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Abstract. For an invertible quasihomogeneous polynomial w we prove an all-genus
mirror theorem relating two cohomological field theories of the Landau-Ginzburg type. On the
B-side it is the Saito-Givental theory for a specific choice of a primitive form. On the A-side,
it is the matrix factorization CohFT for the dual singularity w? with the maximal diagonal
symmetry group.

1. Introduction

Mirror symmetry, which started with a discovery by theoretical physicists that different
geometric inputs can produce equivalent string theory models, brought spectacular develop-
ments in mathematics. In particular, it predicted that Gromov-Witten invariants of a Calabi-
Yau manifold X (observables in the A-model topological strings on X') depending only on the
symplectic structure of X can be expressed in terms of the B-model observables for another
Calabi-Yau manifold Y which depend on the complex structure of Y.

To describe the formal structure of Gromov-Witten invariants, Kontsevich and Manin [14]
introduced the notion of a cohomological field theory (CohFT) which is a finite-dimensional
vector space € (the state space of the theory) with a nondegenerate symmetric pairing and a
collection of operations

(1) gt H6°7 = H* (M 5,)

with values in the cohomology of the Deligne-Mumford moduli space ﬁg,r of stable curves
of genus g with  marked points. These operations satisfy some natural factorization axioms
(see Sec. 2.1). A CohFT is a very rich structure. A substantial part of it is encoded in numer-
ical invariants called the correlators (see (9)) which are obtained by intersecting the classes
Ag,r(hl, ..., h,) with some tautological classes on ﬁgyr. In particular, the g = 0,7 = 3 cor-
relators turn the state space #€ into a Frobenius algebra and the collection of all genus-zero
correlators equips it with a structure of a formal Frobenius manifold.
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This formalism allows to give a mathematical interpretation of mirror symmetry as a
statement about isomorphism between two CohFTs constructed from different geometric data.
Most of the known mirror symmetry results compare only parts of the structures of the cor-
responding CohFTs. For example, we can speak of mirror symmetry at the state space level,
or of Frobenius algebra isomorphisms, or of a genus-zero mirror symmetry. Complete mirror
symmetry results, valid for all genera, are very rare. In this paper we prove such a theorem for
CohFTs corresponding to Landau-Ginzburg models coming from invertible singularities.

Besides topological strings, another common source of CohFTs are Landau-Ginzburg
models whose geometric input is a holomorphic function

w:C"—C

with an isolated singularity at the origin. There are numerous examples of mirror symmetry
phenomena involving Landau-Ginzburg models and theories of Gromov-Witten type. Most of
them deal with the Landau-Ginzburg B-model which in various forms existed since 1990s. The
operations (8) of the corresponding CohFT are constructed using Saito’s theory of primitive
forms [28] and Givental’s quantization procedure [10].

The first mathematical theory of a Landau-Ginzburg A-model was constructed much later
by Fan, Jarvis and Ruan [8,9]. Based on an earlier idea of Witten [33], these CohFTs became
known as FJRW theories. Their construction paved the way for a mathematical study of mirror
symmetry between different Landau-Ginzburg models whose existence was earlier suggested
by physicists. An FJRW theory depends on a choice of a nondegenerate quasihomogeneous
polynomial function w : C" — C with an isolated singularity at the origin and an admissible
group G of diagonal symmetries of w (see Section 2.5 for details). An LG/LG mirror symmetry
starts with an invertible polynomial

@ w=3 [

i=1 j=1

(a nondegenerate quasihomogeneous polynomial on C" with exactly n nonzero monomials)
determined by the exponent matrix

3) Ew = (a;j).

The mirror partner of w introduced by Berglund and Hiibsch [3] is the dual polynomial

(4) 'wT = ZHx;lﬁ

i=1 j=1

with the transposed exponent matrix E,,r = FEL. Later Berglund and Henningson [2] extended
this construction to include admissible groups of symmetries and provided initial evidence
supporting the conjecture that the A and B models for the dual LG pairs (w, G) and (w”, GT)
are equivalent. In [15, 16] Krawitz established the base case of this LG/LG mirror symmetry
by constructing an explicit isomorphism between the FIRW A-model state space for (w, G)
and the B-model state space for the dual pair (w”, GT).

The FIRW CohFT has been constructed for all admissible pairs (w, G), but its B-side
counterpart, the Saito-Givental theory, currently is known only for pairs (w’, GT) with the
trivial group G7, i.e. when G = G, is the maximal diagonal symmetry group of w. Thus, to
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extend the LG/LG mirror symmetry beyond the level of Frobenius algebras, we must restrict
ourselves to the case G = (G,. Over the last two decades this correspondence has been es-
tablished for several families of invertible polynomials, starting with the singularities of type
A [7,13] (in which case it is equivalent to the generalized Witten’s conjecture [33]), then
continuing with singularities of the types D and E [9], simple elliptic singularities [17,24], ex-
ceptional unimodal singularities [21], and culminating in the work [12] which proved LG/LG
mirror symmetry for almost all invertible polynomials.

Theorem 1.1 (FJRW-SG mirror symmetry [12, Theorem 1.2]). Let w be an invertible
polynomial without chain variables of weight 1/2. Then there exists a primitive form C for the
dual polynomial w” and an isomorphism

5) 0: 2,7 = H(w,Gy),

between the Milnor algebra 2 v of the singularity w” and the FIRW state space which identi-
fies the FIRW correlators for (w, Gy,) with the corresponding correlators of the Saito-Givental
CohFT for the pair (w”, ¢), for all g and r.

In particular, the map 0 induces an isomorphism of the corresponding Frobenius mani-

folds.

The remaining cases are exactly those missing in Krawitz’s theorem [15, Theorem 4.1]
on mirror symmetry for (w, G4,) at the Frobenius algebra level, when the invertible polynomial
w contains a chain summand of the form

k—1

i 2

(6) Z riixip + xp.
=1

Here zy; is a chain variable of weight % The main difficulty here is that for such polynomials
the FJIRW state space #€(w, G,) contains so-called broad generators whose structure con-
stants cannot be computed using the formal algebraic methods of [9] or other available tools.

In this paper we use a different approach to circumvent this problem and to prove an
Landau-Ginzburg mirror symmetry theorem for all invertible polynomials without exceptions.

In [27] two of the current authors gave a different construction of a Landau-Ginzburg
A-model CohFT with the same input as the FJRW theory. The main technical tool of the con-
struction is the categories of matrix factorizations and for this reason we call the correspond-
ing theory the matrix factorizations (MF) CohFT. The MF CohFT has the same state space
J€(w, @) as the FIRW CohFT, and conjecturally the two theories are isomorphic. However,
because of the analytic difficulties of computing general FIRW correlators, this conjecture has
been verified only in some special cases (see [4, 11]).

The algebraic nature of the construction of the MF CohFT makes it much more amenable
for computations. This allowed us to overcome the difficulties related to the existence of broad
generators and to prove a general Landau-Ginzburg mirror symmetry theorem valid for all
invertible polynomials and for all genera.

The key step of our proof is the following result establishing mirror symmetry at the level
of Frobenius algebras.
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Theorem 1.2 (Mirror symmetry at the topological level). Let w be an invertible polyno-
mial. There exists a linear map (the mirror map defined by explicit formulas in Definition 3.6)

%) 0: 9D — H(w,Gy)

which is an isomorphism of the Frobenius algebra structures on the state space J€(w, Gq,) of
the MF CohFT and on the Milnor ring 9 v of the dual polynomial w”, the state space of the
Saito-Givental CohFT.

Theorem 1.2 serves as a starting point for the proof of our main result, which can be seen
as an improvement of Theorem 1.1.

Theorem 1.3 (MF-SG Mirror Symmetry). Let w be an invertible polynomial. Then for
a specific choice of a primitive form ( for the dual polynomial w”, the mirror map (7) identifies
the correlators (9) of the MF CohFT with the corresponding correlators of the Saito-Givental
CohFT for all g and r.

The proof of the theorem is derived from the mirror symmetry at the Frobenius algebra
level in two stages. First we use the reconstruction techniques developed in [12] and compu-
tational tools from [11,27] to prove that for a certain primitive form ¢ the map 6 is an iso-
morphism of Frobenius manifolds for the two CohFTs. Then we obtain the equality of g > 0
correlators using the result of Milanov [23, Theorem 1.1] that Givental-Teleman’s [10, 32]
higher genus formulas for semisimple Frobenius manifolds corresponding to isolated singular-
ities uniquely extend to the origin of the deformation space.

Plan of the paper. This paper is organized as follows. In Section 2 we review the
preliminaries and fix notation. We start by reminding the basic notions related to CohFTs,
isolated singularities and quasihomogeneous polynomials. Then we review the ingredients of
two CohFTs related to singularities: the Saito-Givental CohFT and the matrix factorizations
CohFT constructed in [27].

In Section 3 we compute the three-point correlators («, 3, 7)'\6"5 which determine the
ring structure of #€(w, G,,). Then we construct the mirror map 6 (7) and prove that it is an
isomorphism of Frobenius algebras, thus establishing the mirror symmetry at the topological
level (Theorem 1.2).

In Section 4, in Proposition 4.1, we find combinatorial conditions for the nonvanishing
of genus-zero r-point MF correlators. Using it and the WDV'V associativity relations we show
in Proposition 4.7 that the Frobenius manifold structure of the MF CohFT can be reconstructed
from some special genus-zero four-point correlators. Then we compute these correlators in
Proposition 4.8 and use the results to identify the Frobenius manifolds of the two CohFTs.
This establishes the main result for g = 0, which in turn implies our general mirror symmetry
Theorem 1.3.

Our computations of the MF correlators for invertible polynomials without weight 1/2
chain variables match (up to a sign) the ones performed in [12]. This, together with Krawitz’s
theorem [15, Theorem 4.1], implies that for such polynomials the FIRW and MF CohFT corre-
lators agree for all g and r thus showing that our Theorem 1.3 is an extension of Theorem 1.1.

In the appendix A we provide a proof of the reconstruction theorem for polynomials of
the chain type. This proof is slightly shorter than a similar proof given in in [12] and also
provides the proof for the cases (6) not considered there.
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2. Preliminaries

In this section we review some necessary facts and constructions about singularities of
functions and cohomological field theories of Landau-Ginzburg type.

2.1. Cohomological field theories. Let ﬂgm be the Deligne-Mumford moduli space
of stable curves of genus g with r marked points. Recall that a (C-valued) cohomological field
theory (CohFT) with a unit consists of

o the state space €, a finite-dimensional Z/27-graded complex vector space;
o the metric (-,-) : #£ @ #€ — C, a nondegenerate even symmetric pairing;
e the unit, a distinguished element 1 € €,

e the operations, a collection of multilinear S,.-equivariant even maps
®) Ny HOT — H* (Mg,

for each g, > 0 with 2¢g + r > 2 with values in the cohomology of ﬁg,,ﬂ.

These ingredients are required to be compatible with the natural gluing and forgetful
maps

Mg,r-‘,—l X ‘/%g’,r’—l—l — J%g—l—g’,’r—s—r’, t/%g,r-‘rQ — J%g—l—l,’ra Mg,r-‘,—l — */%9,7“

To each CohFT there corresponds a collection of correlators, the numerical invariants
given by

9 / Ag,r(ah cees ar) H %ﬁf]
. i=1

/%977"

Here a1,...,a, € #€ and ¢; = c1(L;) is the Chern class of the jth tautological line bundle
whose fiber is the cotangent line at the jth marked point. Correlators without psi-classes

(10) (a1, ap)g == / Agr(ar,... an),

9,7

(i.e. with ¢; = 0 for all j) are called primary. Elements a; € J€ appearing in a primary
correlator are called insertions. The prepotential of a CohFT A is the exponential generating
function of its genus-zero primary correlators

(11) 9O(tlaatn) :Z%<€t37€t>ozz Z wtntzra

! 7!
r>0 >0 %1, ip

n
where ty, ... ,t, are formal variables, (§1, . .., &, ) is abasis of the space /€, and £t = Z &tj.
j=1
The prepotential satisfies the so-called WDVV or the associativity equation which is
equivalent to saying that it equips the state space #¢ with a structure of a formal Frobenius
manifold (see e.g. [6,22]). In particular, genus-zero cohomological degree zero components
A87T of the CohFT operations (8) define on #€ a structure of a two-dimensional topological
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quantum field theory (TQFT) or, equivalently, a Frobenius algebra structure with the identity
1 € #€ and the multiplication

o SRS — F
determined by the three-point genus-zero correlators
(12) <O£.,8,’)/>: <C¥,5,’Y>0.

In particular
<Oé, ﬂ) = <17 a, B>0
By the Kontsevich-Manin reconstruction theorem [14], the prepotential % uniquely de-
termines the genus-zero maps A, of a CohFT. Moreover, by the results of Givental and Tele-
man [10, 32] we know that if the commutative algebra given by (12) is semisimple then the
prepotential uniquely determines the entire CohFT, i.e. the maps A, . for all g and r.

2.2. Saito-Givental CohFT (Landau-Ginzburg B-model). The Saito-Givental Co-
hFT (Landau-Ginzburg B-models in the physical language) takes as the input a germ of a
holomorphic function
w:C"—=C
with an isolated singularity at the origin. The state space of this theory with the corresponding
algebra structure is the Milnor ring (or the local algebra) of the singularity w

(13) Dw =Cllz1,...,2]]/ fw:
where
(14) S = (O1w, ..., Ow)

. . o 0 :

is the Jacobian ideal generated by the partial derivatives 0;w = 8—“’ of w. The algebra 2, is
Ly

finite-dimensional precisely when w has isolated singularity. Its dimension fi,, := dim @, is

called the Milnor number of the singularity w. In what follows, we will refer to the generators

Ojw = 0 of %, as the Jacobian relations.

The metric on the space 2., is obtained by identifying it with the space
(15) H(w) := Q*(C")/ (dw A Q"1(C"))

via
(16) D — H(w), fr fw, where w =dx A--- Adxy,

and using the Grothendieck residue pairing on H (w)

(17) (f,9) = (fw, gw) := Resy( fow),
where
f .
(18) Resy (fw) = Rescpy/c lalw’(f). 72)”11)] )

The Frobenius manifold structure on @, (i.e. the genus-zero part of the CohFT) constructed
by Saito [28-30] depends on a choice of a primitive form ¢ on 2,,. The higher genus maps (8)
ASG(w, ¢) are obtained by applying Givental’s quantization procedure extended in [31,32] to
the CohFT level.
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2.3. Admissible Landau-Ginzburg pairs and FJRW theory. While the Saito-Givental
CohFT is defined for any isolated singularity w (and requires a choice of a primitive form), A-
model LG CohFTs are known only for a quasihomogeneous w together with a special group
of symmetries.

Recall that a polynomial function w : C" — C is called quasihomogeneous if there
exists a collection of positive rational numbers q1, go, . . . , @, called weights, such that for all
A € C we have

(19) w Az, AN ) = Aw(a, ., 2).

Recall some facts about quasihomogeneous singularities (see e.g. [1, Section 12.3]).
¢ The Milnor number of w is given by

(20) po o= dim oy = [ | (1 — 1) .

j=1 N9

 The socle of the algebra 2., (the subspace of elements of the highest degree with respect
to the grading induced by the weights ¢;) is one-dimensional and is spanned by the socle
element

0w
21 H = w-
(21) ess(w) := det (8%8%) €9

o The degree of Hess(w) (the central charge of the theory) is equal to

n

(22) E::n—2qu :Z(l—2qj).
j=1

j=1
« We have the following relation (see [26, Eq. (4.25)])
(23) Resy (Hess(w) - w) = fi

which allows to compute the pairing (17) by looking at the highest degree component of
the product fg.

A quasihomogeneous polynomial is called nondegenerate if there is a unique choice of
weights satisfying (19). The group of diagonal symmetries

(24) Gw ={(71,..-,) € (C)"|w(V1x1,y ..., nTn) = W(T1,...,2n)}
for a quasihomogeneous w is nontrivial and contains the exponential grading element
(25) Jw = (equl, .. ,e%iq") .

If w is a nondegenerate polynomial, then the group G, is finite. A subgroup G C G, is called
admissible if it contains the element J,,.

Definition 2.1. A pair (w, G), where w is a nondegenerate quasihomogeneous singu-
larity and G is an admissible subgroup of G,, is called an admissible LG pair.
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In [8,9] Fan, Jarvis and Ruan constructed for every admissible LG pair (w, G) a CohFT
with the state space

(26) #(w,G) = P H(w,)",
~eG
where w., := w|y~ is the restriction of w to the fixed subspace V7 := (C")Y of v € G,

and the spaces H (w- ) are defined in (15). Notice that, even though H(w,) and 2, are
isomorphic as vector spaces, the actions of G on them are not the same and so the invariant
subspaces may be different. This CohFT is called the FJRW theory since its construction is
based on an analysis of the so-called Witten equation.

An element v € G with a trivial fixed subspace VY = 0 is called narrow. Elements
~ € G with V7 # 0 are called broad. The summands H (w-)¢ of #(w, G) are called sec-
tors and elements of a sector corresponding to a broad (resp. narrow) v € G are called broad
(resp. narrow). Correlators (10) (a1, - - - , ;)4 with only narrow insertions can be calculated
using CohFT formalism and algebro-geometric tools described in [8]. However, computa-
tions involving broad elements often lead to insurmountable analytic difficulties and even the
three-point correlators defining the FJRW Frobenius algebra structure (12) on #(w, G) are not
known in general.

2.4. Matrix Factorizations CohFT. In [27] the second and the fourth authors con-
structed a different A-model Landau-Ginzburg CohFT whose input is also an admissible pair
(w, G) as in the FJRW theory. The construction is based on the study of categories of matrix
factorizations and is purely algebraic in nature. We will refer to it as the matrix factorization
(MF) CohFT. Conjecturally, the MF and FJRW CohFTs for the same admissible pair (w, G)
are equivalent. Due to technical difficulties of computing FIRW correlators, this conjecture
has been verified only in special cases. In particular, it is known that the state spaces and the
metrics of both theories coincide. However in the MF CohFT the state space is defined not
geometrically, as a space of Lefschetz thimbles as in the FJRW theory, but algebraically as the
Hochschild homology of the differential-graded category of equivariant matrix factorizations
with the canonical metric.

Let us review the elements of this construction which we will need below.

The state space and metric of the MF CohFT. Letw € C[zy,...,x,] be a quasiho-
mogeneous polynomial with an isolated singularity at 0. The group G, of diagonal symmetries
of w (defined by (24)) is contained in the bigger algebraic group I'y, of diagonal transforma-
tions of C™ preserving w up to a scalar. The group Iy, is equipped with a natural character

27 X : T — C*

such that ker(x) = Gp.

Now given any commutative algebraic group I" with a homomorphism I' — I',, denote
by x the induced character x : I' — C* with the kernel G := ker (). Let MFp(w) be the dg-
category of I'-equivariant matrix factorizations of w. By definition, such a matrix factorization
E = (E,dg) consists of a Z/2Z-graded I'-equivariant free C[x1, ..., z,]-module of finite
rank, ' = Ey @ E1, together with I'-equivariant module maps

01: Fh1 — Ey, 0y : By — E1 ® x, suchthat o6y = w -id, 4109 = w - id.
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Assuming that the group G = ker(y) is finite, the Hochschild homology of the dg-
category MFp(w) has been shown in [27, Eq. (2.11)] to be

(28) HH, (MFp(w)) ~ @ H(wy)",
~eG

where the space H (w) is given by (15). The space HH,.(MFr(w)) is naturally a module over
the dual group @, and the decomposition (28) is precisely the decomposition into isotypical
components (where elements of GG are viewed as characters of @). Furthermore, the map on
Hochschild homology induced by the forgetful functor MFr(w) — MF(w) is given by the
projection onto the sector of v = 1 in (28)

(29) HH, (MFr(w)) —» H(w)% ¢ H(w) = HH,(MF(w)).

For each I'-equivariant matrix factorization E = (E,dg) of w, there is a categorical Chern

character Chg (E) with values in HH, (MFr(w)). It is calculated in [26, Eq. (3.17)], in terms
of the above identification of the Hochschild homology. In particular, its component in H (w)®,

which coincides with the non-equivariant Chern character of E, is given by
(30) Ch(E) = str(0,0g - - - 010E) - w € D4y - w = H(w)

(here str denotes the supertrace of an endomorphism of a Z/27Z-graded vector bundle).

The Hochschild homology HH,.(MFr(w)) is equipped with a canonical bilinear form
given by a general categorical construction (see [27, Def. 2.7.1]). The decomposition (28) is
orthogonal with respect to this form which was explicitly computed in [27, Sec. 2.7]. Here we
will only need the form induced on H (w)® by the projection (29):

31) (fw, gw)w = (—1)3) Resy (fow),

where Res,, is given by (18).

For an admissible pair (w, G), the state space of the MF CohFT coincides with the state
space (26) of the FJRW theory. Comparing with (28), we see that this space coincides with
the Hochschild homology of the category MFr(w). However, in [27] it appears, from the
identification

(32) HH, (MFr(w)) ®r C ~ H(w),
as the direct sum of specializations of Hochschild homology spaces

#(w,G) = @ HH.(MFr(w)) @r C.
yeG

~

Here R = C|G] is the character ring of G acting on C via the specialization at 1 € G homo-
morphism 7, : R — C.

Denote by #, := H(w~)% the sector in #(w, G) corresponding to v € G and by
(*;)w. the pairing (31) for the function w..

Let

(33) ¢ = (e, ..., emm) e (C)”
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be a special square root of the exponential grading element J,, € G4, (25).
We equip the state space #€(w, G') with the metric (-, -) which pairs the sectors #€., and

3‘67771 as follows:

(34) <x77y7—1> = <C*$’77y7—1>w‘,7

where 2, € Hy, yy1 € 1.

Operations of the MF CohFT. Let us provide some details of the construction of the
MF CohFT which will be needed later. Below we will only consider the case when the group
G is the maximal diagonal symmetry group G, of w.

The main geometric ingredient of the theory is the collection of moduli spaces S, (%) for
g>0and ¥ = (vq,...,7,) € G,. These spaces parametrize rigidified I",,-spin structures
over stacky r-pointed stable curves of genus g. Roughly speaking, such structure is a principal
['w-bundle P on a curve C together with an isomorphism of y, P with the C*-torsor corre-
sponding to w(ljog , where  is the character (27). The embedding I';, C (C*)™ associates with a
I"»-spin structure n line bundles L1, ..., £, on C. For w = 2} the corresponding line bundle
L1 is a pth root of the bundle wlcog. So the notion of a I'y,-spin structure generalizes higher spin
structures [13].

It is known that the moduli space Sy(%) is non-empty only when

(35) Y1y = T
For a I'y,-spin curve C, consider the map
p:C—C

to the partial coarse moduli space C' obtained by forgetting the stacky structure on C at the
marked points. This map gives a line bundle

Lj = p:Lj

on C' whose degree is given by the formula (see [27, Proposition 3.3.1] and also [9, Proposition
2.2.8])

(36) degL; = (29 — 2+ 7)q; — 08) — ... — 69,
where rational numbers 0.(,’3.), k=1,...,n, are given by
o 2miel) 2miol) “ano (k)
'yj—(e i...,e 7)6(@),W1th0§9»y],<1.

This formula implies the following useful Selection rule:
Lemma 2.2. If the moduli space Sy(7) is non-empty, then

(37 (Qg—2+r)qj—9,(yjl)—...—¢9f(7]3EZforjzl,...,n.
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The key construction in [27] is that of the fundamental matrix factorization which is a
I'w-equivariant matrix factorization of the polynomial &;_;w., viewed as a function on the
space

Sg(F) x VTt x ..o x VT,

Using the fundamental matrix factorizations as kernels for functors of the Fourier-Mukai type
and passing to the Hochschild homology, we obtain the maps

(38) $g(¥) : R) ¥y, — H*(54(¥),C)
i—1
Now we can define the operations (8) of the MF CohFT as"

 (stg) b (¥) : Q) 5, — H* (M, C).

i=1

MF =\ _
(39) Ag,r(V) - d@g(Stg)

The MF CohFT (39) has many nice properties. First of all, it satisfies the axioms of
the CohFT which connect the restrictions of A'\g/"'; (%) to the boundary divisors with the same
maps defined for other values (g, r). It has a flat identity, which is the natural generator 1; in
#€y = C. In particular, the following metric axiom holds:

(40) (Tgs Yy=15, 1005 = ((€)srys Y1) s

where z, € #y, yy—1 € F,-1 (see [27, Lemma 6.1.1]).
Another important property is that, for a polynomial w which splits as a disjoint (Thom-
Sebastiani) sum,
w = w; P wa,

the corresponding MF CohFT decomposes into the tensor product of the CohFTs of the sum-
mands w; and ws. Namely, we have natural identifications

Gw =~ Gy, X Gy, and HO(w, Gy) ~ H(w, Gy, ) @ F(w, Go,)

under which the map A'\g",f(il,WQ) becomes the tensor product of A'\g’[';(ﬁl) and A'\Q’[E(WQ)
(see [27, Sec. 5.8]). This property will allow us to focus our attention on polynomials w
of one of the three atomic types (41).

We refer to [27, Sections 5, 6] for further properties of this CohFT and the corresponding

correlators.

2.5. Invertible polynomials. Recall that a quasihomogeneous nondegenerate polyno-
mial w : C* — C is called invertible if it has n nonzero monomials.? Invertible polynomials
have been classified by Kreuzer and Skarke [19, Theorem 1]. They proved that w is invertible
if and only if it is a disjoint (or Sebastiani-Thom) sum of polynomials of one of the following

" The operations here differ from those in [27, Eq. (5.16)] by a sign.
? Notice that n is the smallest possible number of monomials for a nondegenerate polynomial.
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three atomic types

(41)

Fermat :

Chain :

Loop :

_ 01
w = z7",

n—1
a; a
w = E xz‘ll‘i+l + xnnv
=1

n—1

a; a
w = g T, Tiv1 + 2" %1,

=1

where a; > 2 foreachi € {1,2,...,n}.

To study mirror symmetry between the dual pairs (w, w

need to consider symmetry groups.
In Table 1 we present the exponent matrices and the order of the diagonal symmetry
group G,, for each of the atomic polynomials.

)

of invertible polynomials, we

Table 1. Atomic invertible polynomials
Fermat Loop Chain
n—1 n—1
w % Z iz e Z riixip +
i=1 i=1
ai 1 aj 1
az az
Ew | (a)
1 1
1 an an
n 1 n
Guwl | a [T a; + (=1)"* I1 a;
j=1 j=1

Let w be an invertible polynomial. Following Kreuzer [18], we will use the entries pg-i)

of the inverse of the exponent matrix F,,:

A0 A
(42) Ept=| + ¢
ORI

The sum of the entries in the ith row gives the weight of the ith variable x; of w:
n .
(43) = p.
j=1
The columns of E_! give special elements in the group of diagonal symmetries of w

- (1) . (n)
(44) p; = (ez’”%‘ L., el ) € G-

Moreover, their product is equal to the exponential grading element J, € G-

Jw = H Pj-
j=1
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We recall some facts about atomic invertible polynomials (see [12, 16, 18]).

(i) For a Fermat polynomial w = :r:‘l“, a1 > 2, we have

1
q1 = Pgl) =
ai

n—1

(ii) For a polynomial of the chain type w = Z ziwip1 + 2, the (i, j)-th entry of E,t is

45) Pl = i

The weight of the variable x; is equal to

J

j:i k=i

n—1
(iii) For a polynomial of the loop type w = ) z" @11 + x%"x1, we have
=1

o o T/ ( o (o). gz

@n = T e
(<= T /(I ap+(-)™), j<i
k=j+1 k=1

Here we use the convention that an empty product is 1. The weight of z; is given by
(48)

n i—1 n
g = 2 (-1 H akHak+Z Dl | /(Ha’er(_l)nH)‘
k=1

j=i k=j+1 k=1 k=j+1
Using (45), (46), (47), and (48), the following result of [18] can be obtained.

Proposition 2.3. For each atomic polynomial w in Table 1, we have:

(i) The rational numbers p satlsfy

(49) p§)1+a3p§) —5}.

(i1) Let us set qp41 := q1 when w is a loop and g1 := 0 when w is a chain. Then for all
it =1,...,n, the rational numbers q; satisfy
(50) aiqi =1 —git1.

(@)

(ii1) The rational number q; — p;’ is an integer onlyifj=1+1=n=2anda, =2.
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2.6. Some computational tools. We finish this section by presenting some facts about
the MF CohFT from [27] which we will need later.

Koszul matrix factorizations and homogeneity conjecture. Here we recall the def-
inition of Koszul matrix factorizations which appear in some computations below. We also
explain the Homogeneity Conjecture from [27] and present a result which will be essential for
the proof of Proposition 4.1 in Section 4.

Definition 2.4. Let V be a vector bundle on a scheme X and let V'V be the dual bundle.
To a pair of sections « € H°(X,V) and 8 € H°(X,VV) we associate the Koszul matrix
factorization {c, 3} of the function w := (3, ) € H°(X, Ox) with the Z/2Z-graded module
E := A\*(V) and the differential § = e A - + ¢(3).

When V is a trivial bundle of rank r, we will represent the sections « and 3 as r-tuples
of functions and will write {a1,...,a,;b1,...,b,} instead of {«, 3}. Notice that the tensor
product of several Koszul matrix factorizations is also a Koszul matrix factorization.

Definition 2.5. Let v = (€2m‘9(1>’ . 7627ri9(">) € Gy C (C*)™ be an element of the
maximal symmetry group of a quasihomogeneous polynomial w.
The degree shifting number -, of 7y is defined by

(51) =3 (05— g)).

j=1

For an r-tuple ¥ = (vy,...,7,) € Gi, , its twisted dimension 159 (%) is defined by
. T 1 T
(52) Dy() = (g~ 1)w +Z +5- Zn
1= 1=

where ¢y, is the central charge (22) and

(53) ny = dim V7.

The following Homogeneity Conjecture is stated in [27, Section 5.6].

Conjecture 2.6. The image of the map ¢4(%) (38) is contained in H 2D, (%) (S4(7),C).

In [27] a sufficient condition for this conjecture was established.
Lemma 2.7. [27, Corollary 5.6.5] The Homogeneity Conjecture holds for the CohFT
associated with w and G whenever the space HH,(MF (w-))% is generated by the Chern

characters of Koszul matrix factorizations for each v € G.

The following result will be reviewed in Section 3.1.
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Lemma 2.8. [11, Lemma 2.2] Let w be an invertible polynomial. For every v € G,
the Hochschild homology HH.(MF (w- )% is generated by the Chern characters of Koszul
matrix factorizations.

As a consequence of the above two lemmas we have

Proposition 2.9. The Homogeneity Conjecture holds for the CohFT associated with an
invertible polynomial w and the maximal group of diagonal symmetries G.y.

Tools for computing three-point correlators. Here we will derive from [27, Proposi-
tion 6.2.2] a useful result which will help with computations of genus-zero three-point correla-
tors in Section 3.3 below. First, let us introduce some notation.

Fix 71,792,735 € G such that Sp(v;,¥2,73) is non-empty. In particular, by (35), this
means that

Y1Y2Y3 = J-
For each j = 1, ..., n, consider subsets of {1, 2,3}
(54) 5 ={ill<i<3,4% =0}
and for k£ = 0, 1, 2, define the subsets of {1,...,n}
(55) Sy={j||¥j|=Fkand L; ~ O(k — 2)}.

Finally, for v,y € Gy, let
VI =vravY

be the subspace of V' fixed by both « and ~'.

Proposition 2.10. Assume that ~y,,7,,73 are such that for every j with ¥; = (), we
have deg L; = —1.

For elements ti1,ta,t3 of the torus (C*)", let us consider the following subspace of
Vi VT2 V7s:

V(t1,to,t3) :={(z1,22,23) € V1 @ V2V | 1(x1, 22, 23) = 0, p1a(z1) = t1p12(z2),
p23(w2) = topas(xs), pi3(x3) = tapiz(x1)},

where p;j : V. — V775 s the coordinate projection and m: V7t @ V72 V73 — A5 s
the composition of the natural map V1 @ V2 @ Vs — V with the projection p : V — A1,
Then there exist elements t1,ta,t3 € (C*)" such that

(w’h D wy, ® w73) [V (t1,t2,t5) = O-
Furthermore, the three-point map (38)
P0(V1,72,73) : Hy, @ Hy, @ Hyy — C
is induced on Hochschild homology by the functor RI" o .*, where
L:V(t1,ta,t3) > Ve V2g Vs

is the natural embedding.
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Proof. Note that the first assumption is equivalent to the condition that Sy = ) and
|¥;] > 1 for each j such that deg L; = 0.

Now [27, Proposition 6.2.2.(1)] implies that the fundamental matrix factorization on
VY @ V72 @ V73 is a Koszul matrix factorization {«, }, where « and f are sections of
the dual trivial bundles with bases (€}) and (ej) numbered by S; U Sy. Furthermore, the coef-
ficients 3; of e; in 3 have the following description. For j € 57, we have

ﬂj = (CL‘Z')j, where E]‘ = {l}
(here we denote by (z;); the coordinates of z; € V7 C A™). For j € Sy, we have
Bj = aj(wi,)j + bj(xiy);, where 3j = {i1, 12},

for some a;,b; € C*.

Note that the relation y;v97Y3 = Jy implies that V71 N V72 N V7Y = (. Thus, the
functions ((zi);)s;=(:y and ((x4,)j, (%iy);)x,={i ip) are exactly the coordinates on the affine
space V71 @ V72 @ Vs, It follows that the section [ is regular and its zero locus is the
subspace V (t1, ta, t3) for some ¢1, to, t3. Thus, the assertion follows from a known property of
regular Koszul matrix factorizations (see [27, Proposition 1.6.3.(ii)]). |

Corollary 2.11. In the situation of Proposition 2.10, assume in addition that V71 = 0
and that the homomorphism

Gy — G

Wro,v3

(where -, ~, = w|yv2.v3) Is surjective. Assume also that for i = 1,2,

*
W~ ‘V'Yi Nker(ps, ) = P23Wn,,v4 |V"/i Nker(ps, )
Consider, for i = 2, 3, the linear maps
fi : H(w"h) - H(w’YQa’Yg)

induced on the Hochschild homology by the composition of the functors of the restriction to
Vi Nker(ps,) C Vi and the push-forward with respect to the projection to V723, Then
for hi € H(w~,), i = 2,3, we have

<1‘Ylv ha, hB%IE = <f2(h2)> f3(h3)>w727’73'

Proof. By Proposition 2.10, there exists an element ¢ of the torus (C*)™ such that
®0(7Y1,72,7Y3) is induced by the functor RI" o .*, where ¢ is the embedding of the subspace
V (t2) C V2@V 73 consisting of (22, x3) such that g, (x2, 23) = 0 and pa3(x2) = topas(xs).
Thus, V' (t2) is the preimage of the graph of to on V7273 under the surjective map

q- (V’YQ N ker(ﬂ-Sl)) D (V73 N ker(ﬂ'sl)) — V203 @ VY23,

By assumption, the restriction of w-, ©w-, to the source of this map is equal to ¢* (w-, ~, PW~, . )-
It follows that the restriction of w., ~, @ w., ~, to the graph of ¢; is zero. Hence, there exists
an element g € Gw_mﬂ3 such that to = g¢, where ( is the special square root (33) of the
grading element .J,,. Since g comes from an element of GG,,, we can replace t2 by ¢, which
leads to the claimed formula. |
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3. Mirror Frobenius algebras

In this section we establish an isomorphism between two Frobenius algebras related to
an invertible polynomial w, thus proving LG mirror symmetry at the topological level (Theo-
rem 1.2).

In Section 3.1, we construct bases in the MF state space #€(w, G,) and in the Milnor
ring ., of the dual polynomial w”". In Section 3.2, we use Kreuzer’s work [18] to construct a
mirror map 6 from 2, to #€(w, G4,). In Section 3.3, we compute the ring structure constants
of #6(w, G4, ) and complete the proof that 6 is an isomorphism of Frobenius algebras.

Remark 3.1. In what follows we will restrict our attention to atomic polynomials (41).

This is sufficient, since for a disjoint sum of atomic polynomials w = € w;, the dual poly-
i

nomial w7, the maximal symmetry group G, and the state spaces 7€(w, Gy, ) and 2, with
their metrics decompose accordingly:

wl = @w?, G =~ HGwi, HO(w, Gy) ~ ®?f’€(w,Gwi), and Qv ~ ®9,wg“.

3.1. State spaces. Let w be one of the atomic polynomials (41) and let w” be its
dual (4). We will describe bases of the state spaces of the two CohFTs related to w: the Milnor
ring 7 of the dual polynomial w” and the state space #€(w, Gy, ) for the maximal diagonal
symmetry group G,.

Table 2.  Mirror atomic polynomials

Type Fermat Loop Chain
n n
T T _ i T _ i
w z® Wi,p = .I‘ni‘(lll + E '%’i*l'r? W ophain = m?l + E .%1;1.%?
i=2 i=2
al 1 al
1 a 1 a9
E,wT (a)
1 a, 1 a,
n n % k
[T a—1 I1 a; > (=D 1] qj
Jj=1 k=0 j=1
n 4 n—1 1
soc(w™) @2 [Tz z =2 I] i~
i—=1 i=1
n k—1 a 1n—2k .
m m s n—2i7 J
t r [T z; [T 5% 11 =
=1 =0 j=1
Byr |0<m<a-2 0<m;<a—1 0<k<|[2],
n—2k
Ogmjgaj—l—éj

Standard basis of 2 ,,r. In Table 2 we collect some invariants of the dual polynomial
w? including the exponent matrix (3) E,,r = EL, the Milnor number /,,r (computed using
(20) and (50)), and the socle element (21) soc(w?).
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In the last line of the table we present the basis
(56) {z™|m € B}

of @, constructed in [16, 18]. This basis consists of monomials ™ := z]"* ...z} whose
exponent vectors m = (myq, ..., m,) belong to the set B,,7 of n-tuples of non-negative inte-
gers described in Table 2. In particular, |B,,7| = fi,,r for any atomic polynomial w” .

In the case of the chain polynomial w?, . , the set B, r is partitioned

chain> chain
L3]
_ k
(57) % zLain o |_| %wzijain7
k=0
k=1 n=2k
where B* T is the set of the exponents of the monomials z™ = 'Ho z," o Hl z;’
chaim 1= ]:
such that 0 < m; < aj — 5;-“%. In particular,
n—2k—1
(@nse—1) 1 aj k<n/2
(58) BE, | = 1
chain
1, k=mn/2.

Let us introduce some terminology related to the bases (56).

Definition 3.2. Let w’ be an atomic polynomial.

The basis {x™|m € B,,r} is called the standard basis of the Milnor ring 2 .

+ Elements of B, are called standard vectors.

The standard vector of the socle element soc(w? ) is called the socle vector and is denoted

by s(w?). It is the maximal element of B,,r in the lexicographical order.

« For a standard vector m € B 1, its complementary vector m = (M1, . .., my) is given
by
mi, ifme%k%l and ¢ > n — 2k;
(59) ml = . chain
s(w’); —m;, otherwise.

The standard vectors from the following example will be important later in the discussion
of loop polynomials.

n—1
Example 3.3. If w =  z"z;41 + xl"x is a loop polynomial and n is even. There
i=1
are two special standard vectors m°34 and m®°" in 8,7, which are complementary to each

other, with the components

a; — 1, 71isodd; 0 1 1s odd;
mgd = e
0, 1 1S even; a; — 1, 4iseven.
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A basis of 7€ (w, G,,) via Chern characters. The following result proved by Kreuzer [18]
(see also [16, Section 3.3]) was the first indication about mirror symmetry for invertible singu-
larities.

Proposition 3.4. For each invertible polynomial w, the dimension of the space F€(w, Gy, )
is equal to pi,,T.

According to [11, Section 2.4], there exists a basis of #(w,G,,) represented by the
Chern characters of Koszul matrix factorizations. To describe this basis explicitly we introduce
a map J which assigns to an n-tuple m of non-negative integers an element in the symmetry
group G, given by

n n
(60) 3m) =[] P = Ju [[ #]¥ € Gu.
j=1 J=1
We have the following two special values of this map:
(61) 3(0) = Jo and JI(s(w?)) = J L.

For chain polynomials the formula (45) implies the following result.

n—1
Lemma3.5. [fw= Y a0’z + 3% and m € B~ . | then the element

=1 chain
k—1 n—2k
(62) 3(m) = Jo [[ Ay ™ T o)
i=0 j=1
fixes the variables xn, Typ_1, ..., Tp_ok+1. It is narrow if k = 0 and broad if k > 1.

Now we proceed with defining a basis of #€(w, G, ). For each narrow v € G,,, we set
1., to be the Chern character of the trivial matrix factorization of w~ = 0:

— Guw ~
Hy = H(wy)™ = C{14}.
To construct the bases of all broad sectors %f.y we need to consider two cases.

n—1
Case (i) w = Y z" @41 + % 21 is a loop polynomial.
i=1
If n is odd, a direct calculation shows that there are no broad sectors, since no broad
elements can be invariant under the G,,-action as required by (26) (see [15, Lemma 1.7]). So
we only need to consider the cases when n is even. In the notation of Example 3.3 we have

I(mO) = I (M) = 1 € Go.
We consider two Koszul matrix factorizations of (A", —w):

Koaa = ® {- (x;j + 9??f1117j+2)73€j+1}7 and

jiseven

Keyen := ® { - (x?j + $§i‘il$]‘+2),l‘j+1}.
jis odd

(63)
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By the supertrace formula (30), we have

(64) Ch(Koaa) = | [] =¥ = [[ (~aj2?™") /\

jis odd J is even
and
1 1 A
(65) Ch(Keven) = | ] (—as2 ) = [ =~ /\
Jis odd Jis even j=1

These Chern characters span the two-dimensional vector space #y—;. By (31) and (34), we
have

(66)
—a; 1
<Ch(K0dd)7 Ch(Kodd)> <Ch(Kodd); Ch(Keven)> _ ] islg/en( J)
<Ch(Keven)7Ch(Kodd)> <Ch(Keven),Ch(Keven)> 1 H (_aj)
jis odd
n—1
Case (ii): w = > z"xj41 + x& is a chain polynomial.
i=1
If m € B"2! | then J(m) € Gy fixes Tp—2k+1, Tn—2k+2, - - - , Tn. Consider a Koszul
chain
matrix factorization of (A", —w)
(67)
n/2—1
Kom = Q) { - (@5 +afaaga) wu ) | @ {(—(@p g + 2%, 20}
t=n/2—k+1

Using the supertrace formula (30), the rank one vector space Hy(,,) is spanned by

n

(68) Ch(Km)= [[ (-aj2P™") N\ daj € Hym).
j>n—2k j=n—2k+1
2

Again, by (31) and (34), we have

(69) (Ch(Kp), Ch(Kpm)) = I (-

j>n—2k,j is odd

3.2. A pairing-preserving mirror map. In [18], alinear map 6 : 2 v — H(w, Gy)
for each atomic invertible polynomial w is constructed. We review this construction here.

Recall that the map J : N — (5, is defined in (60). If we restrict the map to the set of
standard vectors B, C N”, it is almost one-to-one. The only exception happens when w is a
loop polynomial with even number of variables, and in this case, we have

j(modd) _ j(meven).
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Definition 3.6. The mirror map is a linear map
(70) 0:2,7 — H(w,Gy)

defined as follows.
« If 3(m) € Gy is narrow for m € B,,r, then 0(z™) = Ly(p);

n—1
o ifw= >, x?ixiﬂ + 2%z is a loop polynomial with even number of variables, then
i=1

modd

0(z™"") = Ch(Koqa), 0™ ") = Ch(Keven);

« if w is a chain polynomial and m € %@Tl , then

chain

0(2™) = Ch(Kp).

We sometimes denote the image 6(z™) of ™ by #(m ). We call the vector 1m, monomial
™, or the value 6(m) narrow if the element J(m) € G, is narrow, that is, Fix(J(m)) = {0} C A™.
Otherwise, we call it broad. The above discussion can be summarized in the following form.

Lemma 3.7. For any atomic polynomial w, the element O(m) € ¥(w, Gy,) is broad
in one of the following cases:

dd

k>1
m=m"", m=m", orm € B 7

chain

Now define the normalized residue l/{\e/sz by rescaling the residue Res,,r (18) so that

(71) ﬁe/sz (soc(w?)) =1,
where soc(w?)
on Q,,r, given by Res,,r(+,-). The nonzero values of this pairing on the basis elements are

given by

is the socle element (21). We have a nondegenerate symmetric bilinear pairing

Res,r (2", 2m™") = T (=ay).
= modd modd Jne
Res,,r(z ) L ) = H (—CL]'),
(72) i:slfbven
Res,,r(z™, ™) = [ (—an_2i_1), iftmeB=
=0 chain
Res,,r (™, ™) =1, otherwise.

By definition (34) of the A-model pairing ( , ) on #€(w, G, ), we have ((m),0(m)) =1
if m is narrow. By comparing the A-model calculations (66) and (69) with the normalized
residue calculations in (71) and (72), we obtain the following result.

Proposition 3.8. The normalized residue pairing on 2., and the pairing (34) on
HO(w, Gy,) correspond to each other via the mirror map (70). That is, for m,m’ € B, r,
we have

Res,,r (2™, 2™) = (8(m),0(m/)).
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3.3. Generators, Jacobian relations, and Frobenius algebras. In this section we
compute the Frobenius algebra structure on the state space J€(w, G,,) of the MF CohFT and
prove Theorem 1.2 (Theorem 3.14 below) verifying Mirror symmetry at the topological level.

Let m;’s be standard vectors in B,,r. Using (12) we can express the product on 7 (w, G,)
in this basis as follows

(73) O(ma)ef(ma) = > (0(m1),0(ma),0(my))s -0 ) (my).

m3,m4iEDB 1

Here (%) is the inverse of the matrix of the pairing (34) in the basis {#(m)}, where m’s are
the standard vectors in B,,r.

Our computation of the correlator (6(m),6(ms3), G(mg))'})"g with narrow insertions
f(m1),0(ms2), and 6(ms) will rely on the Selection rule (37), the Concavity Axiom [27,
Corollary 5.5.3], and the Index Zero Axiom [27, Proposition 5.7.1].

To compute three-point correlators with broad insertions, we will need more tools and so
we start with some preparation.

Chain type reduction. Letw(x1,...,x,)be anondegenerate quasihomogeneous poly-
nomial of the form

a a a2s—1 a m
w(ry, ..., 0y) = a7 @2+ 73+ ..+ 250 wog + 252X
Fwo(T2s415 - - -5 Tn),

where a; > 1, ag; > 2, m > 0, and 2s < n (and m = 0 if 2s = n). Let us consider the Koszul
matrix factorization of w — wy,

. ai az—1 a2s—1 ass—1 _m
Ko o= {af' +25° w3, 20} @ .. @ {wg 0y + 297 a5y, vas )

Note that it has a natural G,-equivariant structure. Set V' = A", with coordinates 1, ..., Zp,
Vo = AR5t with coordinates 941, . . ., 2, and let p : V — Vj be the natural projection.
For any v € G,,, consider the functor

(I)Ko,'y : MFp(G) (w07p(7)) — MFGw (wﬂy) B Ko ®p*E,

where p : VY — VY 0 AP+ (resp., (C*) — (C*)125+17)) is the coordinate projection.
Let ¢k, ~ be the induced map on Hochschild homology.

Proposition 3.9. In the above situation, assume that we are given v{,%9,7Vs € Guw,
such that So(7y1, Y2, Y3) is non-empty,

VNo=0, V2 C A[28+1,n]7

Sy ={2,4,...,2s}, Vs = AL2] 5 yr2,

and deg Lj = —1 for every j with ¥; = (. Then for any hy € Howoplvy) = Hw vy
h3 € Howg p(vg) = Hw,~,, one has
(74) (Ly,» he, brcoyy ()05 = [ [(—a2i-1) - (ha, hs)uwy,.

i=1
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Proof. By Corollary 2.11, we have

<1‘)’17 ha, ¢K07'73 (h3)>|2]/|,§ = <h2’ f3(¢K0,73 (h3))>w72 )

where f3 : H(w-,) — H(w.,,)is induced by the restriction to the subspace xo = x4 = ... = w35 = 0
followed by the push-forward with respect to the projection

po: All32= sy e,
Thus, to calculate f3(¢ 4 (h3)) we have to calculate the endofunctor of MF(w., ),
E = pos(Prco s (B)|2o=...=25,=0) = Pox(Ko|zy=...=20,=0 X E) =~ RI'(Kol|zy=..=z0,=0) ® E.
It remains to observe that
Kolay=..—ap—0 = {271,0} ® ... @ {2527, 0}

Hence, in the Grothendieck group of MF(A{1325=1} 0) this is equal to (—ay) ... (—a2s_1)
times the class of the stabilization of the origin. Therefore, we get

s

J3(Ko~s(h3)) = H(_a%—l) - h3,

i=1
which implies our formula. o
Generators. Using Lemma 3.7, we can classify all broad monomials in one variable.
Corollary 3.10. Let w be one of the atomic invertible polynomials in Table (1). If
a:? € B,,r, then O({ - v;) is broad in exactly one of the following two cases:
* w is a loop polynomial in two variables and { = a; —1;  or
» w is of the chain type and (j,¢) = (n,a, — 1).
Moreover, in these cases, the element J(v;) = Jywp; € G is broad if
e w =2z + 5%z and a; = 2;

An— .
cw=aPwy+ ... +a 'z, + 22 and i = n.

Let v; be the n-tuple of integers whose j-th component is 1 and all other components are
zero. We define

(75) 0 :==0(vj).

We want to show that the elements 61, ..., 0, generate #€(w,G,,) as an algebra. This will
follow immediately from the product formula (76) that we will now prove.

Proposition 3.11.  If both m and m + v; are standard vectors in B, r, then

(76) fje0(m)=0(m+v;), forj=1,...,n.
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Proof. We calculate the product §;  (m) using the formula (73) with §(m;) = 0;
and f(ms) = 6(m). According to the calculation of the pairing ( , ) via the formula (72)
and Proposition 3.8, it suffices to compute both (6, 6(m), me"en%ﬂg and (0;,6(m), mOdd>'\[§'7'§
when m + vj is broad, when w is of the loop type, and (0, 6(m), H(W»'\O"g in all other
cases. We discuss the details by considering the following three cases, some of which may

contain several subcases.
Case 1. Correlators without broad insertions.
Assume first that v;, ™, and m + v; are all narrow (and both m and m + v; are standard

vectors in B,,7). We want to calculate the correlator (6;,0(m), 0(m + Uj)%',g. The formulas
(36) and (60) show that the line bundles L;, 7 = 1, ..., n, satisfy

n

77 degLi = —2q; — Y _ s(wh)ppl) = —1.
k=1
Here s(w?’)}, is the k-th component of the socle vector s(w?) = (s(w?)1,...,s(w?),).

The last equality follows from Proposition 2.3(i) and equation (43). The equation 77
shows that our three-point correlator is concave and thus by the Concavity Axiom [27, Corol-
lary 5.5.3] we obtain that

(07,6(m), 6(m ;)5 = 1.

This equation, together with the formulas for the multiplication (73) and the paring 72, imply
the formula (76) in this case.

Case 2. Chain correlators with broad insertions.

Now we consider all cases when w is a chain polynomial and at least one of the vectors
vj, m, m +v; is broad. Recall that we assume that both m and m + v; are standard vectors in
B,,7. Using the description of broad elements in Lemma 3.7, we will show that m + v; must
be broad.

By Corollary 3.10, if v; is broad, then we must have j = n and a,, = 2. Then Lemma 3.7
implies that the standard vector m +wv; = m +w,, is broad. If v; is narrow, then by Lemma 3.7
and the description of B, in Table 2, both m and m + v; are broad. This means that we
need to consider the following three subcases:

i) j<n-—2k
(i) j > n — 2k and v; is narrow;
(iii) j > n — 2k and v; is broad.

By Proposition 3.8 and the paring calculation (72), it is enough to prove that

(78) (6,6(m), 0(m + v;))t's = H(—an—zi—l)-
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The key is to calculate deg L; for each 1 < i < n. By the definition of J(m) (60), we
have J(v;)?) = ¢; + pg-z). Using (45), we have
(vj)(i) >q;, ifj>idandj—iiseven;
(79) (v;)® < q;, ifj>iandj —iisodd;

(v)) =q;, ifj <i.

QoW

Now we discuss each subcase in detail. We set v, = J(m), 73 = I(m + v;).

Case(i):j<n—2k<n-—2.
Thenm;+1<a;—landm € SB’;T is also broad. Both m + v; and m fix variables

chain

{Tn—2k+1,---,Zn}. Thusif i > n — 2k, we have
I(m)D = 3m F ;)@ =0.

By (79) and the degree formula (36), we have
degL; =0, if i>n—2k.

If i < n — 2k, the calculation in (77) is still valid. In conclusion, we have
e Pl

According to the definitions (54) and (55), we see that
Yoookt1=...=2,={2,3}, So=51=0, So={n-2k+1,...,n}.

The assumptions of Proposition 3.9 are satisfied with s = 0 and

n—1

a; a
W+, = 'wchain’V“fQ = E T Tiv1 + 2"
i=n—2k+1

Thus, by Proposition 3.9, Proposition 3.8, and formula (72), we get
(0,0(m), 0(m+v;)fis = (Ch(Km), Ch(Kimgr))uwn,

k—1

= [[(-an-2i-1).

=0

Case (ii): j > n — 2k and v, is narrow.

In this case n — j must be even and m € B("~7)/2_ Therefore, n — j < 2k — 2 and
so we actually have j — 1 > n — 2k. Thus m fixes variables x;_1,...,z, and m + v; fixes

Tn—2k+1y---5Ln-
Now to calculate deg L; we consider the following four cases.

o Ifi>j— 1,then deg L; = 0 since J(m)® = J(m + v;)® = 0, and 3(v;)V = ¢.
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« Ifn—2k <i<j—1andj—iiseven, then J(m + v;)® = 0 and we have J(v;) > ¢
by (79). By the degree formula (36), deg L; = —1.

« Ifn—2k <i<j—1andj—iisodd, then 3(m + v;)®) = 0 and we have J(v;) < ¢
by (79). By the degree formula (36), deg L; = 0.

o Ifi <n— 2k, thendeg L; = —1 as in (77).
In conclusion, we have

-1, i<n-—2k
0, n—-2k<i<j—1landj—iisodd;
deg L; = .
—1, n—2k<i<j—1landj—iiseven;
0, i>j—1.
Again by the definitions (54) and (55), we see that
So=0, Si={n—-2k+2,n—2k+4,...,57—-2} Sa={j—-1,4,...,n}.

According to (67), the Koszul matrix factorization K, and Kivj are given by

m—+
n/2—1
_ azt—1 azt an—1 an—1
Km = ® { — (zop ' + a5 wor1), o} | @ {(—(2p" ' + 20 ), @n) }
t=5/2
and
n/2—1
K — ® {_( a2t—1 + g2ty ) _ (..Gn-1 an—1
m+tv; 2t—1 2t T2t+1 73?215} ®{( (x, 7 + ),xn)}
t=n/2—k+1

Thus, assumptions similar to the ones in Proposition 3.9 are satisfied with
Si={l|liseven,n — 2k < £ < j—1}, V2= AUTInl yvs = pln=2ktlnl

Hence, applying Proposition 3.9, we reduce the calculation to that of the residue pairing for
wW~,. That is,

(05,0m), 0(m+ )5 =[] (—ar1)(Ch(Km), Ch(Km))uw,,
lesSy
= H(_aéfl)H(_an—Qi—l)
25, i=0
k-1
= H(_an—2i—1)~
i=0

Here the first equality uses (74) and Ch(Kir) = @Koy, (Ch(Km)); the second equality
uses (69).

Case (iii): 7 > n — 2k and v; is broad.
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In this case, by Corollary 3.10, we have j = n and a,, = 2. We see that J(v;) fixes
variables x,,_1 and z,, and J(m + v;) fixes &,,_2py1, . . ., Tn. Therefore, we have

So =0, 51:{E‘Eiseven,n—2k<€<n—1}, Sy ={n—1,n}.

Similar to Case (ii) above, we obtain

k—1
(6;,0(m), 0(m + )5 = (~an-1) [ (~ae—1) = [ (~an-2i-1)-
LES] =0

Case 3. Loop correlators with broad insertions.

Finally we consider the cases when w is a loop polynomial and at least one of the ele-
ments in {v;, m, m + v;} is broad. Using Lemma 3.7 and Corollary (3.10) we see that there
are three subcases:

(i) m + vj is broad, that is, m + v; = medd

odd

orm + v; = m",

even

(i1) m is broad, thatis, m = m°““orm =m

(iii) wvj is broad. This can happen only when n = 2 and a; = 2.

Case (i): We first assume that m + v; = m°dd,
Then m = m°d4—y; and j should be odd. We have to compute both (6;, 8(m), §(mever)ME

)

and (0;,0(m), G(mOdd)%ﬂg. For both cases, the first two insertions are narrow and the last in-
sertion is broad. More explicitly, we have
Vi =V72 =0, V7 =A",
L; =0 ifiisevenand L; = O(—1) if ¢ is odd. Thus,
S1={1,3,...,n—1}.
Hence, by Corollary 2.11, we have
(0(m™ = v))) = 1,

and the correlators are determined by f3(6(m®®")) or f3(6(m°39)) in each case. Here the map
f3: H(w~,) = H(w.,,)is induced by the restriction to the subspace x1 = 23 = ... = 2,1 =0
followed by the push-forward with respect to the projection

Do : A{QA,...,’VL} % V"‘/Q — V’YQ‘

Using the Koszul matrix factorizations defined in (63) and the argument similar to the one in
Proposition 3.9, we get

<9j79<m0dd - Uj), H(meven»'\(ﬂg =1,
(80) (05, 0(m° —v;),0(m°)FE = [ (—an)-
|k

2
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Using (73) and (66), the above computation gives
0; @ H(m° — v;) = (m°d).

Now assume that m + v; = m®". Then m = m*"

Similarly to the previous case we compute

(07, 0(m" — ), (m )k = [ [ (~an),

— v; and j should be even.

(87, 0(m™" — v)), 6(m*))E = 1,

which implies that
9] ° e(meven . U]) — e(meven)'

Case (ii): If m = m°dd, then because m + v; is still a standard vector, we see that j must be
even and m + v; = m°dd 4 v; is narrow. Then m + v; = m®'°" — v;. The above calculation
shows that
(65, 0(m°1), 0(m —v)lE =1
which implies
;e H(mOdd) = H(mOdd + ;).

even

Ifm=m a similar argument gives

9] ° e(meven) — H(meven _"_ Uj)

Case (iii): Now assume that v; is broad. Without loss of generality, we only need to consider
the case when v; = m°dd, Then j=1land w = a:%xg + xlmgQ. Using the assumption,

m = (0,m) for some m < ay — 2. We consider the correlator (61, 9(:135”),9(1’%1717771»'\6'5.
For this correlator,
21 = 22 = {pl}, L1 = O, LQ = O(—l), S() = SQ = @, Sl = {2}
This implies
(61, 0(5"), 0(x5' ) = 1.

Thus we obtain 6; e 6(x}) = O(xy ).

This finishes the proof of Proposition 3.11.

O
Verifying Jacobian relations for 7 (w, G,,).
Proposition 3.12. For each invertible polynomial w, the generators 01, . .., 0, (75) of

the algebra #€(w, G,) satisfy the Jacobian relations (i.e. generators of the Jacobian ideal 14)
for the Milnor ring 9., (13) of the mirror polynomial w™ . In other words, one has

owT

(81) Tay O 0 =0, forj=1,...m.
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Proof. According to the classification of invertible polynomials [19], it is sufficient to
verify the Jacobian relations (81) only for atomic polynomials (41). This leads to the following
three groups of relations.

(i) For a polynomial of the Fermat type, w = x}*, we have

(82) 091 =0, 00972 = 0.
n—1 _
(i) For w of the chain type w = ) z"x;j11 + 20", we have
=1
(83) anOp_1 0091 =0.
n—1

(iii) For w of the loop type, w = > x?ia:iﬂ + a8y, or of the chain type with j # n, we
i=1

have

(84) a;jfj1 007+ 034 = 0.
Here by Hf we denote the k-th power of the generator 6; with respect to the multiplication in
JO(w, Gy). In the chain case, we use the convention 6y := 1, when j = 1. For the loop
case, we use the convention g := 0,,, 0,11 := 61, and a1 = a;.

For the relations (i), (ii), and the first case of (iii), we repeat the proof from [16]. In the

remaining cases, which involve broad insertions, we will have to use the special properties of
the MF CohFT.

Case (i): We have 0, e 9‘1“72 = 0, since for m = 0,1,...a; — 2, the Selection Rule (37)
implies
(6(1),6(ar — 2),6(m))y5 =0.
Case (ii): This is the same as [16, Lemma 4.6]. To obtain (83), it is enough to show that
(On—1,05" "1, 0(m))Ni5 = 0, for O(m) € #(w,Gu).

If it is not true, then using the Selection Rule (37) and equations (45) and (46), we get

1 — 1 _ —1\(n—
97(171_)1 = — = {(n, 97(-:1_11) = + gn—1 7é dn—1, (92" 1)(n) = (92" 1)(n 2 =0.
Qn an—1
This implies that J(m) fixes the variable x,, but not the variable z,_;, which contradicts
Lemma 3.5.

Case (iii): According to Corollary 3.10, there are three possible subcases:

1

(i) The monomials 6;_1, 9;-”_ , and 92?’“ for1 < k < ajy1 — 1 are all narrow.

(i) w is aloop polynomial w = z{* x5 + x;25°. In this case 9?1’71 is broad.

n—1
(ili) w is a chain polynomial w = )" z"x;1 + zf. In this case 02~ is broad.
i=1
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a;—1

Case (iii.1): In this case, using equation (76), we have 0;_1 e 0 jf = 6(m) for a standard

vector mn such that J(m) = Juwp;_1p;’ ~'and
mi =g+ )+ (a5 — 1)p) = g — ) + 4.

Since none of 9;“ 1 for 1 < k < ajy1 — 1 is broad, we see, using Proposition 2.3.(iii) and
Corollary 3.10, that the vector m must be narrow. The same is true for its complementary
vector m.

Using (60), we can now find (641, et 0(m))5. We have

J+1
deoe L: = ai — (q: @ N _ (. DD Y (1= — 0D (s — 1)
€g L ¢ — (¢ + p]+1) (¢ + (aj+1 )p]-i-l) ( 4i — P (a )p] )
= -1+ ()0;)1 +aJP§)) (PE) +aj+1p§J)rl>
0, J=4
= {2 j=i-y

—1, otherwise.

Here the last equality follows from (49). Then by Index Zero Axiom [27, Proposition 5.7.1],
we obtain

=1 5
(B0, 077 0m))is = —aj.
Now the relation (84) follows from
; ir1—1 iti—1 i—1
07 = 0501 0 070 = (0541, 0711 0(m))ols O(m) = —a;6;—1 0 7.

Case (iii.2): Now consider the loop polynomial w = z{*z2 + z125%. According to Corollary

3.10, the element 6~ = @(2% 1) is broad. Moreover, 61 ™" = Ch(Koqq) and 5> = Ch(Keyen),

where the Chern characters are given by (64) and (65). Take j = 1 and m = m®" = (0, a3—1)
in (76), we obtain
010057 =0 (125771,

According to the equation (80), we have
(01,0771, 05 2WE = (01,00 2,07 E = —as.
Using (59), we have (a; — 2,0) = (1, az — 1). Using (72), we obtain
01000171 = (6,007, 612N g (w 28~ 1) — axfy e 02,

The other relation 0 e 9;2_1 =—q10y @ 0‘1“_1 in (84) can be obtained similarly.

n—1
Case (iii.3): Recall from Table 2 that the socle element of w” is equal to 2% ~2 [] x?i_l. To
i=1

obtain the relation 6,, e 92"_1 = —ap_10,—2 @ Ha" - it is sufficient to prove the following
formula for the three-point correlator
-3
(85) (6,002~ gan—2g%n 272 H 0y WE = —a,1.

We break the discussion into three cases:
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(@) n=2andas > 3.
(b) n=2andas = 2.
(¢) n>3anda, = 2.

Case (iii.3a): We start withn = 2and ay > 3, i.e., with the chain polynomial w = z{' xo+x52.
We notice that 652~ is broad with both variable fixed. For the correlator (6, 052", 0‘212_2%'5,
we have

deg L1 = 0, deg L2 = —1, 21 = 22 = {2}, S() = SQ = @, Sl = {2}
Now we can apply Proposition 3.9 to obtain (85), that is

az—1 paz—2\MF __
<92792 .05 >0,3 = —as.

Case (iii.3b): Now we consider the chain polynomial w = z{*x9 + x% Here as = 2 and a
direct calculation shows that

(86) o = 2a1 — 1
and
(87) Hess(w) = —a1(2a; — 1)27 72 € Q.
The correlator in (85) is (A2, 0521, 1 7)t5. Here 23 is a broad variable because
1 2
05" = 6% = 0.
By (68), we have
0y = alx‘frldxl A dzxs.
We obtain
(0, 0, 1J>'E)/I’§ = <—a1x‘1“_1da:1 A dzxa, alx‘fl_ldxl A dx2)

= Resy ((alxtlll_l)zdl'l AN d$2>

ai

T 1 _2q,M"

= —aj.

Here the first identity is the metric axiom (40); the second identity follows from the formula
for the paring (31); the third identity uses the calculation (87) and the residue formula (23); the
last identity follows from the equation (86). This proves the equation (85).

Case (iii.3¢c): Finally, we compute (6,,, 6,,, 02’1’22_2 H?;l?’ 9;“_1%'5 when n > 3 and a,, = 2.
Using 6 = q; + pi), (45) and (46), we get 6 = 1, 6 = 0, forall i < n — 2,
4 < 209 < 1+ g;. Thus we obtain L,, = 0,L,_; = 0, and L; = —1ifi < n — 2. We
have

S =S, ={L,2}, So=5 =0 So={n—1n}, V2=V =al-ln,

Now again, we apply Proposition 3.9 to obtain (85). This completes the proof of Proposi-
tion 3.12 |
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The following immediate implication of relations (83) and (84) will be used later.

n—1
Corollary 3.13. For a polynomial of the chain type, w = > z'x;41 + &, we have
i=1

(88) Oi—100/" =0, for i=2,...,n.

Mirror symmetry between Frobenius algebras. Now we are ready to prove mirror
symmetry at the Frobenius algebra level.

Theorem 3.14. Let w be an invertible polynomial. The mirror map 0 defined in Defini-
tion 3.6 is an isomorphism of Frobenius algebras

0 - (QwT,ﬁvesz(,),.) s (%(w,c;w),<,>,.).

Proof. Since the Frobenius algebras on both sides are isomorphic to tensor products of
the algebras of the corresponding atomic components (for the A-side this follows from [27,
Theorem 5.8.1]), the statement reduces to the case when w is atomic.

When w is atomic, Proposition 3.11 shows that the elements 601, s, . . ., 8,, generate the
algebra #€(w, G, ); Proposition 3.12 gives that the mirror map 6 is an algebra homomorphism;
and Proposition 3.8 establishes that the pairings agree under the isomorphism 6. |

4. Mirror Frobenius manifolds

In this section, we prove Theorem 1.3 establishing mirror symmetry in the genus-zero
case (i.e. isomorphism of Frobenius manifolds).

By the definition of the prepotential (11), once we fix an isomorphism between the spaces
9 v and F0(w, G4, ), all we need is to identify the corresponding correlators. After choosing
the standard basis of 2,7 and the isomorphism # from Theorem 3.14, we will do this in three
steps. First we prove a nonvanishing result Proposition 4.1. Then, we use it and the WDVV
equations to show, in Proposition 4.7, that all genus-zero correlators can be reconstructed from
the Frobenius algebra structure constants (three-point correlators) and several genus-zero four-
point correlators. Finally, in Section 4.7, we compute these correlators and match them with
the corresponding correlators for the Saito Frobenius manifold.

4.1. Nonvanishing. Recall that the ring #€(w, G,,) is generated by 61, ..., 0,, so any
genus-zero k-point MF correlator can be written as a linear combination of correlators

MF

(89) <H 0., Hefkﬂ'> with ej; € Zo.
=1 =1

0,k

Sometimes we omit the superscript and subscript when the notation does not cause confusion.
From Theorem 3.14, we see that each nonzero element [[;, 0;' must belong to #€,, for

some v; € G. We label the decorations of this correlator by % = (vy1,...,7) and de-
note by Sy (%) the corresponding component of the moduli space of I',,-spin structures. Let
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st @ So() — %O,k be the morphism forgetting the I'y,-spin structure. For each nonzero
element v; € 7€, using notation from (51) and (53), we define

(90) degv; = ”; + iy,

We now give conditions for nonvanishing of the correlator (89).

Proposition 4.1 (Nonvanishing). If the genus-zero k-point correlator (89) is nonzero,
then

kK n
91) —2qj—ZZp§])el,yi €Z, for 3=1,...,n,

v=1 i=1
and

n

92) i deg(JT0;") = w+k—3.
v=1

=1

Proof. If the correlator (89) is nonzero, then the moduli space Sy(7) is non-empty.
According to Selection rule (37), the degrees of L; = p,L;, 7 = 1,...,n, must be integers.
Using (36), we obtain the equation (91).

According to Proposition 2.9, the Homogeneity Conjecture holds for MF CohFT associ-
ated with (w, Giy,). This implies that for the correlator (89), the image of the map ¢ (%) (38)
in H*(So (7)) has a pure cohomological degree 2D (7). According to (52) and (90), we have

k i "
3B0(7) =~ + 3 (i, +2) = 26+ 320 [0
=1 v=1 i=1

Since the space So(7) has real dimension 2k — 6, if the correlator is nonzero, we must have
2Dy (%) = 2k — 6. Now this is equivalent to (92). o

Remark 4.2. The fact that ¢,, = ¢,,r implies that under the mirror map (3.6) the non-
vanishing conditions here are the same as the nonvanishing conditions in [12, Lemma 4.1].

4.2. Reconstruction. The nonvanishing condition from Proposition 4.1 and the WDVV
(associtiativity) equations allow us to reconstruct all genus-zero primary MF correlators from
the Frobenius algebra structure on #€(w, G,) given in Theorem 3.14 and a few genus-zero
four-point correlators. The proof of this is done along the same steps as the proof of recon-
struction in [12, Sections 5 and 7], replacing FIRW invariants with MF invariants. We will not
reproduce all details of the reconstruction process from [12] here. Instead, for reader’s con-
venience, we will give several examples demonstrating the use of the nonvanishing conditions
and the WDVV equations. In the Appendix, we provide a slightly simpler proof of the recon-
struction for polynomials of the chain type, which also deals with several cases not considered
in [12].

The following lemma, which is a consequence of the WDVV equations, is proved exactly
as its counterpart [9, Lemma 6.2.6] in the FIRW theory.
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Lemma 4.3 (WDVYV reduction). Genus-zero k-point MF correlators satisfy

<§11' : '7€k—37’77576.¢> :<§17" : 7£k—3777615.¢> + (éla"' 7§k—377.6757¢>
(93) _<§17"-7£k‘—377.576?¢>+Sv

where S is a linear combination of correlators with fewer than k insertions. If k = 4, then
S =0, i.e. there are no such terms in the equation.

This lemma is a key tool in the reconstruction process. By appropriately choosing the
insertions in (93), we can ensure that the correlators in the right-hand side are simpler than the
one in the left-hand side.

The following important illustration of this idea is the first step of the reconstruction.

Lemma 4.4. For k > 4, any genus-zero k-point MF correlator (&1, ... ,&) can be
represented as a linear combination of special correlators of the form

(94) X = <9n> N ,Hn, anl, N >9n71, N ,91, N ,91, a, B>0,T7
~~ N——
K’ﬂ Enfl Zl
where v < k, 01,...,0, are standard generators (75) of the algebra #€(w,G,,), and the
elements o, f € H€(w, Gy) are products of some 0;’s.

Proof. Since 01, ..., 0, generate the algebra #€(w, G,,), we may assume that each in-
sertion &; is a product of 6;’s. We call the number of factors in such a product the degree of the
corresponding insertion. Using the string equations,® we can further assume that there are no
identity elements among &1, . . ., &.

If there are at least three insertions, say 1, &2 and &3, of degree greater than 1 (i.e. they
are products of at least two ¢;’s), we factor &3 as {3 = 0; e {3, for some 7, and apply (93) with
e=0;,¢0=E§,y7=¢§ and 6 = &.

Observe now that in each of the three correlators in the right-hand side of (93), at least
one of the last three insertions is 6; or {3, whose degree is smaller than the degree of 3. If
we start with three insertions of the largest possible degrees, we see that this process allows to
decrease the sum of the smallest £ — 2 degrees of insertions until they all become equal to 1.
This gives the result. |

Next, we will show that for atomic polynomials from Table 2, any special correlator (94)
can be reconstructed from correlators of a simpler type. For this we will rewrite the nonva-
nishing conditions of Proposition 4.1 for correlator (94) in a different way. Write elements
a, B € H(w,Gy) as products of generators:

n n
(95) a=[[0" B=][o*
i=1 i=1
with (P1,..., P,), (Q1,...,Qn) € B,,r. From the description of the set B, in the last row

of Table 2, we see that for nonvanishing « and 5 we have

(96) P<ag—land@Q; <a;—1, fori=1,...,n.

» The string equations are consequence of the existence of a flat unit in a CohFT, see [27, Theorem 5.1.3].
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Now we define rational numbers b; and K;, fort = 1,...,n, by
b1 O+P+Q1+2
o7 L =By : :
bn by + Py +Qn+2
and
(98) K, =4¢;—b;+ 1.

The nonvanishing conditions (91) and (92) impose strong constraints on these numbers.

Lemma 4.5. For a correlator X given by (94), the numbers K; are integers satisfying

(99) K+ Kot ...+ K,=1.

Proof. Applying (43) and (91) to the correlator X, we see that b; € Z, thus K; € Z.
Now the equation (99) follows from (92). |

For one variable Fermat polynomials, this gives us the correlators of a very simple form.

Example 4.6. In the Fermat case, w = z{, equation (99) gives K1 = 1, and (97) and
(98) imply
_ Lt P+ +2 "y
a
Since P, Q1 < a — 2, we obtain /1 < 2. If /1 = 2, then P; + Q1 + 4 = 2a and we must have
P = @1 = a— 2. Now we see that a nonvanishing correlator (94) must be either a three-point
correlator or the four-point correlator (61, 61, 9?_2, 9‘11_2>.

b1

The reconstruction processes for polynomials of chain and loop types are much more
complicated. We state the result below in Proposition 4.7. For polynomials of the loop type,
the same proof as the proof of the similar result in the FIRW theory [12, Theorem 5.19] works
after replacing FJIRW correlators by MF correlators. In the Appendix, we present our proof for
polynomials of the chain type. It is slightly shorter than the corresponding proof for the FIRW
theory given in [12] and also treats some cases not considered there.

Proposition 4.7 (Reconstruction). The Frobenius manifold structure of the MF CohFT
for an atomic polynomial w is uniquely determined by its Frobenius algebra and the following
genus-zero four-point correlators

$1 = (61,64, 9‘11_2, 9J71>'\6'£, for w = z§ of the Fermat type;
i = (0;,0;, 91-,1(9;“_2, GJ_1>'B/|’Z, for w of aloop type, i =1,...,n;
Sn = (0n, On, Qn_19$"_2, 9J71>'BA’Z, for w of a chain type.

Here 0 ;-1 := O(soc(w™)), and we use the convention 0y := 0.

Note that #;-1 = 1 ;-1 € #€;-1 by (61). For the correlators §; from Proposition 4.7, the
numbers b; (97) and K; (98) are given by

(b1,...,bn_1,bn) = (1,...,1,2) and (Kl,...,Kn_l,Kn) = (0,...,0,1).
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4.3. Calculations of genus-zero four-points MF correlators. To prove Theorem 1.3,
it remains to compute the correlators §; from Proposition 4.7 and match them with the corre-
sponding correlators from Saito’s Frobenius manifold [20, 28]. The latter have been calculated
in [12], using the perturbative formula for primitive forms developed in [20]. Using Proposition
4.7 and [12, Proposition 6.8], Theorem 1.3 will follow from

Proposition 4.8. For every correlator §; in Proposition 4.7, we have
(100) Si = —Gis

where q; is the weight of the variable x; in the weighted homogeneous polynomial w.
The rest of the paper will be devoted to the proof of Proposition 4.8.

Concavity. We separate the correlators §; in Proposition 4.7 into two cases:
(i) The correlator is concave.
(i1) The correlator is not concave.

According to the classification in [12, Lemma 6.5 and Lemma 6.6], modulo a cyclic permu-
tation of the variables in a polynomial of the loop type, the only non-concave correlators in
Proposition 4.7 is

Sn = <9na On, anlegn_z’ QJ—1>'\(;I,Z’

where the polynomial w belongs to one of the four cases listed in Table 3.

Table 3. Non-concave correlators §,

Type Polynomial w Constraints 0, 0109772 | ;1
n—1 )
(a) x?lxlurl + x%:z:l n>3 narrow narrow narrow
i=1
n—1 )
(b) :L‘,?Z Tit1 + x%xl n=2,a; > 3 | broad narrow narrow
i=1
n—1 )
(c) Yo xiwig + x2x1 | n=2,a; =2 | broad broad narrow
i=1
n—1 _
(d) x?’xiﬂ + .r,% none broad narrow narrow
i=1

More explicitly, in case (a), all the insertions are narrow but the correlator is not concave.
In the remaining three cases, there exists at least two broad insertions in the correlator.

The calculations for concave correlators are exactly the same as the calculations of the
corresponding FIRW invariants, which was done in [12, Section 6]. For nonconcave corre-
lators, we will first use Guéré’s formula [11] to calculate the virtual class of the MF CohFT.
Indeed, Guéré’s formula can be applied to all the cases in Proposition 4.7. In the concave case,
it is just the Witten’s top Chern class defined in [25].

To describe and use Guéré’s formula, we need some combinatorial preparation. Consider
the correlator §,, = (6,,, 0, 9,1,192”_2, 051 %'E, the decorations of this correlator are denoted
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by ¥ = (v1,72:73,7Y4)- The moduli of I",,-spin structure is Sp 4(7). The boundary strata are
labeled by the following G,,-decorated dual graphs

71 Y3 0MN Y2 M1 Y2
: Y1+ V1,— : : Yo+ V2,— : : Y3+ V3,— :
Y2 Y4 3 Y4 V4 73
Figure 1. Boundary strata on So 4 (%)

Each vertex represents a genus-zero component, and each half-edge represents a marking
(labeled with decorations ;) or a node. The decorations Yi+ € G on the same node are
balanced, that is

’ygjl —i—’y(]) =0 mod 1.

)

According to the Selection Rule (37), decorations 7y, . are determined by the other decorations
on the same component.
For j = 1,...,n, we define decoration vectors

v (Fn) = (fygj), e ,7?) , vg) = (7% )+77g])+,’7:(3])+>

For j = n — 1 and j = n, we list these vectors non-concave correlators of type (b), (c), (d) in
Table 4.

Table 4. Decoration vectors

Type (D (5,) vinfl) o™ (3) vsrn)
(b) (0 0’2a1 1’331 %) 1_T171 (0, O’Qal 1’2a(i11) 1—20“%1
©| 000} CER) 0003 | G.LY
@ | (0,0, 5251 = 5) | (g 2 ) (0,0, 3, 3) (3,0,0)

The Type (a) case is more complicated, we only list
n—2
1) 1 -1
=D (§n) = ijn ijn ) ~3p{ Y +Zp§'n )’1_q”_1
j=1

and
M (Fn) = [ o +Zp] P +ijn Zp]” + o011~ g

We observe that in type (b) and (d), the first two insertions are broad, in type (c), the first three
insertions are broad, and there is no broad insertion in type (a).
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Guéré’s formula. Let w be an atomic invertible polynomial. Let
Y = (0, oM = /M MED (0 ® ... @)
g,r

be a correlator for the MF CohFT (39) decorated by an r-tuple % = (1, ..,7,)-
Choose v; € #~, from the standard basis. If v; is broad, then v; has one of the forms in

(64), (65), (68). Following [11], we call a variable z:; crossed 1o v; if v = 0, and (~a;z ")
is not in (64), (65), (68). For example, x; is crossed to v; = Ch(Koqq) if j is odd. Deﬁne a
line bundle ch = L;(—>_ pi) by twisting the markings p; such that z; is crossed to v;. The
number of such markings with be denoted by r;.

Let ¢(j) be the unique subscript such that a: a:t( ) 1s a monomial of w. If a correlator

j
contains at least one variable z; such that H°(C, EJQ) = 0, then we can define

J

\ A M, itk =t(j) and HO(C, L) # 0;
b A, otherwise.

For the correlator Y, denote the image of ¢, (%) (cf. (38)) by dMF(Y"). If there is some j such
that HO(C, [,]c) = 0 for any curve C in Sy4(%), according to Guéré’s formula in [11, Theorem
3.21] and the sign convention in (39), we have

(101)

n

—ME(Y) = Tim [ JJ(1 = xy)~CromL)trs | exp Zzs@ )Chy(Rr,L;)

A—1 !
j=1 j=10>1

Here Chy is the degree ¢ term of the Chern character, and

V4
so(a) = 240 ~°3 (- (

=1

)kvw, ),

where By(t) is the ¢th Bernoulli polynomial and (¢, k) is the coefficients of z¢ in the Taylor
expansion of £!(e* — 1) /k! at z = 0.
Using the combinatorial preparation in Table 4, we obtain

Lemmad4.9. Consider all the correlators T, in Table 3. If j # n—1, then H°(C, ﬁ%) =
forany C. If j = n — 1, there exists some C, such that H°(C, L,,_1) # 0.

Proof. For j < n — 1, by [12, Lemma 6.5], deg £€ deg L; = —1 on each curve C.
Thus H°(C, ﬁf) =0, and

(102) Chy(Rm.L;) =0, j<n—1.

Now we consider 5 > n — 1. Using the degree formula (36), we see that on any smooth
C, (deg L,,—1,deg L,,) = (—1,0) for type (a), (b), (d), and (deg L,,—1,deg L,,) = (0,0) for
type (c). We can check that (r,—1,7,) = (0,2) for type (a), (b), (d) and (r,—1,7,) = (1,2)
for type (c). For all the cases, we have deg EJC. =degL; —r; = =1 -0} < 0. Thusif Cis
smooth, H°(C, LJG) = 0. Moreover, we have a virtual degree formula

(103) degvir(L;) := —Cho(Rm.Lj) +1r; = 07
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If C is singular, then it has a node N and its normalization has two component, de-
noted by C; and Cy. Using Table 4, we can check that if j # n — 1, the unordered pair
(deg LS e, , deg LS|c,) = (—2, —1) and the node N is a narrow node with H° (N, L§|xr) = 0,
or (deg £]Qf|cl,deg EJQf|cQ) = (—2,0) and the node is broad with HO(\/, £§\N) = C. In both
cases, we have H°(C, LJQ) = 0, using the long exact sequence

0— HO(C,L5) = HO(C1, LS|e,) & H(Ca, LS| cy) — HO (N, LS |n)
— H(C, Ef-) — HY(C, £§|Cl) ® H(Cy, zj%?) -0

If j # n—1, the only exception happens when both 6, belong to the same component, say
C1, then (deg £§|cl,deg £]¢|02) = (0,—2) and the node N is narrow. Then H(C, L%) # 0.

m]
Using Lemma 4.9, we can apply the formula (101) to the correlator §,, and get
Lemma 4.10. For all the Type (ii) correlators §,, the reduced CohFT is
(104) ME(Fn) = —an—1Chy (RmuLy_1) + Chy (Rm.Ly,).
Proof. By Lemma 4.9, we see all the variables except z,,_1 are concave. Thus
A\~ 0n-1 S,
(105) A = A
A, j#n.
Now the formula (104) follows from the calculation
~E @) = lim(1-An)exp Z > se(Aj)Chy(Rr.L)
j=114>1
= lim(1— 1 —= = h *
lim (1~ ) +Z< ) Oy
N (=)
= - lim “2—— 2" Chy (R, L
; M1 \j 1(BrLy)
An—1(1 —A An(1—A
= —lim MChl (RmyLy—1) — lim MChl (Rm L)

A=l 1 — Mg P
= an71Ch1(R7T*£n71) — Chl(Rmﬁn).

Here the first equality uses (101) and (103), the fourth equality uses (102), and the last equality
uses (105). |

Calculation of Chern characters. Using Chiodo’s formula [5, Theorem 1.1.1], we
have
1

T: = . «Ch L
)= G (0-Cn(RrL)




40 He, Polishchuk, Shen and Vaintrob, Landau-Ginzburg mirror theorem
J 3 o)
B Bs(qj) By 9'(71 'Yk +)
A Z Z Tel |-
Ao, i=1 k=

Here k; is the first kappa class and 1); is the i-th psi class on ﬁoﬁl and I'{,T';,T';, are the
G -decorated dual graphs of the boundary strata shown in Figure 1.
By Table 4, case (d), the decoration vector for £,, is v(™(F,) = (0,0, %,1) and the

decoration vector v(ﬁ) = (3,0,0). Since g, = 3, we have

1
.= (BQ(qn) —2B,(0) — 232( ) +BQ( )+ 232(0)> — 0.
Other cases are computed similarly. Integrating (104), we have
Sn = —an-1Tn—1 + Ty.

We list the explicit calculations in Table 5.

Table 5. Calculation of non-concave correlators

Type Polynomial w Th-1 T, Sn
n-l ) (n_1) )
(a) Zl T g1 + Tpx1,n >3 | —qn_1 — 2pn -1+ 2py, —qn
=
(b) (1:‘111 T + .%'%afl, ar >3 %%1 211117_1 _ 2(21:11
(c) riwo + 2dmy l 1 -1
n—1 . ) L .
(d) > T T + T T 0 -3
i=1

Now Proposition 4.8 is proved. We remark that case (a) is computed in [12, Appendix],
where

Sn = _an—l( dn—1 — 2P(n 1)) ( 1+ 2P$Ln)) = —(Qn-

A. Reconstruction for polynomials of the chain type

In this section we present a proof of the reconstruction result Proposition 4.7 for a poly-
n—1
nomial of the chain type, w = Y z} 'z + xl.
i=1
Consider a nonzero correlator (94)

X:<0n,...,Qn,Hn,l,...,Hn,l,...,91,...,91,04,6),
N e —— N——

with

n

=6 8= ﬁegﬂ € (w,Gy),

i=1 i=1



He, Polishchuk, Shen and Vaintrob, Landau-Ginzburg mirror theorem 41

as in (95) (except that here we are using lower-case letters p; and ¢; which should not lead to a
confusion since the weights of the variables do not appear in the appendix). Note that from the
description of the standard basis in Table 2, it follows that

(106) pi<ai—1,¢ <a;,—1,and p;+ ¢ <2a; —2, for i=1,...,n.
Together with formula (45) for pgi) and the fact that ¢; > 0, this gives the following
constraints between the integers K1, ..., K, defined by (97) and (98).

(107) pitai=ai(li — Ki+1)+ (lix1 — Kiy1 +1) = 4; — 2,
(108) Pnt+qn=an(ly, — K+ 1) — 4, — 2,
(109) a;i i + Kip1 > (a; — 1)(4; — 1) 4+ iy,
(110) an Ky > (an —1)(4, — 1) — 1,
(111) Ki+ Kiy1 > (1 —a;)(1+ K5),
forallt =1,...,n — 1. These equations further imply the following additional relations.

Lemma A.1. We have
« IfK; <0, forsomei <n —1, then K; + K;11 > 0.

e If K; < 0Oand K; + K11 =0, then (Ki,KiJrl) = (—1, 1).
In this case Ei = €i+1 =0, pit+q = 2ai -2, andpi+1 + Qi1 = EH_Q — Ki+2 — 1

e —1 <K, </t,and if K, = —1, then l;, =0, p,, + g, = 2a,, — 2.
This leads to a complete description of possible collections (K71, ..., K,) with K,, > 0.

Lemma A.2. If K,, > 0, then the tuple (K1, ..., K,) is of one of the following kinds:

* A concatenation of some (0)’s and (—1,1)’s with one (1), in any order as long as it does
not end with (—1,1);

* A concatenation of some (0)’s and (—1,1)’s with one of (1), (—1,2), or (-2, 3) ending
with two non-negative numbers.

Proof. First, we observe that K,,_; > 0. Indeed, the assumption K,,_; < —1 together
with ¢,, > K, contradicts to (109).

Now, Lemma A.1 implies that if K; < 0 for some ¢ < n — 1, then K;_; > 0 and
K; + Kiy1 > 0. Since, by Lemma 4.5, we have K7 + ... + K, = 1, removing all pairs
(K;, K;+1) with K; < 0, will leave us with a tuple of non-negative integers (K7, ..., Kj)
(recall that K,, > 0) such that IA(E + ...+ Iz < 1. Therefore at most one of them can be
nonzero. Also, since the removed pairs (K;, K; 1) satisfy 0 < K; + K;+1 < 1, for all but at
most one of these pairs we have K; + K;11 = 0, and so (K;, K;+1) = (—1,1) by Lemma A.1.
If K; + K41 = 1, then from (111) it follows that (K, K;11) mustbe (—1,2) or (—2,3). ©

The correlator X in (94) can be reconstructed with the correlators of the following much
simpler form.
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Proposition A.3. We can reconstruct correlators in (94) from correlators of the form

(112) X ={0p,....00 o B).
——

Ly, copies

Proof. Starting with a correlator X in (94) not in (112), we can choose ¢ to be the largest
index with ¢ < n and £; > 1. More precisely, X is of the following form:

X = <9i795aa75>7 1< n,

where 05 is a tuple consisting of ¢;s with j = n or j < 4. Now it is sufficient to prove that
using (93), X can be reconstructed from correlators with fewer insertions and correlators of
the form

Z = <9j,93,0/,6’>, 7> 1.

Here the set @ in Z is the same as that in X, but o/, 3’ can be different form « and 3 in X.
Notice that X = (0g,6;, 05", 8) for some p, > 0. If p, > 1, then we apply (93) with
vy=08,0=0;,¢6=0,,and ¢ = (92"_1&. The correlators with §¢ and §- are of the form:
<9579n79197€n_1a5 B>a <05a0n50pn_1a79i/8>'

n

They are both of the form Z. The correlator with ey equals (0g, 0;, Hﬁn_la, 0,.3). By induction
we can reconstruct X from Z and the correlator Y = (fg, 0;, oy, By’) where pY = 0.

Similarly, we move all x,,_; from ary to By, and so on, until we move all ;1 from « to
B. Thus we reconstruct X from correlators Z, and the correlator Y = (..., 0;, ay, By ) where
pz;lz...:p;/:o.

After reducing to the basis listed in Table 2, Y satisfies pky + q,}c/ < ay — 1for k > i. By
Lemma A.1, we have K }; > 0in Y. In the following argument, we focus on the reconstruction
of Y, and drop the superscript Y on K, p and q.

Case K, = 1: In this case K is a concatenation of (0)s and (-1,1)s, followed by K,, = 1.
IfFK =(...,—1,1,1), then £ = (...,0,0,%) and p + q = (...,2ap—2 — 2, %, %) by
(107). Thenn—2 > i, but p,_2+¢gn—2 > an—_2, contradicting our assumption pg+qr < ar—1
on Y. Similarly, we reach a contradiction if there is j > 4 such that (K, K1) = (—1,1).
Therefore, K = (...,0,0,...,0,1)and £ = (...,1,0,...,0,x*), where the underline
marks the i*? spot and ¢; = 1 by (109). Possibly, i = n — 1. If i # n — 1, then by assumption
(Ki—l—hgi-i-l) = (O, O) SOP;+¢q; = 20,1‘—2 by (107). Ifi = n—l, then (Ki+17 &‘.:,.1) = (Kn, gn)
where ¢,, > K,,. Then (107) shows p; +¢q; > 2a;—2 so by (106) we know that p;+¢; = 2a; —2.
Thus p+q = (...,2a; — 2,%,...,%,x). Now we have three cases. In each case we compute

P + q by first using (109) to compute ¢ and then using (107), (95), and Lemma A.1.

i K=(..,0,0,...,1),p+qg=1(...,a;—1,M,... *).

gy K=(-1,1,...,-1,1,0,...,1),p+q=(M,0,...,M,0,M, ... ).

Ggiy K=¢(..,0,—-1,1,...,—-1,1,0,...,1),p+q=1(...,ar, M,0,...,M,0, M, ... %).

Here M = 2a — 2 with the appropriate subscripts. In each case, we claim that there is
& € #0(w,Gy) that satisfying o« = 6;1" e &. We find a factor of 67" in o for each case as
follows:

(i) Here « has a factor of 6,16} =1 which by (84) is proportional to Hfjr*ll in 6(w, Gq).
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(i) Repeatedly apply (84) starting with a; 69! = —052.

Ar41— 1 _ea'r+2

(iii) Repeatedly apply (84) starting with a,1160,6,.\" o

Now apply (93) to Y with v = 6;, 0 = 3, ¢ = 6/}, and ¢ = @. Then ve = 6,6,

vanishes by Corollary 3.13 and the other two correlators have the form (0, 0, _:_*11, , B >
Writing 011" = ;41 e 91:51 , and performing reconstruction scheme similar to the one in

the proof of Lemma 4.4, we w111 obtain the correlator of the required form.

Case K, = 0. In this case, (110) implies that there are three possibilities: ¢, = 0; £, = 1; or
l, = 2,a, = 2. Using (108) we see that the cases ¢,, = a,, = 2 and £,, = 1, a,, > 3 contradict
our assumption that p, + g, < a, — 1. So it only remains to consider the cases ¢, = 0 and
{,=1,a, =2.

Let us first consider the case ¢, = 1, a,, = 2. By (108), we have p,, + ¢, =1 = a,, — 1.
If p_1 4+ gn—1 > 0, we assume without loss of generality that p, = 1 and ¢,,—1 > 0 and write
a =0, edc. Applying (93)to Y withy = 6;,§ = 3, ¢ = 0, and ¢ = o, we can obtain the
required correlator, since 0,16, = 0. If p,_1 + ¢,—1 = 0, equations (107) and (109) imply
that K,_1 = land £,_1 = 0. Let i < n — 1 be the largest subscript such that ¢; # 0.

There are three cases: ¥

() K=(..,0,0,...,1,0),p+q=(...,ai_1,M,...,0,1).
(i) K=(-1,1,...,-1,1,0,...,1,0),p+q= (M,0,...,M,0,M,...,0,1).
Gii) K=(..,0,—-1,1,...,—1,1,0,...,1,0),p+q = (..., ar, M,0,...,M,0,M,...,0,1).

The discussion is similar to the case K,, = 1.

Now assume /¢,, = 0, and let 7 be the largest subscript such that (K, ¢;) # (0,0). Since
0 < p; + ¢, equation (107) shows K; < ¢;. Then (109) shows that (K;_1, K;) cannot be
(=2,3), (—1,2), or (—1,1). Six cases remain, and the reconstruction can be completed using
the strategy analogous to the K,, = 1 case (or see [12] page 47). |

Furthermore, we have

Lemma A.4. We can reconstruct correlators in (112) from correlators of the form
(113) X = (bn,0n, a, B).

Proof. Now we focus on correlator X in (112). From (110), since ¢,, > 2, we find

n— 2

an

a
Ky >

Thus K, > 0 and equality is possible only if a,, = 2.

If K,, = 0 and a,, = 2, then (110) shows that ¢,, < 2.

If K, # 0, then K,, = 1 by Lemma A.2. Then (110) shows ¢,, < 2a,/(a, — 1), so
Iy =2,0r¥, =a, = 3,ora, = 2and ¢, = 3 or 4. We will show that in each case where
£, > 2, the correlator does not satisfy (95), a contradiction.

Y In [12], these three cases have not been considered. However, this is not a serious issue, since the main
result of [12] does not include the case a,, = 2.
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If ¢,, = a,, = 3, then p,, + ¢, = 3a, — 5 = 2a,, — 2. Either (K,,_1,¢,—1) is (0,0) or it
is (1,0); in each case, p,—1 + gn—1 > 1. Without loss of generality p,_1 > 1, so that « has a
factor of Qn_lﬁgn_l, violating (95).

Similarly, if a,, = 2 and ¢,, = 3 or 4, we can check all possibilities for K and £ and show
that p + q violates (95). o

Finally, we only need to show
Lemma A.5. We can reconstruct correlators in (113) from correlators of the form
(114) X = (0,0, 0p—102772,01)

Proof. Let X be a correlator in (113) We know £ = (0,...,0,2). By (107)-(111), if
M = 2a — 2, we have three possibilities for K:

i) K=1(0,...,0,0,1),p+qg= (a1 —1,...,ap—2— 1,an_1,2a, — 4).

(i) K= (-1,1,...,-1,1,1),p+q=(M,0,...,M,0,2a, — 4).
(i) K =(0,...,0,0,—1,1,...,—1,1,1),p+q= (a1 —1,...,ar_1—1,ar, M,0,..., M,
0,2a, — 4).

In all cases, if X # 0, we must have

(115) X = (0, 00,08 .. 0P 1002 08 90 gon—2)
where p; +q; = a; —1fori <n—2and pp—1 + qn—1 = Ap—1.

In the first case, both p,_1 and ¢,,—; are at least 1. If p,, = a,, — 1, then X = 0 by (83),
since it has a factor of Hn_lég"_l. This shows that p,, = ¢, = a,, — 2 and (115) follows.

In the second case, o = 9‘1‘1*10§3*1 0°-2~1gPn The relations (84) show

- U9

oo OTe T gantgen,

If p, = a, — 1, we have a factor of a equal to en_legwl, and « = 0 by (83). Otherwise,
Pn = qn = ay,, — 2 and (115) follows.

In the last case, a has a factor equal to 6% foﬁl_l e 02’1‘22_1051”. As before we use
the relations (84) to rewrite it as 9%”710;1;*22_1 .07 0 . As before, if X # 0, then (115)
follows.

Finally, we apply (93) to X in (115) with y = 0,,, € = 0,,_10972, ¢ = 67" .. .eﬁn;;‘l,
and § = 0" ... 01" '09~2 Then ey and v§ have a factor of 6,,_10%"~1, and hence both are 0
by (83). The remaining term containing d¢ is exactly §,. i
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