %S (m) o) _ O(1) if (e, 9) is not infeasible,
o if (a, 8) is infeasible.

This threshold-type behavior is unprecedented in the literature
on learning-augmented algorithms and reveals the hardness of the
problem brought about by the non-convexity of hitting costs.

Second, we introduce a new algorithm for online optimization in
a normed vector space with untrusted predictions, Adaptive Online
Switching (AOS), and provide bounds on its consistency and robust-
ness. Our analysis shows that AOS can be used in combination with
a black-box Al tool to match the performance of the black-box Al
tool while also ensuring provable worst-case guarantees.

The AOS algorithm works as follows. At each time ¢, AOS either
follows the predictions X; or the minimizers v; of f;, and adap-
tively switches between these two. The challenge in the design
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Algorithm 1 Adaptive Online Switching (AOS)

1: Let py = argming, cx (i (p) + ||p = pr—1ll + [lp — X¢ 1), RoB(2) :
fe(ve) + |log — vs-1ll, and Apv(2) = fe (ps) + ||z — pe—1l-
2T «— 1, t«—1
3: fork=1,2,... do
while Zf;%k ADV(i) +ROB(t) + ||pr—1 — 01|l + |lor — pell =
(1+9) Zszk Apv(i) do

4

Xt — pr, t—t+landstopift =T +1
end while
My —t > Start following the minimizers

Xt «—vp, t—t+1landstopift =T +1

while X1, . RoB()+llor — pell=llop, = pull < (1 +
) Zf:MkH Apv(i) +y Zf:Tk Apv(i) do
10: Xt «— v, t e—t+1landstopift =T+1
11:  end while
122 Tpyp <t > Start following the predictions
132 xp e pp, t—t+landstopift =T +1
14: end for

R AL

of AOS is that, on the one hand, switching must be infrequent in
order to limit the switching cost, but, on the other hand, switching
must be frequent enough to ensure that the algorithm does not get
stuck following a suboptimal sequence of decisions from either the
predictions or the minimizers.

If (e, ) belongs to the feasible region, we prove that AOS is
robust. In either case, we prove that AOS is consistent.

THEOREM 2.2. Let CR(n) be the competitive ratio of AOS. Then,

CR(n) < (1+56+y)(1+2n). (1)
Moreover, if (a, §) is feasible, then,
12+0(1) 2 2/(ad)
CR(n) = (a+5(1+a)) @

Here, 17 is an appropriate measure of the accuracy of the predic-
tions and relates to the distance between the prediction x; and the
optimal decision, and § and y are hyperparameters of the algorithm.
Note that, even though the competitive ratio is a function of the
accuracy, the algorithm is oblivious to it. If the predictions are ac-
curate, i.e., if § = 0, then the competitive ratio of AOSis 1+d+y. In
other words, AOS is (1 +  + y)-consistent and almost reproduces
the hindsight optimal sequence of decisions if the predictions are
accurate. Moreover, even if predictions are completely inaccurate,
ie., if n = oo, the competitive ratio of AOS is uniformly bounded.

The trade-off between consistency and robustness is character-
ized by the confidence hyperparameters § and y, where the robust-
ness bound depends exponentially on both § and «. In light of our
lower bound, this means that AOS reproduces the order optimal
trade-off between robustness and consistency in the feasible region.
As a proof technique, the conventional potential function approach
fails due to the non-convexity of the problem and the incorporation
of predictions. Therefore, significant novelty in the technique is
required for the proof of Theorem 2.2.

Third, we extend the above results to the case when only an
approximate non-convex solver is available. As we do not make
any assumptions on the convexity of f;, it may be computationally
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difficult or simply impossible to obtain the exact minimizer of f;.
We therefore extend AOS to work with any non-exact, approximate
minimizer of f;. AOS is oblivious to the accuracy of the solver
and we prove that the competitive ratio decays smoothly in the
accuracy of the solver. Moreover, we provide bounds for the case
when predictions cannot be used in every time step due to the
computational expense associated with the non-convex functions.
Our bounds characterize how the consistency-robustness tradeoff
is impacted by this computational constraint. In fact, the impact on
the competitive ratio is linear in the number of time steps between
available predictions.

Fourth, we characterize the importance of memory for algo-
rithms seeking to use untrusted predictions. Interestingly, AOS
requires full memory of all predictions. This is a stark contrast
with well-known memoryless algorithms for online optimization
with switching costs, which do not make use of any information
about previous hitting costs or actions. We prove that any memo-
ryless algorithm cannot have simultaneous non-trivial robustness
and consistency bounds. Thus, memory is necessary to benefit from
untrusted predictions.

Fifth, we consider an important special case when the vector
space is X = R and each function is convex and show that it is
possible to provide an improved trade-off between robustness and
consistency using a memoryless algorithm in this special case. In
this context, we introduce a new algorithm, called Adaptive Online
Balanced Descent (AOBD), which is inspired by Online Balanced
Descent [1].

THEOREM 2.3. Let CR(n) be the competitive ratio of AOBD. Then,
CR(n) < min {(1+8)(1+4n),1+3/5+2/6%}. 3)

The competitive ratio of AOBD has a similar structure to AOS,
but improves the robustness bound significantly by taking advan-
tage of the additional structure available compared to the general
non-convex case. The result is complemented by a lower bound.

THEOREM 2.4. Let A be any deterministic algorithm for the convex,
one-dimensional optimization problem. If A is (1+6)-consistent, then
A is at least 1/(25)-robust.
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