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ABSTRACT

Context. Recent developments in time domain astronomy, such as Zwicky Transient Facility (ZTF), have made it possible to conduct
daily scans of the entire visible sky, leading to the discovery of hundreds of new transients every night. Among these detections, 10
to 15 of these objects are supernovae (SNe), which have to be classified prior to cosmological use. The spectral energy distribution
machine (SEDM) is a low-resolution (R ⇠ 100) integral field spectrograph designed, built, and operated with the aim of spectroscopi-
cally observing and classifying targets detected by the ZTF main camera.
Aims. As the current pysedm pipeline can only handle isolated point sources, it is limited by contamination when the transient is too
close to its host galaxy core. This can lead to an incorrect typing and ultimately bias the cosmological analyses, affecting the homo-
geneity of the SN sample in terms of local environment properties. We present a new scene modeler to extract the transient spectrum
from its structured background, with the aim of improving the typing efficiency of the SEDM.
Methods. HyperGal is a fully chromatic scene modeler that uses archival pre-transient photometric images of the SN environment
to generate a hyperspectral model of the host galaxy. It is based on the cigale SED fitter used as a physically-motivated spectral
interpolator. The galaxy model, complemented by a point source for the transient and a diffuse background component, is projected
onto the SEDM spectro-spatial observation space and adjusted to observations, and the SN spectrum is ultimately extracted from
this multi-component model. The full procedure, from scene modeling to transient spectrum extraction and typing, is validated on
5000 simulated cubes built from actual SEDM observations of isolated host galaxies, covering a broad range of observing conditions
and scene parameters.
Results. We introduce the contrast, c, as the transient-to-total flux ratio at the SN location, integrated over the ZTF r-band. From
estimated contrast distribution of real SEDm observations, we show that HyperGal correctly classifies ⇠95% of SNe Ia, and up to
99% for contrast c & 0.2, representing more than 90% of the observations. Compared to the standard point-source extraction method
(without the hyperspectral galaxy modeling step), HyperGal correctly classifies 20% more SNe Ia between 0.1 < c < 0.6 (50% of
the observation conditions), with less than 5% of SN Ia misidentifications. The false-positive rate is less than 2% for c > 0.1 (> 99%
of the observations), which represents half as much as the standard extraction method. Assuming a similar contrast distribution for
core-collapse SNe, HyperGal classifies 14% additional SNe II and 11% additional SNe Ibc.
Conclusions. HyperGal has proven to be extremely effective in extracting and classifying SNe in the presence of strong contamination
by the host galaxy, providing a significant improvement with respect to the single point-source extraction.

Key words. instrumentation: spectrographs – galaxies: general – supernovae: general – methods: data analysis – surveys –
techniques: spectroscopic

1. Introduction

In the last two decades, time-domain astronomy has become
increasingly efficient, thanks to the ability of surveys to con-
duct (near-) daily scans of the entire visible sky, such as Catalina
Real-Time Transient Survey (Drake et al. 2009), PanSTARRS-1
(Kaiser et al. 2002), ASAS-SN (Shappee et al. 2014), and
ATLAS (Tonry et al. 2018). A more recent survey is the Zwicky
Transient Facility (ZTF, Bellm et al. 2019; Graham et al. 2019),
a successor of the Palomar Transient Facility (Law et al. 2009),
using a 47 deg2 camera. With such equipment, ZTF can detect
O(102) transients of interest every night, with instrumental arti-
facts and previously known sources excluded, and a typical 5�
r-band AB magnitude limit of 20.5. Among these newly identi-
fied sources, 10–15 are new objects that have just appeared and
have become bright enough to be detected. Once the photometric
detection is triggered, ZTF relays the alert to the Spectral Energy

Distribution Machine (SEDM, Blagorodnova et al. 2018), an
integral field spectrograph (IFS), designed and built to spectro-
scopically classify transients brighter than ⇠19.5 mag, operating
on the Palomar 60-in. telescope. The core of the SEDm is a
Micro-Lenslet Array (MLA) covering 2800 ⇥ 2800, subdivided
into 52 ⇥ 45 hexagonal spaxels, combined to a multi-band (ugri)
field acquisition camera, used for positioning and guiding.

Currently, the automated pipeline routinely used for IFS data
reduction and supernova (SN) spectrum extraction is pysedm
(Rigault et al. 2019). Since this pipeline intrinsically assumes the
target is an isolated point source, it cannot properly handle the
situation where the transient is close to its host galaxy core. As
a matter of fact, since August 2018, some 30% of the observed
SNe exhibit some severe host contamination, which significantly
decreases the confidence level of the classification, and about
10% are simply unusable. This situation has various undesir-
able effects. From a mere statistical point of view, discarding
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Fig. 1. Main processing steps of the HyperGal pipeline and sections where they are detailed.

SNe with too strong a host contamination reduces the type Ia SN
(SN Ia) sample by 10–20%, which weakens the strength of the
Hubble diagram anchor at low redshift. Furthermore, the wrong
classification of SNe Ia could induce a significant bias in the
cosmological analysis (e.g., Jones et al. 2017).

Finally, a more subtle effect is related to the galactic
environment bias, which would be caused by extracting host-
contaminated SNe (Rigault et al. 2013). In recent years, numer-
ous studies have shown that the SN Ia standardized luminosity
is tightly correlated with environmental properties. Rigault et al.
(2015, 2020) showed that, after standardization for light curve
shape and color, SNe Ia characterized by a high local specific star
formation rate (lsSFR) are fainter by 0.16±0.03 mag. Other trac-
ers, such as host galaxy stellar mass (Kelly et al. 2010; Sullivan
et al. 2010; Childress et al. 2013; Betoule et al. 2014) or simply
host morphology (Pruzhinskaya et al. 2020), are finding the same
correlation between SN Ia luminosity and their environment.
Recently, Briday et al. (2022) showed that all these tracers are
compatible with two SN Ia populations differing in standardized
magnitude by at least 0.12 ± 0.01 mag.

Some developments have been made to improve the robust-
ness of the point source extraction by estimating the faintest iso-
magnitude contour separating the galaxy and the SN (Kim et al.
2022); however, this is not yet an optimal solution in most prob-
lematic situations; for instance, when the SN is faint or located
near the host core, it only brings a marginal 1.7% improvement
in classification accuracy from the standard pysedm analysis.

We might consider handling the host contamination by inter-
polating the galaxy area under the transient from the external
parts in the field of view (FoV). Unfortunately, there are several
reasons for not using such a method, beyond the mere signal-to-
noise issue. First, there is the seeing, which makes the SN spread
over the galaxy structure: as much as the host light is contami-
nating the SN flux, the reverse is also true, and it is not clear
how far from the SN position we would consider the galaxy flux
to be free of the point source signal. Furthermore, the host spa-
tial structure under the SN extent – linear, concave, or convex –
is not known a priori, especially in a strongly structured region
such as the galaxy core, which would prevent a clean and robust

interpolation. Finally, an interpolation would assume that the
host spectral features are spatially uniform under the SN extent,
which again is usually not the case, especially close to the galaxy
core.

In order to improve the final SN Ia sample in as many ways
as possible, we look to HyperGal1, a scene modeler specifically
designed to handle the strong host contamination case through
a detailed hyperspectral galaxy modeling, complemented by a
smooth background component and a point-source transient. The
algorithm concept is based on two ideas: first, public multi-band
wide photometric surveys can provide reference information on
the host galaxy before the transient event; second, the required
host galaxy cube (two spatial dimensions and one spectral one)
can be estimated from pure photometric observations using a
dedicated SED fitter as a physically motivated spectral interpola-
tor. The resulting hyperspectral host model can then be projected
in the observable space of the SEDM, taking into account all
observational effects: relative geometry between the photomet-
ric pixels (px) and the IFS spaxels (spx), spatial (point spread
function, PSF) and spectral (line spread function, LSF) impulse
response functions (IRF) of the SEDM, atmospheric differen-
tial refraction (ADR), sky background, and additional diffused
light.

In Sect. 2, we describe the HyperGal pipeline and the val-
idation tests on realistic simulations are presented in Sect. 3 to
estimate the accuracy of the SN extraction as well as the SN typ-
ing itself, since this is what the SEDM is designed for. We also
show the improvement with respect to an isolated source extrac-
tor such as pysedm. A discussion of the relevant hypotheses and
possible future improvements are given in Sect. 4.

2. HyperGal pipeline

This section presents the different processing steps from the
required input to the transient spectrum extraction (Fig. 1). The

1 The code is available online at https://github.com/

JeremyLezmy/HyperGal
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Fig. 2. SEDM cube from the observation of ZTF20aamifit. Left panel
shows the spectra, whose color corresponds to the selected spaxels in the
right panel (white image of the spectrally integrated cube). Red cross
shows the SN position.

supernova ZTF20aamifit, at a redshift of z = 0.045 as mea-
sured from strong H↵ line in the host spectrum, is systematically
used here for illustration. It was observed with the SEDM in
February 17, 2020, at airmass 1.7 in poor seeing conditions (2.004
FWHM). It is ⇠2.008 away from its host galaxy core, close enough
to not be considered as isolated (see Fig. 2).

2.1. Inputs

Three main inputs are necessary to run HyperGal: the SEDM
cube to be analysed, the archival photometric thumbnails, and
the redshift of the target. The SEDM IFS (x, y, �) cube of
the scene is built from the 2D raw spectroscopic exposures
with pysedm (Rigault et al. 2019, Sect. 2). It includes all the
components, such as the transient point source, spatially and
spectrally structured host galaxy, night sky background, and spa-
tially smooth diffused light, to be handled by the scene modeler
(Fig. 2).

The archival multi-band photometric images of the transient
environment, acquired before the SN explosion, are obtained
from the PanSTARRS-1 (PS1) 3⇡ Steradian survey (Chambers
et al. 2016) in all grizy bands and queried at the SN location
through the Image Cutout Server2. In particular, PS1 was chosen
for its sky coverage compatible with ZTF (north of declination
�30 deg). Figure 3 shows an RGB image for ZTF20aamifit host
galaxy through the PS1 grz bands.

An analysis of spatially structured scenes (harboring three or
more well-resolved objects in the SEDM FoV) provides a pre-
cise estimation of a scale ratio of SEDM and PS1 pixel sizes of
2.230 ± 0.003, which, for a PS1 px scale of 0.0025, corresponds
to an effective SEDM spaxel size of 0.00558. Once measured, this
SEDM scale is fixed in the pipeline. To save computation time
for the SED fit and the spatial projection step, PS1 images were
first spatially rebinned following 2 ⇥ 2.

The third input is the host galaxy redshift, required by the
SED-based interpolation of the photometric images. Around
50% of the targets observed by the SEDM have a host galaxy
spectroscopic redshift known beforehand (Fremling et al. 2020);
for the others, a redshift is a priori estimated from a prelimi-
nary transient spectrum extraction, using the transient spectral
features and the possible presence of emission lines from the
host galaxy. While it would be theoretically possible to assess
the host redshift directly during the scene modeling, we did not
try to implement this feature yet (see Sect. 4). Furthermore, the
consequences of an inaccurate input redshift are not considered
in this analysis.

2
https://ps1images.stsci.edu/cgi-bin/ps1cutouts
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Fig. 3. RGB image of the host galaxy of SN ZTF20aamifit, constructed
from the PS1 grz cutouts. The red cross shows the position of the SN
detected by ZTF. The x- and y-axes are in native PS1 pixels, 0.0025 aside.
White dashed box is used as the boundaries in Figs. 4 and 6.

2.2. SED fit

The SED fit aims to generate an effective hyperspectral, namely
a full 3D (x, y, �), host model from the grizy PS1 broadband
images. During the process, each photometric pixel is treated
independently, so that the resulting spaxel in the output cube
gets its own spectrum. At the end of this process, this cube
is still independent of the SEDM observation details (impulse
responses, atmospheric effects, etc.). It is important to note that
the SED fitter is not used here to derive accurate and spatially
resolved physical parameters from the host galaxy, but rather
to build a physically plausible spectral interpolation compatible
with broadband archival images.

The software used for this step is cigale3 (Burgarella et al.
2005; Noll et al. 2009; Boquien et al. 2019). It is based on a
progressive computation, successively using modules describing
a unique component of the SED. The set of all parameters tested
by cigale is shown in Table 1.

2.2.1. Star formation history and population

The time-evolution of the star formation rate (SFR) is described
by the star formation history (SFH) through the sfhdelayed
module. Our SFH scenario includes two components: a delayed
SFR and a late burst:

SFR(t) = SFRdelayed(t) + SFRburst(t). (1)

Both terms have a decreasing exponential form:

SFRdelayed(t) /
⇣
t/⌧2

main

⌘
e�t/⌧main , (2)

SFRburst(t) / e�(t�t0)/⌧burst for t > t0, 0 otherwise. (3)

The amplitude of the late starburst is fixed by the parameter fburst,
defined as the ratio between the stellar mass formed during this
event and the total stellar mass. The SFH is applied with the
initial mass function (IMF) from Chabrier (2003) on the stellar
population model from Bruzual & Charlot (2003), used through
the bc03 module.
3 Version 2020, https://cigale.lam.fr
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Table 1. Modules and input parameters used with cigale.

Parameters Symbol Tested values

Star Formation History (SFH)
e-folding time of the main stellar population ⌧main (Gyr) 1, 3, 5
e-folding time of the late starburst population ⌧burst (Gyr) 10
Age of the main stellar population agemain (Gyr) 1, 2, 4, 8, 10, 12
Age of the late starburst ageburst (Myr) 10, 40, 70
Mass fraction of the late starburst fburst 0, 10�3, 10�2, 10�1, 2 ⇥ 10�1

Stellar population
Metallicity Z 10�4, 4 ⇥ 10�4, 4 ⇥ 10�3,

8 ⇥ 10�3, 2 ⇥ 10�3, 5 ⇥ 10�2

Nebular emission
Ionization parameter log(U) �4, �3, �2, �1

Dust attenuation
InterStellar Medium attenuation in V AISM

V 0, 0.3, 0.7, 1, 1.3, 1.7, 2
AISM

V /(AISM
V + ABC

V ) µ 0.1, 0.3, 0.7, 1
BC power-law slope nBC �1.3
ISM power-law slope nISM �0.7

2.2.2. Nebular emission

The light emitted in the Lyman continuum by the heaviest stars
ionizes the gas in the galaxy. This physical process generates sig-
nificant radiative emission in the continuum and spectral lines.
This SED component is described by the nebular module,
based on Inoue (2011). The model is effectively parameterized
by the metallicity Z (the same as in the stellar population model
bc03) and the ionization parameter log(U).

2.2.3. Dust extinction

Dust in the galaxy absorbs the radiation at short wavelengths,
especially from the UV to the near-IR; this energy is then re-
emitted in the mid- to far IR. As HyperGal is primarily targeting
sources at redshift z < 0.1 in the optical domain, the extinction
effect is properly considered through the dust attenuation mod-
ule dustatt_modified_CF00 from Charlot & Fall (2000). This
approach is considering two star populations: the young ones
(<107 yr) still reside in their birth cloud (BC), and the old ones
are considered as already dispersed in the interstellar medium
(ISM). Attenuation is therefore treated differently: for the young
population, both ISM and BC are considered, while for the old
population, only the ISM is considered. In both case, the atten-
uation A� is modeled by a power law, normalized by the V-band
attenuation:

Ak
� = Ak

V

 
�

�V

!nk

k = BC or ISM, (4)

with �V = 0.5µm. The young-to-old star V-band attenuation
ratio is parameterized through µ = AISM

V /(AISM
V + ABC

V ), a free
parameter allowing for more flexibility and a better estimate of
the H↵ emission lines (Battisti et al. 2016; Buat et al. 2018; Malek
et al. 2018; Chevallard et al. 2019). The power-law slope for the
ISM is fixed at nISM = �0.7 following Charlot & Fall (2000),
and the slope for the BC at nBC = �1.3 as advocated in da Cunha
et al. (2008). For completeness, the dale2014 module was used
for the dust emission (Dale et al. 2014); however, this complex
component has no significant impact in our spectral domain.
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Fig. 4. Map of the pull for the grizy broadband images from cigale
outputs, and spectral relative rms over the five reference host images,
shown from left to right and top to bottom. Only pixels with S/N > 3
for all grizy bands are considered (see Sect. 2.2).

2.2.4. From SED fit to hyperspectral galaxy model

We ran cigale using PS1 filter transmission curves from (Tonry
et al. 2012, see Fig. 6) on photometric pixels for which the signal-
to-noise ratio (S/N) is above 3 in all 5 bands. Otherwise, the
output flux is set to 0 at all wavelengths: such pixels presumably
belong to the sky or diffuse backgrounds and cannot be properly
modeled by the SED fitter. For all fitted pixels, cigale returns a
spectrum over an extended wavelength domain (from far UV to
radio), with an inhomogeneous spectral sampling between 1 and
5 Å px�1. All spectra are rebinned at the SEDM spectral sam-
pling of ⇠26 Å px�1 and truncated to the [3700, 9300] Å range,
resulting in 220 monochromatic slices.

The broadband flux from the SED fit is compared to the input
photometric measurements in Fig. 4, where we show for each
PS1 band and pixel, the pull (i.e., the model residual normalized
by the error on the data) and the relative rms averaged over the
five bands:

rms =

vut
1
5

X

�=grizy

 
f� � f̃�

f�

!2

, (5)
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Fig. 5. LSF standard deviation, �LSF, as a function of wavelength, from
the wavelength calibration of 65 nights between 2018 and 2022. Each
violin corresponds to an emission line in the arc-lamp spectra (color
legend).

where f� denotes the data and f̃� the predicted value. The aver-
aged rms is generally lower than 3% in the core of the galaxy,
but can reach ⇠10% in the outer parts. However, as the PS1
observations are 2–3 magnitude deeper than the SEDM ones
(Chambers et al. 2016), relatively poorly fitted pixels far away
from the host core have a marginal flux impact proportionate to
the SEDM background and, thus, they do not significantly affect
the transient spectrum in the scene model.

2.3. SEDM impulse response functions

At the next step, the “intrinsic” hyperspectral galaxy model
obtained from the SED fit has to be projected in the SEDM
observation space, including the spectro-spatial IRFs. This sec-
tion first presents the spectral component, namely, the line spread
function (LSF), then the spatial component, known as the point
spread function (PSF).

2.3.1. Spectral IRF (LSF)

The output spectra from cigale have a spectral resolution of
⇠3 Å in the wavelength range 3200–9500 Å (i.e., a median
resolving power of R = �/�� ⇠ 2000, Bruzual & Charlot
2003), which is 20 times the near-constant SEDM resolution
(R ⇠ 100, Blagorodnova et al. 2018). The full SEDM LSF is
therefore a very good approximation of the differential spec-
tral IRF between cigale and the SEDM. To characterize the
SEDM LSF, we used the intermediate line fits of the wave-
length solution derived from arc-lamp observations, Cd, Hg, and
Xe (Rigault et al. 2019, Sect. 2.1.2). Each emission line was
fit by a single Gaussian profile over a third-order polynomial
continuum.

Studying wavelength calibration for 65 nights between 2018
and 2022, the LSF standard deviation �LSF turned out to be
stationary (no evidence of evolution with time) and fairly homo-
geneous in the FoV, but chromatic (as expected). Figure 5
shows the chromatic evolution of the standard deviation, and the
quadratic polynomial model adjusted to it.

To adapt the cigale spectra to the SEDM resolution, the
spectra of the hyperspectral galaxy model were convolved by the
chromatic Gaussian LSF. An illustration of the result is shown in
Fig. 6.

2.3.2. Spatial IRF (PSF)

The SNe are effective point sources, thus, they can be solely
described in the FoV by the SEDM PSF (and its amplitude).
HyperGal uses a bisymmetric PSF model, in which the radial
profile is the sum of a Gaussian N(r;�) for the core, and a
MoffatM(r;↵, �) for the wings (Buton et al. 2013; Rubin et al.
2022):

P(r;↵,�, �, ⌘) = ⌘ ⇥N(r;�) +M(r;↵, �), (6)

where r is an elliptical radius:

r2 = (x � x0)2 +A(y � y0)2 + 2B(x � x0) ⇥ (y � y0), (7)

with (x0, y0) the coordinates of the point source. Parameters A
and B simultaneously describe the flattening and the orientation
of the PSF.

The four shape parameters (↵, �,�, ⌘), which could be
ill-constrained in low S/N regime if adjusted independently,
are correlated by fixed relationships. The PSF was tested on
148 isolated standard stars, observed in 2021 with the SEDM,
and we settled on the following model. The constrained PSF only
has two free parameters: ↵ (Moffat radius) and ⌘ (relative nor-
malization of the Gaussian), while the two other parameters are
expressed as linear functions of ↵:

� = �(↵) = �0 + �1↵, (8)
� = �(↵) = �0 + �1↵, (9)

where �0 = 1.53, �1 = 0.22, �0 = 0.42, and �1 = 0.39 were
determined from the training star sample.

The chromaticity of ↵(�) is set as a power law function:

↵(�) = ↵ref

 
�

�ref

!⇢
, (10)

where normalization ↵ref and index ⇢ are free parameters, and
�ref ⌘ 6000 Å. Parameters ⌘, A, and B do not exhibit strong
chromaticity and are therefore considered constant. Finally, the
SEDM PSF of a given observation is fully described by five
independent parameters: ↵ref and ⇢, ⌘,A, and B.

2.3.3. Differential PSF between PS1 and SEDM

The original hyperspectral galaxy model is derived from PS1
photometric exposures, with different seeing conditions than
the SEDM observations: the median seeing is ⇠1.007 in SEDM
(Blagorodnova et al. 2018), and ⇠1.002 in PS1 images (Waters
et al. 2020).

As the exact PSF profile is less critical for extended objects
such as the host galaxy, we chose to model the differential PSF
between PS1 and SEDM as a single bisymmetric Gaussian ker-
nel, with free ellipticity and position angle. The hyperspectral
model is thus convolved with this differential PSF before the
spatial projection.

2.4. Scene modeling

At this point, we have the two main elements on hand to build
the scene model: 1) a hyperspectral host galaxy model, as well
as the (differential) spectral and spatial IRF to match it to the
SEDM observations; 2) a chromatic PSF model for the transient
point source. The last component needed to complete the scene
is the night sky and diffused light background, modeled with a
2D 2nd-order polynomial at each wavelength. The nonuniform
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Fig. 6. Hyperspectral galaxy model of ZTF20aamifit host galaxy, after projection in the SEDM observation space (including LSF). Green circles
correspond to the spatially integrated flux from PS1 cutouts, while black diamonds refer to the same quantities as fit by cigale. The five shaded
curves show the transmission of the grizy PS1 filters. Red and blue spectra on the left correspond to the spectra integrated in selected regions of
same color in the model cube on the right. The black spectrum is the spectrum integrated over the full FoV.

terms handle a strong diffused light component, clearly visi-
ble in the edges of the SEDM FoV and spectral range. Overall,
the background component is described by six parameters: b0,
bx, by, bxy, bxx, and byy. We go on to describe the progressive
method used to adjust it to the observed SEDM cube as well as
the detailed spatial projection procedure used to match the two
cubes.

2.4.1. General method

We first considered N ⌧ 220 “meta” slices of the SEDM cubes,
that is, slices summed over a restricted wavelength domain that
are small enough to be considered roughly achromatic, but large
enough to increase the S/N and significantly speed up the com-
putation time. The scene is projected and fitted on all metaslices
independently (the so-called “2D fit”; Sect. 2.4.3), which results
in a set of N ⇥ m parameters; some are nuisance parameters
(e.g., background and component amplitudes), other key scene
parameters, such as the point source position, and PSF shape
parameters.

From this set of parameters evaluated at N wavelengths, spe-
cific chromatic models were used to fix all shape and position
quantities (the “1D fit”), for which the full spectral resolution is
not required. Ultimately, HyperGal performs a final linear “3D”
fit of the different component amplitudes over all monochromatic
slices, providing the total scene model cube at original SEDM
spectral sampling.

The pipeline uses by default N = 6 metaslices linearly sam-
pled between 5000 and 8500 Å. This spectral range is where
the SEDM efficiency is higher than 70% (Blagorodnova et al.
2018) and is extended enough to well constrain the chromatic
parameters, especially the ADR (see Sect. 2.4.4). The pipeline
was tested with different number of metaslices, but no significant
difference was noticed in the results.
HyperGal was extensively optimized with the parallel com-

puting library DASK4 (Dask Development Team 2016), a dynamic
task scheduler working as well on single desktop machines as on
many-node clusters. DASK optimizes the pipeline by analyzing
the (minimal) interdependencies between all computation tasks
and building an optimal parallelized workflow to be submitted
4
https://www.dask.org

and run on an arbitrary number of available workers (in our case,
we used ten nodes on the IN2P3 Computing Center5).

2.4.2. Spatial projection

The spatial projection of the hyperspectral galaxy model
(matched to the SEDM spectral and spatial IRFs) was done by
successively projecting each (meta)slice, taking into account the
relative geometry and size between PS1-derived model (square,
0.0050 aside) and SEDM (hexagonal, 0.00558) spaxels. The projec-
tion is based on a spatial anchor, that is, a reference position
in the sky supposedly known in both (meta)slices. The chosen
anchor is the transient position, derived from the ZTF survey
astrometry and located at the center of the queried PS1 images
(and therefore at the center of the hyperspectral model). In the
SEDM cube, this position is initially guessed from the astro-
metric solution of the SEDM Rainbow Camera (Blagorodnova
et al. 2018; Rigault et al. 2019), but cannot be strictly fixed: the
(chromatic) SEDM anchor position (x0, y0) is free in the fitting
process of each metaslice. The projection is done by geometri-
cally overlapping the two polygonal spaxel grids, with the anchor
position as a reference; this is effectively equivalent to a nearest
neighbor interpolation scheme. These computations were done
using shapely6 (Gillies et al. 2007) and geopandas7 (Jordahl
2014). At this point, the model cube which the PS1/SEDM differ-
ential PSF and the SEDM LSF were applied to is now projected
in the SEDM observation space, over the SEDM spaxel grid.

2.4.3. Metaslice (2D) fit

As already mentioned, all components of the scene are first
independently fitted on the N metaslices. The free parameters
per metaslice are: (1) the SN position (x0, y0) in the SEDM
FoV, used as an anchor position for the spatial projection;
(2) the SN PSF parameters (↵, ⌘, A, B); (3) the PS1/SEDM
differential PSF parameters (�G, AG, BG); (4) the amplitudes
of the SN (I) and host (G) components; (5) the background

5
https://cc.in2p3.fr/

6
https://github.com/Toblerity/Shapely

7
https://github.com/geopandas/geopandas
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Fig. 7. Fit result for the [6167, 6755] Å metaslice of ZTF20aamifit cube. From left to right: metaslice from the original (transient-free) hyperspectral
model with MLA footprint overplotted, projected fitted scene (host + background + SN), SEDM observations, and relative model residuals.

coefficients (b0, bx, by, bxy, bxx, byy). We used iminuit8 (James
& Roos 1975; Dembinski et al. 2020) to minimize a weighted �2

for each metaslice independently:

�2 =
X

i

 
yi � ỹi

�i

!2

, (11)

where i runs on the spaxels of the metaslice, y and ỹ are the data
and model fluxes respectively, and � is the error on the data.

Figure 7 illustrates the projection of one metaslice of the
hyperspectral galaxy model onto the SEDM space. The fitted
scene on this metaslice shows a spatial rms between the model
and the data of 2.6%. Although indicative of the overall scene
model accuracy, a low rms does not necessarily imply a clean
separation of the different components, (e.g., when the transient
lies on top of a sharp host galaxy core). Extraction accuracy is
directly evaluated from simulated SN spectra in Sect. 3.

2.4.4. Chromatic (1D) fit

Once the fit is performed independently overall N metaslices,
a set of N chromatic estimates of the m parameters is at hand
to assess their (smooth) chromatic evolution – except for the
component amplitudes and background parameters, which are
nuisance parameters at this point.

The chromaticity of the full Gaussian + Moffat PSF is mod-
eled as described in Sect. 2.3.2. The chromaticity of the width
of the 2D Gaussian which models the differential PSF between
PS1 and the SEDM is adjusted by a similar power law:

�G(�) = �ref

 
�

�ref

!⇢G

, (12)

where ⇢G and �ref are adjusted on the N metaslice estimates
obtained previously, and �ref ⌘ 6000 Å; the shape parameters
AG and BG are considered constant equal to their (inverse-
variance weighted) mean values over the N metaslices.

The effective anchor location in the SEDM FoV is systemati-
cally wavelength-dependent, due to the chromatic light refraction
through the atmosphere (ADR). Given the N positions of the SN
in the different metaslices, an effective four-parameter ADR can
be fitted to track the chromatic offsets in the FoV:
"
x0(�)
y0(�)

#
=

"
xref
yref

#
�

1
2

 
1

n2(�)
�

1
n2(�ref)

!
⇥ tan(dz)

"
sin ✓
cos ✓

#
, (13)

8
https://github.com/scikit-hep/iminuit
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Fig. 8. SN positions as a function of wavelength, and the effective
ADR fit. Top panel: relative offsets with respect to reference position
at reference wavelength along each axis; filled points correspond to the
observed offsets, and open circles to the predictions of the ADR model.
Bottom panel: relative offsets in the (x, y) plane. Color codes refer to the
central wavelength of the metaslices.

with (✓, z, xref , yref) the fitted parameters, where ✓ is the paral-
lactic angle, z is the airmass and dz = arccos z�1 is the zenith
distance in the plane-parallel atmosphere approximation, and
(xref, yref) is the reference position at reference wavelength �ref ⌘

6000 Å. The index of refraction n(�) of air is computed using the
Edlén equation from Stone & Zimmerman (2001)9, which takes
into account the atmospheric pressure, temperature, and relative
humidity, as provided for each exposure by the SEDM Telescope
Control System.

Figure 8 illustrates the ADR effect, a drift of the metaslice
anchor position with wavelength and the ADR model at an
effective airmass of ⇠2.0.

2.4.5. Final (3D) fit

Once all PSF and ADR chromatic models are available from
2D + 1D metaslice adjustments, the scene morphological param-
eters are considered known and fixed at each wavelength: the

9
https://emtoolbox.nist.gov/Wavelength/Documentation.

asp
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Fig. 9. Full scene model for ZTF20aamifit. Top panel: integrated SEDM
and HyperGal-modeled cubes; the red cross indicates the adjusted point
source position at 6000 Å. Bottom panel: spectral pull and spectral rel-
ative rms. No galaxy- or SN-related structured residual is visible in the
pull map and the spectral rms indicates an accuracy of ⇠4% at the host
and SN locations.

point source position (x0, y0) and PSF parameters (↵, ⌘, A, B),
as well as the PS1/SEDM differential PSF parameters (�G, AG,
BG). This allows us to perform a final 3D linear fit over all
monochromatic slices, where only scaling amplitudes of the dif-
ferent scene components – namely, host galaxy {G}, SN {I} and
background polynomial components {b0, bx, by, bxy, bxx, byy} –
are let free per slice. The total scene is then reconstructed at the
full spectral resolution.

Although G(�) is primarily used to recover flux calibration
mismatch between PS1 and SEDM, this normalization parameter
can interfere in a nontrivial way with the position and intensity of
the emission lines in the hyperspectral galaxy model. This effect
might help in handling slightly incorrect input redshift used in
the SED fitting step, especially under the assumption of a uni-
form spatial distribution of the line. As this has not been analysed
in depth, we elaborate on this notion in Sect. 4.

Figure 9 presents the white image (spectral integral) of the
final HyperGal scene model for SN ZTF20aamifit. The quality
of the fit is evaluated from the pull map, showing no evidence of
structured residuals. The spectral relative rms map indicates an
accuracy of ⇠4% at SN and host core location, and 6–7% where
only the background is significant.

2.5. Component extraction

The strength of the HyperGal pipeline is the simultaneous fit
of the 3 scene components, the host galaxy, the transient point
source and the background. The main quantity of interest is of
course the SN spectrum (i.e., the vector of the point source
amplitudes I(�), see Fig. 10), but we can also selectively sub-
tract individual components to assess the quality of the scene
model.
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Fig. 10. SN ZTF20aamifit spectrum – as extracted by HyperGal (black)
and pysedm (blue) – and uniform sky spectrum (coefficient b0(�), red).
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2.5.1. Integrated spectrum of the host galaxy

In summary, the host contribution can be isolated in the SEDM
cube by subtracting the SN and the background components
(see Fig. 11). To further compute an integrated host spectrum,
a large elliptical aperture is defined around the host with the SEP
package (Barbary 2016; Bertin & Arnouts 1996) from the PS1
images. This aperture is then projected in the SEDM cube, using
the respective World Coordinate Systems. We note that the ADR
is neglected in the process, as it rarely induce a deviation of more
than one or two spaxels in the FoV and has barely any impact on
the host spectrum integrated over a large aperture.

The integrated host spectrum is shown in Fig. 11, with the
expected position of some major emission lines at the input
redshift (independently of the host spectrum). This procedure
highlights the consistency between the input redshift used for
the hyperspectral galaxy modeling and the extracted integrated
spectrum. In the future, it could be considered as a way to con-
sistently estimate the host’s redshift directly from such integrated
spectrum during the scene modeling (see Sect. 4).

2.5.2. Point source radial profile

Similarly, the point source contribution can be isolated in the
SEDM cube by subtracting both host and background models,
as shown in Fig. 12 for the [6167, 6755] Å metaslice of the
ZTF20aamifit cube. This closer look at the point source con-
tribution allows us to check the accuracy of the PSF profile in
each metaslice. The fact that the profile smoothly tends toward 0
means that the background was correctly modeled by HyperGal;
also, the absence of outliers in the data points indicates that there
is no evidence of residual host contamination in the profile, as
noticed in the isolated SN image.

2.6. SN classification

As HyperGal is primarily designed for the transient spectral
classification, an automated typing procedure is included in the
pipeline, based on Supernova Identification (SNID Blondin &
Tonry 2007). The process of typing is performed over the 4000
to 8000 Å spectral range, which includes the most discriminating
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Fig. 11. ZTF20aamifit host galaxy, isolated from the SEDM data cube. Left panel: isolated host galaxy component in the SEDM cube, after
subtraction of both the SN and background models. Right panel: host spectrum integrated over the selected spaxels; the main spectral features are
marked for the input redshift z = 0.045.

Fig. 12. SN ZTF20aamifit, isolated from the SEDM data cube. Left
panel: isolated SN component in the SEDM [6167, 6755] Å metaslice,
after subtraction of both the host and background models; the red cross
indicates the fitted SN location, and contours show the elliptical iso-
radius at 3 and 5 spx for observations (black solid lines) and model
(red dashed lines). Right panel: PSF profile for the same metaslice, as a
function of the elliptical radius. The data points refer to the isolated SN
on the left panel, the red curve corresponds to the PSF profile (without
the background), the blue and the green curves to the Moffat and the
Gaussian components, respectively. The Gaussian component is partic-
ularly weak because of the poor seeing conditions.

spectral features for redshifts z . 0.1. This domain also corre-
sponds to the one where the SEDM CCD quantum efficiency is
over 60%.

The quality of the SNID classification is quantified by
the rlap parameter, measuring the strength of the correlation
between the input and template spectra. According to Blondin
& Tonry (2007), an rlap � 5 indicates a high confidence in
the classification, without considering any prior on the redshift
or the phase of the SN. Figure 13 presents the SNID typing
of ZTF20aamifit using its HyperGal-extracted spectrum. The
best match has an rlap = 27, which leaves no doubt about its
classification as an SN Ia. In comparison, the pysedm-extracted
spectrum (see Fig. 10) is also typed as an SN Ia but with a
significantly lower confidence (rlap = 9).

3. HyperGal validation

The HyperGal pipeline was validated with a set of simulations,
to quantify the accuracy of the extracted SN spectra as a function
of various observational conditions and the ability to spectrally
classify the transient. In this section, we first present the simula-
tion process, before performing some statistical analysis on the

spectral accuracy, followed by the typing efficiency. For com-
parison, the SNe are also extracted with a method similar to
pysedm (Rigault et al. 2019), namely, a plain PSF extraction of
a supposedly isolated source (not accounting for the background
galaxy), but using the same PSF and diffuse background models
as HyperGal for consistency.

3.1. Simulated sample

During a short shutdown of the main ZTF camera, SEDM was
free to observe a few galaxies which hosted SNe at least 1 yr
earlier. These observed host cubes are therefore naturally in the
SEDM space for which HyperGal is designed; ten different
hosts with various morphologies were acquired at different loca-
tions in the IFU and with an airmass ranging from 1.01 to 2.04.
This allows us to cover a large variety of observation conditions,
ranging from the ideal case to the poorest condition. An artifi-
cial point source, whose spectrum and type is known a priori,
was then added to these cubes.

To mimic the SEDM spectra as closely as possible, we used
the spectra of well-isolated transients observed with SEDM that
had been successfully classified by SNID with a very high rlap.
For the SNe Ia (the most numerous to be observed), 70 spectra
were selected with rlap > 25 for the best model and rlap > 15
for the first 30 models. Similarly, seven SNe II spectra with
rlap > 12 were selected. For the more rarely observed SNe Ic
and SNe Ib (⇠5% of observations), only one spectrum of each
was chosen, but with a high classification confidence (rlap ⇠ 22
for the Ib and rlap ⇠ 13 for the Ic). To increase the S/N, each of
these spectra was then slightly smoothed using a Savitzky-Golay
filter (third-order polynomial over a window of five pixels) to
keep the spectral structures intact.

While building the simulated sample, the different SN types
were distributed to follow the observed fractions (Fremling et al.
2020), with 80% of SNe Ia, 15% of SNe II, 2.5% of SNe Ib, and
2.5% of SNe Ic. For further analysis, Ib and Ic will be studied
jointly as SNe Ibc.

A marginalization on the phase of the SNe Ia was applied,
based on the DR1 statistics from the ZTF SN Ia group (Dhawan
et al. 2022). Knowing the phase of the 70 SN Ia input spectra
used for the simulation, we composed the SN templates to fol-
low the observed distribution of phases, modeled as a Gaussian
distribution centered on �3 days with a standard deviation of
4 days.
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Fig. 13. SNID typing of the ZTF20aamifit HyperGal spectrum. Left panel: input spectrum (in grey) and best model from SNID (in blue). Right
panel: distribution in the (redshift, phase) plane of the 30 best matches with an rlap > 5 (all being normal SNe Ia in this case). The input redshift of
the galaxy (z = 0.045) is indicated with the horizontal grey line. The best model, with a very high rlap = 27, classifies ZTF20aamifit as an SN Ia
at redshift z = 0.046 and phase p = +5.6 days.

Concerning the PSF, the profile is assumed to follow
the model presented in Sect. 2.3.2. To faithfully represent
the seeing diversity of the observations, the chromatic radial
profile parameters were drawn from the joint distribution built
from ⇠2000 standard stars, thus taking into account the latent
correlations between parameters. Finally, two extra parameters
– which we consider the most likely to impact the HyperGal
robustness – were introduced in the simulations: the contrast, c,
between the transient and the local background and the distance,
d, between the target and the host.

The latter step aims to cover all observed cases, from the
exact overlapping between the point source and the host (d ⇡ 0) to
the limit of an unstructured background (d � host core size). The
host center is identified by matching the WCS solution from the
SEDM cube and the underlying photometric images from PS1.
The distance, d, is drawn from a uniform distribution between 0
and 5.006 ⌘ 10 spx. As the SEDM mostly observes well-centered
point sources, the simulated SN is placed within 12 spx from the
center of the FoV, or at least toward the MLA center if the host
is on the edge.

The contrast, c, is defined by c = S/(S + B) 2 [0, 1], where
S is the transient signal and B is the total (sky and host) back-
ground, both spectrally integrated over the equivalent r band of
ZTF. For a random c drawn from a uniform distribution in [0, 1],
the background signal B is first estimated at the simulated SN
location, by successively integrating spatially the pure host cube
weighted by the chromatic PSF profile, then spectrally over the
ZTF r-band. Once B is known, the SN spectrum is scaled so that
the r-band integral S = cB/(1 � c). Finally, the simulated SN
contribution to the cube variance is added to the one from the
host galaxy, under the hypothesis of pure photon noise, using the
flux solution of the host cube.

Ultimately, the 5000 simulated cubes were built, covering a
large range of observation conditions, host galaxy morphologies
and positions in the FoV, transient locations and spectral types,
and S/N values. The HyperGal pipeline and the standard point
source extraction were then used to estimate the resulting SN
spectra.

3.2. Extraction accuracy

The SEDM is designed for and used in the spectral classification
of transient. Thus, beyond pure absolute spectro-photometric

flux accuracy, what is important is the capacity of HyperGal to
extract the spectral features allowing for a proper classification,
independently of the absolute flux level or even the large-scale
continuum shape. Consequently, the HyperGal performances
are evaluated on continuum-normalized transient spectra in the
[4000, 8000] Å wavelength range, as in SNID.

The continuum was fit as a fifth-order polynomial over the
wavelength range slightly extended by 100 Å at each extreme,
to avoid some unwanted boundary effects. The spectral compar-
ison between simulation input and HyperGal/standard method
output spectra was then systematically performed on continuum-
normalized spectra and quantified using a wavelength-averaged
relative rms similar to Eq. (5):

rms =

vt
1
N

X

�

 
f� � f̃�

f�

!2

, (14)

where N refers to the number of monochromatic slices between
[4000, 8000] Å, f� denotes the data, and f̃� the predicted value.

The distance, d, is found to have no influence on the spectral
accuracy of HyperGal, with an absolute correlation coefficient
lower than 0.2. On the other hand, Fig. 14 shows the correlation
between spectral relative rms and contrast, c, for both extrac-
tion methods on continuum-normalized spectra. The results are
marginalized over all SN types, as the extraction accuracy is
supposedly independent of the spectral shape.

Both methods obtain an rms greater than 20% for c < 0.2,
suggesting that spectral classification at such low contrast will
be difficult. Yet, the standard method seems to be more accurate
than HyperGal at extremely low contrast (c < 0.1); this actually
appear to be an artifact of the continuum normalization. At very
low contrast, neither method can reasonably disentangle the SN
from the background; however, by effectively mixing the SN and
host signal, the standard point source extracted spectrum has a
higher S/N (albeit less accurate) and the continuum normaliza-
tion is less prone to fail catastrophically, in contrast to the case
of the spectrum consistent with 0 as extracted by HyperGal.
HyperGal starts to stand out for 0.2 < c < 0.3,with a median

rms around 10%, and the rms decreases steadily below 10% at
c > 0.3, 5% for c > 0.5, and 1% for c > 0.8. Compared to the
standard extraction method, HyperGal shows a median improve-
ment of ⇠50% for 0.2 < c < 0.6, and gradually returns to a
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Fig. 14. Distribution, as a function of the contrast, of the spectral relative rms between simulation input spectra and extracted spectra, averaged
over the [4000, 8000] Å domain. In the boxes, the 3 levels represent the 3 quartiles (25%, median, and 75%). Each bin includes the same number
of simulations, as the contrast c is uniformly distributed in [0, 1].

median improvement of ⇠20% up to highest contrasts. Since the
continuum normalization removes the effects of absolute scaling
and color terms on the spectral rms, the improvement exclu-
sively relates to the contamination of the SN spectrum by the
host galaxy spectral features. This demonstrates the effectiveness
of HyperGal in drastically reducing this host contamination.

3.3. Distribution of contrast in the observations

Before turning to the classification efficiency, the contrast dis-
tribution in the SEDM observations is estimated, as a reference
for a comparison with our results. Rather than using HyperGal
on observations made with the SEDM (as was actually done for
the ZTF Cosmology SN Ia Data Release 2 by Rigault et al.,
in prep.), which would be akin to evaluating the pipeline with
itself, instead the contrast c = S/(S + B) was estimated from
photometric images of the same DR2 sample, made up of about
3000 SNe Ia.

For each SN, its signal S in the PS1 r-band at the date of the
SEDM observation was estimated from the SALT2 fit (Guy et al.
2005, 2007; Betoule et al. 2014) of its light curve. We chose the
PS1 r band which, in practice, is very similar to the ZTF one and
because only these images from the survey were available at the
time of the study. On the other hand, the host contribution to the
background, Bgal, was estimated from the integrated flux within
a radius of 200 around the SN. As the PS1 images are already
sky-subtracted, an additional sky background, Bsky, had to be
added for a fair comparison with simulations. Two different val-
ues were used: a fiducial value of msky = 20 mag, approximately
corresponding to the magnitude depth of the SEDM, and a more
conservative value, msky = 21 mag. Given the sky background is
largely negligible in front of a galactic one, its exact value essen-
tially alters the high contrast values: for a SN isolated from its
host galaxy, the contrast would systematically increases as the
sky background tends toward 0.

Figure 15 displays the cumulative distribution of the contrast
for the DR2. The median contrast of this distribution is c = 0.58
for msky = 20 mag and c = 0.63 for msky = 21 mag. For both
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Fig. 15. Cumulative contrast distribution estimated from ⇠3000 SN Ia
observed with the SEDM. Since only Bgal is estimated from PS1 images,
an additional Bsky is estimated using two different sky levels, msky = 20
(blue) for a realistic value and msky = 21 (red) for a conservative value.

sky levels, less than 1% of observations have a contrast c < 0.1,
and only 7% with c < 0.2. At the high-contrast end, 2–5% of
the observations have a c > 0.9 depending on the adopted sky
magnitude. Almost 95% of observations have a contrast 0.1 
c  0.9, and a slightly less than 90% with 0.2  c  0.9.

According to the results of Sect. 3.2, we can therefore assess
the spectral accuracy of HyperGal on the DR2 sample (using
the spectral relative rms (Eq. (14)) as an indicator) to be on
the order of 10%, 5%, and 2% for 80%, 60%, and 20% of the
observations, respectively. In comparison, the standard extrac-
tion method reaches these levels for 60%, 45%, and 15% of the
observations.

3.4. Typing efficiency

As mentioned earlier, the most important validation result in the
context of the SEDM is the efficiency of HyperGal to spec-
trally classify the target SN. The test on the simulated cubes was
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performed using the same classifier as in ZTF, namely, SNID;
the confidence criteria given for the classification are however
slightly stricter, as we regularly identified false positives (i.e., SN
erroneously classified as Ia) in the current pysedm pipeline. The
minimum rlap is set to rlapmin = 6 (rather than 5) for the best-fit
model; furthermore, at least 50% of the top-10 models have to
be of the same type as the best one to confirm a classification.
If one of these criteria is not met, the spectrum is classified as
“uncertain”.

Figure 16 shows the typing efficiency from HyperGal and
the improvement with respect to the standard extraction method
without host modeling. Contrary to the previous rms analy-
sis, results are presented for each SN type, since the spectral
signatures are different in all SN types.

As anticipated in Sect. 3.2, both methods are definitely not
reliable for contrasts below 0.1. SNe Ia are more easily classified,
due to the quantity and strength of features in their spectra: the
typing success is 71% for SNe Ia for 0.1  c  0.2 (⇠7% of real
observations); types Ibc and II, on the other hand, are correctly
classified with a success rate of 23% and 35%, respectively.

For 0.2 < c < 0.3, the typing success reaches more than 96%
for SNe Ia, 77% for Ibc and 51% for SNe II. More than 99%
of SNe Ia are correctly classified with c > 0.3, and more than
95% of all SNe for c > 0.4. With ⇠84% of observations hav-
ing a contrast c > 0.3, ⇠9% with 0.2 < c < 0.3, and ⇠7% with
0.1 < c < 0.2, we can conclude that HyperGal is able to suc-
cessfully classify nearly 95% of all SNe Ia observed by SEDM.
For a contrast of c & 0.2 (which represents more than 90% of
the real observations), nearly 99% of SNe Ia are properly classi-
fied. The improvement brought by HyperGal over the standard
extraction method is obvious, with a sweet spot in 0.1 < c < 0.6:

this will results in more than 30% of additional SNe correctly
classified.

The main spectral feature of SNe II being the H↵ emission
line, usually highly contaminated by the host galaxy, HyperGal
allows a significant improvement for this particular type, from
15% to 37% of additional correctly classified SNe II in the 0.1 <
c < 0.6 range; for SNe Ibc, the difference only appears from c >
0.2, with similar gains between 13% and 31%. SNe Ia exhibits a
lot of strong and easily identified spectral features, the boost from
the standard method is slightly less obvious, but remains, in fact,
highly significant, from 30% of additional correctly classified
SNe Ia for 0.1 < c < 0.2 to 5% when 0.5 < c < 0.6. For c > 0.6,
when the SN ostensibly stands out of the galaxy, the differ-
ence between the two methods becomes marginal whatever the
SN type.

Taking into account the contrast distribution of the observa-
tions, HyperGal should significantly improve the classification
of SNe Ia in nearly 50% of the observations (the other half being
also properly classified by the standard extraction method). As
50% of the observations have 0.1 < c < 0.6, HyperGal will
allow the correct classification of almost 20% more SNe Ia in
this interval, corresponding to 10% of all SNe Ia classifiable with
the SEDM. Assuming a similar contrast distribution for all SN
types, HyperGal is expected to classify 14% additional SNe II
and 11% SNe Ibc.

To probe the critical contamination of the SN Ia sample
by core-collapse SNe, the false-positive rate (FPR) for SN Ia
is examined. Figure 17 shows that HyperGal has a signifi-
cantly lower FPR than for the standard method. Excluding the
unrealistically low contrast cases (c < 0.1), HyperGal shows a
progressive decrease in FPR from 8% to 1% for contrast rising
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Fig. 17. False-positive rate in SN Ia classification for both extraction
methods as a function of contrast.

from 0.1–0.6 (FPR is null beyond that); in comparison, the stan-
dard method oscillates between 6 and 9% in same contrast range.
As a conclusion, the HyperGal FPR is on average less than 5%
for contrasts between 0.1 and 0.6 (⇠50% of the observations),
and less than 2% for c > 0.1 (more than 99% of all observations);
this is half the result of the standard extraction method.

4. Discussion

Here, we discuss some limitations of the current HyperGal
implementation and possible future developments. Regarding
the validation methodology, we acknowledge some simplifi-
cations with respect to actual observations. For instance, the
true distance distribution between the SN and its host was not
explicitly modeled, for instance, this parameter was marginalized
uniformly between 0 and 5.006. As a full-scene modeler which
properly handles this parameter and therefore shows little sensi-
tivity to it (Sect. 3.2), this approximation does not impact the
HyperGal results; this is not true for the single point-source
method which critically depends on the transient-host distance.
Overall, we think the validation approximations actually tend
to minimize the improvement of HyperGal with respect to the
standard method.

Undoubtedly, the most limiting constraint from HyperGal
is the need for an external redshift measurement of the host
galaxy, a priori needed by the SED fitter used as a physically
motivated host galaxy spectral interpolator and of critical impor-
tance for the treatment of emission lines. In practice, this is not
so much of an issue: in the current ZTF sample, about 50% of SN
hosts already have a spectral redshift, mostly from SDSS surveys
(Fremling et al. 2020), with a precision of �z ⇠ 10�5 for z < 0.1
(Bolton et al. 2012); the remaining 50% of SNe have a red-
shift deduced from a preliminary extraction of the SN spectrum,
either from low-resolution spectral features in the SN spectrum
(⇠40%) or emission lines of the host galaxy having contami-
nated the SN spectrum (⇠10%). In both cases, the redshift is
estimated by SNID with a precision of �z ⇠ 5 ⇥ 10�3 (Fremling
et al. 2020). Furthermore, 95% of ZTF SN hosts are brighter
than 20 mag, paving the way for other surveys such as the Dark
Energy Spectroscopic Instrument (DESI) Bright Galaxy Sur-
vey (DESI Collaboration 2016) to systematically provide a large
fraction of spectral redshifts in the future.

A slightly incorrect input redshift (encoded as a wavelength
offset of the emission line position in the hyperspectral galaxy
model), as well as an approximate SED fit of the emission line
fluxes (marginally constrained by broadband photometric obser-
vations) is corrected to first order by the monochromatic galaxy
amplitudes G(�) during the ultimate 3D fit. Primarily intro-
duced to recover flux calibration mismatch between PS1 and
SEDM, this normalization parameter actually interferes in a non-
trivial way with the position and intensity of emission lines in

the brightest parts of the scene to minimize residuals between
fixed (at this stage of the procedure) hyperspectral model and
SEDM observations. This particular effect, which depends on
the relative distribution of stellar and gaseous components in
the host, has not been studied extensively for HyperGal, but
we note it is efficient to disentangle host spectral features from
SN spectrum even with sub-optimal input redshift or emission
line fluxes. However, it effectively precludes the use of the
residual host component for any a posteriori measurements, for
instance, redshift or local measurement of H↵ flux, yet crucial for
local environment studies mentioned earlier (e.g., Rigault et al.
2020).

It is possible to think of including a consistent redshift esti-
mate directly in the HyperGal procedure, at the level of the
hyperspectral model (to minimize artificial fluctuations of G(�)),
but also at the level of the SN spectral typing (to reach a red-
shift consensus between the host and the SN). This would imply
to include the intensive SED fit or the SN typing procedure in
the minimization loop, which is computationally costly in either
case. Another major HyperGal development would be to use the
SEDM cube, a rich and faithful observation of the host galaxy
at the position of the transient, as additional hyperspectral con-
straints in the SED fitting process. Both developments would
push the concept of an SED fitter merely used as a spectral inter-
polator to its limit. It would then probably be preferable to switch
to other more efficient methods, such as physics-enabled deep
learning (Boone 2021).

5. Conclusion

This paper presents HyperGal, a fully automated scene mod-
eler for the transient typing with the SEDM (Blagorodnova et al.
2018). The core of this pipeline is based on the use of archival
photometric observations of the host galaxy, taken before the
SN explosion. Knowing the physical processes in place within
galaxies, as encoded in the SED fitter cigale, the spectral prop-
erties of the host are modeled, adjusted, and scaled appropriately
to create a hyperspectral model of the host galaxy. This 3D
intrinsic model is then convolved with the spectro-spatial instru-
mental responses of the SEDM, and projected in the space of the
observations. A full scene model, including the structured host
galaxy, the point source transient and a smooth background, is
finally produced to match the SEDM observations, allowing for
the extraction of the SN spectrum from a highly contaminated
environment.

The pipeline is validated on a large set of realistic simulated
SEDM observations, covering a wide variety of observation con-
ditions (airmass, seeing, and PSF parameters), scene details (host
morphology, distance to the host, host/SN contrast), and tran-
sient types. The contrast distribution is estimated from about
3000 observed SNe Ia of the upcoming ZTF Cosmology SN Ia
DR2 paper (Rigault et al., in prep.). The transient spectra in the
5000 simulations are then extracted with HyperGal and com-
pared to the historical point-source method, which ignores the
structured host component.

The most important results concern HyperGal efficiency
in spectroscopically typing SNe, a key objective of the SEDM
instrument. The full scene modeler shows an ability to correctly
classify ⇠95% of the observed SNe Ia under a realistic con-
trast distribution. For a contrast c & 0.2 (more than 90% of the
observations), nearly 99% of the SNe Ia are correctly classified.
Compared to the standard extraction method, HyperGal cor-
rectly classifies nearly 20% more SNe Ia between 0.1 < c < 0.6,
representing ⇠50% of the observation conditions.
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The false positive rate for HyperGal is less than 5% for con-
trasts between 0.1 and 0.6, and less than 2% for c > 0.1 (>99% of
the observations); this is half as much as the standard extraction
method. HyperGal has demonstrated its ability to extract and
classify the spectrum of an SN even in the presence of strong
contamination from its host galaxy. The improvement compared
to the standard method is significant: this will noticeably improve
the statistics of the SNe Ia sample for the ZTF survey, while
reducing a potential environmental bias, ultimately impacting
the precision of cosmological analyses.
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