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Abstract. For an invertible quasihomogeneous polynomial w we prove an all-genus

mirror theorem relating two cohomological field theories of the Landau-Ginzburg type. On the

B-side it is the Saito-Givental theory for a specific choice of a primitive form. On the A-side,

it is the matrix factorization CohFT for the dual singularity wT with the maximal diagonal

symmetry group.

1. Introduction

Mirror symmetry, which started with a discovery by theoretical physicists that different

geometric inputs can produce equivalent string theory models, brought spectacular develop-

ments in mathematics. In particular, it predicted that Gromov-Witten invariants of a Calabi-

Yau manifold X (observables in the A-model topological strings on X) depending only on the

symplectic structure of X can be expressed in terms of the B-model observables for another

Calabi-Yau manifold Y which depend on the complex structure of Y .

To describe the formal structure of Gromov-Witten invariants, Kontsevich and Manin [14]

introduced the notion of a cohomological field theory (CohFT) which is a finite-dimensional

vector space H (the state space of the theory) with a nondegenerate symmetric pairing and a

collection of operations

(1) Λg,r : H⊗r → H∗(Mg,r)

with values in the cohomology of the Deligne-Mumford moduli space Mg,r of stable curves

of genus g with r marked points. These operations satisfy some natural factorization axioms

(see Sec. 2.1). A CohFT is a very rich structure. A substantial part of it is encoded in numer-

ical invariants called the correlators (see (9)) which are obtained by intersecting the classes

Λg,r(h1, . . . , hr) with some tautological classes on Mg,r. In particular, the g = 0, r = 3 cor-

relators turn the state space H into a Frobenius algebra and the collection of all genus-zero

correlators equips it with a structure of a formal Frobenius manifold.
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This formalism allows to give a mathematical interpretation of mirror symmetry as a

statement about isomorphism between two CohFTs constructed from different geometric data.

Most of the known mirror symmetry results compare only parts of the structures of the cor-

responding CohFTs. For example, we can speak of mirror symmetry at the state space level,

or of Frobenius algebra isomorphisms, or of a genus-zero mirror symmetry. Complete mirror

symmetry results, valid for all genera, are very rare. In this paper we prove such a theorem for

CohFTs corresponding to Landau-Ginzburg models coming from invertible singularities.

Besides topological strings, another common source of CohFTs are Landau-Ginzburg

models whose geometric input is a holomorphic function

w : Cn → C

with an isolated singularity at the origin. There are numerous examples of mirror symmetry

phenomena involving Landau-Ginzburg models and theories of Gromov-Witten type. Most of

them deal with the Landau-GinzburgB-model which in various forms existed since 1990s. The

operations (8) of the corresponding CohFT are constructed using Saito’s theory of primitive

forms [28] and Givental’s quantization procedure [10].

The first mathematical theory of a Landau-GinzburgA-model was constructed much later

by Fan, Jarvis and Ruan [8, 9]. Based on an earlier idea of Witten [33], these CohFTs became

known as FJRW theories. Their construction paved the way for a mathematical study of mirror

symmetry between different Landau-Ginzburg models whose existence was earlier suggested

by physicists. An FJRW theory depends on a choice of a nondegenerate quasihomogeneous

polynomial function w : Cn → C with an isolated singularity at the origin and an admissible

groupG of diagonal symmetries of w (see Section 2.5 for details). An LG/LG mirror symmetry

starts with an invertible polynomial

(2) w =

n∑

i=1

n∏

j=1

x
aij
j

(a nondegenerate quasihomogeneous polynomial on Cn with exactly n nonzero monomials)

determined by the exponent matrix

(3) Ew = (aij).

The mirror partner of w introduced by Berglund and Hübsch [3] is the dual polynomial

(4) wT :=
n∑

i=1

n∏

j=1

x
aji
j

with the transposed exponent matrixEwT = ET
w

. Later Berglund and Henningson [2] extended

this construction to include admissible groups of symmetries and provided initial evidence

supporting the conjecture that the A and B models for the dual LG pairs (w, G) and (wT , GT )
are equivalent. In [15, 16] Krawitz established the base case of this LG/LG mirror symmetry

by constructing an explicit isomorphism between the FJRW A-model state space for (w, G)
and the B-model state space for the dual pair (wT , GT ).

The FJRW CohFT has been constructed for all admissible pairs (w, G), but its B-side

counterpart, the Saito-Givental theory, currently is known only for pairs (wT , GT ) with the

trivial group GT , i.e. when G = Gw is the maximal diagonal symmetry group of w. Thus, to
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extend the LG/LG mirror symmetry beyond the level of Frobenius algebras, we must restrict

ourselves to the case G = Gw. Over the last two decades this correspondence has been es-

tablished for several families of invertible polynomials, starting with the singularities of type

A [7, 13] (in which case it is equivalent to the generalized Witten’s conjecture [33]), then

continuing with singularities of the types D and E [9], simple elliptic singularities [17,24], ex-

ceptional unimodal singularities [21], and culminating in the work [12] which proved LG/LG

mirror symmetry for almost all invertible polynomials.

Theorem 1.1 (FJRW-SG mirror symmetry [12, Theorem 1.2]). Let w be an invertible

polynomial without chain variables of weight 1/2. Then there exists a primitive form ζ for the

dual polynomial wT and an isomorphism

(5) θ : QwT → H(w, Gw),

between the Milnor algebra QwT of the singularity wT and the FJRW state space which identi-

fies the FJRW correlators for (w, Gw) with the corresponding correlators of the Saito-Givental

CohFT for the pair (wT , ζ), for all g and r.

In particular, the map θ induces an isomorphism of the corresponding Frobenius mani-

folds.

The remaining cases are exactly those missing in Krawitz’s theorem [15, Theorem 4.1]

on mirror symmetry for (w, Gw) at the Frobenius algebra level, when the invertible polynomial

w contains a chain summand of the form

(6)

k−1∑

i=1

xaii xi+1 + x2k.

Here xk is a chain variable of weight 1
2 . The main difficulty here is that for such polynomials

the FJRW state space H(w, Gw) contains so-called broad generators whose structure con-

stants cannot be computed using the formal algebraic methods of [9] or other available tools.

In this paper we use a different approach to circumvent this problem and to prove an

Landau-Ginzburg mirror symmetry theorem for all invertible polynomials without exceptions.

In [27] two of the current authors gave a different construction of a Landau-Ginzburg

A-model CohFT with the same input as the FJRW theory. The main technical tool of the con-

struction is the categories of matrix factorizations and for this reason we call the correspond-

ing theory the matrix factorizations (MF) CohFT. The MF CohFT has the same state space

H(w, G) as the FJRW CohFT, and conjecturally the two theories are isomorphic. However,

because of the analytic difficulties of computing general FJRW correlators, this conjecture has

been verified only in some special cases (see [4, 11]).

The algebraic nature of the construction of the MF CohFT makes it much more amenable

for computations. This allowed us to overcome the difficulties related to the existence of broad

generators and to prove a general Landau-Ginzburg mirror symmetry theorem valid for all

invertible polynomials and for all genera.

The key step of our proof is the following result establishing mirror symmetry at the level

of Frobenius algebras.
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Theorem 1.2 (Mirror symmetry at the topological level). Let w be an invertible polyno-

mial. There exists a linear map (the mirror map defined by explicit formulas in Definition 3.6)

(7) θ : QwT → H(w, Gw)

which is an isomorphism of the Frobenius algebra structures on the state space H(w, Gw) of

the MF CohFT and on the Milnor ring QwT of the dual polynomial wT , the state space of the

Saito-Givental CohFT.

Theorem 1.2 serves as a starting point for the proof of our main result, which can be seen

as an improvement of Theorem 1.1.

Theorem 1.3 (MF-SG Mirror Symmetry). Let w be an invertible polynomial. Then for

a specific choice of a primitive form ζ for the dual polynomial wT , the mirror map (7) identifies

the correlators (9) of the MF CohFT with the corresponding correlators of the Saito-Givental

CohFT for all g and r.

The proof of the theorem is derived from the mirror symmetry at the Frobenius algebra

level in two stages. First we use the reconstruction techniques developed in [12] and compu-

tational tools from [11, 27] to prove that for a certain primitive form ζ the map θ is an iso-

morphism of Frobenius manifolds for the two CohFTs. Then we obtain the equality of g > 0
correlators using the result of Milanov [23, Theorem 1.1] that Givental-Teleman’s [10, 32]

higher genus formulas for semisimple Frobenius manifolds corresponding to isolated singular-

ities uniquely extend to the origin of the deformation space.

Plan of the paper. This paper is organized as follows. In Section 2 we review the

preliminaries and fix notation. We start by reminding the basic notions related to CohFTs,

isolated singularities and quasihomogeneous polynomials. Then we review the ingredients of

two CohFTs related to singularities: the Saito-Givental CohFT and the matrix factorizations

CohFT constructed in [27].

In Section 3 we compute the three-point correlators ⟨α, β, γ⟩MF
0,3 which determine the

ring structure of H(w, Gw). Then we construct the mirror map θ (7) and prove that it is an

isomorphism of Frobenius algebras, thus establishing the mirror symmetry at the topological

level (Theorem 1.2).

In Section 4, in Proposition 4.1, we find combinatorial conditions for the nonvanishing

of genus-zero r-point MF correlators. Using it and the WDVV associativity relations we show

in Proposition 4.7 that the Frobenius manifold structure of the MF CohFT can be reconstructed

from some special genus-zero four-point correlators. Then we compute these correlators in

Proposition 4.8 and use the results to identify the Frobenius manifolds of the two CohFTs.

This establishes the main result for g = 0, which in turn implies our general mirror symmetry

Theorem 1.3.

Our computations of the MF correlators for invertible polynomials without weight 1/2
chain variables match (up to a sign) the ones performed in [12]. This, together with Krawitz’s

theorem [15, Theorem 4.1], implies that for such polynomials the FJRW and MF CohFT corre-

lators agree for all g and r thus showing that our Theorem 1.3 is an extension of Theorem 1.1.

In the appendix A we provide a proof of the reconstruction theorem for polynomials of

the chain type. This proof is slightly shorter than a similar proof given in in [12] and also

provides the proof for the cases (6) not considered there.
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2. Preliminaries

In this section we review some necessary facts and constructions about singularities of

functions and cohomological field theories of Landau-Ginzburg type.

2.1. Cohomological field theories. Let Mg,r be the Deligne-Mumford moduli space

of stable curves of genus g with r marked points. Recall that a (C-valued) cohomological field

theory (CohFT) with a unit consists of

• the state space H, a finite-dimensional Z/2Z-graded complex vector space;

• the metric ⟨·, ·⟩ : H ⊗ H → C, a nondegenerate even symmetric pairing;

• the unit, a distinguished element 1 ∈ H,

• the operations, a collection of multilinear Sr-equivariant even maps

(8) Λg,r : H⊗r → H∗(Mg,r)

for each g, r ≥ 0 with 2g + r > 2 with values in the cohomology of Mg,r.

These ingredients are required to be compatible with the natural gluing and forgetful

maps

Mg,r+1 × Mg′,r′+1 → Mg+g′,r+r′ , Mg,r+2 → Mg+1,r, Mg,r+1 → Mg,r.

To each CohFT there corresponds a collection of correlators, the numerical invariants

given by

(9)

∫

Mg,r

Λg,r(α1, . . . , αr)
r∏

j=1

ψ
ℓj
j .

Here α1, . . . , αr ∈ H and ψj = c1(Lj) is the Chern class of the jth tautological line bundle

whose fiber is the cotangent line at the jth marked point. Correlators without psi-classes

(10) ⟨α1, · · · , αr⟩g :=

∫

Mg,r

Λg,r(α1, . . . , αr),

(i.e. with ℓj = 0 for all j) are called primary. Elements αj ∈ H appearing in a primary

correlator are called insertions. The prepotential of a CohFT Λ is the exponential generating

function of its genus-zero primary correlators

(11) F0(t1, . . . , tn) :=
∑

r≥0

1

r!
⟨ξ · t, . . . , ξ · t⟩0 =

∑

r≥0

∑

i1,...,ir

⟨ξi1 , . . . , ξir⟩0
r!

ti1 · · · tir ,

where t1, . . . , tn are formal variables, (ξ1, . . . , ξn) is a basis of the space H, and ξ·t =
n∑

j=1

ξjtj .

The prepotential satisfies the so-called WDVV or the associativity equation which is

equivalent to saying that it equips the state space H with a structure of a formal Frobenius

manifold (see e.g. [6, 22]). In particular, genus-zero cohomological degree zero components

Λ0
0,r of the CohFT operations (8) define on H a structure of a two-dimensional topological
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quantum field theory (TQFT) or, equivalently, a Frobenius algebra structure with the identity

1 ∈ H and the multiplication

• : H ⊗ H → H

determined by the three-point genus-zero correlators

(12) ⟨α • β, γ⟩ = ⟨α, β, γ⟩0.

In particular

⟨α, β⟩ = ⟨1, α, β⟩0.

By the Kontsevich-Manin reconstruction theorem [14], the prepotential F0 uniquely de-

termines the genus-zero maps Λ0,r of a CohFT. Moreover, by the results of Givental and Tele-

man [10, 32] we know that if the commutative algebra given by (12) is semisimple then the

prepotential uniquely determines the entire CohFT, i.e. the maps Λg,r for all g and r.

2.2. Saito-Givental CohFT (Landau-Ginzburg B-model). The Saito-Givental Co-

hFT (Landau-Ginzburg B-models in the physical language) takes as the input a germ of a

holomorphic function

w : Cn → C

with an isolated singularity at the origin. The state space of this theory with the corresponding

algebra structure is the Milnor ring (or the local algebra) of the singularity w

(13) Qw := C[[x1, . . . , xn]]/Jw,

where

(14) Jw := ⟨∂1w, . . . , ∂nw⟩

is the Jacobian ideal generated by the partial derivatives ∂jw =
∂w

∂xj
of w. The algebra Qw is

finite-dimensional precisely when w has isolated singularity. Its dimension µw := dimQw is

called the Milnor number of the singularity w. In what follows, we will refer to the generators

∂jw = 0 ofJw as the Jacobian relations.

The metric on the space Qw is obtained by identifying it with the space

(15) H(w) := Ωn(Cn)/
(
dw ∧ Ωn−1(Cn)

)

via

(16) Qw

∼
−−→ H(w), f 7→ fω, where ω = dx1 ∧ · · · ∧ dxn,

and using the Grothendieck residue pairing on H(w)

(17) ⟨f, g⟩ = (fω, gω) := Resw(fgω),

where

(18) Resw(fω) = ResC[x]/C

[
f(x) · ω

∂1w, . . . , ∂nw

]
.

The Frobenius manifold structure on Qw (i.e. the genus-zero part of the CohFT) constructed

by Saito [28±30] depends on a choice of a primitive form ζ on Qw. The higher genus maps (8)

ΛSG(w, ζ) are obtained by applying Givental’s quantization procedure extended in [31, 32] to

the CohFT level.



He, Polishchuk, Shen and Vaintrob, Landau-Ginzburg mirror theorem 7

2.3. Admissible Landau-Ginzburg pairs and FJRW theory. While the Saito-Givental

CohFT is defined for any isolated singularity w (and requires a choice of a primitive form), A-

model LG CohFTs are known only for a quasihomogeneous w together with a special group

of symmetries.

Recall that a polynomial function w : Cn → C is called quasihomogeneous if there

exists a collection of positive rational numbers q1, q2, . . . , qn, called weights, such that for all

λ ∈ C we have

(19) w(λq11 x1, . . . , λ
q1
n xn) = λw(x1, . . . , xn).

Recall some facts about quasihomogeneous singularities (see e.g. [1, Section 12.3]).

• The Milnor number of w is given by

(20) µw := dimQw =
n∏

j=1

(
1

qj
− 1

)
.

• The socle of the algebra Qw (the subspace of elements of the highest degree with respect

to the grading induced by the weights qj) is one-dimensional and is spanned by the socle

element

(21) Hess(w) := det

(
∂2w

∂xi∂xj

)
∈ Qw.

• The degree of Hess(w) (the central charge of the theory) is equal to

(22) ĉ := n− 2

n∑

j=1

qj =

n∑

j=1

(1− 2qj).

• We have the following relation (see [26, Eq. (4.25)])

(23) Resw(Hess(w) · ω) = µw

which allows to compute the pairing (17) by looking at the highest degree component of

the product fg.

A quasihomogeneous polynomial is called nondegenerate if there is a unique choice of

weights satisfying (19). The group of diagonal symmetries

(24) Gw := {(γ1, . . . , γn) ∈ (C∗)n |w(γ1x1, . . . , γnxn) = w(x1, . . . , xn)}

for a quasihomogeneous w is nontrivial and contains the exponential grading element

(25) Jw :=
(
e2πiq1 , . . . , e2πiqn

)
.

If w is a nondegenerate polynomial, then the groupGw is finite. A subgroupG ⊂ Gw is called

admissible if it contains the element Jw.

Definition 2.1. A pair (w, G), where w is a nondegenerate quasihomogeneous singu-

larity and G is an admissible subgroup of Gw is called an admissible LG pair.
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In [8, 9] Fan, Jarvis and Ruan constructed for every admissible LG pair (w, G) a CohFT

with the state space

(26) H(w, G) :=
⊕

γ∈G

H(wγ)
G,

where wγ := w|V γ is the restriction of w to the fixed subspace V γ := (Cn)γ of γ ∈ G,

and the spaces H(wγ) are defined in (15). Notice that, even though H(wγ) and Qwγ are

isomorphic as vector spaces, the actions of G on them are not the same and so the invariant

subspaces may be different. This CohFT is called the FJRW theory since its construction is

based on an analysis of the so-called Witten equation.

An element γ ∈ G with a trivial fixed subspace V γ = 0 is called narrow. Elements

γ ∈ G with V γ ̸= 0 are called broad. The summands H(wγ)
G of H(w, G) are called sec-

tors and elements of a sector corresponding to a broad (resp. narrow) γ ∈ G are called broad

(resp. narrow). Correlators (10) ⟨α1, · · · , αr⟩g with only narrow insertions can be calculated

using CohFT formalism and algebro-geometric tools described in [8]. However, computa-

tions involving broad elements often lead to insurmountable analytic difficulties and even the

three-point correlators defining the FJRW Frobenius algebra structure (12) on H(w, G) are not

known in general.

2.4. Matrix Factorizations CohFT. In [27] the second and the fourth authors con-

structed a different A-model Landau-Ginzburg CohFT whose input is also an admissible pair

(w, G) as in the FJRW theory. The construction is based on the study of categories of matrix

factorizations and is purely algebraic in nature. We will refer to it as the matrix factorization

(MF) CohFT. Conjecturally, the MF and FJRW CohFTs for the same admissible pair (w, G)
are equivalent. Due to technical difficulties of computing FJRW correlators, this conjecture

has been verified only in special cases. In particular, it is known that the state spaces and the

metrics of both theories coincide. However in the MF CohFT the state space is defined not

geometrically, as a space of Lefschetz thimbles as in the FJRW theory, but algebraically as the

Hochschild homology of the differential-graded category of equivariant matrix factorizations

with the canonical metric.

Let us review the elements of this construction which we will need below.

The state space and metric of the MF CohFT. Let w ∈ C[x1, . . . , xn] be a quasiho-

mogeneous polynomial with an isolated singularity at 0. The groupGw of diagonal symmetries

of w (defined by (24)) is contained in the bigger algebraic group Γw of diagonal transforma-

tions of Cn preserving w up to a scalar. The group Γw is equipped with a natural character

(27) χ : Γw → C∗

such that ker(χ) = Gw.

Now given any commutative algebraic group Γ with a homomorphism Γ → Γw denote

by χ the induced character χ : Γ → C∗ with the kernel G := ker(χ). Let MFΓ(w) be the dg-

category of Γ-equivariant matrix factorizations of w. By definition, such a matrix factorization

E = (E, δE) consists of a Z/2Z-graded Γ-equivariant free C[x1, . . . , xn]-module of finite

rank, E = E0 ⊕ E1, together with Γ-equivariant module maps

δ1 : E1 → E0, δ0 : E0 → E1 ⊗ χ, such that δ0δ1 = w · id, δ1δ0 = w · id .
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Assuming that the group G = ker(χ) is finite, the Hochschild homology of the dg-

category MFΓ(w) has been shown in [27, Eq. (2.11)] to be

(28) HH∗(MFΓ(w)) ≃
⊕

γ∈G

H(wγ)
G,

where the space H(w) is given by (15). The space HH∗(MFΓ(w)) is naturally a module over

the dual group Ĝ, and the decomposition (28) is precisely the decomposition into isotypical

components (where elements of G are viewed as characters of Ĝ). Furthermore, the map on

Hochschild homology induced by the forgetful functor MFΓ(w) → MF(w) is given by the

projection onto the sector of γ = 1 in (28)

(29) HH∗(MFΓ(w)) → H(w)G ⊂ H(w) = HH∗(MF(w)).

For each Γ-equivariant matrix factorization E = (E, δE) of w, there is a categorical Chern

character ChG(E) with values in HH∗(MFΓ(w)). It is calculated in [26, Eq. (3.17)], in terms

of the above identification of the Hochschild homology. In particular, its component inH(w)G,

which coincides with the non-equivariant Chern character of E, is given by

(30) Ch(E) = str(∂nδE · · · ∂1δE) · ω ∈ Qw · ω = H(w)

(here str denotes the supertrace of an endomorphism of a Z/2Z-graded vector bundle).

The Hochschild homology HH∗(MFΓ(w)) is equipped with a canonical bilinear form

given by a general categorical construction (see [27, Def. 2.7.1]). The decomposition (28) is

orthogonal with respect to this form which was explicitly computed in [27, Sec. 2.7]. Here we

will only need the form induced on H(w)G by the projection (29):

(31) ⟨fω, gω⟩w = (−1)(
n
2)Resw(fgω),

where Resw is given by (18).

For an admissible pair (w, G), the state space of the MF CohFT coincides with the state

space (26) of the FJRW theory. Comparing with (28), we see that this space coincides with

the Hochschild homology of the category MFΓ(w). However, in [27] it appears, from the

identification

(32) HH∗(MFΓ(w))⊗R C ≃ H(w)G,

as the direct sum of specializations of Hochschild homology spaces

H(w, G) =
⊕

γ∈G

HH∗(MFΓ(wγ))⊗R C.

Here R = C[Ĝ] is the character ring of G acting on C via the specialization at 1 ∈ G homo-

morphism π1 : R→ C.

Denote by Hγ := H(wγ)
G the sector in H(w, G) corresponding to γ ∈ G and by

⟨·, ·⟩wγ the pairing (31) for the function wγ .

Let

(33) ζ = (eπiq1 , . . . , eπiqn) ∈ (C∗)n



10 He, Polishchuk, Shen and Vaintrob, Landau-Ginzburg mirror theorem

be a special square root of the exponential grading element Jw ∈ Gw (25).

We equip the state space H(w, G) with the metric ⟨·, ·⟩ which pairs the sectors Hγ and

Hγ−1 as follows:

(34) ⟨xγ , yγ−1⟩ := ⟨ζ∗xγ , yγ−1⟩wγ ,

where xγ ∈ Hγ , yγ−1 ∈ Hγ−1 .

Operations of the MF CohFT. Let us provide some details of the construction of the

MF CohFT which will be needed later. Below we will only consider the case when the group

G is the maximal diagonal symmetry group Gw of w.

The main geometric ingredient of the theory is the collection of moduli spaces Sg(γ) for

g ≥ 0 and γ = (γ1, . . . ,γr) ∈ Gr
w

. These spaces parametrize rigidified Γw-spin structures

over stacky r-pointed stable curves of genus g. Roughly speaking, such structure is a principal

Γw-bundle P on a curve C together with an isomorphism of χ∗P with the C∗-torsor corre-

sponding to ωlog
C , where χ is the character (27). The embedding Γw ⊂ (C∗)n associates with a

Γw-spin structure n line bundles L1, . . . ,Ln on C. For w = xp1 the corresponding line bundle

L1 is a pth root of the bundle ωlog
C . So the notion of a Γw-spin structure generalizes higher spin

structures [13].

It is known that the moduli space Sg(γ) is non-empty only when

(35) γ1 · . . . · γr = J2g−2+r
w

.

For a Γw-spin curve C, consider the map

ρ : C → C

to the partial coarse moduli space C obtained by forgetting the stacky structure on C at the

marked points. This map gives a line bundle

Lj = ρ∗Lj

on C whose degree is given by the formula (see [27, Proposition 3.3.1] and also [9, Proposition

2.2.8])

(36) degLj = (2g − 2 + r)qj − θ
(j)
γ1

− . . .− θ
(j)
γr
,

where rational numbers θ
(k)
γj

, k = 1, . . . , n, are given by

γj =
(
e
2πiθ

(1)
γj , . . . , e

2πiθ
(n)
γj
)
∈ (C∗)n, with 0 ≤ θ

(k)
γj

< 1.

This formula implies the following useful Selection rule:

Lemma 2.2. If the moduli space Sg(γ) is non-empty, then

(37) (2g − 2 + r)qj − θ
(j)
γ1

− . . .− θ
(j)
γr

∈ Z for j = 1, . . . , n.
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The key construction in [27] is that of the fundamental matrix factorization which is a

Γw-equivariant matrix factorization of the polynomial ⊕r
i=1wγi

viewed as a function on the

space

Sg(γ)× V γ1 × . . .× V γr .

Using the fundamental matrix factorizations as kernels for functors of the Fourier-Mukai type

and passing to the Hochschild homology, we obtain the maps

(38) ϕg(γ) :
r⊗

i=1

Hγi
−→ H∗(Sg(γ),C)

Now we can define the operations (8) of the MF CohFT as1)

(39) ΛMF
g,r(γ) =

1

deg(stg)
· (stg)∗ϕg(γ) :

r⊗

i=1

Hγi
−→ H∗(Mg,r,C).

The MF CohFT (39) has many nice properties. First of all, it satisfies the axioms of

the CohFT which connect the restrictions of ΛMF
g,r(γ) to the boundary divisors with the same

maps defined for other values (g, r). It has a flat identity, which is the natural generator 1J in

HJ = C. In particular, the following metric axiom holds:

(40) ⟨xγ , yγ−1 , 1J⟩
MF
0,3 = ⟨(ζ)∗xγ , yγ−1⟩wγ ,

where xγ ∈ Hγ , yγ−1 ∈ Hγ−1 (see [27, Lemma 6.1.1]).

Another important property is that, for a polynomial w which splits as a disjoint (Thom-

Sebastiani) sum,

w = w1 ⊕w2,

the corresponding MF CohFT decomposes into the tensor product of the CohFTs of the sum-

mands w1 and w2. Namely, we have natural identifications

Gw ≃ Gw1 ×Gw2 and H(w, Gw) ≃ H(w, Gw1)⊗ H(w, Gw2)

under which the map ΛMF
g,r(γ1,γ2) becomes the tensor product of ΛMF

g,r(γ1) and ΛMF
g,r(γ2)

(see [27, Sec. 5.8]). This property will allow us to focus our attention on polynomials w

of one of the three atomic types (41).

We refer to [27, Sections 5, 6] for further properties of this CohFT and the corresponding

correlators.

2.5. Invertible polynomials. Recall that a quasihomogeneous nondegenerate polyno-

mial w : Cn → C is called invertible if it has n nonzero monomials.2) Invertible polynomials

have been classified by Kreuzer and Skarke [19, Theorem 1]. They proved that w is invertible

if and only if it is a disjoint (or Sebastiani-Thom) sum of polynomials of one of the following

1) The operations here differ from those in [27, Eq. (5.16)] by a sign.
2) Notice that n is the smallest possible number of monomials for a nondegenerate polynomial.
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three atomic types

(41)

Fermat : w = xa11 ,

Chain : w =

n−1∑

i=1

xaii xi+1 + xann ,

Loop : w =
n−1∑

i=1

xaii xi+1 + xann x1,

where ai ≥ 2 for each i ∈ {1, 2, . . . , n}.

To study mirror symmetry between the dual pairs (w,wT ) of invertible polynomials, we

need to consider symmetry groups.

In Table 1 we present the exponent matrices and the order of the diagonal symmetry

group Gw for each of the atomic polynomials.

Table 1. Atomic invertible polynomials

Fermat Loop Chain

w xa
n−1∑

i=1

xaii xi+1 + xann x1

n−1∑

i=1

xaii xi+1 + xann

Ew

(
a
)




a1 1

a2
. . .

. . . 1
1 an







a1 1

a2
. . .

. . . 1
an




|Gw| a
n∏

j=1
aj + (−1)n+1

n∏
j=1

aj

Let w be an invertible polynomial. Following Kreuzer [18], we will use the entries ρ
(i)
j

of the inverse of the exponent matrix Ew:

(42) E−1
w

=




ρ
(1)
1 · · · ρ

(1)
n

...
...

...

ρ
(n)
1 · · · ρ

(n)
n


 .

The sum of the entries in the ith row gives the weight of the ith variable xi of w:

(43) qi =

n∑

j=1

ρ
(i)
j .

The columns of E−1
w

give special elements in the group of diagonal symmetries of w

(44) ρj :=

(
e2πiρ

(1)
j , . . . , e2πiρ

(n)
j

)
∈ Gw.

Moreover, their product is equal to the exponential grading element Jw ∈ Gw:

Jw =
n∏

j=1

ρj .
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We recall some facts about atomic invertible polynomials (see [12, 16, 18]).

(i) For a Fermat polynomial w = xa11 , a1 ≥ 2, we have

q1 = ρ
(1)
1 =

1

a1
.

(ii) For a polynomial of the chain type w =
n−1∑
i=1

xaii xi+1 + xann , the (i, j)-th entry of E−1
w

is

(45) ρ
(i)
j =





(−1)j−i
j∏

k=i

1
ak
, j ≥ i;

0, j < i.

The weight of the variable xi is equal to

(46) qi =

n∑

j=1

ρ
(i)
j =

n∑

j=i

(−1)j−i
j∏

k=i

1

ak
=

1

ai
−

1

aiai+1
+ . . .+ (−1)n−i

n∏

k=i

1

ak
> 0.

(iii) For a polynomial of the loop type w =
n−1∑
i=1

xaii xi+1 + xann x1, we have

(47) ρ
(i)
j =





(−1)j−i
n∏

j+1
ak

i−1∏
k=1

ak

/( n∏
k=1

ak + (−1)n+1
)
, j ≥ i,

(−1)n+j−i
i−1∏

k=j+1

ak

/( n∏
k=1

ak + (−1)n+1
)
, j < i.

Here we use the convention that an empty product is 1. The weight of xi is given by

(48)

qi =




n∑

j=i

(−1)j−i
n∏

k=j+1

ak

i−1∏

k=1

ak +

i−1∑

j=1

(−1)n+j−i
i−1∏

k=j+1

ak



/(

n∏

k=1

ak + (−1)n+1

)
.

Using (45), (46), (47), and (48), the following result of [18] can be obtained.

Proposition 2.3. For each atomic polynomial w in Table 1, we have:

(i) The rational numbers ρ
(i)
j satisfy

(49) ρ
(i)
j−1 + ajρ

(i)
j = δij .

(ii) Let us set qn+1 := q1 when w is a loop and qn+1 := 0 when w is a chain. Then for all

i = 1, . . . , n, the rational numbers qi satisfy

(50) aiqi = 1− qi+1.

(iii) The rational number qi − ρ
(i)
j is an integer only if j = i+ 1 = n = 2 and an = 2.
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2.6. Some computational tools. We finish this section by presenting some facts about

the MF CohFT from [27] which we will need later.

Koszul matrix factorizations and homogeneity conjecture. Here we recall the def-

inition of Koszul matrix factorizations which appear in some computations below. We also

explain the Homogeneity Conjecture from [27] and present a result which will be essential for

the proof of Proposition 4.1 in Section 4.

Definition 2.4. Let V be a vector bundle on a scheme X and let V ∨ be the dual bundle.

To a pair of sections α ∈ H0(X,V ) and β ∈ H0(X,V ∨) we associate the Koszul matrix

factorization {α, β} of the function w := ⟨β, α⟩ ∈ H0(X,OX) with the Z/2Z-graded module

E :=
∧•(V ) and the differential δ = α ∧ ·+ ι(β).

When V is a trivial bundle of rank r, we will represent the sections α and β as r-tuples

of functions and will write {a1, . . . , ar; b1, . . . , br} instead of {α, β}. Notice that the tensor

product of several Koszul matrix factorizations is also a Koszul matrix factorization.

Definition 2.5. Let γ = (e2πiθ
(1)
, . . . , e2πiθ

(n)
) ∈ Gw ⊂ (C∗)n be an element of the

maximal symmetry group of a quasihomogeneous polynomial w.

The degree shifting number ιγ of γ is defined by

(51) ιγ :=
n∑

j=1

(θ
(j)
γ − qj).

For an r-tuple γ = (γ1, . . . ,γr) ∈ Gr
w

, its twisted dimension D̃g(γ) is defined by

(52) D̃g(γ) := (g − 1)ĉw +

r∑

i=1

ιγi
+

1

2
·

r∑

i=1

nγi
,

where ĉw is the central charge (22) and

(53) nγ = dimV γ .

The following Homogeneity Conjecture is stated in [27, Section 5.6].

Conjecture 2.6. The image of the map ϕg(γ) (38) is contained in H2D̃g(γ)(Sg(γ),C).

In [27] a sufficient condition for this conjecture was established.

Lemma 2.7. [27, Corollary 5.6.5] The Homogeneity Conjecture holds for the CohFT

associated with w and G whenever the space HH∗(MF(wγ))
G is generated by the Chern

characters of Koszul matrix factorizations for each γ ∈ G.

The following result will be reviewed in Section 3.1.
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Lemma 2.8. [11, Lemma 2.2] Let w be an invertible polynomial. For every γ ∈ Gw

the Hochschild homology HH∗(MF(wγ))
Gw is generated by the Chern characters of Koszul

matrix factorizations.

As a consequence of the above two lemmas we have

Proposition 2.9. The Homogeneity Conjecture holds for the CohFT associated with an

invertible polynomial w and the maximal group of diagonal symmetries Gw.

Tools for computing three-point correlators. Here we will derive from [27, Proposi-

tion 6.2.2] a useful result which will help with computations of genus-zero three-point correla-

tors in Section 3.3 below. First, let us introduce some notation.

Fix γ1,γ2,γ3 ∈ G such that S0(γ1,γ2,γ3) is non-empty. In particular, by (35), this

means that

γ1γ2γ3 = J.

For each j = 1, . . . , n, consider subsets of {1, 2, 3}

(54) Σj := {i |1 ≤ i ≤ 3,γ
(j)
i = 0}.

and for k = 0, 1, 2, define the subsets of {1, . . . , n}

(55) Sk = {j | |Σj | = k and Lj ≃ O(k − 2)}.

Finally, for γ,γ ′ ∈ Gw, let

V γ,γ′

:= V γ ∩ V γ
′

be the subspace of V fixed by both γ and γ ′.

Proposition 2.10. Assume that γ1,γ2,γ3 are such that for every j with Σj = ∅, we

have degLj = −1.

For elements t1, t2, t3 of the torus (C∗)n, let us consider the following subspace of

V γ1 ⊕ V γ2 ⊕ V γ3:

V (t1, t2, t3) :={(x1, x2, x3) ∈ V γ1 ⊕ V γ2 ⊕ V γ3 | π(x1, x2, x3) = 0, p12(x1) = t1p12(x2),

p23(x2) = t2p23(x3), p13(x3) = t3p13(x1)},

where pij : V → V γi,γj is the coordinate projection and π : V γ1 ⊕ V γ2 ⊕ V γ3 → AS1 is

the composition of the natural map V γ1 ⊕ V γ2 ⊕ V γ3 → V with the projection p : V → AS1 .

Then there exist elements t1, t2, t3 ∈ (C∗)n such that

(
wγ1

⊕ wγ2
⊕ wγ3

)
|V (t1,t2,t3) = 0.

Furthermore, the three-point map (38)

ϕ0(γ1,γ2,γ3) : Hγ1
⊗ Hγ2

⊗ Hγ3
→ C

is induced on Hochschild homology by the functor RΓ ◦ ι∗, where

ι : V (t1, t2, t3) ↪→ V γ1 ⊕ V γ2 ⊕ V γ3

is the natural embedding.
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Proof. Note that the first assumption is equivalent to the condition that S0 = ∅ and

|Σj | ≥ 1 for each j such that degLj = 0.

Now [27, Proposition 6.2.2.(i)] implies that the fundamental matrix factorization on

V γ1 ⊕ V γ2 ⊕ V γ3 is a Koszul matrix factorization {α, β}, where α and β are sections of

the dual trivial bundles with bases (e∗j ) and (ej) numbered by S1 ⊔ S2. Furthermore, the coef-

ficients βj of ej in β have the following description. For j ∈ S1, we have

βj = (xi)j , where Σj = {i}

(here we denote by (xi)j the coordinates of xi ∈ V γi ⊂ An). For j ∈ S2, we have

βj = aj(xi1)j + bj(xi2)j , where Σj = {i1, i2},

for some aj , bj ∈ C∗.

Note that the relation γ1γ2γ3 = Jw implies that V γ1 ∩ V γ2 ∩ V γ3 = 0. Thus, the

functions ((xi)j)Σj={i} and ((xi1)j , (xi2)j)Σj={i1,i2} are exactly the coordinates on the affine

space V γ1 ⊕ V γ2 ⊕ V γ3 . It follows that the section β is regular and its zero locus is the

subspace V (t1, t2, t3) for some t1, t2, t3. Thus, the assertion follows from a known property of

regular Koszul matrix factorizations (see [27, Proposition 1.6.3.(ii)]).

Corollary 2.11. In the situation of Proposition 2.10, assume in addition that V γ1 = 0
and that the homomorphism

Gw → Gwγ2,γ3

(where wγ2,γ3
= w|V γ2,γ3 ) is surjective. Assume also that for i = 1, 2,

wγi
|V γi∩ker(pS1

) = p∗23wγ2,γ3
|V γi∩ker(pS1

).

Consider, for i = 2, 3, the linear maps

fi : H(wγi
) → H(wγ2,γ3

)

induced on the Hochschild homology by the composition of the functors of the restriction to

V γi ∩ ker(pS1) ⊂ V γi and the push-forward with respect to the projection to V γ2,γ3 . Then

for hi ∈ H(wγi
), i = 2, 3, we have

⟨1γ1
, h2, h3⟩

MF
0,3 = ⟨f2(h2), f3(h3)⟩wγ2,γ3

.

Proof. By Proposition 2.10, there exists an element t2 of the torus (C∗)n such that

ϕ0(γ1,γ2,γ3) is induced by the functor RΓ ◦ ι∗, where ι is the embedding of the subspace

V (t2) ⊂ V γ2⊕V γ3 consisting of (x2, x3) such that πS1(x2, x3) = 0 and p23(x2) = t2p23(x3).
Thus, V (t2) is the preimage of the graph of t2 on V γ2,γ3 under the surjective map

q :
(
V γ2 ∩ ker(πS1)

)
⊕
(
V γ3 ∩ ker(πS1)

)
→ V γ2,γ3 ⊕ V γ2,γ3 .

By assumption, the restriction of wγ2
⊕wγ3

to the source of this map is equal to q∗(wγ2,γ3
⊕wγ2,γ3

).
It follows that the restriction of wγ2,γ3

⊕wγ2,γ3
to the graph of t2 is zero. Hence, there exists

an element g ∈ Gwγ2,γ3
such that t2 = gζ, where ζ is the special square root (33) of the

grading element Jw. Since g comes from an element of Gw, we can replace t2 by ζ, which

leads to the claimed formula.
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3. Mirror Frobenius algebras

In this section we establish an isomorphism between two Frobenius algebras related to

an invertible polynomial w, thus proving LG mirror symmetry at the topological level (Theo-

rem 1.2).

In Section 3.1, we construct bases in the MF state space H(w, Gw) and in the Milnor

ring QwT of the dual polynomial wT . In Section 3.2, we use Kreuzer’s work [18] to construct a

mirror map θ from QwT to H(w, Gw). In Section 3.3, we compute the ring structure constants

of H(w, Gw) and complete the proof that θ is an isomorphism of Frobenius algebras.

Remark 3.1. In what follows we will restrict our attention to atomic polynomials (41).

This is sufficient, since for a disjoint sum of atomic polynomials w =
⊕
i
wi, the dual poly-

nomial wT , the maximal symmetry group Gw, and the state spaces H(w, Gw) and QwT with

their metrics decompose accordingly:

wT =
⊕

i

wT
i , Gw ≃

∏

i

Gwi
, H(w, Gw) ≃

⊗

i

H(w, Gwi
), and QwT ≃

⊗

i

Q
w

T
i
.

3.1. State spaces. Let w be one of the atomic polynomials (41) and let wT be its

dual (4). We will describe bases of the state spaces of the two CohFTs related to w: the Milnor

ring QwT of the dual polynomial wT and the state space H(w, Gw) for the maximal diagonal

symmetry group Gw.

Table 2. Mirror atomic polynomials

Type Fermat Loop Chain

wT xa wT
loop = xnx

a1
1 +

n∑
i=2

xi−1x
ai
i wT

chain = xa11 +
n∑

i=2
xi−1x

ai
i

EwT

(
a
)




a1 1
1 a2

. . .
. . .

1 an







a1
1 a2

. . .
. . .

1 an




µwT a− 1
n∏

j=1
aj

n∑
k=0

(−1)n−k
k∏

j=1
aj

soc(wT ) xa−2
n∏

i=1
xai−1
i xan−2

n

n−1∏
i=1

xai−1
i

xm xm
n∏

i=1
xmi

i

k−1∏
i=0

x
an−2i−1
n−2i

n−2k∏
j=1

x
mj

j

BwT 0 ≤ m ≤ a− 2 0 ≤ mi ≤ ai − 1 0 ≤ k ≤ ⌊n2 ⌋,

0 ≤ mj ≤ aj − 1− δn−2k
j

Standard basis of QwT . In Table 2 we collect some invariants of the dual polynomial

wT including the exponent matrix (3) EwT = ET
w

, the Milnor number µwT (computed using

(20) and (50)), and the socle element (21) soc(wT ).
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In the last line of the table we present the basis

(56) {xm |m ∈ BwT }

of QwT constructed in [16, 18]. This basis consists of monomials xm := xm1
1 . . . xmn

n whose

exponent vectors m = (m1, . . . ,mn) belong to the set BwT of n-tuples of non-negative inte-

gers described in Table 2. In particular, |BwT | = µwT for any atomic polynomial wT .

In the case of the chain polynomial wT
chain, the set B

w
T
chain

is partitioned

(57) B
w

T
chain

=

⌊n
2
⌋⊔

k=0

Bk
w

T
chain

,

where Bk
w

T
chain

is the set of the exponents of the monomials xm =
k−1∏
i=0

x
an−2i−1
n−2i

n−2k∏
j=1

x
mj

j

such that 0 ≤ mj < aj − δn−2k
j . In particular,

(58) |Bk
w

T
chain

| =





(an−2k − 1)
n−2k−1∏

j=1
aj , k < n/2;

1, k = n/2.

Let us introduce some terminology related to the bases (56).

Definition 3.2. Let wT be an atomic polynomial.

• The basis {xm|m ∈ BwT } is called the standard basis of the Milnor ring QwT .

• Elements of BwT are called standard vectors.

• The standard vector of the socle element soc(wT ) is called the socle vector and is denoted

by s(wT ). It is the maximal element of BwT in the lexicographical order.

• For a standard vector m ∈ BwT , its complementary vector m = (m1, . . . ,mn) is given

by

(59) mi =

{
mi, if m ∈ B

k≥1
w

T
chain

and i > n− 2k;

s(wT )i −mi, otherwise.

The standard vectors from the following example will be important later in the discussion

of loop polynomials.

Example 3.3. If w =
n−1∑
i=1

xaii xi+1 + xann x1 is a loop polynomial and n is even. There

are two special standard vectors modd and meven in BwT , which are complementary to each

other, with the components

modd
i =

{
ai − 1, i is odd;

0, i is even;
meven

i =

{
0, i is odd;

ai − 1, i is even.
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A basis of H(w,Gw) via Chern characters. The following result proved by Kreuzer [18]

(see also [16, Section 3.3]) was the first indication about mirror symmetry for invertible singu-

larities.

Proposition 3.4. For each invertible polynomial w, the dimension of the space H(w, Gw)
is equal to µwT .

According to [11, Section 2.4], there exists a basis of H(w, Gw) represented by the

Chern characters of Koszul matrix factorizations. To describe this basis explicitly we introduce

a map I which assigns to an n-tuple m of non-negative integers an element in the symmetry

group Gw given by

(60) I(m) :=
n∏

j=1

ρ
mj+1
j = Jw

n∏

j=1

ρ
mj

j ∈ Gw.

We have the following two special values of this map:

(61) I(0) = Jw and I(s(wT )) = J−1
w
.

For chain polynomials the formula (45) implies the following result.

Lemma 3.5. If w =
n−1∑
i=1

xaii xi+1 + xann and m ∈ Bk
w

T
chain

, then the element

(62) I(m) = Jw

k−1∏

i=0

ρ
an−2i−1
n−2i

n−2k∏

j=1

ρ
mj

j

fixes the variables xn, xn−1, . . . , xn−2k+1. It is narrow if k = 0 and broad if k ≥ 1.

Now we proceed with defining a basis of H(w, Gw). For each narrow γ ∈ Gw, we set

1γ to be the Chern character of the trivial matrix factorization of wγ = 0:

Hγ := H(wγ)
Gw ∼= C{1γ}.

To construct the bases of all broad sectors Hγ we need to consider two cases.

Case (i): w =
n−1∑
i=1

xaii xi+1 + xann x1 is a loop polynomial.

If n is odd, a direct calculation shows that there are no broad sectors, since no broad

elements can be invariant under the Gw-action as required by (26) (see [15, Lemma 1.7]). So

we only need to consider the cases when n is even. In the notation of Example 3.3 we have

I(modd) = I(meven) = 1 ∈ Gw.

We consider two Koszul matrix factorizations of (An,−w):

Kodd :=
⊗

j is even

{
− (x

aj
j + x

aj+1

j+1 xj+2), xj+1

}
, and

Keven :=
⊗

j is odd

{
− (x

aj
j + x

aj+1

j+1 xj+2), xj+1

}
.

(63)
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By the supertrace formula (30), we have

(64) Ch(Kodd) =


 ∏

j is odd

x
aj−1
j −

∏

j is even

(−ajx
aj−1
j )




n∧

j=1

dxj

and

(65) Ch(Keven) =


 ∏

j is odd

(−ajx
aj−1
j )−

∏

j is even

x
aj−1
j




n∧

j=1

dxj .

These Chern characters span the two-dimensional vector space Hγ=1. By (31) and (34), we

have

(66)
(
⟨Ch(Kodd),Ch(Kodd)⟩ ⟨Ch(Kodd),Ch(Keven)⟩

⟨Ch(Keven),Ch(Kodd)⟩ ⟨Ch(Keven),Ch(Keven)⟩

)
=




∏
j is even

(−aj) 1

1
∏

j is odd

(−aj)




Case (ii): w =
n−1∑
i=1

xaii xi+1 + xann is a chain polynomial.

If m ∈ B
k≥1
w

T
chain

, then I(m) ∈ Gw fixes xn−2k+1, xn−2k+2, . . . , xn. Consider a Koszul

matrix factorization of (An,−w)
(67)

Km =




n/2−1⊗

t=n/2−k+1

{
− (x

a2t−1

2t−1 + xa2t2t x2t+1), x2t
}

⊗

{
(−(x

an−1

n−1 + xan−1
n ), xn)

}

Using the supertrace formula (30), the rank one vector space HI(m) is spanned by

(68) Ch(Km) =
∏

j>n−2k
2∤j

(−ajx
aj−1
j )

n∧

j=n−2k+1

dxj ∈ HI(m).

Again, by (31) and (34), we have

(69) ⟨Ch(Km),Ch(Km)⟩ =
∏

j>n−2k,j is odd

(−aj).

3.2. A pairing-preserving mirror map. In [18], a linear map θ : QwT → H(w, Gw)
for each atomic invertible polynomial w is constructed. We review this construction here.

Recall that the map I : Nn → Gw is defined in (60). If we restrict the map to the set of

standard vectors BwT ⊂ Nn, it is almost one-to-one. The only exception happens when w is a

loop polynomial with even number of variables, and in this case, we have

I(modd) = I(meven).
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Definition 3.6. The mirror map is a linear map

(70) θ : QwT −→ H(w, Gw)

defined as follows.

• If I(m) ∈ Gw is narrow for m ∈ BwT , then θ(xm) = 1I(m);

• if w =
n−1∑
i=1

xaii xi+1 + xann x1 is a loop polynomial with even number of variables, then

θ(xm
odd

) = Ch(Kodd), θ(xm
even

) = Ch(Keven);

• if w is a chain polynomial and m ∈ B
k≥1
w

T
chain

, then

θ(xm) = Ch(Km).

We sometimes denote the image θ(xm) of xm by θ(m). We call the vector m, monomial

xm, or the value θ(m) narrow if the element I(m) ∈ Gw is narrow, that is, Fix(I(m)) = {0} ⊂ An.
Otherwise, we call it broad. The above discussion can be summarized in the following form.

Lemma 3.7. For any atomic polynomial w, the element θ(m) ∈ H(w, Gw) is broad

in one of the following cases:

m = modd, m = meven, or m ∈ B
k≥1
w

T
chain

.

Now define the normalized residue R̃eswT by rescaling the residue ReswT (18) so that

(71) R̃eswT (soc(wT )) = 1,

where soc(wT ) is the socle element (21). We have a nondegenerate symmetric bilinear pairing

on QwT , given by R̃eswT (·, ·). The nonzero values of this pairing on the basis elements are

given by

(72)

R̃eswT (xm
even

, xm
even

) =
∏

j is odd

(−aj),

R̃eswT (xm
odd
, xm

odd
) =

∏
j is even

(−aj),

R̃eswT (xm, xm) =
k−1∏
i=0

(−an−2i−1), if m ∈ B
k≥1
w

T
chain

;

R̃eswT (xm, xm) = 1, otherwise.

By definition (34) of the A-model pairing ⟨ , ⟩ on H(w, Gw), we have ⟨θ(m), θ(m)⟩ = 1
if m is narrow. By comparing the A-model calculations (66) and (69) with the normalized

residue calculations in (71) and (72), we obtain the following result.

Proposition 3.8. The normalized residue pairing on QwT and the pairing (34) on

H(w, Gw) correspond to each other via the mirror map (70). That is, for m,m′ ∈ BwT ,

we have

R̃eswT (xm, xm
′

) = ⟨θ(m), θ(m′)⟩.
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3.3. Generators, Jacobian relations, and Frobenius algebras. In this section we

compute the Frobenius algebra structure on the state space H(w, Gw) of the MF CohFT and

prove Theorem 1.2 (Theorem 3.14 below) verifying Mirror symmetry at the topological level.

Let mi’s be standard vectors in BwT . Using (12) we can express the product on H(w, Gw)
in this basis as follows

(73) θ(m1)•θ(m2) =
∑

m3,m4∈BwT

⟨θ(m1), θ(m2), θ(m3)⟩
MF
0,3 ·η

θ(m3),θ(m4) ·θ(m4).

Here (ηi,j) is the inverse of the matrix of the pairing (34) in the basis {θ(m)}, where m’s are

the standard vectors in BwT .

Our computation of the correlator ⟨θ(m1), θ(m2), θ(m3)⟩
MF
0,3 with narrow insertions

θ(m1), θ(m2), and θ(m3) will rely on the Selection rule (37), the Concavity Axiom [27,

Corollary 5.5.3], and the Index Zero Axiom [27, Proposition 5.7.1].

To compute three-point correlators with broad insertions, we will need more tools and so

we start with some preparation.

Chain type reduction. Let w(x1, . . . , xn) be a nondegenerate quasihomogeneous poly-

nomial of the form

w(x1, . . . , xn) = xa11 x2 + xa22 x3 + . . .+ x
a2s−1

2s−1 x2s + xa2s2s x
m
2s+1

+w0(x2s+1, . . . , xn),

where ai ≥ 1, a2i ≥ 2, m ≥ 0, and 2s ≤ n (and m = 0 if 2s = n). Let us consider the Koszul

matrix factorization of w − w0,

K0 := {xa11 + xa2−1
2 x3, x2} ⊗ . . .⊗ {x

a2s−1

2s−1 + xa2s−1
2s xm2s+1, x2s}.

Note that it has a natural Gw-equivariant structure. Set V = An, with coordinates x1, . . . , xn,

V0 = A[2s+1,n], with coordinates x2s+1, . . . , xn, and let p : V → V0 be the natural projection.

For any γ ∈ Gw, consider the functor

ΦK0,γ : MFp(G)(w0,p(γ)) → MFGw
(wγ) : E 7→ K0 ⊗ p∗E,

where p : V γ → V γ ∩ A[2s+1,n] (resp., (C∗)n → (C∗)[2s+1,n]) is the coordinate projection.

Let ϕK0,γ be the induced map on Hochschild homology.

Proposition 3.9. In the above situation, assume that we are given γ1,γ2,γ3 ∈ Gw,

such that S0(γ1,γ2,γ3) is non-empty,

V γ1 = 0, V γ2 ⊂ A[2s+1,n],

S1 = {2, 4, . . . , 2s}, V γ3 = A[1,2s] × V γ2 ,

and degLj = −1 for every j with Σj = ∅. Then for any h2 ∈ Hw0,p(γ2)
= Hw,γ2

,

h3 ∈ Hw0,p(γ3)
= Hw,γ2

, one has

(74) ⟨1γ1
, h2, ϕK0,γ3

(h3)⟩
MF
0,3 =

s∏

i=1

(−a2i−1) · ⟨h2, h3⟩wγ2
.
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Proof. By Corollary 2.11, we have

⟨1γ1
, h2, ϕK0,γ3

(h3)⟩
MF
0,3 = ⟨h2, f3(ϕK0,γ3

(h3))⟩wγ2
,

where f3 : H(wγ3
) → H(wγ2

) is induced by the restriction to the subspace x2 = x4 = . . . = x2s = 0
followed by the push-forward with respect to the projection

p0 : A
{1,3,...,2s−1} × V γ2 → V γ2 .

Thus, to calculate f3(ϕK0,γ3
(h3)) we have to calculate the endofunctor of MF(wγ2

),

E 7→ p0∗(ΦK0,γ3
(E)|x2=...=x2s=0) = p0∗(K0|x2=...=x2s=0⊠E) ≃ RΓ(K0|x2=...=x2s=0)⊗E.

It remains to observe that

K0|x2=...=x2s=0 = {xa11 , 0} ⊗ . . .⊗ {x
a2s−1

2s−1 , 0}.

Hence, in the Grothendieck group of MF(A{1,3,...,2s−1}, 0), this is equal to (−a1) . . . (−a2s−1)
times the class of the stabilization of the origin. Therefore, we get

f3(ϕK0,γ3
(h3)) =

s∏

i=1

(−a2i−1) · h3,

which implies our formula.

Generators. Using Lemma 3.7, we can classify all broad monomials in one variable.

Corollary 3.10. Let w be one of the atomic invertible polynomials in Table (1). If

xℓj ∈ BwT , then θ(ℓ · vj) is broad in exactly one of the following two cases:

• w is a loop polynomial in two variables and ℓ = aj − 1; or

• w is of the chain type and (j, ℓ) = (n, an − 1).

Moreover, in these cases, the element I(vi) = Jwρi ∈ Gw is broad if

• w = xa11 x2 + xa22 x1 and ai = 2;

• w = xa11 x2 + . . .+ x
an−1

n−1 xn + x2n and i = n.

Let vj be the n-tuple of integers whose j-th component is 1 and all other components are

zero. We define

(75) θj := θ(vj).

We want to show that the elements θ1, . . . , θn generate H(w, Gw) as an algebra. This will

follow immediately from the product formula (76) that we will now prove.

Proposition 3.11. If both m and m+ vj are standard vectors in BwT , then

(76) θj • θ(m) = θ(m+ vj), for j = 1, . . . , n.
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Proof. We calculate the product θj • θ(m) using the formula (73) with θ(m1) = θj
and θ(m2) = θ(m). According to the calculation of the pairing ⟨ , ⟩ via the formula (72)

and Proposition 3.8, it suffices to compute both ⟨θj , θ(m),meven⟩MF
0,3 and ⟨θj , θ(m),modd⟩MF

0,3

when m + vj is broad, when w is of the loop type, and ⟨θj , θ(m), θ(m+ vj)⟩
MF
0,3 in all other

cases. We discuss the details by considering the following three cases, some of which may

contain several subcases.

Case 1. Correlators without broad insertions.

Assume first that vj ,m, and m+vj are all narrow (and both m and m+vj are standard

vectors in BwT ). We want to calculate the correlator ⟨θj , θ(m), θ(m+ vj)⟩
MF
0,3. The formulas

(36) and (60) show that the line bundles Li, i = 1, . . . , n, satisfy

(77) degLi = −2qi −
n∑

k=1

s(wT )kρ
(i)
k = −1.

Here s(wT )k is the k-th component of the socle vector s(wT ) = (s(wT )1, . . . , s(w
T )n).

The last equality follows from Proposition 2.3(i) and equation (43). The equation 77

shows that our three-point correlator is concave and thus by the Concavity Axiom [27, Corol-

lary 5.5.3] we obtain that

⟨θj , θ(m), θ(m+ vj)⟩
MF
0,3 = 1.

This equation, together with the formulas for the multiplication (73) and the paring 72, imply

the formula (76) in this case.

Case 2. Chain correlators with broad insertions.

Now we consider all cases when w is a chain polynomial and at least one of the vectors

vj ,m,m+ vj is broad. Recall that we assume that both m and m+ vj are standard vectors in

BwT . Using the description of broad elements in Lemma 3.7, we will show that m+ vj must

be broad.

By Corollary 3.10, if vj is broad, then we must have j = n and an = 2. Then Lemma 3.7

implies that the standard vector m+vj = m+vn is broad. If vj is narrow, then by Lemma 3.7

and the description of BwT in Table 2, both m and m + vj are broad. This means that we

need to consider the following three subcases:

(i) j ≤ n− 2k;

(ii) j > n− 2k and vj is narrow;

(iii) j > n− 2k and vj is broad.

By Proposition 3.8 and the paring calculation (72), it is enough to prove that

(78) ⟨θj , θ(m), θ(m+ vj)⟩
MF
0,3 =

k−1∏

i=0

(−an−2i−1).
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The key is to calculate degLi for each 1 ≤ i ≤ n. By the definition of I(m) (60), we

have I(vj)
(i) = qi + ρ

(i)
j . Using (45), we have

(79)

I(vj)
(i) > qi, if j ≥ i and j − i is even;

I(vj)
(i) < qi, if j ≥ i and j − i is odd;

I(vj)
(i) = qi, if j < i.

Now we discuss each subcase in detail. We set γ2 = I(m), γ3 = I(m+ vj).

Case (i): j ≤ n− 2k ≤ n− 2.

Then mj +1 ≤ aj −1 and m ∈ Bk
w

T
chain

is also broad. Both m+ vj and m fix variables

{xn−2k+1, . . . , xn}. Thus if i > n− 2k, we have

I(m)(i) = I(m+ vj)
(i) = 0.

By (79) and the degree formula (36), we have

degLi = 0, if i > n− 2k.

If i ≤ n− 2k, the calculation in (77) is still valid. In conclusion, we have

degLi =

{
−1, i ≤ n− 2k;

0, i > n− 2k.

According to the definitions (54) and (55), we see that

Σn−2k+1 = . . . = Σn = {2, 3}, S0 = S1 = ∅, S2 = {n− 2k + 1, . . . , n}.

The assumptions of Proposition 3.9 are satisfied with s = 0 and

wγ2
= wchain|V γ2 =

n−1∑

i=n−2k+1

xaii xi+1 + xann .

Thus, by Proposition 3.9, Proposition 3.8, and formula (72), we get

⟨θj , θ(m), θ(m+ vj)⟩
MF
0,3 = ⟨Ch(Km),Ch(K

m+vj
)⟩wγ2

=

k−1∏

i=0

(−an−2i−1).

Case (ii): j > n− 2k and vj is narrow.

In this case n − j must be even and m ∈ B(n−j)/2. Therefore, n − j ≤ 2k − 2 and

so we actually have j − 1 > n − 2k. Thus m fixes variables xj−1, . . . , xn and m + vj fixes

xn−2k+1, . . . , xn.

Now to calculate degLi we consider the following four cases.

• If i ≥ j − 1, then degLi = 0 since I(m)(i) = I(m+ vj)
(i) = 0, and I(vj)

(i) = qi.
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• If n−2k < i < j−1 and j− i is even, then I(m+ vj)
(i) = 0 and we have I(vj)

(i) > qi
by (79). By the degree formula (36), degLi = −1.

• If n−2k < i < j−1 and j− i is odd, then I(m+ vj)
(i) = 0 and we have I(vj)

(i) < qi
by (79). By the degree formula (36), degLi = 0.

• If i ≤ n− 2k, then degLi = −1 as in (77).

In conclusion, we have

degLi =





−1, i ≤ n− 2k;

0, n− 2k < i < j − 1 and j − i is odd;

−1, n− 2k < i < j − 1 and j − i is even;

0, i ≥ j − 1.

Again by the definitions (54) and (55), we see that

S0 = ∅, S1 = {n− 2k + 2, n− 2k + 4, . . . , j − 2}, S2 = {j − 1, j, . . . , n}.

According to (67), the Koszul matrix factorization Km and K
m+vj

are given by

Km =




n/2−1⊗

t=j/2

{
− (x

a2t−1

2t−1 + xa2t2t x2t+1), x2t
}

⊗

{
(−(x

an−1

n−1 + xan−1
n ), xn)

}

and

K
m+vj

=




n/2−1⊗

t=n/2−k+1

{
− (x

a2t−1

2t−1 + xa2t2t x2t+1), x2t
}

⊗

{
(−(x

an−1

n−1 + xan−1
n ), xn)

}

Thus, assumptions similar to the ones in Proposition 3.9 are satisfied with

S1 = {ℓ
∣∣ℓ is even , n− 2k < ℓ < j − 1}, V γ2 = A[j−1,n], V γ3 = A[n−2k+1,n].

Hence, applying Proposition 3.9, we reduce the calculation to that of the residue pairing for

wγ2
. That is,

⟨θj , θ(m), θ(m+ vj)⟩
MF
0,3 =

∏

ℓ∈S1

(−aℓ−1)⟨Ch(Km),Ch(Km)⟩wγ2

=
∏

ℓ∈S1

(−aℓ−1)

n−j

2∏

i=0

(−an−2i−1)

=

k−1∏

i=0

(−an−2i−1).

Here the first equality uses (74) and Ch(K
m+vj

) = ϕK0,γ3
(Ch(Km)); the second equality

uses (69).

Case (iii): j > n− 2k and vj is broad.
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In this case, by Corollary 3.10, we have j = n and an = 2. We see that I(vj) fixes

variables xn−1 and xn and I(m+ vj) fixes xn−2k+1, . . . , xn. Therefore, we have

S0 = ∅, S1 = {ℓ
∣∣ℓ is even, n− 2k < ℓ < n− 1}, S2 = {n− 1, n}.

Similar to Case (ii) above, we obtain

⟨θj , θ(m), θ(m+ vj)⟩
MF
0,3 = (−an−1)

∏

ℓ∈S1

(−aℓ−1) =
k−1∏

i=0

(−an−2i−1).

Case 3. Loop correlators with broad insertions.

Finally we consider the cases when w is a loop polynomial and at least one of the ele-

ments in {vj ,m,m + vj} is broad. Using Lemma 3.7 and Corollary (3.10) we see that there

are three subcases:

(i) m+ vj is broad, that is, m+ vj = modd or m+ vj = meven.

(ii) m is broad, that is, m = modd or m = meven.

(iii) vj is broad. This can happen only when n = 2 and aj = 2.

Case (i): We first assume that m+ vj = modd.

Then m = modd−vj and j should be odd. We have to compute both ⟨θj , θ(m), θ(meven)⟩MF
0,3

and ⟨θj , θ(m), θ(modd)⟩MF
0,3. For both cases, the first two insertions are narrow and the last in-

sertion is broad. More explicitly, we have

V γ1 = V γ2 = 0, V γ3 = An,

Li = O if i is even and Li = O(−1) if i is odd. Thus,

S1 = {1, 3, . . . , n− 1}.

Hence, by Corollary 2.11, we have

f2(θ(m
odd − vj)) = 1γ2

,

and the correlators are determined by f3(θ(m
even)) or f3(θ(m

odd)) in each case. Here the map

f3 : H(wγ3
) → H(wγ2

) is induced by the restriction to the subspace x1 = x3 = . . . = xn−1 = 0
followed by the push-forward with respect to the projection

p0 : A
{2,4,...,n} × V γ2 → V γ2 .

Using the Koszul matrix factorizations defined in (63) and the argument similar to the one in

Proposition 3.9, we get

⟨θj , θ(m
odd − vj), θ(m

even)⟩MF
0,3 = 1,

⟨θj , θ(m
odd − vj), θ(m

odd)⟩MF
0,3 =

∏

2|k

(−ak).(80)
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Using (73) and (66), the above computation gives

θj • θ(m
odd − vj) = θ(modd).

Now assume that m + vj = meven. Then m = meven − vj and j should be even.

Similarly to the previous case we compute

⟨θj , θ(m
even − vj), θ(m

even)⟩MF
0,3 =

∏

2∤k

(−ak),

⟨θj , θ(m
even − vj), θ(m

odd)⟩MF
0,3 = 1,

which implies that

θj • θ(m
even − vj) = θ(meven).

Case (ii): If m = modd, then because m+ vj is still a standard vector, we see that j must be

even and m+ vj = modd + vj is narrow. Then m+ vj = meven − vj . The above calculation

shows that

⟨θj , θ(m
odd), θ(meven − vj)⟩

MF
0,3 = 1

which implies

θj • θ(m
odd) = θ(modd + vj).

If m = meven a similar argument gives

θj • θ(m
even) = θ(meven + vj).

Case (iii): Now assume that vj is broad. Without loss of generality, we only need to consider

the case when vj = modd. Then j = 1 and w = x21x2 + x1x
a2
2 . Using the assumption,

m = (0,m) for some m ≤ a2 − 2. We consider the correlator ⟨θ1, θ(x
m
2 ), θ(xa1−1−m

2 )⟩MF
0,3.

For this correlator,

Σ1 = Σ2 = {p1}, L1 = O, L2 = O(−1), S0 = S2 = ∅, S1 = {2}.

This implies

⟨θ1, θ(x
m
2 ), θ(xa1−1−m

2 )⟩MF
0,3 = 1.

Thus we obtain θ1 • θ(x
m
2 ) = θ(xm+1

2 ).
This finishes the proof of Proposition 3.11.

Verifying Jacobian relations for H(w,Gw).

Proposition 3.12. For each invertible polynomial w, the generators θ1, . . . , θn (75) of

the algebra H(w, Gw) satisfy the Jacobian relations (i.e. generators of the Jacobian ideal 14)

for the Milnor ring QwT (13) of the mirror polynomial wT . In other words, one has

(81)
∂wT

∂xj
(θ1, · · · , θn) = 0, for j = 1, . . . , n.
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Proof. According to the classification of invertible polynomials [19], it is sufficient to

verify the Jacobian relations (81) only for atomic polynomials (41). This leads to the following

three groups of relations.

(i) For a polynomial of the Fermat type, w = xa11 , we have

(82) θa1−1
1 = θ1 • θ

a1−2
1 = 0.

(ii) For w of the chain type w =
n−1∑
i=1

xaii xi+1 + xann , we have

(83) anθn−1 • θ
an−1
n = 0.

(iii) For w of the loop type, w =
n−1∑
i=1

xaii xi+1 + xann x1, or of the chain type with j ̸= n, we

have

(84) ajθj−1 • θ
aj−1
j + θ

aj+1

j+1 = 0.

Here by θki we denote the k-th power of the generator θi with respect to the multiplication in

H(w, Gw). In the chain case, we use the convention θ0 := 1Jw when j = 1. For the loop

case, we use the convention θ0 := θn, θn+1 := θ1, and an+1 := a1.

For the relations (i), (ii), and the first case of (iii), we repeat the proof from [16]. In the

remaining cases, which involve broad insertions, we will have to use the special properties of

the MF CohFT.

Case (i): We have θ1 • θa1−2
1 = 0, since for m = 0, 1, . . . a1 − 2, the Selection Rule (37)

implies

⟨θ(1), θ(a1 − 2), θ(m)⟩MF
0,3 = 0.

Case (ii): This is the same as [16, Lemma 4.6]. To obtain (83), it is enough to show that

⟨θn−1, θ
an−1
n , θ(m)⟩MF

0,3 = 0, for θ(m) ∈ H(w, Gw).

If it is not true, then using the Selection Rule (37) and equations (45) and (46), we get

θ
(n)
n−1 =

1

an
= qn, θ

(n−1)
n−1 =

1

an−1
+ qn−1 ̸= qn−1, (θan−1

n )(n) = (θan−1
n )(n−1) = 0.

This implies that I(m) fixes the variable xn but not the variable xn−1, which contradicts

Lemma 3.5.

Case (iii): According to Corollary 3.10, there are three possible subcases:

(i) The monomials θj−1, θ
aj−1
j , and θkj+1 for 1 ≤ k ≤ aj+1 − 1 are all narrow.

(ii) w is a loop polynomial w = xa11 x2 + x1x
a2
2 . In this case θai−1

i is broad.

(iii) w is a chain polynomial w =
n−1∑
i=1

xaii xi+1 + xann . In this case θan−1
n is broad.
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Case (iii.1): In this case, using equation (76), we have θj−1 • θ
aj−1
j = θ(m) for a standard

vector m such that I(m) = Jwρj−1ρ
aj−1
j and

mi = qi + ρ
(i)
j−1 + (aj − 1)ρ

(i)
j = qi − ρ

(i)
j + δij .

Since none of θkj+1 for 1 ≤ k ≤ aj+1 − 1 is broad, we see, using Proposition 2.3.(iii) and

Corollary 3.10, that the vector m must be narrow. The same is true for its complementary

vector m.

Using (60), we can now find ⟨θj+1, θ
aj+1−1
j+1 , θ(m)⟩MF

0,3. We have

degLi = qi − (qi + ρ
(i)
j+1)− (qi + (aj+1 − 1)ρ

(i)
j+1)− (1− qi − ρ

(i)
j−1 − (aj − 1)ρ

(i)
j )

= −1 + (ρ
(i)
j−1 + ajρ

(i)
j )− (ρ

(i)
j + aj+1ρ

(i)
j+1)

=





0, j = i;

−2, j = i− 1;

−1, otherwise.

Here the last equality follows from (49). Then by Index Zero Axiom [27, Proposition 5.7.1],

we obtain

⟨θj+1, θ
aj+1−1
j+1 , θ(m)⟩MF

0,3 = −aj .

Now the relation (84) follows from

θ
aj+1

j+1 = θj+1 • θ
aj+1−1
j+1 = ⟨θj+1, θ

aj+1−1
j+1 , θ(m)⟩MF

0,3 θ(m) = −ajθj−1 • θ
aj−1
j .

Case (iii.2): Now consider the loop polynomial w = xa11 x2 + x1x
a2
2 . According to Corollary

3.10, the element θai−1
i = θ(xai−1

i ) is broad. Moreover, θa1−1
1 = Ch(Kodd) and θa2−1

2 = Ch(Keven),
where the Chern characters are given by (64) and (65). Take j = 1 and m = meven = (0, a2−1)
in (76), we obtain

θ1 • θ
a2−1
2 = θ

(
x1x

a2−1
2

)
.

According to the equation (80), we have

⟨θ1, θ
a1−1
1 , θa1−2

1 ⟩MF
0,3 = ⟨θ1, θ

a1−2
1 , θa1−1

1 ⟩MF
0,3 = −a2.

Using (59), we have (a1 − 2, 0) = (1, a2 − 1). Using (72), we obtain

θ1 • θ
a1−1
1 = ⟨θ1, θ

a1−1
1 , θa1−2

1 ⟩MF
0,3 θ

(
x1x

a2−1
2

)
= −a2θ1 • θ

a2−1
2 .

The other relation θ2 • θ
a2−1
2 = −a1θ2 • θ

a1−1
1 in (84) can be obtained similarly.

Case (iii.3): Recall from Table 2 that the socle element of wT is equal to xan−2
n

n−1∏
i=1

xai−1
i . To

obtain the relation θn • θan−1
n = −an−1θn−2 • θ

an−1−1
n−1 , it is sufficient to prove the following

formula for the three-point correlator

(85) ⟨θn, θ
a2−1
n , θan−2

n θ
an−2−2
n−2

n−3∏

i=1

θai−1
i ⟩MF

0,3 = −an−1.

We break the discussion into three cases:
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(a) n = 2 and a2 ≥ 3.

(b) n = 2 and a2 = 2.

(c) n ≥ 3 and an = 2.

Case (iii.3a): We start with n = 2 and a2 ≥ 3, i.e., with the chain polynomial w = xa11 x2+x
a2
2 .

We notice that θa2−1
2 is broad with both variable fixed. For the correlator ⟨θ2, θ

a2−1
2 , θa2−2

2 ⟩MF
0,3,

we have

degL1 = 0, degL2 = −1, Σ1 = Σ2 = {2}, S0 = S2 = ∅, S1 = {2}.

Now we can apply Proposition 3.9 to obtain (85), that is

⟨θ2, θ
a2−1
2 , θa2−2

2 ⟩MF
0,3 = −a1.

Case (iii.3b): Now we consider the chain polynomial w = xa11 x2 + x22. Here a2 = 2 and a

direct calculation shows that

(86) µw = 2a1 − 1

and

(87) Hess(w) = −a1(2a1 − 1)x2a1−2
1 ∈ Qw.

The correlator in (85) is ⟨θ2, θ
a2−1
2 ,1J⟩

MF
0,3. Here x2 is a broad variable because

θ
(1)
2 = θ

(2)
2 = 0.

By (68), we have

θ2 = a1x
a1−1
1 dx1 ∧ dx2.

We obtain

⟨θ2, θ2,1J⟩
MF
0,3 = ⟨−a1x

a1−1
1 dx1 ∧ dx2, a1x

a1−1
1 dx1 ∧ dx2⟩w

= Resw

(
(a1x

a1−1
1 )2dx1 ∧ dx2

)

=
a1

1− 2a1
µw

= −a1.

Here the first identity is the metric axiom (40); the second identity follows from the formula

for the paring (31); the third identity uses the calculation (87) and the residue formula (23); the

last identity follows from the equation (86). This proves the equation (85).

Case (iii.3c): Finally, we compute ⟨θn, θn, θ
an−2−2
n−2

∏n−3
i=1 θ

ai−1
i ⟩MF

0,3 when n ≥ 3 and an = 2.

Using θ
(i)
n = qi + ρ

(i)
n , (45) and (46), we get θ

(n)
n = 1, θ

(0)
n = 0, for all i ≤ n − 2,

qi < 2θ
(i)
n < 1 + qi. Thus we obtain Ln = 0, Ln−1 = 0, and Li = −1 if i ≤ n − 2. We

have

Σn−1 = Σn = {1, 2}, S0 = S1 = ∅, S2 = {n− 1, n}, V γ2 = V γ3 = A[n−1,n].

Now again, we apply Proposition 3.9 to obtain (85). This completes the proof of Proposi-

tion 3.12
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The following immediate implication of relations (83) and (84) will be used later.

Corollary 3.13. For a polynomial of the chain type, w =
n−1∑
i=1

xaii xi+1 + xann , we have

(88) θi−1 • θ
ai
i = 0, for i = 2, . . . , n.

Mirror symmetry between Frobenius algebras. Now we are ready to prove mirror

symmetry at the Frobenius algebra level.

Theorem 3.14. Let w be an invertible polynomial. The mirror map θ defined in Defini-

tion 3.6 is an isomorphism of Frobenius algebras

θ :
(
QwT , R̃eswT (, ), ·

)
−→

(
H(w, Gw), ⟨, ⟩, •

)
.

Proof. Since the Frobenius algebras on both sides are isomorphic to tensor products of

the algebras of the corresponding atomic components (for the A-side this follows from [27,

Theorem 5.8.1]), the statement reduces to the case when w is atomic.

When w is atomic, Proposition 3.11 shows that the elements θ1, θ2, . . . , θn generate the

algebra H(w, Gw); Proposition 3.12 gives that the mirror map θ is an algebra homomorphism;

and Proposition 3.8 establishes that the pairings agree under the isomorphism θ.

4. Mirror Frobenius manifolds

In this section, we prove Theorem 1.3 establishing mirror symmetry in the genus-zero

case (i.e. isomorphism of Frobenius manifolds).

By the definition of the prepotential (11), once we fix an isomorphism between the spaces

QwT and H(w, Gw), all we need is to identify the corresponding correlators. After choosing

the standard basis of QwT and the isomorphism θ from Theorem 3.14, we will do this in three

steps. First we prove a nonvanishing result Proposition 4.1. Then, we use it and the WDVV

equations to show, in Proposition 4.7, that all genus-zero correlators can be reconstructed from

the Frobenius algebra structure constants (three-point correlators) and several genus-zero four-

point correlators. Finally, in Section 4.7, we compute these correlators and match them with

the corresponding correlators for the Saito Frobenius manifold.

4.1. Nonvanishing. Recall that the ring H(w, Gw) is generated by θ1, . . . , θn, so any

genus-zero k-point MF correlator can be written as a linear combination of correlators

(89)

〈
n∏

i=1

θ
e1,i
i , . . . ,

n∏

i=1

θ
ek,i
i

〉MF

0,k

with ej,i ∈ Z≥0.

Sometimes we omit the superscript and subscript when the notation does not cause confusion.

From Theorem 3.14, we see that each nonzero element
∏n

i=1 θ
ej,i
i must belong to Hγj

for

some γj ∈ Gw. We label the decorations of this correlator by γ = (γ1, . . . , γk) and de-

note by S0(γ) the corresponding component of the moduli space of Γw-spin structures. Let
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st : S0(γ) → M0,k be the morphism forgetting the Γw-spin structure. For each nonzero

element vi ∈ Hγi
, using notation from (51) and (53), we define

(90) deg vi :=
nγi

2
+ ιγi

.

We now give conditions for nonvanishing of the correlator (89).

Proposition 4.1 (Nonvanishing). If the genus-zero k-point correlator (89) is nonzero,

then

(91) −2qj −
k∑

ν=1

n∑

i=1

ρ
(j)
i eν,i ∈ Z, for j = 1, . . . , n,

and

(92)

k∑

ν=1

deg
( n∏

i=1

θ
eν,i
i

)
= ĉw + k − 3.

Proof. If the correlator (89) is nonzero, then the moduli space S0(γ) is non-empty.

According to Selection rule (37), the degrees of Lj = ρ∗Lj , i = 1, . . . , n, must be integers.

Using (36), we obtain the equation (91).

According to Proposition 2.9, the Homogeneity Conjecture holds for MF CohFT associ-

ated with (w, Gw). This implies that for the correlator (89), the image of the map ϕ0(γ) (38)

in H∗(S0(γ)) has a pure cohomological degree 2D̃0(γ). According to (52) and (90), we have

2D̃0(γ) = −2ĉw +

k∑

i=1

(nγi
+ 2ιγi

) = −2ĉw +

k∑

ν=1

2 deg

n∏

i=1

θ
eν,i
i .

Since the space S0(γ) has real dimension 2k − 6, if the correlator is nonzero, we must have

2D̃0(γ) = 2k − 6. Now this is equivalent to (92).

Remark 4.2. The fact that ĉw = ĉwT implies that under the mirror map (3.6) the non-

vanishing conditions here are the same as the nonvanishing conditions in [12, Lemma 4.1].

4.2. Reconstruction. The nonvanishing condition from Proposition 4.1 and the WDVV

(associtiativity) equations allow us to reconstruct all genus-zero primary MF correlators from

the Frobenius algebra structure on H(w, Gw) given in Theorem 3.14 and a few genus-zero

four-point correlators. The proof of this is done along the same steps as the proof of recon-

struction in [12, Sections 5 and 7], replacing FJRW invariants with MF invariants. We will not

reproduce all details of the reconstruction process from [12] here. Instead, for reader’s con-

venience, we will give several examples demonstrating the use of the nonvanishing conditions

and the WDVV equations. In the Appendix, we provide a slightly simpler proof of the recon-

struction for polynomials of the chain type, which also deals with several cases not considered

in [12].

The following lemma, which is a consequence of the WDVV equations, is proved exactly

as its counterpart [9, Lemma 6.2.6] in the FJRW theory.
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Lemma 4.3 (WDVV reduction). Genus-zero k-point MF correlators satisfy

⟨ξ1, . . . , ξk−3, γ, δ, ϵ • ϕ⟩ =⟨ξ1, . . . , ξk−3, γ, ϵ, δ • ϕ⟩+ ⟨ξ1, . . . , ξk−3, γ • ϵ, δ, ϕ⟩

−⟨ξ1, . . . , ξk−3, γ • δ, ϵ, ϕ⟩+ S,(93)

where S is a linear combination of correlators with fewer than k insertions. If k = 4, then

S = 0, i.e. there are no such terms in the equation.

This lemma is a key tool in the reconstruction process. By appropriately choosing the

insertions in (93), we can ensure that the correlators in the right-hand side are simpler than the

one in the left-hand side.

The following important illustration of this idea is the first step of the reconstruction.

Lemma 4.4. For k ≥ 4, any genus-zero k-point MF correlator ⟨ξ1, . . . , ξk⟩ can be

represented as a linear combination of special correlators of the form

(94) X = ⟨θn, . . . , θn︸ ︷︷ ︸
ℓn

, θn−1, . . . , θn−1︸ ︷︷ ︸
ℓn−1

, . . . , θ1, . . . , θ1︸ ︷︷ ︸
ℓ1

, α, β⟩0,r,

where r ≤ k, θ1, . . . , θn are standard generators (75) of the algebra H(w, Gw), and the

elements α, β ∈ H(w, Gw) are products of some θi’s.

Proof. Since θ1, . . . , θn generate the algebra H(w, Gw), we may assume that each in-

sertion ξj is a product of θi’s. We call the number of factors in such a product the degree of the

corresponding insertion. Using the string equations,3) we can further assume that there are no

identity elements among ξ1, . . . , ξk.

If there are at least three insertions, say ξ1, ξ2 and ξ3, of degree greater than 1 (i.e. they

are products of at least two θi’s), we factor ξ3 as ξ3 = θj • ξ̃3, for some j, and apply (93) with

ϵ = θj , ϕ = ξ̃3, γ = ξ1 and δ = ξ2.

Observe now that in each of the three correlators in the right-hand side of (93), at least

one of the last three insertions is θj or ξ̃3, whose degree is smaller than the degree of ξ3. If

we start with three insertions of the largest possible degrees, we see that this process allows to

decrease the sum of the smallest k − 2 degrees of insertions until they all become equal to 1.

This gives the result.

Next, we will show that for atomic polynomials from Table 2, any special correlator (94)

can be reconstructed from correlators of a simpler type. For this we will rewrite the nonva-

nishing conditions of Proposition 4.1 for correlator (94) in a different way. Write elements

α, β ∈ H(w, Gw) as products of generators:

(95) α =
n∏

i=1

θPi

i , β =
n∏

i=1

θQi

i

with (P1, . . . , Pn), (Q1, . . . , Qn) ∈ BwT . From the description of the set BwT in the last row

of Table 2, we see that for nonvanishing α and β we have

(96) Pi ≤ ai − 1 and Qi ≤ ai − 1, for i = 1, . . . , n.

3) The string equations are consequence of the existence of a flat unit in a CohFT, see [27, Theorem 5.1.3].
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Now we define rational numbers bi and Ki, for i = 1, . . . , n, by

(97)




b1
...

bn


 = E−1

w




ℓ1 + P1 +Q1 + 2
...

ℓn + Pn +Qn + 2


 ,

and

(98) Ki = ℓi − bi + 1.

The nonvanishing conditions (91) and (92) impose strong constraints on these numbers.

Lemma 4.5. For a correlator X given by (94), the numbers Ki are integers satisfying

(99) K1 +K2 + . . .+Kn = 1.

Proof. Applying (43) and (91) to the correlator X , we see that bi ∈ Z, thus Ki ∈ Z.

Now the equation (99) follows from (92).

For one variable Fermat polynomials, this gives us the correlators of a very simple form.

Example 4.6. In the Fermat case, w = xa1, equation (99) gives K1 = 1, and (97) and

(98) imply

b1 =
ℓ1 + P1 +Q1 + 2

a
= ℓ1.

Since P1, Q1 ≤ a− 2, we obtain ℓ1 ≤ 2. If ℓ1 = 2, then P1 +Q1 + 4 = 2a and we must have

P1 = Q1 = a− 2. Now we see that a nonvanishing correlator (94) must be either a three-point

correlator or the four-point correlator ⟨θ1, θ1, θ
a−2
1 , θa−2

1 ⟩.

The reconstruction processes for polynomials of chain and loop types are much more

complicated. We state the result below in Proposition 4.7. For polynomials of the loop type,

the same proof as the proof of the similar result in the FJRW theory [12, Theorem 5.19] works

after replacing FJRW correlators by MF correlators. In the Appendix, we present our proof for

polynomials of the chain type. It is slightly shorter than the corresponding proof for the FJRW

theory given in [12] and also treats some cases not considered there.

Proposition 4.7 (Reconstruction). The Frobenius manifold structure of the MF CohFT

for an atomic polynomial w is uniquely determined by its Frobenius algebra and the following

genus-zero four-point correlators

F1 = ⟨θ1, θ1, θ
a−2
1 , θJ−1⟩MF

0,4, for w = xa1 of the Fermat type;

Fi = ⟨θi, θi, θi−1θ
ai−2
i , θJ−1⟩MF

0,4, for w of a loop type, i = 1, . . . , n;

Fn = ⟨θn, θn, θn−1θ
an−2
n , θJ−1⟩MF

0,4, for w of a chain type.

Here θJ−1 := θ(soc(wT )), and we use the convention θ0 := θn.

Note that θJ−1 = 1J−1 ∈ HJ−1 by (61). For the correlators Fi from Proposition 4.7, the

numbers bj (97) and Kj (98) are given by

(b1, . . . , bn−1, bn) = (1, . . . , 1, 2) and (K1, . . . ,Kn−1,Kn) = (0, . . . , 0, 1).
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4.3. Calculations of genus-zero four-points MF correlators. To prove Theorem 1.3,

it remains to compute the correlators Fi from Proposition 4.7 and match them with the corre-

sponding correlators from Saito’s Frobenius manifold [20,28]. The latter have been calculated

in [12], using the perturbative formula for primitive forms developed in [20]. Using Proposition

4.7 and [12, Proposition 6.8], Theorem 1.3 will follow from

Proposition 4.8. For every correlator Fi in Proposition 4.7, we have

(100) Fi = −qi,

where qi is the weight of the variable xi in the weighted homogeneous polynomial w.

The rest of the paper will be devoted to the proof of Proposition 4.8.

Concavity. We separate the correlators Fi in Proposition 4.7 into two cases:

(i) The correlator is concave.

(ii) The correlator is not concave.

According to the classification in [12, Lemma 6.5 and Lemma 6.6], modulo a cyclic permu-

tation of the variables in a polynomial of the loop type, the only non-concave correlators in

Proposition 4.7 is

Fn = ⟨θn, θn, θn−1θ
an−2
n , θJ−1⟩MF

0,4,

where the polynomial w belongs to one of the four cases listed in Table 3.

Table 3. Non-concave correlators Fn

Type Polynomial w Constraints θn θn−1θ
an−2
n θJ−1

(a)
n−1∑
i=1

xaii xi+1 + x2nx1 n ≥ 3 narrow narrow narrow

(b)
n−1∑
i=1

xaii xi+1 + x2nx1 n = 2, a1 ≥ 3 broad narrow narrow

(c)
n−1∑
i=1

xaii xi+1 + x2nx1 n = 2, a1 = 2 broad broad narrow

(d)
n−1∑
i=1

xaii xi+1 + x2n none broad narrow narrow

More explicitly, in case (a), all the insertions are narrow but the correlator is not concave.

In the remaining three cases, there exists at least two broad insertions in the correlator.

The calculations for concave correlators are exactly the same as the calculations of the

corresponding FJRW invariants, which was done in [12, Section 6]. For nonconcave corre-

lators, we will first use Guéré’s formula [11] to calculate the virtual class of the MF CohFT.

Indeed, Guéré’s formula can be applied to all the cases in Proposition 4.7. In the concave case,

it is just the Witten’s top Chern class defined in [25].

To describe and use Guéré’s formula, we need some combinatorial preparation. Consider

the correlator Fn = ⟨θn, θn, θn−1θ
an−2
n , θJ−1⟩MF

0,4, the decorations of this correlator are denoted
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by γ = (γ1,γ2,γ3,γ4). The moduli of Γw-spin structure is S0,4(γ). The boundary strata are

labeled by the following Gw-decorated dual graphs

γ1

γ2

γ3

γ4

γ1,+ γ1,−

γ1

γ3

γ2

γ4

γ2,+ γ2,−

γ1

γ4

γ2

γ3

γ3,+ γ3,−

Figure 1. Boundary strata on S0,4(γ)

Each vertex represents a genus-zero component, and each half-edge represents a marking

(labeled with decorations γj) or a node. The decorations γi,± ∈ Gw on the same node are

balanced, that is

γ
(j)
i,+ + γ

(j)
i,− ≡ 0 mod 1.

According to the Selection Rule (37), decorations γi,± are determined by the other decorations

on the same component.

For j = 1, . . . , n, we define decoration vectors

v(j)(Fn) =
(
γ
(j)
1 , . . . ,γ

(j)
4

)
, v

(j)
+ =

(
γ
(j)
1,+,γ

(j)
2,+,γ

(j)
3,+

)
.

For j = n − 1 and j = n, we list these vectors non-concave correlators of type (b), (c), (d) in

Table 4.

Table 4. Decoration vectors

Type v(n−1)(Fn) v
(n−1)
+ v(n)(Fn) v

(n)
+

(b) (0, 0, 3
2a1−1 ,

2a1−2
2a1−1) 1− 1

2a1−1 (0, 0, a1−2
2a1−1 ,

a1
2a1−1) 1− 1

2a1−1

(c) (0, 0, 0, 23) (13 ,
1
3 ,

1
3) (0, 0, 0, 23) (13 ,

1
3 ,

1
3)

(d) (0, 0, 3
2an−1

, 1− 1
2an−1

) ( 1
2an−1

, an−1−1
an−1

, an−1−1
an−1

) (0, 0, 12 ,
1
2) (12 , 0, 0)

The Type (a) case is more complicated, we only list

v(n−1)(Fn) =




n−2∑

j=1

ρ
(n−1)
j ,

n−2∑

j=1

ρ
(n−1)
j ,−3ρ(n−1)

n +

n−2∑

j=1

ρ
(n−1)
j , 1− qn−1




and

v(n)(Fn) =


ρ(n)n +

n∑

j=1

ρ
(n)
j , ρ(n)n +

n∑

j=1

ρ
(n)
j ,

n∑

j=1

ρ
(n)
j + ρ

(n)
n−1, 1− qn


 .

We observe that in type (b) and (d), the first two insertions are broad, in type (c), the first three

insertions are broad, and there is no broad insertion in type (a).
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Guéré’s formula. Let w be an atomic invertible polynomial. Let

Y = ⟨v1, . . . , vr⟩
MF
g,r =

∫

Mg,r

ΛMF
g,r(γ)(v1 ⊗ . . .⊗ vr)

be a correlator for the MF CohFT (39) decorated by an r-tuple γ = (γ1, . . . ,γr).
Choose vi ∈ Hγi

from the standard basis. If vi is broad, then vi has one of the forms in

(64), (65), (68). Following [11], we call a variable xj crossed to vi if γ
(j)
i = 0, and (−ajx

aj−1
j )

is not in (64), (65), (68). For example, xj is crossed to vi = Ch(Kodd) if j is odd. Define a

line bundle LC
j := Lj(−

∑
pi) by twisting the markings pi such that xj is crossed to vi. The

number of such markings with be denoted by rj .
Let t(j) be the unique subscript such that x

aj
j xt(j) is a monomial of w. If a correlator

contains at least one variable xj such that H0(C,LC
j ) = 0, then we can define

λk =

{
λ
−aj
j , if k = t(j) and H0(C,LC

j ) ̸= 0;

λ, otherwise.

For the correlator Y , denote the image of ϕg(γ) (cf. (38)) by cMF
vir(Y ). If there is some j such

that H0(C,LC
j ) = 0 for any curve C in Sg(γ), according to Guéré’s formula in [11, Theorem

3.21] and the sign convention in (39), we have

(101)

−cMF
vir(Y ) = lim

λ→1




n∏

j=1

(1− λj)
−Ch0(Rπ∗Lj)+rj


 exp




n∑

j=1

∑

ℓ≥1

sℓ(λj)Chℓ(Rπ∗Lj)


 .

Here Chℓ is the degree ℓ term of the Chern character, and

sℓ(x) =
Bℓ(0)

ℓ
+ (−1)ℓ

ℓ∑

k=1

(k − 1)!

(
x

1− x

)k

γ(ℓ, k),

where Bℓ(t) is the ℓth Bernoulli polynomial and γ(ℓ, k) is the coefficients of zℓ in the Taylor

expansion of ℓ!(ez − 1)k/k! at z = 0.

Using the combinatorial preparation in Table 4, we obtain

Lemma 4.9. Consider all the correlators Fn in Table 3. If j ̸= n−1, thenH0(C,LC
j ) = 0

for any C. If j = n− 1, there exists some C, such that H0(C,Ln−1) ̸= 0.

Proof. For j < n − 1, by [12, Lemma 6.5], degLC
j = degLj = −1 on each curve C.

Thus H0(C,LC
j ) = 0, and

(102) Ch1(Rπ∗Lj) = 0, j < n− 1.

Now we consider j ≥ n− 1. Using the degree formula (36), we see that on any smooth

C, (degLn−1, degLn) = (−1, 0) for type (a), (b), (d), and (degLn−1, degLn) = (0, 0) for

type (c). We can check that (rn−1, rn) = (0, 2) for type (a), (b), (d) and (rn−1, rn) = (1, 2)
for type (c). For all the cases, we have degLC

j = degLj − rj = −1 − δnj < 0. Thus if C is

smooth, H0(C,LC
j ) = 0. Moreover, we have a virtual degree formula

(103) degvir(Lj) := −Ch0(Rπ∗Lj) + rj = δnj .
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If C is singular, then it has a node N and its normalization has two component, de-

noted by C1 and C2. Using Table 4, we can check that if j ̸= n − 1, the unordered pair

(degLC
j |C1 , degL

C
j |C2) = (−2,−1) and the node N is a narrow node with H0(N ,LC

j |N ) = 0,

or (degLC
j |C1 , degL

C
j |C2) = (−2, 0) and the node is broad with H0(N ,LC

j |N ) = C. In both

cases, we have H0(C,LC
j ) = 0, using the long exact sequence

0 → H0(C,LC
j ) → H0(C1,L

C
j |C1)⊕H0(C2,L

C
j |C2) → H0(N ,LC

j |N )

→ H1(C,LC
j ) → H1(C1,L

C
j |C1)⊕H1(C2,L

C
j |C2) → 0

If j ̸= n−1, the only exception happens when both θn belong to the same component, say

C1, then (degLC
j |C1 , degL

C
j |C2) = (0,−2) and the node N is narrow. Then H0(C,LC

i ) ̸= 0.

Using Lemma 4.9, we can apply the formula (101) to the correlator Fn and get

Lemma 4.10. For all the Type (ii) correlators Fn, the reduced CohFT is

(104) cMF
vir(Fn) = −an−1Ch1(Rπ∗Ln−1) + Ch1(Rπ∗Ln).

Proof. By Lemma 4.9, we see all the variables except xn−1 are concave. Thus

(105) λj =

{
λ−an−1 , j = n;

λ, j ̸= n.

Now the formula (104) follows from the calculation

−cMF
vir(Fn) = lim

λ→1
(1− λn) exp




n∑

j=1

∑

ℓ≥1

sℓ(λj)Chℓ(Rπ∗Lj)




= lim
λ→1

(1− λn)


1 +

n∑

j=1

(
−
1

2
−

λj
1− λj

)
Ch1(Rπ∗Lj)




= −
n∑

j=1

lim
λ→1

λj(1− λn)

1− λj
Ch1(Rπ∗Lj)

= − lim
λ→1

λn−1(1− λn)

1− λn−1
Ch1(Rπ∗Ln−1)− lim

λ→1

λn(1− λn)

1− λn
Ch1(Rπ∗Ln)

= an−1Ch1(Rπ∗Ln−1)− Ch1(Rπ∗Ln).

Here the first equality uses (101) and (103), the fourth equality uses (102), and the last equality

uses (105).

Calculation of Chern characters. Using Chiodo’s formula [5, Theorem 1.1.1], we

have

Tj :=
1

deg(st)
· (st)∗Ch1(Rπ∗Lj)
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=

∫

M0,4

(
B2(qj)

2
κ1 −

4∑

i=1

B2(θ
(j)
γi

)

2
ψi +

3∑

k=1

B2(θ
(j)
γk,+

)

2
[Γk]

)
.

Here κ1 is the first kappa class and ψi is the i-th psi class on M0,4 and Γ1,Γ1,Γ1, are the

Gw-decorated dual graphs of the boundary strata shown in Figure 1.

By Table 4, case (d), the decoration vector for Ln is v(n)(Fn) = (0, 0, 12 ,
1
2) and the

decoration vector v
(n)
+ = (12 , 0, 0). Since qn = 1

2 , we have

Tn =
1

2

(
B2(qn)− 2B2(0)− 2B2

(1
2

)
+B2

(1
2

)
+ 2B2(0)

)
= 0.

Other cases are computed similarly. Integrating (104), we have

Fn = −an−1Tn−1 + Tn.

We list the explicit calculations in Table 5.

Table 5. Calculation of non-concave correlators

Type Polynomial w Tn−1 Tn Fn

(a)
n−1∑
i=1

xaii xi+1 + x2nx1, n ≥ 3 −qn−1 − 2ρ
(n−1)
n −1 + 2ρ

(n)
n −qn

(b) xa11 x2 + x22x1, a1 ≥ 3 1
2a1−1

1
2a1−1 − a1−1

2a1−1

(c) x21x2 + x22x1
1
3

1
3 −1

3

(d)
n−1∑
i=1

xaii xi+1 + x2n
1

2an−1
0 −1

2

Now Proposition 4.8 is proved. We remark that case (a) is computed in [12, Appendix],

where

Fn = −an−1(−qn−1 − 2ρ(n−1)
n ) + (−1 + 2ρ(n)n ) = −qn.

A. Reconstruction for polynomials of the chain type

In this section we present a proof of the reconstruction result Proposition 4.7 for a poly-

nomial of the chain type, w =
n−1∑
i=1

xaii xi+1 + xann .

Consider a nonzero correlator (94)

X = ⟨θn, . . . , θn︸ ︷︷ ︸
ℓn

, θn−1, . . . , θn−1︸ ︷︷ ︸
ℓn−1

, . . . , θ1, . . . , θ1︸ ︷︷ ︸
ℓ1

, α, β⟩,

with

α =
n∏

i=1

θpii , β =
n∏

i=1

θqii ∈ H(w, Gw),
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as in (95) (except that here we are using lower-case letters pi and qi which should not lead to a

confusion since the weights of the variables do not appear in the appendix). Note that from the

description of the standard basis in Table 2, it follows that

(106) pi ≤ ai − 1, qi ≤ ai − 1, and pi + qi ≤ 2ai − 2, for i = 1, . . . , n.

Together with formula (45) for ρ
(i)
j and the fact that ℓi ≥ 0, this gives the following

constraints between the integers K1, . . . ,Kn defined by (97) and (98).

pi + qi = ai(ℓi −Ki + 1) + (ℓi+1 −Ki+1 + 1)− ℓi − 2,(107)

pn + qn = an(ℓn −Kn + 1)− ℓn − 2,(108)

aiKi +Ki+1 ≥ (ai − 1)(ℓi − 1) + ℓi+1,(109)

anKn ≥ (an − 1)(ℓn − 1)− 1,(110)

Ki +Ki+1 ≥ (1− ai)(1 +Ki),(111)

for all i = 1, . . . , n− 1. These equations further imply the following additional relations.

Lemma A.1. We have

• If Ki < 0, for some i ≤ n− 1, then Ki +Ki+1 ≥ 0.

• If Ki < 0 and Ki +Ki+1 = 0, then (Ki,Ki+1) = (−1, 1).
In this case ℓi = ℓi+1 = 0, pi + qi = 2ai − 2, and pi+1 + qi+1 = ℓi+2 −Ki+2 − 1.

• −1 ≤ Kn ≤ ℓn and, if Kn = −1, then ℓn = 0, pn + qn = 2an − 2.

This leads to a complete description of possible collections (K1, . . . ,Kn) with Kn ≥ 0.

Lemma A.2. If Kn ≥ 0, then the tuple (K1, . . . ,Kn) is of one of the following kinds:

• A concatenation of some (0)’s and (−1, 1)’s with one (1), in any order as long as it does

not end with (−1, 1);

• A concatenation of some (0)’s and (−1, 1)’s with one of (1), (−1, 2), or (−2, 3) ending

with two non-negative numbers.

Proof. First, we observe that Kn−1 ≥ 0. Indeed, the assumption Kn−1 ≤ −1 together

with ℓn ≥ Kn contradicts to (109).

Now, Lemma A.1 implies that if Ki < 0 for some i < n − 1, then Ki−1 ≥ 0 and

Ki + Ki+1 ≥ 0. Since, by Lemma 4.5, we have K1 + . . . + Kn = 1, removing all pairs

(Ki,Ki+1) with Ki < 0, will leave us with a tuple of non-negative integers (K̃1, . . . , K̃s)

(recall that Kn ≥ 0) such that K̃1 + . . . + K̃s ≤ 1. Therefore at most one of them can be

nonzero. Also, since the removed pairs (Ki,Ki+1) satisfy 0 ≤ Ki +Ki+1 ≤ 1, for all but at

most one of these pairs we have Ki+Ki+1 = 0, and so (Ki,Ki+1) = (−1, 1) by Lemma A.1.

If Ki +Ki+1 = 1, then from (111) it follows that (Ki,Ki+1) must be (−1, 2) or (−2, 3).

The correlator X in (94) can be reconstructed with the correlators of the following much

simpler form.
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Proposition A.3. We can reconstruct correlators in (94) from correlators of the form

(112) X = ⟨θn, . . . , θn︸ ︷︷ ︸
ℓn copies

, α, β⟩.

Proof. Starting with a correlatorX in (94) not in (112), we can choose i to be the largest

index with i < n and ℓi ≥ 1. More precisely, X is of the following form:

X = ⟨θi,θS , α, β⟩, i < n,

where θS is a tuple consisting of θjs with j = n or j ≤ i. Now it is sufficient to prove that

using (93), X can be reconstructed from correlators with fewer insertions and correlators of

the form

Z = ⟨θj , θS , α
′, β′⟩, j > i.

Here the set θS in Z is the same as that in X , but α′, β′ can be different form α and β in X .

Notice that X = ⟨θS , θi, θ
pn
n α̃, β⟩ for some pn ≥ 0. If pn ≥ 1, then we apply (93) with

γ = β, δ = θi, ϵ = θn, and ϕ = θpn−1
n α̃. The correlators with δϕ and δγ are of the form:

⟨θS , θn, θiθ
pn−1
n α̃, β⟩, ⟨θS , θn, θ

pn−1
n α̃, θiβ⟩.

They are both of the form Z. The correlator with ϵγ equals ⟨θS , θi, θ
pn−1
n α, θnβ⟩. By induction

we can reconstruct X from Z and the correlator Y = ⟨θS , θi, αY , βY ⟩ where pYn = 0.

Similarly, we move all xn−1 from αY to βY , and so on, until we move all θi+1 from α to

β. Thus we reconstruct X from correlators Z, and the correlator Y = ⟨. . . , θi, αY , βY ⟩ where

pYi+1 = . . . = pYn = 0.

After reducing to the basis listed in Table 2, Y satisfies pYk + qYk ≤ ak − 1 for k > i. By

Lemma A.1, we haveKY
n ≥ 0 in Y . In the following argument, we focus on the reconstruction

of Y , and drop the superscript Y on K, p and q.

Case Kn = 1: In this case K is a concatenation of (0)s and (-1,1)s, followed by Kn = 1.

If K = (. . . ,−1, 1, 1), then ℓ = (. . . , 0, 0, ∗) and p + q = (. . . , 2an−2 − 2, ∗, ∗) by

(107). Then n−2 > i, but pn−2+qn−2 ≥ an−2, contradicting our assumption pk+qk ≤ ak−1
on Y . Similarly, we reach a contradiction if there is j > i such that (Kj ,Kj+1) = (−1, 1).

Therefore, K = (. . . , 0, 0, . . . , 0, 1) and ℓ = (. . . , 1, 0, . . . , 0, ∗), where the underline

marks the ith spot and ℓi = 1 by (109). Possibly, i = n− 1. If i ̸= n− 1, then by assumption

(Ki+1, ℓi+1) = (0, 0) so pi+qi = 2ai−2 by (107). If i = n−1, then (Ki+1, ℓi+1) = (Kn, ℓn)
where ℓn ≥ Kn. Then (107) shows pi+qi ≥ 2ai−2 so by (106) we know that pi+qi = 2ai−2.

Thus p + q = (. . . , 2ai − 2, ∗, . . . , ∗, ∗). Now we have three cases. In each case we compute

p+ q by first using (109) to compute ℓ and then using (107), (95), and Lemma A.1.

(i) K = (. . . , 0, 0, . . . , 1), p+ q = (. . . , ai−1,M, . . . , ∗).

(ii) K = (−1, 1, . . . ,−1, 1, 0, . . . , 1), p+ q = (M, 0, . . . ,M, 0,M, . . . , ∗).

(iii) K = (. . . , 0,−1, 1, . . . ,−1, 1, 0, . . . , 1), p+ q = (. . . , ar,M, 0, . . . ,M, 0,M, . . . , ∗).

Here M = 2a − 2 with the appropriate subscripts. In each case, we claim that there is

α̂ ∈ H(w, Gw) that satisfying α = θ
ai+1

i+1 • α̂. We find a factor of θ
ai+1

i+1 in α for each case as

follows:

(i) Here α has a factor of θi−1θ
ai−1
i , which by (84) is proportional to θ

ai+1

i+1 in H(w, Gw).
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(ii) Repeatedly apply (84) starting with a1θ
a1−1
1 = −θa22 .

(iii) Repeatedly apply (84) starting with ar+1θrθ
ar+1−1
r+1 = −θ

ar+2

r+2 .

Now apply (93) to Y with γ = θi, δ = β, ϵ = θ
ai+1

i+1 , and ϕ = α̂. Then γϵ = θiθ
ai+1

i+1

vanishes by Corollary 3.13 and the other two correlators have the form ⟨θS , θ
ai+1

i+1 , α
′, β′⟩.

Writing θ
ai+1

i+1 = θi+1 • θ
ai+1−1
i+1 , and performing reconstruction scheme similar to the one in

the proof of Lemma 4.4, we will obtain the correlator of the required form.

Case Kn = 0. In this case, (110) implies that there are three possibilities: ℓn = 0; ℓn = 1; or

ℓn = 2, an = 2. Using (108) we see that the cases ℓn = an = 2 and ℓn = 1, an ≥ 3 contradict

our assumption that pn + qn ≤ an − 1. So it only remains to consider the cases ℓn = 0 and

ℓn = 1, an = 2.

Let us first consider the case ℓn = 1, an = 2. By (108), we have pn + qn = 1 = an − 1.

If pn−1 + qn−1 > 0, we assume without loss of generality that pn = 1 and qn−1 > 0 and write

α = θn • α′. Applying (93) to Y with γ = θi, δ = β, ϵ = θn and ϕ = α′, we can obtain the

required correlator, since θn−1θn = 0. If pn−1 + qn−1 = 0, equations (107) and (109) imply

that Kn−1 = 1 and ℓn−1 = 0. Let i < n− 1 be the largest subscript such that ℓi ̸= 0.

There are three cases:4)

(i) K = (. . . , 0, 0, . . . , 1, 0), p+ q = (. . . , ai−1,M, . . . , 0, 1).

(ii) K = (−1, 1, . . . ,−1, 1, 0, . . . , 1, 0), p+ q = (M, 0, . . . ,M, 0,M, . . . , 0, 1).

(iii) K = (. . . , 0,−1, 1, . . . ,−1, 1, 0, . . . , 1, 0), p+q = (. . . , ar,M, 0, . . . ,M, 0,M, . . . , 0, 1).

The discussion is similar to the case Kn = 1.

Now assume ℓn = 0, and let i be the largest subscript such that (Ki, ℓi) ̸= (0, 0). Since

0 ≤ pi + qi, equation (107) shows Ki ≤ ℓi. Then (109) shows that (Ki−1,Ki) cannot be

(−2, 3), (−1, 2), or (−1, 1). Six cases remain, and the reconstruction can be completed using

the strategy analogous to the Kn = 1 case (or see [12] page 47).

Furthermore, we have

Lemma A.4. We can reconstruct correlators in (112) from correlators of the form

(113) X = ⟨θn, θn, α, β⟩.

Proof. Now we focus on correlator X in (112). From (110), since ℓn ≥ 2, we find

Kn ≥
an − 2

an
.

Thus Kn ≥ 0 and equality is possible only if an = 2.

If Kn = 0 and an = 2, then (110) shows that ℓn ≤ 2.

If Kn ̸= 0, then Kn = 1 by Lemma A.2. Then (110) shows ℓn ≤ 2an/(an − 1), so

ℓN = 2 , or ℓn = an = 3, or an = 2 and ℓn = 3 or 4. We will show that in each case where

ℓn > 2, the correlator does not satisfy (95), a contradiction.

4) In [12], these three cases have not been considered. However, this is not a serious issue, since the main

result of [12] does not include the case an = 2.
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If ℓn = an = 3, then pn + qn = 3an − 5 = 2an − 2. Either (Kn−1, ℓn−1) is (0, 0) or it

is (1, 0); in each case, pn−1 + qn−1 ≥ 1. Without loss of generality pn−1 ≥ 1, so that α has a

factor of θn−1θ
an−1
n , violating (95).

Similarly, if an = 2 and ℓn = 3 or 4, we can check all possibilities for K and ℓ and show

that p+ q violates (95).

Finally, we only need to show

Lemma A.5. We can reconstruct correlators in (113) from correlators of the form

(114) X = ⟨θn, θn, θn−1θ
an−2
n , θJ−1⟩

Proof. Let X be a correlator in (113) We know ℓ = (0, . . . , 0, 2). By (107)-(111), if

M = 2a− 2, we have three possibilities for K:

(i) K = (0, . . . , 0, 0, 1), p+ q = (a1 − 1, . . . , an−2 − 1, an−1, 2an − 4).

(ii) K = (−1, 1, . . . ,−1, 1, 1), p+ q = (M, 0, . . . ,M, 0, 2an − 4).

(iii) K = (0, . . . , 0, 0,−1, 1, . . . ,−1, 1, 1), p+q = (a1−1, . . . , ar−1−1, ar,M, 0, . . . ,M,
0, 2an − 4).

In all cases, if X ̸= 0, we must have

(115) X = ⟨θn, θn, θ
p1
1 . . . θ

pn−1

n−1 θ
an−2
n , θq11 . . . θ

qn−1

n−1 θ
an−2
n ⟩

where pi + qi = ai − 1 for i ≤ n− 2 and pn−1 + qn−1 = an−1.

In the first case, both pn−1 and qn−1 are at least 1. If pn = an − 1, then X = 0 by (83),

since it has a factor of θn−1θ
an−1
n . This shows that pn = qn = an − 2 and (115) follows.

In the second case, α = θa1−1
1 θa3−1

3 . . . θ
an−2−1
n−2 θpnn . The relations (84) show

α ∝ θa2−1
2 θa4−1

4 . . . θ
an−1

n−1 θ
pn
n .

If pn = an − 1, we have a factor of α equal to θn−1θ
an−1
n , and α = 0 by (83). Otherwise,

pn = qn = an − 2 and (115) follows.

In the last case, α has a factor equal to θprr θ
ar+1−1
r+1 . . . θ

an−2−1
n−2 θpnn . As before we use

the relations (84) to rewrite it as θpr−1
r θ

ar+2−1
r+2 . . . θ

an−1

n−1 θ
pn
n . As before, if X ̸= 0, then (115)

follows.

Finally, we apply (93) to X in (115) with γ = θn, ϵ = θn−1θ
an−2
n , ϕ = θp11 . . . θ

pn−1−1
n−1 ,

and δ = θq11 . . . θ
qn−1

n−1 θ
an−2
n . Then ϵγ and γδ have a factor of θn−1θ

an−1
n , and hence both are 0

by (83). The remaining term containing δϕ is exactly Fn.
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