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Abstract Recently, a growing number of studies have used machine learning (ML) models to parameterize
computationally intensive subgrid-scale processes in ocean models. Such studies typically train ML models
with filtered and coarse-grained high-resolution data and evaluate their predictive performance offline,

before implementing them in a coarse resolution model and assessing their online performance. In this work,
we systematically benchmark the online performance of such models, their generalization to domains not
encountered during training, and their sensitivity to data set design choices. We apply this proposed framework
to compare a large number of physical and neural network (NN)-based parameterizations. We find that the
choice of filtering and coarse-graining operator is particularly critical and this choice should be guided by

the application. We also show that all of our physics-constrained NNs are stable and perform well when
implemented online, but generalize poorly to new regimes. To improve generalization and also interpretability,
we propose a novel equation-discovery approach combining linear regression and genetic programming

with spatial derivatives. We find this approach performs on par with neural networks on the training domain
but generalizes better beyond it. We release code and data to reproduce our results and provide the research
community with easy-to-use resources to develop and evaluate additional parameterizations.

Plain Language Summary Accurately predicting climate change requires running intensive
computer simulations called climate models. Climate models divide the world into grid cells, solving an
approximation of continuous equations that model the true dynamics. For accurate predictions, these cells
must be small, or equivalently models must be high-resolution. However, even with modern supercomputers,
running many high-resolution simulations is prohibitively expensive. One solution is to run climate models
at coarser resolution, but include “subgrid parameterizations” to account for physical processes occurring at
finer scales and correct bias. Parameterizations are usually developed by analyzing the continuous equations
and empirically determining formulae to predict unresolved effects. However, recent studies have applied
machine learning (ML) methods to learn parameterizations automatically from limited high-resolution data.
This approach has shown promise, but also introduced new challenges with data set preparation, evaluation,
interpretability, and implementation. We provide an open-source framework for learning and evaluating
parameterizations in a simplified model of the ocean. We use this framework to evaluate numerous ML
methods and analyze how best to prepare data sets. We also develop a method of learning equation-based
parameterizations which can be more easily interpreted and implemented. Our approach performs comparably
to the best ML parameterizations, but generalizes better to oceanic conditions unseen during training.

1. Introduction

Current state-of-the-art climate models solve geophysical fluid equations on horizontal grids of size 25 km and
coarser. Models at this resolution are not able to accurately and sufficiently resolve processes with physical
length scales smaller than the model grid, for example, convection in the atmosphere and mesoscale eddies in the
ocean. Since increases in computational power will likely not enable climate models to resolve these processes
before the effects of climate change ensue (Fox-Kemper et al., 2014; Schneider et al., 2017), we must represent
subgrid-scale (SGS) processes with closure models, also known as parameterizations. Yet, these SGS models are
some of the largest sources of bias and uncertainties in climate simulations: for example, insufficient representa-
tions of transient eddies cause biases in modeled currents and sea surface temperature in the ocean (Griffies
et al., 2015; Hewitt et al., 2020), and the precipitation pattern is strongly sensitive to the different subgrid cloud
closures, thereby causing significant errors in climate projections (Stevens & Bony, 2013). Therefore, developing
robust parameterizations remains an important task toward reliable climate projections.
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In ocean circulation models, stratified turbulent processes are one of the primary targets of SGS closures
(Pope, 2000; Vallis, 2017). Classic SGS models are typically designed with specific goals in mind; for example,
to dissipate small-scale enstrophy (Smagorinsky, 1963), to reinject energy at larger scales via backscattering
(Jansen & Held, 2014; Jansen et al., 2015), or to improve the representation of heat and tracer transport in the
ocean interior (Gent & Mcwilliams, 1990; Gent et al., 1995; Redi, 1982). However, human choices in the design,
formulation, and tuning of these SGS models sometimes lead to poor correlation between parameterized SGS
forcing and true SGS forcing as diagnosed from high resolution simulations (Khani & Porté-Agel, 2017). This
can result in unrealistic large-scale simulations despite recent progress in the representation of resolved processes
(Fox-Kemper et al., 2019; Griffies et al., 2009). These shortcomings call for complementary, more systematic
and data-driven approaches.

Recently, an increase in high-resolution observations and simulations combined with advances in machine-learning
(ML) methods has propelled a surge in the development of data-driven SGS parameterizations in climate
models (Beucler et al., 2021; Bolton & Zanna, 2019; Frezat et al., 2022; Guan et al., 2022; Guillaumin &
Zanna, 2021; Krasnopolsky et al., 2010; O’Gorman & Dwyer, 2018; Rasp et al., 2018; Subel et al., 2022; Yuval
& O’Gorman, 2021; Zanna & Bolton, 2021). Directly learning from data, ML methods automatically extract
relevant information from observations and high-resolution simulations to improve coarse-resolution models at
a reduced computational cost. Despite their universal approximation properties (Hornik et al., 1989), popular
ML models such as neural networks are often opaque to interpretation and can extrapolate poorly to conditions
unseen during training (Bolton & Zanna, 2019; O’Gorman & Dwyer, 2018; Recht et al., 2018; Subel et al., 2022).

The performance of data-driven approaches is greatly influenced by choices that must be made in data set prepa-
ration. The formulation of the subgrid forcing term, either in terms of tendency or subgrid-scale fluxes, can
affect the stability of parameterized models (Yuval et al., 2021). Different filtering schemes also have significant
effects on the online performance of subgrid parameterizations (Frezat et al., 2022; Piomelli et al., 1988; Zhou
etal., 2019).

There is currently a vast number of possible choices in terms of ML models, training target formulation, and
filtering and coarse-graining methods. However, few studies offer a direct and adequate comparison between
data-driven ML methods and physical-based parameterizations. Moreover, well-defined quantitative (rather
than qualitative) online metrics are lacking. In this paper, we introduce a family of data sets (Sections 2 and 3)
and quantitative metrics (Section 4) for learning and evaluating ocean eddy subgrid parameterizations, both
offline and online, using a quasi-geostrophic (QG) simulation (data sets and code are available open-source; see
Appendix D). Our online metrics quantify to what extent the time-averaged spectral and distributional properties
of parameterized simulations match those of ground-truth high-resolution simulations, as well as whether they
improve the accuracy of more predictable short-term dynamics. These metrics make it possible to comprehen-
sively compare numerous parameterizations, and the effects of data set design choices on their performance on
the physics of the simulations (e.g., spectral properties), climate (e.g., distributional of variables such as PV), and
weather (e.g., the evolution of short-term forecast).

In Section 5, we perform such a study for fully convolutional neural network parameterizations, evaluating how
offline and online performance change with different designs of inputs (i.e., types of feature variables—velocity
or potential vorticity) and outputs (i.e., formulations of subgrid-scale forcing). Even for the best-performing
neural networks, we find poor generalization to flow regimes unseen during training, consistent with previ-
ous literature (Bolton & Zanna, 2019; Guan et al., 2022; O’Gorman & Dwyer, 2018; Recht et al., 2018; Subel
et al., 2021, 2022).

Motivated by these generalization issues, as well as the lack of interpretability of neural networks, there has been
increasing interest in the physical sciences community in symbolic regression (also known as equation discovery).
In symbolic regression, instead of an opaque model, the final output of training is a transparent equation, which
often generalizes better (Champion et al., 2019; Mojgani et al., 2021; Rudy et al., 2017; Zanna & Bolton, 2020;
Zhang & Lin, 2018). Many of these studies perform symbolic regression using sparse linear regression on top
of a manually constructed basis of terms representing various operations (e.g., derivatives or multiples) of base
features. Although powerful for small numbers of terms, this approach quickly becomes prohibitive because the
space and time requirements grow exponentially if we consider higher-order operations.
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To address these challenges, in Section 6 we introduce a novel algorithm for equation discovery based on genetic
programming, an alternative form of symbolic regression that is stochastic but can more efficiently explore
higher-order operations (Koza, 1994; Schmidt & Lipson, 2009; Xing et al., 2022). We adapt this algorithm
to search over spatial differential operators, and combine it with linear regression and residual-fitting to more
efficiently and accurately fit constants. We find that the discovered expression of symbolic parameterization
includes features discovered in prior works, is superior to traditional physics-informed turbulence SGS closures,
has similar performance to neural networks in both offline and online metrics, and generalizes better to unseen
flow regimes than neural networks and baseline physical parameterizations.

2. Numerical Simulations

This section describes the simulations we use to generate our data sets, which are based on pyqg (Abernathey
et al., 2022), a Python library that models quasi-geostrophic (QG) systems using pseudo-spectral methods. QG
systems are able to capture the generation of ocean mesoscale eddies, the key process we parameterize in this
study, and are often used to develop and test physic-based parameterizations (P. S. Berloff, 2005; Porta Mana &
Zanna, 2014; Jansen & Held, 2014). In addition, QG systems are a reasonable approximation to the equations of
motion in more realistic ocean models in the limit of strong stratification and rotation. Importantly for this study,
which tests numerous parameterizations online, they can be simulated much more efficiently than full-fledged
ocean models or GCMs.

2.1. Idealized Two-Layer QG Model

We use a two-layer version of the QG model from pyqg. The model's prognostic variable is potential vorticity
(PV), denoted as g, in the upper and g, in the lower layer:

2

.
an = Vyu + (=1) g,—‘I;Au/, me (1,2}, €))

where y,, is the streamfunction with depth H,, Ay = (w1 —y»), and V = ((%, :—y} is the horizontal gradient

operator. Zonal and meridional velocities are obtained from the streamfunction by the relations u,, = —d,y,, and
v,, = 0, for each layer with m € {1, 2}. We express the horizontal velocity as a single vector u,, = (u,,, v, ). We

use the beta-plane approximation, such that the Coriolis acceleration is a linear function of latitude (y) with slope
B, such that f = f, + By, and g’ is the reduced gravity.

The prognostic equations, solved in spectral space, are:

0Gm o ) . ) R ) .
% = =JWm, qn) = 1k uim — ikUpnGm + 5m.2"ekK2yI2 + ssd, )

where d, is the Eulerian time derivative, () denotes taking the Fourier transform, and x = 1/k2 + /2 is the radial
wavenumber, where k and [ are zonal and meridional wavenumbers, respectively. J(A, B) = A B, — A, B, is the

2
Jo_ AU, where AU = U,-U, is

g Hy
a fixed mean zonal velocity shear between the two fluid layers. The Dirac delta function, §,,,, indicates that the

horizontal Jacobian. The mean PV gradient in each layer is g, = g + (—1)""'

bottom drag with coefficient r,, is only applied to the second and bottom layer.  and 1 are related to each other via

fZ fZ
5 W 4 = Ty
(M —&7T) - = ,where M = LS S N 3)
~ ~ /o _ Ny
V2 % g'Hy &' Hy

such that either g or y can independently identify the state of the system.

The model is solved pseudospectrally (Fox & Orszag, 1973) through inverting the velocity field and PV to
real space, calculating the Jacobian using real-space PV fluxes, and transforming back to spectral space. The
scale-selective dissipation (ssd), written as an additive term in Equation 2, is defined as a highly scale selective
operator, which attenuates the last 1/3 of the spatial frequencies of the spatial frequencies of all terms on the
right-hand side of Equation 2. More precisely, the operator takes the form of an exponential filter, F (), such that
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Fa(c™ 1, K* < K¢
¢ K*) = 4 (4)
o~ 236(k* ;) , K* > K,

where k* is the non-dimensional radial wavenumber and x, = 0.657, the cut-off wavenumber. After each time step,
Gm(x*) values are multiplied by F (x*). Similar to the 2/3 dealiasing rule (Orszag, 1971), this filtering scheme
reduces aliasing errors in the same range of scales, but additionally provides numerical dissipation necessary for
stable simulations. The energetic contribution from the ssd term is relatively small (see Figure D11; energy fluxes
are an order of magnitude lower than those shown in Figures 2d-2g, and only nonzero over a narrow range of
wavenumbers), which is important for simulations of quasi-2D turbulence (Thuburn et al., 2014).

2.2. Model Setup

We configure the model with a doubly periodic square domain with a size of L = 10% m, a flat topography, and a

total depth of H = H, + H,, a fixed mean zonal velocity shear, AU with U, = 0. We set a fixed deformation radius

. . . L. e s a1 . ! H{H
r,» which is the characteristic scale for baroclinic instability and mesoscale turbulence, using r2 = % ‘H 2 (see
0

Table 1 for parameter values).

We select the model's grid size, Ax, in relation to the deformation radius. To resolve mesoscale eddies, one needs
to ensure that r,/Ax is greater than 2 (Hallberg, 2013). With r, = 15,000 m, if we choose a 256 x 256 grid where
Axy,;,,. = L1256 = 3906.25 m, then r/Ax,, . = 3.84, so mesoscale turbulence should be well-resolved; if instead
we choose Ax,,, = L/64 = 15,625 m such that r/Ax, = 0.96, we expect that the simulation is unrealistic with a
lack of mesoscale eddies. In such configuration, we would need to find a parameterization that acts at that resolu-
tion to replace the missing turbulent physics. We hereby refer simulations with a grid of 256 x 256 as “Highres,”
and simulations with a grid of 64 X 64 as “Lores.”

All simulations are run with a numerical timestep Az = 1 hr.

We consider two distinguishable flow regimes on which generalization properties of parameterizations can be
tested: eddy configuration, which leads to the formation of isotropically distributed eddies, and jet configura-
tion, which leads to the formation of anisotropic jets. These configurations exemplify the two primary scaling
regimes of meridional heat transport (Gallet & Ferrari, 2021), and we will test whether parameterizations learned
with data from one generalize to the other. Snapshots from each are visualized in Figure 1, and the pyqg param-
eters used to generate them are given in Table 1.

2.3. Diagnostics

The physical characteristics of QG systems can be qualitatively represented by various diagnostics such as energy
and enstrophy spectra, total kinetic energy and enstrophy, and a spectral energy budget (Marques et al., 2022;
Yankovsky et al., 2022). Further, we also use these diagnostics quantitatively to define difference and similarity
metrics and compare the performance across different SGS models implemented in low resolution simulations
in Section 4.

Resolution has a strong impact on these diagnostics. In Figure 2, we show quasi-steady state statistics (spectra,
kinetic energy timeseries, probability density function) from simulations run at multiple resolutions (48 X 48,
64 x 64, 128 x 128, and 256 X 256 grids). The two higher-resolution simulations (L/Ax > 128) show similar
behavior, indicating near-convergence of the statistical characteristics over the wavenumber band containing most
of the kinetic energy of mesoscale eddies. The two lower-resolution simulations (L/Ax < 64) show significant
differences due to insufficiently resolved turbulent features which affect the flow at all scales.

To identify the energy pathway of the flow, we evaluate spectral fluxes of different terms in the two-layer QG
system. Let E(k, [) denote the total spectral energy density of the two-layer system, we have
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Figure 1. (a and e) Snapshots of upper and (b and f) lower potential vorticity (PV), (c and g) barotropic kinetic energy, and (d
and h) barotropic enstrophy for simulations run for 10 years in eddy (a—d) and jet (e-h) configurations over a square, doubly
periodic domain of length 10° m. Eddy configuration results in an approximately isotropic distribution of vortices, while jet
configuration results in the formation of stable, long-lived jets with more coherent latitudinal structure.

2

0E(k,1 f
( ) I(Wms V)| toH T (0 = 93) v, yo)]

> o,
=227 8

m=

S H ®
I 2 .
+g/—HkAU|R[jl[/1 l[/z] - Freklc2|y/2|2,

where * denotes complex conjugate, R denotes real part, j is the imaginary unit, and the terms on the right-hand
side are the spectral contributions from kinetic energy flux (KE flux), available potential energy flux (APE flux),
available potential energy generation (APE gen), and bottom drag, respectively.

The lower row of Figure 2 demonstrates the typical energy cycle in QG turbulence (Salmon, 1980; Vallis, 2017):
the potential energy of fluctuations is extracted from the prescribed mean flow (APE gen) and cascades toward
small scales up to the deformation radius (APE flux) where it is converted to kinetic energy due to baroclinic
instability (not shown). The kinetic energy then flows back to large scales following the inverse energy cascade
(KE flux), where it is ultimately dissipated by friction (bottom drag).

The coarse resolution models (L/Ax < 64) poorly resolve the formation of mesoscale eddies due to baroclinic
instability and their enlargement due to the inverse energy cascade (Zanna et al., 2020), leading to underestimated
extraction of energy from the mean flow and a breakdown in the energy cycle.

A promising approach to avoid this breakdown is to supplement the resolved kinetic energy flux with a so-called
“backscatter” parameterization (Jansen & Held, 2014; Porta Mana & Zanna, 2014) which energize eddies. We
believe that efficient subgrid parameterizations should simulate backscatter at eddy permitting resolution, but
also other processes that may matter, such as dissipation. In this paper we do not study precisely which physics
are parameterized with data-driven subgrid models, but instead quantify how they influence the resolved energy
cycle.

3. Diagnosing Subgrid Forcing

The goal of our work is to learn models that, given only low-resolution inputs, can predict the subgrid forcing,
S, missing from a low-resolution QG model (Equation 6). To do that, we need to first quantify subgrid forcing,
which is generally done by filtering and coarse-graining high-resolution simulations. This is done sometimes
under the implicit assumption that coarsened high-resolution data will have a similar enough distribution to
low-resolution data that the same data-driven parameterizations will work for both. We use () to denote a generic
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Differences between PyQG models at different spatial resolutions
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Figure 2. Comparison of time-averaged kinetic energy power spectra summed over fluid layers (a), time-series of total kinetic energy, (b), spatially flattened
probability distribution of upper layer PV (c), and spectral energy flux terms (d—g) for eddy configuration simulations at multiple horizontal resolutions: L/Ax = 256, L/
Ax =128, L/Ax = 64, and L/Ax = 48. Higher-resolution simulations (L/Ax > 128) converge, while lower-resolution simulations (L/Ax < 64) differ from each other and

from the higher-resolution simulations.

filtering and coarse-graining operator. However, the choice of filtering and coarse-graining and the choice of
subgrid forcing terms to learn are not uniquely defined.

In Sections 3.1 and 3.2, we present several options for how to define subgrid forcing terms in their continuous
forms. Specifically, we consider a forcing S in the PV equation that can be added to a coarse resolution simulation
to improve its physics such that

9,
ot

(6

= (U, @) — kBl — kU, + Smarai®yry + ssd + S,

where S can take the form of {Sq S,,,ﬁ . ¢q, curl(S,, Sy), curl(§ . (IDU) }, (detailed in Sections 3.1 and 3.2).

tot

In Section 3.3, we discuss the contribution of the forcing term to the energy budget. Finally, in Section 3.4, we
describe three different filtering and coarse-graining options applied in this work.

3.1. Subgrid Forcing of Potential Vorticity

We consider three different definitions of subgrid PV forcing for each fluid layer of the QG model: a total
tendency, S,

o » Which is computed online as the residual between the low-res and high-res simulation (e.g., P. S.

Table 1
Table of Parameters Used in Eddy and Jet Configuration

Config. L] rac [4] H, [m] H, [m] AU [2] gz nm

Eddy 1.5e-11 5.787¢—07 500 2,000 0.025 981 15000

Jet 1.0e—11 7.0e-08 500 5,000 0.025 981 15000
ROSS ET AL. 6 of 36

ASULOI'T suowwo)) aAnear) djqedrdde ayy £q pauraA0s a1e saonIE YO s Jo SN 10§ AIeIqIT AUIUQ AJ[TAN UO (SUONIPUOD-PUL-SULIA)/W0d" K31 KIeIqrjaut[uo//:sdny) suonipuoy) pue swia ], oy 33§ *[€207/90/1Z] uo Areiqry auruQ A3[1p 153, £q 8STEO0SINTTOT/6T01 0 1/10p/wiod Kayim Areiqrjaurjuo-sqndnSe//:sdny woxy papeoumo( ‘1 ‘€707 ‘99¥TTr61



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Advances in Modeling Earth Systems 10.1029/2022MS003258

Berloff, 2005; Brenowitz & Bretherton, 2018); the subgrid forcing due to nonlinear advection, S " and the subgrid
flux divergence forcing, V - P,

3.1.1. Total Tendency (Nonlinear Advection and Numerical Dissipation)

Let 0 and o} denote tendency functions from the high- and low-resolution models, respectively (dropping
subscripts referring to the model layer for simplicity). For any given high-resolution g, we can express its total
subgrid forcing (P. Berloff et al., 2021; Kent et al., 2016; Porta Mana & Zanna, 2014; Shevchenko & Berloff, 2021)
due to the differences between the high- and low-resolution models with respect to () as

S, = 0fq - oLg. 7

dtot

We compute this quantity by setting the initial conditions of the high- and low-resolution models to be g and ¢,
respectively, taking a single step forward with equal At, and subtract the tendency of the low-resolution model
from the filtered and coarse-grained tendency of the high-resolution model.

3.1.2. Subgrid Tendency Due To Nonlinear Advection

Another commonly used definition of subgrid forcing considers the unresolved nonlinear advection (Beck
et al., 2019; Bolton & Zanna, 2019; Guan et al., 2022; Guillaumin & Zanna, 2021; Maulik et al., 2019; Xie
et al., 2020; Zanna & Bolton, 2020), which can be expressed as

S,=m-vg-(-V)z. ®)

where ( u- §\ denotes the advection operator defined on the coarse grid. Note that following Grooms et al. (2013)
and Porta Mana and Zanna (2014), we define the filtered and coarsened velocity u by inverting the filtered and
coarsened PV 2 to ? using Equation 3, multiplying ? by ik and il, and applying an inverse Fast Fourier Trans-

form (FFT) to obtain uand D, respectively.

3.1.3. Flux Divergence Subgrid Tendency

One difficulty in parameterizing subgrid forcing is that naive ML parameterizations may not obey conservation
laws, for example, for momentum and vorticity. Many physical parameterizations are formulated as divergences
of fluxes to satisfy conservation laws by the divergence theorem. Ideally, we want to learn ML parameteri-
zations which behave similarly. One approach is to train ML models to predict subgrid forcing (e.g., S,) but
incorporate a numerical divergence operation into their architectures (e.g., as the final layer of a neural network,
see Zanna and Bolton [2020]). Another is to diagnose a different quantity whose divergence equals the subgrid
forcing (Pawar et al., 2020; Stoffer et al., 2021; Yuval et al., 2021), train ML models to predict this quantity (i.e.,
the subgrid flux) directly, and compute divergences outside the learned model as part of the implementation of
parameterization.

To enable experimentation with this second approach, we define a “subgrid flux” that will be predicted by the FCNN
¢, =ug-ug )

Under the assumption that the flow is incompressible (i.e., that V-u~ V-1~ 0) and that differentiation
commutes with filtering and coarsening, we can show that

V-g,=V-(ug—uq)~S,

These three formulations (S, S,,,, and V - ¢,) are always highly correlated and often nearly identical, but
the exact value of this correlation (especially for V - ¢, vs. the others) can range from 0.75 to 1-10714,
depending on the layer, timestep, configuration, and especially the filtering and coarse-graining operator
(Section 3.4).

ROSS ET AL.
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3.2. Subgrid Forcing of Velocity

Realistic ocean models use velocity as their prognostic variable with temperature and salinity, rather than PV.
Many studies have focused on momentum subgrid closures (Guillaumin & Zanna, 2021; Zanna & Bolton, 2020).
Here, we define momentum forcing which is later related to the subgrid PV forcing.

The first definition involves the advection-based subgrid momentum forcing given by

Se=@-Vyu-(u-V)u (10)

Analogous to Equation 9, we also define momentum subgrid flux terms as

=
=1
=l

u

¢U =
1)
¢l} =

=1l
<|

v —

&l

We use @, = (¢,, $,) to denote the matrix of all four terms of the stress tensor, with a total forcing V - ®, where
the y-component of ¢, is equal to the x-component of ¢ ..

Given that the PV flux is composed of two parts: the relative vorticity flux and the buoyancy or thickness flux,
we note that the relative vorticity flux is related to the momentum flux via the curl operator (Killworth, 1997;
Vallis, 2017). In our simulations, we update the PV tendency with the curl of subgrid momentum forcing, for
example, curl(S,, S,) = 90,5,-9,S,,
for ®, ). Note that curl(S,, S,) is different from S , When obtained from the respective coarse-grained fluxes:
correlations between the two terms range from +0.2 to —0.4 depending on the filtering and coarse-graining

operator.

which serves as a momentum parameterization in QG equations (similarly

u’

3.3. Contribution of Forcing to Diagnostics

Similar to Equation 5, we derive the spectral contribution of subgrid-scale forcing toward total energy

sub 2
0E(k,1) 1 A
— =7 H,R A;:ISm 5 12
< at > H m=1 [lll ] ( )
where S, denotes the spectral PV tendency induced by the SGS model in the mth layer. This equation states
that the total tendency induced by the subgrid term can be written as the projection of subgrid tendency onto the

streamfunction in each layer.

3.4. Coarse-Graining and Filtering

We are using a combination of filtering and coarse-graining to diagnose the subgrid forcing. There are a number
of possible ways to filter and coarse-grain simulations. Filtering can be identified by various convolutional kernels
(top-hat, Gaussian, e.g., Sagaut [2006]), which can be approximated on a given mesh with quadrature rules
(Guillaumin & Zanna, 2021; Xie et al., 2020), polynomials based on Laplacian operator (Grooms et al., 2021;
Sagaut & Grohens, 1999) or applied in spectral space (Guan et al., 2022). Coarse-graining methods include spec-
tral truncation (Thuburn et al., 2014), averages over boxes (Beck & Kurz, 2021; Porta Mana & Zanna, 2014) or
subsampling (Xie et al., 2020, i.e., selection of every K's point).

The combination of filtering and coarse-graining has also been shown to reduce aliasing in the computa-
tion of subgrid forcing (Zanna & Bolton, 2021). Here, rather than focusing on one method for filtering and
coarse-graining, we examine the sensitivity of our results to three different operators for diagnosing the subgrid
forcing in our simulations: two different filters in spectral space (referred to as “Operator 1" and “Operator 2”),
and one filter in real space (and “Operator 3”).

For Operator 1 and Operator 2, given that pyqg is a pseudo-spectral model, it is natural to use spectral methods
to perform coarse-graining and filtering. For data generation, we first coarse-grain and then filter, which are
commutative for elementwise spectral filtering operators, so can be done in whichever order is most convenient.

ROSS ET AL.
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Coarse-graining is done by coarse-graining the simulation by a factor of K, or more precisely, truncating the set
of spatial modes of « by only keeping the first 1/K. For example, in the case of going from resolution 256 X 256
to 64 X 64, we start with a ¢ with 128 modes and only keep the first 32. Spectral filtering generally consists of
applying selective decay that reduces the strength of the highest frequencies, whereas low-frequency components
are mostly retained after truncation. Here, we use two different filtering methods (Sections 3.4.1 and 3.4.2).

Finally, to mimic the procedure necessary for ocean models which are not run in spectral space, we convert our
output to a Cartesian grid and applying filtering and coarse-graining in real space (“Operator 3,” Section 3.4.3).

3.4.1. Operator 1: Spectral Truncation, Sharp Filter

The first option is implemented by simply applying the same quadruple-exponential filter used by pyqg to imple-
ment small-scale dissipation in Equation 4. This filter leaves small wavenumbers unchanged but attenuates wave-
numbers above a cutoff threshold k¢ = 2/3 of the low-resolution model's Nyquist frequency:

2 Grs K < K°
9 = o 13)
‘irc % e—23.6(K—K ) Axlum, K> KC.

In some sense, this is the most conservative choice of filter possible (i.e., closest to not filtering at all), since it
will already be applied within the ocean model. We use “Operator 1” to refer to spectral truncation followed by
the application of this filter.

3.4.2. Operator 2: Spectral Truncation, Softer Gaussian Filter

The second spectral filtering option considered (“Operator 2”) is to instead apply the following Gaussian filter
to all remaining modes:

9o =G * e—KZ(ZAxlom)z/Zét (14)

This choice of filter is based on Guan et al. (2022) and Pope (2000). According to the definition of the filter width
given by Lund (1997), this filter is twice as large as the grid size of the coarse model.

3.4.3. Operator 3: Diffusion-Based Filtering, Real-Space Coarsening

Finally, we consider a procedure which is closer to the procedure needed for ocean models. We apply GCM-Filters
(Grooms et al., 2021; Loose et al., 2022), a recent filtering method which approximates the spectral transfer func-
tion of Gaussian filter with polynomials based on the Laplacian diffusion operator, converting our pyqg output
to a Cartesian grid. We then coarse-grain the filtered output in real space. To reduce the resolution by a factor of
K, we average the input field over non-overlapping boxes of K x K points. We call this procedure “Operator 3.”

A comparison of the effects of these different filtering and coarse-graining operators on PV and its subgrid forc-
ing is shown in Figures 3 and 4.

3.5. Comments Regarding Notation

We use superscripts (1), (2), and (3) (for Operators 1, 2, and 3, respectively) to describe subgrid forcing computed
with each operator. For example, Sfl” signifies the subgrid tendency due to nonlinear advection diagnosed by
Equation 8 and computed with the operator from Section 3.4.1, while & signifies the tensor of velocity subgrid
fluxes diagnosed by Equation 11 and computed with the operator from Section 3.4.3.

In addition, we use () to refer to all low-resolution variables, whether coarse- grained from a high-resolution simu-
lation or natively from a low-resolution simulation. The reason is that we evaluate parameterizations offline over
filtered and coarse-grained high resolution variables, but evaluate parameterizations online over low-resolution
variables. Although these variables can be different in various respects (e.g., may be differently distributed),
when learning data-driven parameterizations from subgrid forcing data collected offline, we necessarily assume
that one will generalize to the other. Though this is an assumption we explicitly test in online evaluation.

ROSS ET AL.
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Comparing effects of three filtering and coarse-graining operators
on potential vorticity forcing
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Figure 3. Comparison of the effects of three different methods of filtering and coarse-graining 256 X 256 eddy configuration
initial states (a) to 64 X 64 (b—d), (e—g) along with resulting forcing terms S o defined in Equation 8. (b and e) Operators 1 and
(c and f) 2 truncate Fourier modes and apply sharp and soft spectral filters, respectively, while (d and g) Operator 3 applies
diffusion-based filtering and averaging in real space. See Section 3.4 for operator definitions and Figure 4 for comparisons of
associated spectral properties.

In the remaining text, we also simplify V to just V for conciseness. It should be treated as V when applied to a
coarsened or low-resolution variable.

4. Metrics

In the sections that follow, we evaluate a large number of parameterizations on data generated with different
operators and forcing formulations, as well as different inputs and architectures. Given that the models are too
numerous to manually inspect, we define several levels of metrics to quantify their performance. In Section 4.1,
we define metrics which can be evaluated offline, that is, on held-out testing sets of subgrid forcing data. In
Section 4.2, we define online metrics that measure the similarity of low-resolution simulations run with the
parameterization to high-resolution simulations. These metrics account for (a) aspects of the model physics (e.g.,
kinetic energy flux at different scales), (b) the climatological biases and characteristics of key variables (e.g.,

Comparing effects of three filtering and coarse-graining operators
A x10-¢ on spectral properties of 256x256-64x64 PV forcing

1.0 /-/ \
Contribution 05 TR
toward 9E/at ’_,.//’ N
[M3s73] g0l =m==co-cc RN
. . ~Q - —= —
s N STEnE
"~ - —— Operator 1 (spectral truncation, sharp filter)
B - —-= Operator 2 (spectral truncation, Gaussian filter)
- Operator 3 (GCM-Filters, real coarsening)
, p [¢]
107!
Power
spectrum
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1073 1074
Isotropic wavenumber [m™!]

Figure 4. (a) Energy redistribution, Equation 12 and (b) power spectra of S, by filtering and coarse-graining operator
(computed on eddy configuration data, averaged over time, and summed across layers). Each operator produces forcing which
redistributes energy differently across scales with different spatial spectra. See Figure 3 for comparisons of forcing snapshots.
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distributions of potential vorticity), and (c) the forecast skill of the simulation (e.g., decorrelation timescales of
short term forecasts).

4.1. Offline
Offline metrics quantify the parameterization's skill at predicting its intended target. For each fluid layer, we
consider:

- N [E[(S*SA)Z] Lo - .
1. The coefficient of determination (R?), 1 — Tomsr]’ which is 1 when predictions are perfect, 0 when predic-

tions are no better than always predicting the mean, and negative when worse than always predicting the mean.
Cov(S ,S‘)
050

set. This quantity is between —1 and 1 and can remain high even when R? is negative, for example, if predic-

2. Pearson correlation (p),

, where o denotes the empirical standard deviation of a quantity over the data

tions are wrong by a large but consistent scaling factor.

These metrics are evaluated on held-out data sets of filtered and coarse-grained high-resolution simulations from
both eddy and jet configurations. They can either be aggregated over time and space or expressed as functions
of time or space. In addition, we visualize the power and energy redistribution spectra of the predicted subgrid
forcing and compare them to the corresponding quantities for the ground-truth forcing.

4.2. Online

In contrast to offline metrics, we evaluate online metrics by initializing a new QG simulation at low resolution
and, at every time step, passing its state to the parameterization and adding the parameterization's output to the
PV tendency. The distribution of these low-resolution states may therefore be different, but by analyzing the
ultimate results and testing for various forms of consistency with high-resolution results (i.e., online metrics), we
can evaluate whether the parameterization is effective at improving the model physics and/or the climatological
or forecast skill.

To compute such online metrics, we first run 5 parameterized low-resolution simulations for 10 years in
both eddy and jet configurations initialized from different random states, saving all state variables and
diagnostics described in Section 2.3. We then compute distance metrics between the (statistical and spec-
tral) distributions of these variables from the parameterized low-resolution simulation and those from 5
simulations run at high resolution in corresponding configurations. Finally, we normalize these distances
by the corresponding metrics for unparameterized low-resolution simulations to obtain more interpretable
similarity scores.

4.2.1. Differences Between Time-Averaged Power Spectra and Fluxes

Some of the most important characteristics of simulations are how energy and enstrophy distribute and flow
across scales, which we measure using power spectra and the spectral flux diagnostics described in Section 2.3.
Ideally, a parameterized simulation should match a high-resolution simulation with respect to all such quantities.

For both power spectra and fluxes, we compute a total root mean squared difference between curves f

1

i D (font(k) = foasa(k))’ (15)

kek

spectral_diff(siml, sim2; f) = \/

where K is a suitably chosen set of isotropic wavenumbers common to both simulations. In our case, K is
evenly distributed in log space and is up to 2/3 of the Nyquist frequency of the low-resolution simulation
(#1.07 x 1073m~"). We compute this metric for the energy and enstrophy power spectra in each layer and
for the spectral energy fluxes (KE flux, APE flux, APE generation, and bottom drag), yielding a total of 8
metrics. The contribution of parameterizations toward total energy (Equation 12) is added onto the KE flux
term for parameterized low-resolution simulations. An illustration of this kind of distance metric is shown
in Figure Sa.
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Figure 5. Illustration of the three types of difference metrics defined in Section 4.2. (a) spectral diffs compute the RMSE between different quantities summed
over isotropic wavenumber k. (b) distrib_diffs compute the earth mover's distance between the marginal distributions of variables at the end of the simulation. (c)
decorr diff estimates how much faster a given simulation diverges from a high-resolution simulation when starting from the same random initial state.

4.2.2. Differences Between Spatially Flattened Probability Distributions

We also consider differences between the empirical distributions of various quantities in different simulations at
the end of the simulation, which we measure with earth mover's distance or Wasserstein distance (Monge, 1781;
Rubner et al., 2000):

S

distrib_diff(siml, sim2; f) = / | Psim1 (f < x) = Psimo(f < x)| dx, (16)

-0

where Psi,(f < x) is a cumulative distribution function of quantity fin a given simulation. If we imagine the
two probability density functions as mounds of earth, this metric corresponds to the minimum amount of work
required to move all the mass from one mound to the other. For 1-dimensional distributions, it reduces to the inte-
gral of the difference in each cumulative distribution function, which we approximate empirically. We compute
these differences for the quasi-steady-state distributions (marginalized over space and at the final timestep) of u,
v, ¢, the kinetic energy density (u? + v?)/2, and enstrophy curl?(u)/2 at each layer. This leads to 10 total metrics
for each simulation.

Note that when comparing low-resolution to high-resolution metrics, we are comparing the distributions of,
for example, u and u, so histograms are appropriately normalized. An illustration of this kind of comparison is
shown in Figure 5b, though for brevity we show only the difference in the integrals of PDFs rather than the inte-
grals of the corresponding CDFs (which gives the exact value of distrib_diff).

4.2.3. Differences in Decorrelation Times

The previous metrics consider whether aggregate, long-term simulation statistics (i.e., “climate’) match those
of high-resolution simulations. Arguably, though, parameterizations should also improve the similarity of short-
term trajectories (i.e., “weather”) between low- and high-resolution simulations—or at least not significantly
worsen it.

We measure this short-term similarity by defining a “decorrelation time” metric, that is, minimum time ¢ to
achieve correlation 6 from above, averaged over ensemble of initial conditions ¢, and their perturbations e

decorr_time(siml, sim2) = E, ¢ [mtin {t . Corr (q;[i)nn(q())’ q;'i)mz(qo + 6)) < 5}] 17)

where each qgi)m(qo) denotes a snapshot of the PV for the given simulation integrated for time ¢ starting from an
initial condition ¢, sampled from the quasi-steady state, ¢ is a small independent Gaussian perturbation with
standard deviation 1071°, and 6 = 0.5. When siml and sim2 have the same dimensionality, Corr denotes the
simple Pearson correlation; when they have different dimensionalities (i.e., if siml is higher resolution than
sim2), we compute the correlation after filtering and coarse-graining the higher-resolution simulation to the
resolution of the other simulation using Operator 1 (Equation 13). We approximate expectations [E,,. using
empirical averages over 5 random samples of g,, €, and we use the same random high-resolution g, for all
low-resolution models so that correlation trends for different low-resolution models can be paired.
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><10_GSimiIarity scores for KE flux spectral diff

With a decorrelation time now defined, we can compare the expected time

N

Highres it takes for one type of simulation to fall out of sync with another, versus the
— sim = l. . . . . .
diff = 0.0 expected time it takes for one simulation to fall out of sync with a perturbed
Lowres . .
—e—  sin=10.0 version of itself:

diff =5.7x107"7
Lowres + Param 1

KE flux [m3s—3]
o

|
N

. gim= 0.84 decorr_diff(siml, sim2) = decorr_time(siml, siml)
diff =9.3x1078 ) ) ) 18)
Lowres + Param 2 —decorr_time(siml, sim2),

e sim = -0.86
diff =1.1x107°

H
2
3

Isotropic wavenumber [m~1]

Figure 6. Example online similarity scores for two parameterizations
corresponding to the spectral_diff of their KE flux terms with respect
to high-res (as compared to low-res). In this example, the first parameterized
model's KE flux curve is much closer to that of the high-res model than the

15 In our study, siml is a high-resolution simulation, which stays correlated
with a perturbed version of itself for a relatively long time, while sim2 will
be a low-resolution simulation. With the eddy configuration, the correlation
of high-resolution simulations stays above 0.5 for about 1 year (black vertical
line in Figure Sc; this roughly quantifies the limit of predictability of the

system), whereas unparameterized low-resolution simulations remain >0.5

low-res model, so its similarity is positive and close to 1 (though slightly lower ~ correlated for about 2 months (gray vertical line in Figure 5c), leading to a
than it might seem from visual inspection due to the logarithmic x-scale). The decorr_diff of 10 months (red arrow in Figure 5c). For a parameterized

second parameterized model, on the other hand, is further away than low-res, low-resolution simulation, we might hope that its decorr_diff is lower than

S0 it receives a negative score.

that of the low-resolution model (e.g., 8 months), indicating that its short-
term evolution is more consistent with that of the high-resolution model.

4.2.4. From Difference to Similarity

One issue with defining such a variety of distance metrics is that they become difficult to compare especially
when they have different units. However, for any particular metric, what we care about is not its actual value but
whether it is smaller for parameterized simulations (vis-a-vis Highres simulations) than for low-res simulations.
To that end, we re-express our distance metrics as similarity scores that quantify how much closer parameterized
models are to high-res than to low-res:

diff(param, high — res) 19)

Similarit ,high —res; diff) =1 - - .
imilarity(param, high = res; d1£f) diff(low — res, high — res)

This similarity score is approximately 1 if the parameterized model's distance to the high-res model is much
smaller than that of the low-res model (and exactly 1 for the high-res model); it is approximately 0 if this distance
is approximately equal to that of the low-res model (and exactly O for the low-res model), and is less than O if the
distance is larger than that of the low-res model. An example is shown in Figure 6. We also include a validation
of the consistency of these scores with respect to high- and low-resolution simulations generated with different
random initial conditions in Figure D10. In general, we evaluate our online results using similarity scores.

Note that there are many alternative metrics that could have been selected (e.g., RMSE for decorrelation timescales,
Kullback-Leibler for probability distributions (Kullback & Leibler, 1951), absolute error for differences in spectra,
etc), that may augment the set defined here to focus on other aspects of the simulations (e.g., extreme events).

4.3. Experimental Setup

With our data sets and metrics now defined, we now describe our experiments to learn and evaluate parameteri-
zations. In total, we test 148 parameterizations—105 fully convolutional neural networks (FCNN5) trained with
different data set design decisions (described in Section 5), a hybrid linear and symbolic regression method using
genetic programming (described in Section 6), and 42 different parameter settings spread over three baseline
physical parameterizations: symbolic regression from Zanna and Bolton (2020), backscatter from Jansen and
Held (2014), and Smagorinsky (1963), all three described in Appendix A.

The trained parameterizations are evaluated offline and also implemented into the coarse resolution simulation
with 64 X 64 horizontal resolution for the online evaluation. To simplify the discussion, we begin by describing
these categories of parameterizations individually, along with some of the experimental results specific to those
categories. We then compare performance across parameterization categories in Section 7.1.

ROSS ET AL.

13 of 36

ASULOI'T suowwo)) aAnear) djqedrdde ayy £q pauraA0s a1e saonIE YO s Jo SN 10§ AIeIqIT AUIUQ AJ[TAN UO (SUONIPUOD-PUL-SULIA)/W0d" K31 KIeIqrjaut[uo//:sdny) suonipuoy) pue swia ], oy 33§ *[€207/90/1Z] uo Areiqry auruQ A3[1p 153, £q 8STEO0SINTTOT/6T01 0 1/10p/wiod Kayim Areiqrjaurjuo-sqndnSe//:sdny woxy papeoumo( ‘1 ‘€707 ‘99¥TTr61



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Advances in Modeling Earth Systems 10.1029/2022MS003258

Because we have multiple categories of parameterization (FCNN, genetic programming, and baselines) and
multiple categories of online metric (spectral, distributional, and decorrelation time) with numerous individ-
ual parameterizations (148) and metrics (19) within each category, we will often simplify as follows. For each
category of online metric, we summarize individual parameterization's scores by taking means (or medians and
percentiles if visualizing variation). For each category of parameterization, we either show a distribution of these
mean scores, or select individual parameterizations to highlight from the Pareto frontier of mean scores within
each category, that is, the set of parameterizations which maximize some linear combination of mean scores.

5. Convolutional Neural Network Parameterizations

We consider parameterizations implemented as fully convolutional neural networks (FCNNs) which output
predictions for all x, y points simultaneously. Models receive input data at all points x, y in both layers (though
we train separate models for each fluid layer to reduce memory cost during training), which allows them to be
maximally flexible, and therefore useful for studying the effects of changing attributes of the data set on best-case
performance.

5.1. Data Set Design Choices

For our FCNN experiments, we are interested in how the structure of the data set affects the offline and online
performance. We train FCNNs to predict subgrid forcing diagnosed with each of the five forcing formulations

({ Stpor> Sq,v - @, curl(Sy, Sp), curl( V. (I)u) }, Section 3), and for each forcing formulation, we generate three

FCNN s trained on data sets generated by each filtering and coarse-graining operator (Section 3.4). Finally, we also
investigate the effect of the choice of input variables we pass to the FCNN by testing every non-empty element of
the power set of {7, u, Va = (0., 0x7, 0,4, 9,D) }, which is 7 options in total. This gives us 5 x 3 x 7 = 105 total
options for constructing FCNN parameterizations.

Notation-wise, we refer to models trained on each option as, for example, FCNN(E, u-— Sff) ) , which signifies an
FCNN trained on the values of PV and velocity to estimate subgrid momentum forcing (Equation 10), computed
with Operator 2 (spectral truncation + Gaussian filter, Section 3.4.2).

For each operator and configuration, we use data from 250 independent high-resolution simulations started from
random noise and run for 10 simulation years (generally reaching the quasi-steady state by 3—5 simulation years
depending on the configuration; we also include data from the transient spin-up state in the data set). We sample
subgrid forcing formulations (i.e., potential prediction targets) and coarsened model state variables (i.e., potential
input variables) every 1,000 simulation hours, to remove almost all correlation between successive samples. This
gives us six data sets (2 simulation configurations, jet and eddy, X3 operators) each with 21,750 snapshots of
input and target variables (each of which is a 64 X 64 X 2 array).

5.2. Architectural Details and Constraints

Following Guillaumin and Zanna (2021), we train FCNNs with eight fully convolutional layers (128 and 64 filters
for the first two layers, respectively and 32 thereafter), ReLU activations, batch normalization after all interme-
diate layers, and circular padding due to the periodicity of the domain. Each input variable at each fluid layer

is passed in a separate input channel. The loss function is mean squared error (MSE), defined as E [(S - )2],

where E denotes the expected value over a data set and S is a generic prediction target. The FCNNs are trained for
50 epochs on a MSE loss evaluated over minibatches of 64 samples. In preliminary experiments, we found that
constraining the FCNN' final output layers to have zero spatial mean when predicting S, and S, was necessary for
online numerical stability (as otherwise, g can continually increase, leading to Courant-Friedrichs-Lewy (CFL)
condition violations). This is done within the FCNN architecture and not as a post-processing step. The constraint
ensures that at each timestep, parameterizations redistribute but not increase or decrease the total PV. However,
when predicting ¢, and ®,, we leave FCNNs unconstrained because we only apply predictions after taking their
divergence. Although the chosen architecture could be improved, for example, by adopting the U-Net model of
Ronneberger et al. (2015), our goal is not to maximize the performance but to study its relationship with data set
design choices.
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Marginal effects of dataset design 5.3. Sensitivity of FCNN Performance to Data Set Design
A on FCNN spectral similarity score
Effect of| — Operator 1 « Further [ Closer to high-res - We now present FCNN-specific results of how online performance varies
filtering & --- Operator 2 with the data set design choices described in Section 5.1. For each design
coarse-| —:- Operator 3 choice, we constructed the corresponding eddy configuration training data,
grammgau ————— trained an FCNN parameterization, and evaluated it in both eddy and jet
B configuration, both offline and online. In each case, all simulations were

Effect of
target

C

Effect of
input

-1.0 -0.5

0.0

Spectral similarity score

1.0

Figure 7. Visualizing the effects of different data set design choices: (a)
filtering and coarse-graining operator, (b) forcing formulation, (c) input. We
use the probability distributions of mean spectral similarity scores, conditioned
on each design choice, and smoothed using kernel density estimation for
visual clarity. Similarity score probability mass further to the right (past the
0 line, and toward 1) indicate that the corresponding difference metric was
low compared to low-res, therefore indicating good online performance. The
results suggest that marginally, similarity was highest along most metrics for
parameterizations trained to use velocity (Panel ¢) to predict velocity-based
subgrid forcing (Panel b) calculated with a sharp spectral filter (Panel a).

Probability density (over mean scores)

numerically stable (the CFL condition was not violated). The stability is
likely due to our architectural constraints (as discussed above) and perhaps
the spectral numerical dissipation scheme of pyqg. However, performance
in terms of similarity metrics varied greatly. To visualize this variation,
Figure 7 shows the kernel density estimates (Rosenblatt, 1956) of condi-
tional probability distributions of the mean spectral_diff similarity score
(substituting Equation 15 into Equation 19) for different data set design
choices of filtering and coarse-graining operator, forcing formulation, and
input variables. Specifically, these plots show the distribution of the aver-
age similarity score across KE power spectra, enstrophy power spectra, and
energy budget terms over isotropic wavenumber, conditioned on different
choices of filter and coarse-graining (Figure 7a), targeted forcing formula-
tion (Figure 7b), and input variables (Figure 7c). Probability density closer
to 1 indicates better performance. Overall, we see higher spectral similar-
ity scores for FCNNs trained on data generated with Operator 1 (spectral
truncation with sharp filter) (Figure 7a) and predicting momentum forcing
rather than PV forcing (Figure 7b). The choice of input has a weaker impact
on these scores (Figure 7c), though simpler terms (u, Vu, or g alone) do
slightly better, consistent with (Dresdner et al., 2022). The same results
hold for distrib_diff similarity (not shown), which is strongly correlated
with spectral_diff (Figure 8). In addition, we can gain insights through

analyzing specific models. If we look at the Pareto frontier of eddy-configuration distributional and spectral

similarity across all our experiments (Figure 8), we find that the only Pareto-optimal FCNN predicts .S, fhl;, which

is computed with Operator 1 but formulated in terms of PV rather than velocity. If we compare this FCNN to

others which are identical except for the filtering and coarse-graining operator (Figure D4) or forcing formulation

(Figure D5), we find again that the choice of operator continues to matter, but that the forcing formulation has

much less effect as FCNNs predicting other forcing formulations with the same filtering and coarse-graining

Online spectral similarity
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Figure 8. Mean eddy-configuration distributional and spectral similarity scores for many of the 148 parameterizations tested,
with those defining the Pareto frontier shown with text (the runs with remaining parameterizations, including all Smagorinsky
runs, have scores to the lower-left of the plot range.).
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(see Figure 9), though its relationship with online performance depends on
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Marginal effects of datasezt design operator all have near-identical effects. Combining these individual results
A on FCNN offline R with the aggregate results of Figure 7, our overall interpretation is that (a)
_Effect of| —— Operator 1 N N e the choice of operator is the most important for online performance, and (b)
flltg(r;:?s (f.( T SSZZEZ: i/./___ ______ § pred.icting velocity forcing (.S“ or @) rather than PV forcing (S, S,,, or
graining o T < ¢,) is not necessary for optimal performance, but may be more robust to
B s g variations in other suboptimal design choices (e.g., picking Operators 2 or
5 3). Operator 1 is more faithful to the numerics of the coarse-resolution model
Effect of § that we are using in the online evaluation (this is further supported by the lack
target ey of backscatter generated using ZB2020, see conclusions).
C kel
Fn 5.4. Relationship Between Offline and Online FCNN Metrics
Eff?;:);): § Offline performance, measured using R?, is strong for all design choices
o
o

0.75

Figure 9. Offline R? scores by data set design choice as in Figure 7, almost all
of which achieve an R? of above 0.8 regardless of condition. The best models

0.80 0.85

0.90 0.95 1.00

Offline R2

by offline R? are different from those in Figure 7.

the filtering and coarse-graining operator. For Operator 1, we see positive
correlations between offline and online performance (Figures 10a and 10d),
meaning that higher R? parameterizations generally performed better online.
However, for Operators 2 and 3, we see low or negative correlations, mean-
ing that improved offline performance was associated with worse rather
than better online performance. This result underscores the importance of
not focusing too much on improving the offline performance of subgrid
parameterizations without first demonstrating that such improvements lead
to improvements in physical realism online.

5.5. Varying the Evaluation Target

Some studies measure the online performance of parameterized low-resolution models with respect to the filtered
and coarse-grained version of high-resolution data (Beck et al., 2019; Guan et al., 2022; Xie et al., 2020), rather

than the high-resolution simulation. Calculating similarity scores for coarse-resolution parameterized models

Metric correlation conditioned on coarsening and forcing formulation
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Figure 10. Correlation between FCNNs' mean scores in each metric group conditioned on the filtering and coarse graining
operator (columns) and forcing formulation (rows) used to generate their training data. In most cases, distributional and
spectral similarity are closely correlated. Correlations with offline R? tend to be negative or small, except for FCNNs trained
to predict PV forcing variants computed with (a) Operator 1.
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Figure 11. Boxplots showing distribution of spectral_diff similarity scores (across all FCNNs trained with each filtering
and coarse-graining operator, e.g., S! for Operator 1, with any forcing formulation) when the definition of similarity is
changed to be relative to a filtered and coarsened version of the high-resolution simulation (bottom three rows), rather than
the original high resolution simulation (top row). Center line shows medians, colored bars show the interquartile range
(middle 50% of the data), whiskers show positions of nearest points outside twice the interquartile range, and dots show
outliers. In general, the relative performance of FCNNs improves when evaluating them against simulations coarsened with
the same operator used in their training data. However, absolute performance is only high for FCNNss trained on data from
Operator 1 (spectral truncation + maximally sharp filter).

relative to a coarsened and filtered high-resolution simulation increases the scores of top-performing FCNNs,

if the parameterization and the target high-resolution models use the same operator (Figure 11). However, even

when the target is coarsened with Operator 2 or 3, the actual scores of these models are significantly lower than

in the case where the FCNN is trained on data generated by Operator 1. The FCNN trained on data generated

by Operator 1 has the best overall spectral similarity score whether we perform the evaluation using the original

high-resolution data or data coarsened with Operator 1. This result suggests that Operator 1 is more appropriate

for computing subgrid forcing in this data set in an absolute sense.

5.6. Feature Importance for FCNNs

To explore the importance of individual features to our FCNN predictions, we look at snapshots of input gradi-
ents, or the partial derivatives of the model's output with respect to its inputs (Baehrens et al., 2010). Note that
although there are many proposed methods for quantifying neural network input saliency (Bach et al., 2015;
Springenberg et al., 2014), input gradients consistently pass sanity checks that have been developed to validate
these methods, while many alternatives do not (Adebayo et al., 2018; Kindermans et al., 2019). In Figure 12,

FCNN(G-SM) input gradients evaluated at x=y =L/2
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Figure 12. Input gradients of an FCNN mapping ¢ (a and e) to thl)
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(b and f), evaluated at the center of the domain. Gradient magnitudes are largest around the x,

y-position corresponding to the prediction (¢ and h) in a given layer. However, they still extend relatively far horizontally, needing 9 pixels to reach >95% of their full

magnitude (i).
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we show a snapshot of input gradients for the FCNN (E - S;IIO)’) at the center of the domain, which quantifies
the sensitivity of its predictions at this particular location to its inputs. Although our FCNN architecture allows
changes in the upper layer ¢ to influence the lower layer prediction and vice-versa, this particular FCNN's input
gradients are only large in magnitude for g in the same layer as the output, suggesting that it largely operates
layer-wise. Additionally, gradients were largest in magnitude around the spatial location of the output, suggesting
that the model operates locally in the horizontal plane. However, we find that a radius of 5 pixels (fourth-order
operations) is needed to explain 50% of the gradients, and a radius of 9 pixels (eighth-order operations) is needed
to reach 95% (Figure 12i). This suggests that symbolic parameterizations may need to be fairly non-local and
high-order to mimic the behavior of FCNNs. We explore this in the next section.

6. Hybrid Linear and Symbolic Regression and Genetic Programming

In addition to opaque models such as neural networks and random forests, it is also possible to learn equations
from data directly with symbolic regression (Koza, 1994). Symbolic-regression based on running sparse linear
regression on top of a manually constructed feature library has become popular and achieved impressive results
in a number of applications (Brunton et al., 2016; Li et al., 2021). Zanna and Bolton (2020) (ZB2020 hereafter)
learned an expression for the subgrid momentum forcing S, with sparse Bayesian regression (see Equation A7 in
Appendix). They used data generated from an idealized primitive equation model, with Gaussian filtering (simi-
lar to Operator 2 defined here). Using data from pyqg and Operator 2 to calculate the same basis features as in
ZB2020 (i.e., divergence, vorticity, stretching and deformation, their x- and y-derivatives, and all cross-multiples),
we are able to re-discover Equation A7 with a simple sparse linear regression algorithm. However, sparse linear
regression entails trade-offs between the size and expressiveness of the feature library and the complexity and
cost of sparse regression, as discussed in Zanna and Bolton (2020). In the example above, our feature library has
the initial basis features (4 elements), their first spatial derivatives (8 elements), and all cross-multiples of those
initial features (144 elements). If we want to expand this library to consider successively higher-order derivatives
(or more than just linear and quadratic multiples), then the number of different expressions we must evaluate for
the whole data set will grow exponentially. Additionally, many expressions will be highly correlated, which can
prevent many sparse regression algorithms from converging (Hastie et al., 2015).

6.1. Hybrid Genetic Programming (GP)

Analternative approach for symbolic regression is genetic programming (GP), a classic approach in AI (Koza, 1994;
Turing, 1950). In contrast to sparse regression, GP algorithms do not require an explicit feature library, simply
a set of atomic features and a set of operations for combining them. The GP algorithm then constructs arbi-
trarily deep expressions by successively applying operators to combine atomic and/or composite features in a
randomized fashion, using evolutionary principles to guide a parallel search for an expression that parsimoni-
ously fits the data. More concretely, GP algorithms begin with a “population” of initially short and randomly
constructed programs. At each iteration (“generation”), programs are randomly culled, with probability inversely
related to their relative performance on a “fitness” metric (see Algorithm 1). Programs that survive can then be
randomly modified (“mutated”) in a variety of ways, which can either lengthen or shorten them. This procedure
is repeated for a configurable number of generations, after which the GP algorithm returns the best-performing
program. To implement genetic programming, we used the gplearn Python library (Stephens, 2019). We ran
into several difficulties with its default implementation, primarily in its difficulty discovering linear combinations
of terms with different orders of magnitude in the weights (constant ranges must be chosen beforehand, and are
sampled randomly rather than optimized), as well as the lack of built-in support for spatial differential operators
in program evolution. We defined custom gplearn functions for differential operators (d/dx,, V2, and u - V))
and combined genetic programming and linear regression in an iterative, residual-fitting procedure described in
Algorithm 1. Crucially, in each genetic programming step, we define fitness in terms of correlation rather than
absolute error, making fitting the outermost constants unnecessary. We run genetic programming with ¢, u, and
v as our base features. Arbitrary powers or cross-multiples of these features can be discovered since the operator
set includes multiplication. This approach allows us to discover all the same terms which appear in the feature
library used for ZB2020, but is not limited to them. Based on results obtained from the FCNNs (Section 5.4),
we chose to run our GP method on PV subgrid forcing, S,, computed with Operator 1 (Section 3.4.1) to simplify
learning. Running Algorithm 1 without any manual experimenter intervention leads to a formula of the forcing
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Figure 13. Offline correlation and sequence of terms discovered by—Hybrid Symbolic regression without any human-in-the-loop intervention (terms learned for
upper/lower layers in blue/orange respectively). Terms learned in initial iterations tended to be physically meaningtul, relatively simple, and related to parameterizations
in the literature, while terms learned in later iterations tended to be complex or unphysical (e.g., adding u and g despite incompatible units in iteration 6).

with an expression for each iteration given in Figure 13. We saw offline performance increase significantly,
with many of the discovered features seemingly physically relevant, based on previous published parameteri-
zations. In particular, we note that V2 (ﬁ . V)E and V27 in the upper layer, together approximate a parameter-
ization proposed by Porta Mana and Zanna (2014), though missing a Eulerian time derivative of PV which is
not provided to the algorithm. However, terms discovered after the first two iterations tend to vary significantly
on random restarts. Terms after the fourth iteration are also significantly harder to interpret (see right end of
Figure 13). More importantly, we find that some combinations of terms include additions of terms with different
units (e.g., ¢ and u). Finally, implementations of parameterizations using the hybrid expressions found after the
sixth iteration were numerically unstable; in addition, although the online performance of runs with the first 4-6
terms from the symbolic parameterizations did improve over low-resolution models, there were still significant
differences with respect to many high-resolution diagnostics. To address these issues, we added a human-in-the-
loop guidance step described below.

6.2. Human-In-The-Loop Guidance

Some manual intervention can be introduced during the learning procedure to improve interpretability and stabil-
ity. We added a human-in-the-loop guidance step in each iteration (gray lines in Algorithm 1), where we edited
or removed terms that seemed unphysical and sometimes added what seemed like natural extensions of existing
terms. In our final OptionalUserEdits step, we attempted to prune the set of terms as much as possible by remov-
ing those whose removal did not worsen online performance or adding some that may improve it. We provide an
account of our specific actions in Appendix C.

This procedure left us with a final parameterization of the form:

S = (V2 + w2 V4 + w3 Ve) (- V)g
+(LU4V4 + LU5V6)5 (20)
+(l_l . V)2V2(w61_)x + W7ﬁy).
Here w; signify the linear weights. Evaluating this parameterization against FCNNs and traditional physics-based
models, we find its performance competitive with neural networks in the eddy configuration (Figures 16 and 17)

and near-dominant in the jet configuration (18 and 19). We discuss its performance further in Section 7.1 where
we compare and contrast different categories of parameterizations.
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Algorithm 1. “Hybrid” Linear and Genetic Programming-Based Symbolic Regression (With Optional Human-In-The-
Loop Interventions in ).

1: procedure FitGeneticProgram(x,y)
2: Run gplearn with operators {8X,ay,V2,(u~V), * +}, and

Fitness(term) = |Corr(term(x),y)| - 0.001 * Length(term)
end procedure
procedure FitLinearRegression (x, y)

Find w to minimize [lw-x—yl}
end procedure

0 J o U1 b W

9: procedure FitHybridSymbolic(x, y)

10: terms « & > set of symbolic expressions
11: W~ & > weights of those expressions
12: Je vy > residual forcing to predict
13:

14: repeat

15: for all layers z do

16: terms « terms U FitGeneticProgram(x,, J.) > learn the next term
17: end for

18:

19: for all layers z do

20: w, « FitLinearRegression(terms(x,), y,) > reweight terms
21: V. < w; - terms(x;) — y: > update residuals
22: end for

23: until convergence

24:

25: return terms, w

26: end procedure

6.3. Symbolic Regression Feature Importance

As in Section 5.6 for FCNN:gs, it is useful to quantify the relative importance of the different symbolic terms. One
way to do this is by examining the weights w,. These are visualized in Figure 14 in two ways: (a) as raw values
(on a log scale), and (b) normalized after dividing by the standard deviations of the corresponding features (on a
linear scale), which makes them directly comparable despite each w, having different units. In normalized form
(Figure 14b), the largest coefficients in both layers are for V4 (ﬁ . V)E, and the absolute magnitudes of these coef-
ficients (Figure 14a) are somewhat close. In contrast, the next-largest normalized coefficients in Figure 14b disa-
gree between layers; for the upper layer, the next-largest coefficient is for V¢ (ﬁ . V)a, while the corresponding
value in the lower layer is near zero. Instead, the next-largest coefficients in the lower layer are for V4g and Vg,
which receive much more weight relative to their magnitudes in the data set. However, despite the difference in
relative weight across layers, the absolute magnitudes of the V4g and Vg coefficients in Figure 14a are almost
equal. Overall, these results suggest that the parameterization learns to behave in reasonably similar ways in
both layers, but with a few crucial differences, particularly in how they handle V¢ (ﬁ . V)ﬁ. The final two terms,
(ﬁ . V)2V23X and (ﬁ . V)2V2ay, receive relatively little (normalized) weight in either layer. Another way to esti-
mate feature importance is by removing each term, re-fitting the linear regression coefficients, and re-evaluating
online performance (Figure 15). If we consider the performance decrease after removal of each feature as a
measure of its importance, we reach similar conclusions: the V* and V terms (for both g and (ﬁ . V)E) are most

. — - . . — 2 . .
important, the V2 (u . V)q term is somewhat important, and the (u . V) V? terms are relatively unimportant.
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Figure 14. Linear regression-derived weights w for the human-in-the-loop genetic programming-derived basis terms

of Equation 20, both as raw values (a, negative values shown with hatching) and normalized (b) after multiplying by the
standard deviations of the terms over the training set (giving them consistent units). The absolute magnitudes of many terms
are somewhat similar across layers, but their effective contributions to the output differ.

6.4. Interpretation of the Learned Expression

Note that the goal of the paper is not to focus on interpretability but to introduce methods for learning and
evaluating parameterizations from data. Therefore, we are not claiming that this parameterization is more phys-
ical than anti-viscosity backscatter (Jansen & Held, 2014) or deformation-based parameterizations (Anstey &
Zanna, 2017). Nevertheless, we will discuss briefly how the discovered terms compared to other subgrid param-
eterizations and leave further analysis of their contribution to model physics to future studies. The components
of the proposed model were discovered in the following order. In the first few iterations, quadratic expressions,
proportional to (ﬁ . V)a , were discovered. Quadratic models are often found to be highly correlated with subgrid
forcing (Anstey & Zanna, 2017; Layton & Rebholz, 2012; Meneveau & Katz, 2000; Porta Mana & Zanna, 2014),
but often cannot be used as standalone parameterizations. The next few iterations led to eddy-viscosity models,
V4g and V®3. Particularly, both weights w, and w, being positive implies that there is dissipation of energy in
small scales and redistribution to larger scales, that is, backscattering (Jansen & Held, 2014). The final terms
discovered are cubic in model variables and contains double-advection operator, (ﬁ . V)z. The terms resemble
the anticipated PV method from Vallis and Hua (1988). This method allows to preserve properties inherent to
geostrophic turbulence such as conservation of energy and dissipation of enstrophy (Marshall & Adcroft, 2010),
but it suffers from inaccurate representation of spectral fluxes (Thuburn et al., 2014). In summary, our discovered

Effect of removing terms from hybrid symbolic model

0.75
o
o
§§ 0.50
2~ 025
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Eddy config (similar to train) Jet config (generalizing)
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Figure 15. Effect of removing individual terms from the symbolic expression of Equation 20 (using human-in-the-loop guidance) on spectral similarity (median scores
within groups, with error bars showing the 20th and 80th percentiles). From left to right, removing V? (ﬁ . V)E reduced performance in eddy configuration, but not jet
configuration. Removing V* and V° terms (for both g and (ﬁ . V)ﬁ) drastically reduced performance in both configurations, which suggests these terms are crucial.

. — 2200 . .
Removing the (u . V) V? terms had small effects, suggesting they could be dropped for future experiments.
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Figure 16. Offline performance for selected subgrid parameterizations on a heldout eddy configuration data set computed
with Operator 1, with means shown in spatial plots. FCNN performance (a—e) is strongest overall, though subgrid power
spectra diverge slightly at large scales (e). The symbolic regression (f—j) model performs slightly worse, but matches the
power spectrum at all scales reasonably well. The backscatter model (k—o) perform much worse offline (though all three
perform well online, Figure 17).

closure contains elements of existing subgrid parameterizations, which have pros and cons when used as stan-

dalone ones. This symbolic parameterization includes up to the seventh spatial derivative of g, which may

be unrealistic to implement into a climate model. However, it might be more realistic than a fully non-local

approach such as the convolutional neural network parameterizations considered in Section 5 or extremely local

physics-based parameterizations (such as anti-viscosity).

Selected parameterizations on eddy configuration
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Figure 17. Sample of online performance diagnostics for symbolic regression and best FCNN/backscatter parameterizations by eddy-config spectral_diff (taken
from the Pareto frontier of top models by spectral and distributional similarity, and averaged across five independent runs). Shading in KE time-series shows standard
deviation over runs. All parameterizations improve significantly over the low-resolution model.
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Figure 18. Offline performance as in Figure 18, but testing for generalization to jet configuration. For FCNNs (a—€), R?

is lower in the upper layer and actually negative in the lower layer. However, correlation remains fairly high, suggesting
that performance might improve with rescaling. For our symbolic regression model (f—j) and backscatter (k—o), offline
performance remains similar to eddy configuration, though only the hybrid symbolic model generalizes online (Figure 19).

7. Discussion and Conclusion

We will finally compare our top parameterizations and then summarize our key findings in this section.

7.1. Comparing Top Parameterizations

To conclude our analysis, we focus on the top-performing models of different categories. The Pareto frontier
of distributional and spectral similarity (Figure 8) conveniently includes one FCNN, our symbolic parameteri-
zation, and two backscatter parameterizations (we select the one with higher spectral similarity). Note that the
Smagorinsky parameterizations have very poor performance online (not surprisingly since they are dissipative)
and we strongly encourage the community to choose better physics baselines when evaluating the performance of
data-driven parameterizations. Offline on eddy configuration (Figure 16), FCNN performance (Figures 16a—16e)
is strongest overall, though power spectra diverge slightly at large scales (Figure 16e). The symbolic regres-
sion model (Figures 16f—16j) performs slightly worse offline than the FCNN, but matches the power spectrum
at all scales reasonably well. The backscatter model (Figures 16k—160) performs much worse offline than the
data-driven models, using R? as a metric. However, all three selected models perform well online (Figure 17),
with the FCNNs showing better distributional performance than the other models (Figure 17c). However, the
FCNN models seem to spin up the large scale faster than the other models (Figure 17b). On jet configuration,
the offline performance remains similar for all models, except for the R? of the FCNN in the lower layer which is
significantly lower than for the eddy configuration (Figure 18b). However, online FCNN's performance degrades
to significantly worse than the low-resolution without parameterization (Figures 19 and 20). In addition, the
backscatter model does not have a significant impact on the low-resolution simulation, though this depends on
which metric we consider (e.g., Figure 19). On the other hand, the symbolic model remains fairly robust - with-
out retraining or tuning in this new configuration. FCNNs with different forcing formulations degraded slightly
less when transferring to jet configuration (Figure D6). However, their average similarity scores were still low
compared to the hybrid symbolic model (Figure D9), and they disrupted the characteristic jet features, causing
the flow to more closely resemble the eddy configuration on which they were trained (Figure D3). Even in the
eddy configuration, decorr_times for the best-performing models are only modestly closer to those from the
high-resolution compared to those of the low-resolution simulation. In the case of the FCNN, the decorrelation
times are actually worse (Figure 21) than the low resolution. Using the decorrelation metric, Smagorinsky param-
eterizations actually performed best (slightly ahead of certain backscatter settings), even though they performed
near the worst by all other metrics (see also Figure D§). As expected, the data-driven parameterizations are doing
well at representing the averaged statistics at coarse resolution (i.e., the climate) but do not improve the short-term
trajectories (i.e., the “weather”).

ROSS ET AL.

23 of 36

QSULDI'T SUOWIO.) dANEa1) o[qedr[dde ayy Aq pauIoA03 A1 SA[AIIE Y() SN JO SANI 10§ AIRIQIT QUI[UQ) AJ[IAN UO (SUONIPUOI-PUE-SULIA} WO AA[IM " ATRIQI[aUI[U0//:Sd1Y]) SUONIPUO,) PUE SWLId [, 3 33S *[£707/90/17] U0 A1eIqry auruQ Ad[IA\ ‘1531 £q 8SZE00SINTTOT/6Z01°01/10p/wod Koim: Areiqrourjuo-sqndnse:sdny woiy papeofumo( ‘[ ‘€70 ‘99vTTH61



A7t |
NI
ADVANCING EARTH
AND SPACE SCIENCE

Journal of Advances in Modeling Earth Systems 10.1029/2022MS003258

Power spectrum [m3s—2]

Energy flux [m3s~3]

Selected parameterizations transferring to jet configuration

A KE power spectrum B4><10-3 Total KE C Upper PV PDFx10*
10° i = °2
— | =
N &3 /.w/m.w 5 é
10 — Highres ™ § ~ /\' 2%
—— Lowres N %2 / AN {/\ 3;
100 —:- FCNN(G-s{) S A 5
i i °1 23
Hybrid Symbolic w g
10°4 e BSCAT(0.007,1.2) 1
1075 10~4 0 2000 -1 0 1
Isotropic wavenumber [m~!] Model time [days] g1 [s~1] %10~
D x10-5 APE gen. E APE flux F KE flux G Bottom drag
N
1.0 7\
|
0.5 |
0.0 Wyiu W—m
N yid
-0.5 N v o
10°5 10-* 1075 10-* 103 10~4 10-° 10-4

Isotropic wavenumber [m™1]

Figure 19. Similar to Figure 17, but evaluated on jet rather than eddy configuration (without retuning). The hybrid symbolic parameterization still improves
significantly over low-resolution model, while backscatter has no discernible effect and FCNNs degrade significantly.

7.2. Conclusion

We introduced a framework and a set of data sets for learning and evaluating ocean subgrid forcing parameteri-
zations in a quasi-geostrophic setup, with a focus on a set of well-defined quantitative offline and online metrics.
We used this framework to train and test physics-based and data-driven parameterizations under a variety of
conditions, namely the different training datasets and definitions of subgrid forcing. Several conclusions stand
out as particularly relevant for developing subgrid parameterizations from high-resolution simulations for climate
models, even though some of the parameterizations developed here cannot easily be implemented in climate
models. We summarize our key points as follows

KE density snapshots for selected parameterizations
Lowres FCNN(G-S{!)  Hybrid Symbolic BSCAT(.007,1.2
¢ g = b > E TR
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Figure 20. Randomly chosen snapshots of kinetic energy density for selected parameterizations on eddy (a—e) and jet
configuration (f—j). On jet configuration, the symbolic parameterization (j) matches high-resolution (f) reasonably well, while
the FCNN (i) deviates significantly and backscatter (h) does not appear to have any effect or modify the low-resolution (g).
See Figures D1 and D2 for more.
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Figure 21. decorr_time results for selected parameterizations on (a) eddy and (b) jet configuration. For each
parameterization type, vertical lines show average time for five pairs of high- and low-resolution simulations to reach 0.5
correlation after starting at different randomly sampled initial conditions g,. FCNNs diverged from high resolution models
faster than unparameterized models, while backscatter and hybrid symbolic parameterizations stayed correlated for similar
durations. Smagorinsky parameterizations stayed correlated significantly longer.

¢ Metrics: performance offline and online needs to be rigorously evaluated, rather than eyeballing improvement
over a few selected diagnostics, to determine the accuracy and reliability of a given parameterization or simu-
lation. Here, we designed multiple level of metrics: offline metrics that captures the statistics of the subgrid
forcing; online metrics that captures the physics of parameterized simulation (e.g., kinetic energy flux) or the
climatological and short-term performance of the model (e.g., climatological PDF of potential vorticity, or
decorrelation timescales of short term forecasts, respectively). Our open-source framework (Appendix D) will
hopefully encourage the research community to find easy-to-use resources for such evaluation and facilitate
the development of new parameterizations that more faithfully capture the effects of subgrid-scale processes.

¢ Data design choice: the filtering and coarse-graining operator is key, consistent with Zanna and Bolton (2021)
and Frezat et al. (2022). The online results for a given FCNN architecture are highly sensitive to filtering
choice; here the best performance was obtained with a filtering that most closely follow the numerics of the
model. Therefore, we encourage testing multiple operators for data preparation guided by the target applica-
tion rather than varying hyperparameters or neural network architectures.

 Stability: Our architecturally constrained FCNNs remained numerically stable in any configuration (as shown
in Guillaumin and Zanna (2021) for different model configurations), which is likely further aided by the spec-
tral truncation of high-frequency modes in pyqg.

¢ Generalization: symbolic expressions, found using a new algorithm that we developed, were more interpreta-
ble with fewer parameters and generalized better to new domains than neural networks, which are infamously
sensitive to even minor distributional shifts (Recht et al., 2018).

There are many possible directions we did not explore for NN optimization, including online learning (Dresdner
et al., 2022; Frezat et al., 2022; Kochkov et al., 2021; Sirignano et al., 2020; Um et al., 2020), or training on
multiple datasets (Bolton & Zanna, 2019; O’Gorman & Dwyer, 2018). New approaches to remain more faithful
to the physics of the problem that could be explored as well which include non-dimensionalizing input variables
(Beucler et al., 2021), modeling subgrid-scale organization (Shamekh et al., 2022), or finding a better latent
space for our input (and eliminating spurious correlation with causal inference). There are also opportunities
for improving our symbolic regression procedure, including more intelligently interweaving continuous opti-
mization with genetic programming (Cranmer, 2020), initializing symbolic regression with terms from existing
physical parameterizations, or directly learning residuals on top of them. For both neural networks and symbolic
regression, finding better metrics for offline learning or testing might help ensure more robust results for online
implementation in existing legacy climate models.

Appendix A: Baseline Local Physical Parameterizations
Al. Smagorinsky

A common baseline for physical parameterizations was proposed by Smagorinsky (1963) as scale-selective dissi-
pation. Given the strain-rate tensor, 7,
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T T 2u, Uy + Uy
T= == s (A1)
Ty Txn Uy + Uy 20,

the Smagorinsky parameterization predicts the subgrid forcing of u and v, denoted as S such that

smag’

Ssmug _ Su,smug Y (Vsmug Tn )x + (VsmugTIZ)y ’ (A2)

Su,smug ( Vsmag TZ 1 ) x + ( Vsmag T22 ) y

where the short-hands ()., = al are used for low-resolution spatial derivatives,
X,y

Vong = (CsAXY\[T2 + T3 + T2 + T2, (A3)
and Cj is a tunable parameter. Here we will use Cg € {0.075, 0.15, 0.3}. Smagorinsky is a parameterization of
small-scale dissipation, which can correct the tendency of low-resolution models to concentrate too much energy
at small scales. However, the parameterization does not redistribute this energy back up to larger scales via
backscatter, as show in theoretical analysis and simulations of quasi-2D turbulence (Kraichnan, 1976; Natale &

Cotter, 2017; Thuburn et al., 2014).

A2. Backscatter and Biharmonic Dissipation

Different parameterizations that can potentially address backscatter include the parameterization suggested by
Jansen and Held (2014) and Jansen et al. (2015), which consists of scale-selective dissipative operator and an
additional negative viscosity part reinjecting energy at larger scales. The magnitude of the negative viscosity
part is chosen such that resulting model approximately conserves energy. We adapt this parameterizations for
use in pyqg. The small-scale dissipation of enstrophy is parameterized with biharmonic Smagorinsky model (see
Equation A3)

Fsmag = —Vz [VsmagV4W] . (A4)
The negative viscosity backscatter is parameterized with less scale-selective Laplacian viscosity operator:
Fosear = _VbscatV4Wa (AS)

scat = Fmag T Fosearr The negative viscosity backscatter re-injects

the C,, fraction of the total energy dissipated by the biharmonic model. As such, the negative viscosity coefficient
is given by:

and total contribution to PV equation is given as S

2 — _ -
i= Hi ,‘Fima ,idx d
Viscat = Cp Zl_l jf d = Y (A6)

2 — —_ =
i Hi // v, Viydx dy
where F . ;is the value of Equation A4 at a particular layer. We run this parameterization at 36 parameter settings

corresponding to every combination of Cy € {.7,0.8,0.9, 1.0, 1.1, 1.2} and Cé € {.003,.005,.007,.01,.02,.04}
(the use of C% is for convenience).

A3. Zanna Bolton Data-Driven Equation-Discovery Parameterization

Using data from an idealized primitive equation model and relevance vector machine, Zanna and Bolton (2020)
learned an expression for the subgrid momentum forcing. They use both barotropic and baroclinic simulated data,
and apply Gaussian filtering with coarse-graining to diagnose the subgrid forcing. The form of the parameteri-
zation is given by

§7B2020 1 ( ZBA20Y | —¢Db ¢D + IlKZB2020V(€/2 + D+ Ez)’ (A7)

¢D ¢D
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for each vertical layer, with
C =Ux — Uy, o =u,+ Ey, (A8a)
D =u, + vy, D =u, —v,, (A8b)

where ( is the relative vorticity, ¢ is the divergence, and D and D are the shearing and stretching deformation
of the low-resolution flow field, respectively. For online tests, rather than using the value of x?82°% diagnosed
in Zanna and Bolton (2020), we fit the parameter empirically to achieve maximal offline R? on the training set
(equivalent to that generated using Operator 2). For online simulations, we also test at k%3220 = 2 and 1/2 times
the empirically fit value.

Appendix B: Decomposition of Subgrid Forcing

We can further decompose subgrid contribution into the contribution toward kinetic energy and the contribution
toward potential energy. Let S, be the tendency in the streamfunction induced by subgrid forcing, we use Equa-
tion 3 to rewrite Equation 12 as

(52) g bl
e Sl () | - Z malocuns) )

where A, = (—K'ZI + M)_l. On the right-hand side of Equation B1, the first term matches the definition of the
contribution toward kinetic energy, and we regard the second term as the contribution toward potential energy.
This decomposition is used in calculating the spectral similarity scores.

B1)

Appendix C: Human-In-The-Loop Symbolic Regression Steps

In this section, we describe the specific “OptionalUserEdits” steps we took in applying Algorithm 1 to obtain
Equation 20. In the first gplearn step, we discovered V2 (u - V)7 (in the upper layer) and V*(u - V)7 (in the
lower layer), which gave us training set correlations of 0.80 (upper) and 0.77 (lower) after fitting models with
both terms to each layer. To this, we added V® (ﬁ . V)E to extend the pattern, which brought the same correla-
tions to 0.84 and 0.82. We then ran the next gplearn step, which outputted V*g (upper) and V°g (lower). This
brought correlations up to 0.845 (upper) and 0.836 (lower). We kept both these terms, and experimented with
adding V%, but correlations actually decreased in the lower layer. We then ran the next gplearn step, which
returned (ﬁ . V)szﬁxﬁ and 0, V3¥g. This nudged correlations to 0.846 (upper) and 0.838 (lower), which nudged
very slightly higher to 0.846 and 0.840 when further adding the counterparts of these terms obtained by switch-
ing x and y, (ﬁ . V)zvzayu and 9, Vg . From this set of terms (which includes all terms in Equation 20 with the
addition of two ninth-order 9, V®g terms), we began a final OptionalUserEdits step using online performance as
a guide (removing each term individually, but pairing up the removals of the terms with natural x and y counter-
parts). In this step, we found that the 9; V%7 terms were actually hampering online performance (i.e., performance
rose without them), while the others all appeared to help (i.e., performance fell without them)—though our results
in Figure 15 later showed that the slight improvement we saw from the (ﬁ . v)zvza,-ﬁ,» terms was not significant.
We then accepted the expression of Equation 20 as our final output, saving its weights (learned with respect to
eddy-config Sf]l)). Note that because the genetic programming steps are stochastic, re-running this procedure
with a different random seed might produce different results. For example, in Figure 13, we discovered a V2
term in the second step, but in this case such a term was never learned (though this could be alternately explained
by the manual addition of Vé(ﬁ . V)a , which may have accounted for its contribution).

Appendix D: Supplementary Figures

This section includes additional result figures (Figures D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, and D12;
Tables D1 and D2).
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Additional KE density snapshots for selected parameterizations
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Figure D1. Like Figure 20, but showing additional randomly chosen snapshots.

Upper PV snapshots for selected parameterizations
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Figure D2. Like Figure 20, but showing upper PV g, rather than KE density.

More KE snapshots, local physical vs. FCNNs trained w/ different forcings
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Figure D3. Like Figure 20, but additionally showing KE snapshots for FCNNs trained on eddy configuration data with
different forcing formulations (see Figures D5 and D6). All FCNNs produce reasonable results on eddy configuration (d—f),
but on jet configuration (j—1), the snapshots do not resemble high-resolution (g), with either latitude-specific increases in
energy (j) or disruption of jets in favor of isotropic eddies (k-1), resembling FCNN training conditions.
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Comparing FCNNs trained on different operators on eddy configuration
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Figure D4. Like Figure 17, but comparing FCNNs trained to predict S, computed with each filtering and coarse-graining operator. Only the model trained with
Operator 1 (Section 3.4.1) performs near-optimally, though the model trained with Operator 3 (Section 3.4.3) does well except for deviations in spectral metrics at large
scales (a, f, and g). These results suggest the filtering and coarse-graining operator is important for parameterization performance.

Figure D5. Like Figure 17, but comparing the online eddy configuration performance of FCNNs trained to predict different subgrid forcing formulations (.S,

Comparing FCNNs predicting different forcing formulations on eddy configuration
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and ¢,) computed with Operator 1 (Equation 13). All perform almost equally well, suggesting that the forcing formulation may matter much less than the filtering and
coarse-graining operator (Figure D4).
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Figure D6. Like Figure 19, but comparing the online jet configuration performance of FCNNSs trained to predict different subgrid forcing formulations (.S,

Power spectrum [m3s—2]

Energy flux [m3s~3]

Comparing FCNNs predicting different forcing formulations on jet configuration

A KE power spectrum B4x1o-3 Total KE C Upper PV PDFx104
102 i - 6,
— h =
, 3 T 54
10! —— Highres g . 48
—— Lowres Foy) 2
100 = FCNN(@-S(0) 2
FCNN(g-S{) 31 2§
— 4 [a W
10°1 e FCNN(q—>¢é1)) 1
107 104 0 2000 i
Isotropic wavenumber [m~1] Model time [days] g1 [s~1] x10°
D x10-¢ APE gen. E APE flux F KE flux G _ Bottom drag
\
1.0
0.5
00%"“ 4
= V"“ﬂ/
- /
0.5 .
10°5 10-* 10°5 1075 10~* 1073 10~4

Isotropic wavenumber [m™1]

S, and

o> T

¢,) computed with Operator 1 (Equation 13). In this case, the models trained to predict SO and qﬁg” appear to generalize better. However, their average scores across
the full set of metrics (e.g., Figure D9) remain low, and in KE snapshots from these FCNNs (Figure D3), the characteristic jet behavior we see in high-resolution is

absent.
Offline metrics for FCNNs predicting different outputs on eddy configuration
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Figure D7. Offline results for more forcing formulations (.S{" and ¢£,” results show averages over u and v terms). Many
performance metrics are generally higher for models trained to predict subgrid fluxes (k—n), but this difference disappears if
we compute them with respect to the implied subgrid forcing (i.e., by taking the divergence of the predicted quantities and
comparing that to the true subgrid forcing, rather than comparing predicted to true subgrid fluxes).
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Figure D8. Like Figure 8, but comparing distributional similarity from Section 4.2.2 (a) and spectral similarity from
Section 4.2.1 (b) with decorrelation time similarity from Section 4.2.3. Smagorinsky and backscatter parameterizations
(which form most of the Pareto frontier in both plots) increase decorrelation time, though only by about 8% of the gap
between low- and high-resolution decorrelation times (which is what the y-axis signifies). Neural networks almost universally
reduce it, while the hybrid symbolic parameterization modestly increases it.
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Figure D9. Like Figure 8, but evaluated on jet configuration. In this regime, the only models which appear on the Pareto
frontier (highlighted in text) are the hybrid symbolic model and one parameter setting of the backscatter parameterization,
which differs significantly from the eddy-configuration Pareto-optimal settings shown in Figures 8 and DS.
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Consistency of mean similarity scores wrt. unseen high- and low-res data
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Figure D10. Mean similarity scores for unseen high-resolution (L/Ax = 256), low-resolution (L/Ax = 64), and
intermediate-resolution (L/Ax = 128) simulations with respect to the actual high- and low-resolution datasets used to
evaluate parameterizations. Error-bars show means and standard deviations over 10 random samples of five simulations
from a set of 25 unseen simulations. Spectral and decorrelation time similarity scores between different randomly re-run
high-res simulations are >0.95 on average (and <0.01 on average for unseen low-resolution simulations), indicating they

are fairly reliable (they should be near 1 for high-res and near 0O for low-res). End-of-simulation distributional similarity
scores are a bit noisier, averaging 0.83 for unseen high-resolution simulations (so such scores in our results of above ~0.8
are potentially near-optimal). Although distributional similarity scores are still precise enough to provide meaningful insight
into parameterization performance, future experiments could improve their precision by increasing the size of ensembles, or
by comparing distributions marginalized over more than just the final timestep. Finally, L/Ax = 128 simulations score highly
(closer to L/Ax = 256) on distributional and spectral similarity, indicating convergence on long-term “climate” predictions.
However, they score much worse (closer to L/Ax = 64) on decorrelation time similarity, suggesting that short-term “weather”
predictions are more sensitive to changes in resolution.
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Figure D11. Comparison of the energy density removed via numerical dissipation at each scale for different
parameterizations and resolutions (on eddy configuration, with spectra averaged over five simulations). Although the
definition of the dissipative term is identical at each resolution, the actual amount of energy dissipated varies in practice due
to how parameterizations change the distribution of quantities across scales. In this case, parameterized models lose less
energy to numerical dissipation than unparameterized models at the same resolution, likely because the purpose of those
parameterizations is to transport energy to larger scales.
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KDE-estimated probability density functions (PDFs) of simulation quantities in eddy configuration
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Figure D12. Probability density functions (PDFs), calculated using kernel density estimates (KDE), in both real (top) and logarithmic (bottom) space of upper
and lower PV and KE for selected parameterizations (as compared to unparameterized baselines, and computed via kernel density estimation). The selected
parameterizations cause these quantities to match the high-resolution simulation much more closely, even in the tails of the distribution (e.g., far right sides of log PDF

plots).
Table D1
Wall Clock Times to Train Parameterizations (Center) and Run Simulations (Right) for Different Simulation Types; That Is,
for Single Runs on a Tesla V100 for GPUs and an M1 MacBook Pro for CPUs
Simulation Type Train Time Runtime
Neural Network (CPU) — 2 hr 53 min
Neural Network (GPU) 52 min 13minds
High-res N/A 5 min 57 s
Hybrid Symbolic 35 min 2 min 22 s
Backscatter 4+ Biharmonic N/A 59s
Low-res N/A 22s
Note. The FCNN slows down the low-res simulations (Zanna & Bolton, 2020), even when utilizing a GPU. The low-res
simulations with FCNN are twice as slow as the high-res; the slow down is primarily due to the depth of the neural network.
The symbolic regression-parameterized simulations are more than twice as fast as the high-res simulations. Lower-order
backscatter parameterizations are >2x as fast again (though still < %x the speed of unparameterized low-res simulations).
This is consistent with Zanna and Bolton (2020).
Table D2
“Leaderboard” of Models With the Highest Arithmetic Means (Y.) and Geometric Means (1) Over Our Three Score
Categories (Average Distributional, Spectral, and Decorrelation Time Similarity; That Is, the Axes of the Pareto Frontier
Plots in Figure 8, DS, and D9) in Both Eddy and Jet Configuration
Eddy configuration Jet configuration
Model Rank by > Rank by [1 Rank by > Rank by [1
FCNN(g - S) 1 — 129 —
BSCAT(0.02,1.0) 28 1 31 —
Hybrid Symbolic 4 11 1 —
BSCAT(0.005,0.8) 74 23 2 1
Note. Off-diagonal elements show each model's ranking by score reductions where it is not optimal, and “—" indicates that a
negative similarity score was found (so the geometric mean is not meaningful). The hybrid symbolic model ranks highly by
all score reductions except its jet configuration geometric mean (where its decorrelation time similarity is slightly negative).
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