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1 INTRODUCTION
We consider online optimization with switching costs in a normed

vector space (𝑋, ∥·∥) wherein, at each time 𝑡 , a decision maker

observes a non-convex hitting cost function 𝑓𝑡 : 𝑋 → [0,∞] and
must decide upon some 𝑥𝑡 ∈ 𝑋 , paying 𝑓𝑡 (𝑥𝑡 ) + ∥𝑥𝑡 − 𝑥𝑡−1∥, where
∥·∥ characterizes the switching cost. Throughout, we assume that 𝑓𝑡
is globally 𝛼-polyhedral, i.e., 𝑓𝑡 has a unique minimizer 𝑣𝑡 ∈ 𝑋 , and,

for all 𝑥 ∈ 𝑋 , 𝑓𝑡 (𝑥) ≥ 𝑓𝑡 (𝑣𝑡 ) + 𝛼 · ∥𝑥 − 𝑣𝑡 ∥. Moreover, we assume

that the decision maker has access to an untrusted prediction 𝑥𝑡
of the optimal decision during each round, such as the decision

suggested by a black-box AI tool.

The bulk of the literature on online optimization with switching

costs has sought to design competitive algorithms for the task, i.e.,

algorithms with finite competitive ratios [2, 3]. Although compet-

itive analysis yields strong performance guarantees, it has often

been criticized as being unduly pessimistic, since algorithms are

characterized by their worst-case performance, while worst-case

conditions may never occur in practice. On the other hand, many

real-world applications have access to vast amounts of historical

data which could be leveraged by modern black-box AI tools to

achieve significantly improved performance in the typical case.

Making use of modern black-box AI tools is potentially transfor-

mational for online optimization; however, such machine-learned

algorithms fail to provide any uncertainty quantification and thus

do not have formal guarantees on their worst-case performance.

As such, while their performance may improve upon competitive

algorithms in typical cases, they may perform arbitrarily worse in

scenarios where the training examples are not representative of the

real world workloads due to, e.g., distribution shift.
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This work aims to provide an algorithm that can achieve the best

of both worlds – making use of black-box AI tools to provide good

performance in the typical case while integrating competitive algo-

rithms to ensure formal worst-case guarantees. We formalize this

goal using the notions of consistency and robustness introduced in

[4]. The untrusted predictions are fully arbitrary, i.e., we impose no

statistical assumptions on the predictions, and the decision maker

has no a priori knowledge of the predictions’ accuracy. The goal of

the decision maker is to be both consistent – to achieve performance

comparable to that of the predictions if they are accurate, while

remaining robust – to have a cost that is never much worse than the

hindsight optimal, even if predictions are completely inaccurate.

Thus, an algorithm that is consistent and robust is able to match

the performance of the black-box AI tool when the predictions are

accurate while also ensuring a worst-case performance bound.

2 MAIN CONTRIBUTIONS
We make five main contributions. First, we identify a fundamental

trade-off between consistency and robustness for any deterministic

algorithm. If an algorithm is (1 + 𝛿)-consistent, then this implies

a lower bound on its robustness guarantee. In fact, we identify a

region of (𝛼, 𝛿), which we term the infeasible region, for which no

algorithm can be simultaneously (1 + 𝛿)-consistent and 𝜁 -robust
for any 𝜁 < ∞. Outside of the infeasible region, we prove that there
is an exponential trade-off between consistency and robustness.

Theorem 2.1. Let A be any deterministic online algorithm. If A
is (1 + 𝛿)-consistent, then A is at least 𝐿-robust, where

𝐿 =


𝛼𝛿
4

(
2

𝛼+𝛿 (1+𝛼)

) 2−𝛼 (1−𝛿2 )
𝛼𝛿 (1+𝛿 ) − O(1) if (𝛼, 𝛿) is not infeasible,

∞ if (𝛼, 𝛿) is infeasible.

This threshold-type behavior is unprecedented in the literature

on learning-augmented algorithms and reveals the hardness of the

problem brought about by the non-convexity of hitting costs.

Second, we introduce a new algorithm for online optimization in

a normed vector space with untrusted predictions, Adaptive Online

Switching (AOS), and provide bounds on its consistency and robust-

ness. Our analysis shows that AOS can be used in combination with

a black-box AI tool to match the performance of the black-box AI

tool while also ensuring provable worst-case guarantees.

The AOS algorithm works as follows. At each time 𝑡 , AOS either

follows the predictions 𝑥𝑡 or the minimizers 𝑣𝑡 of 𝑓𝑡 , and adap-

tively switches between these two. The challenge in the design
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Algorithm 1 Adaptive Online Switching (AOS)

1: Let 𝑝𝑡 := argmin𝑝∈𝑋 (𝑓𝑡 (𝑝) + ∥𝑝 −𝑝𝑡−1∥ + ∥𝑝 −𝑥𝑡 ∥), Rob(𝑡) :=
𝑓𝑡 (𝑣𝑡 ) + ∥𝑣𝑡 − 𝑣𝑡−1∥, and Adv(𝑡) := 𝑓𝑡 (𝑝𝑡 ) + ∥𝑝𝑡 − 𝑝𝑡−1∥.

2: 𝑇1 ← 1, 𝑡 ← 1

3: for 𝑘 = 1, 2, . . . do
4: while

∑𝑡−1
𝑖=𝑇𝑘

Adv(𝑖) + Rob(𝑡) + ∥𝑝𝑡−1 − 𝑣𝑡−1∥ + ∥𝑣𝑡 − 𝑝𝑡 ∥ ≥
(1 + 𝛿)∑𝑡

𝑖=𝑇𝑘
Adv(𝑖) do

5: 𝑥𝑡 ← 𝑝𝑡 , 𝑡 ← 𝑡 + 1 and stop if 𝑡 = 𝑇 + 1
6: end while
7: 𝑀𝑘 ← 𝑡 ▷ Start following the minimizers

8: 𝑥𝑡 ← 𝑣𝑡 , 𝑡 ← 𝑡 + 1 and stop if 𝑡 = 𝑇 + 1
9: while

∑𝑡
𝑖=𝑀𝑘+1 Rob(𝑖)+∥𝑣𝑡 − 𝑝𝑡 ∥−∥𝑣𝑀𝑘

− 𝑝𝑀𝑘
∥ ≤ (1 +

𝛿)∑𝑡
𝑖=𝑀𝑘+1 Adv(𝑖) + 𝛾

∑𝑡
𝑖=𝑇𝑘

Adv(𝑖) do
10: 𝑥𝑡 ← 𝑣𝑡 , 𝑡 ← 𝑡 + 1 and stop if 𝑡 = 𝑇 + 1
11: end while
12: 𝑇𝑘+1 ← 𝑡 ▷ Start following the predictions

13: 𝑥𝑡 ← 𝑝𝑡 , 𝑡 ← 𝑡 + 1 and stop if 𝑡 = 𝑇 + 1
14: end for

of AOS is that, on the one hand, switching must be infrequent in

order to limit the switching cost, but, on the other hand, switching

must be frequent enough to ensure that the algorithm does not get

stuck following a suboptimal sequence of decisions from either the

predictions or the minimizers.

If (𝛼, 𝛿) belongs to the feasible region, we prove that AOS is

robust. In either case, we prove that AOS is consistent.

Theorem 2.2. Let CR(𝜂) be the competitive ratio of AOS. Then,

CR(𝜂) ≤ (1 + 𝛿 + 𝛾) (1 + 2𝜂). (1)

Moreover, if (𝛼, 𝛿) is feasible, then,

CR(𝜂) ≤ 12 + 𝑜 (1)
𝛾

(
2

𝛼 + 𝛿 (1 + 𝛼)

)
2/(𝛼𝛿)

. (2)

Here, 𝜂 is an appropriate measure of the accuracy of the predic-

tions and relates to the distance between the prediction 𝑥𝑡 and the

optimal decision, and 𝛿 and 𝛾 are hyperparameters of the algorithm.

Note that, even though the competitive ratio is a function of the

accuracy, the algorithm is oblivious to it. If the predictions are ac-

curate, i.e., if 𝜂 = 0, then the competitive ratio of AOS is 1+𝛿 +𝛾 . In
other words, AOS is (1 + 𝛿 + 𝛾)-consistent and almost reproduces

the hindsight optimal sequence of decisions if the predictions are

accurate. Moreover, even if predictions are completely inaccurate,

i.e., if 𝜂 = ∞, the competitive ratio of AOS is uniformly bounded.

The trade-off between consistency and robustness is character-

ized by the confidence hyperparameters 𝛿 and 𝛾 , where the robust-

ness bound depends exponentially on both 𝛿 and 𝛼 . In light of our

lower bound, this means that AOS reproduces the order optimal

trade-off between robustness and consistency in the feasible region.

As a proof technique, the conventional potential function approach

fails due to the non-convexity of the problem and the incorporation

of predictions. Therefore, significant novelty in the technique is

required for the proof of Theorem 2.2.

Third, we extend the above results to the case when only an

approximate non-convex solver is available. As we do not make

any assumptions on the convexity of 𝑓𝑡 , it may be computationally

difficult or simply impossible to obtain the exact minimizer of 𝑓𝑡 .

We therefore extend AOS to work with any non-exact, approximate

minimizer of 𝑓𝑡 . AOS is oblivious to the accuracy of the solver

and we prove that the competitive ratio decays smoothly in the

accuracy of the solver. Moreover, we provide bounds for the case

when predictions cannot be used in every time step due to the

computational expense associated with the non-convex functions.

Our bounds characterize how the consistency-robustness tradeoff

is impacted by this computational constraint. In fact, the impact on

the competitive ratio is linear in the number of time steps between

available predictions.

Fourth, we characterize the importance of memory for algo-

rithms seeking to use untrusted predictions. Interestingly, AOS

requires full memory of all predictions. This is a stark contrast

with well-known memoryless algorithms for online optimization

with switching costs, which do not make use of any information

about previous hitting costs or actions. We prove that any memo-

ryless algorithm cannot have simultaneous non-trivial robustness

and consistency bounds. Thus, memory is necessary to benefit from

untrusted predictions.

Fifth, we consider an important special case when the vector

space is 𝑋 = R and each function is convex and show that it is

possible to provide an improved trade-off between robustness and

consistency using a memoryless algorithm in this special case. In

this context, we introduce a new algorithm, called Adaptive Online

Balanced Descent (AOBD), which is inspired by Online Balanced

Descent [1].

Theorem 2.3. Let CR(𝜂) be the competitive ratio of AOBD. Then,

CR(𝜂) ≤ min

{
(1 + 𝛿) (1 + 4𝜂), 1 + 3/𝛿 + 2/𝛿2

}
. (3)

The competitive ratio of AOBD has a similar structure to AOS,

but improves the robustness bound significantly by taking advan-

tage of the additional structure available compared to the general

non-convex case. The result is complemented by a lower bound.

Theorem 2.4. LetA be any deterministic algorithm for the convex,

one-dimensional optimization problem. IfA is (1+𝛿)-consistent, then
A is at least 1/(2𝛿)-robust.
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