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Abstract

We study the canonical statistical task of computing the principal component from
n 1.i.d. data in d dimensions under (g, 0)-differential privacy. Although extensively
studied in literature, existing solutions fall short on two key aspects: (i) even for
Gaussian data, existing private algorithms require the number of samples n to
scale super-linearly with d, i.e., n = Q(dS/ 2), to obtain non-trivial results while
non-private PCA requires only n = O(d), and (i7) existing techniques suffer from
a non-vanishing error even when the randomness in each data point is arbitrarily
small. We propose DP-PCA, which is a single-pass algorithm that overcomes both
limitations. It is based on a private minibatch gradient ascent method that relies
on private mean estimation to add minimal noise required to ensure privacy by
adapting to the geometry of a given minibatch of gradients. For sub-Gaussian data,
we provide nearly optimal statistical error rates even for n = O(d). Furthermore,
we provide a lower bound showing that sub-Gaussian style assumption is necessary
in obtaining the optimal error rate.

1 Introduction

Principal Component Analysis (PCA) is a fundamental statistical tool with multiple applications
including dimensionality reduction, data visualization, and noise reduction. Naturally, it is a key
part of most standard data analysis and ML pipelines. However, when applied to data collected
from numerous individuals, such as the U.S. Census data, outcome of PCA might reveal highly
sensitive personal information. We investigate the design of privacy preserving PCA algorithms and
the involved privacy/utility tradeoffs, for computing the first principal component, that should serve
as the building block of more general rank-k PCA.

Differential privacy (DP) is a widely accepted mathematical notion of privacy introduced in [21],
which is a standard in releasing the U.S. Census data [2] and also deployed in commercial systems
[72, 25, 27]. A query to a database is said to be (¢, d)-differentialy private if a strong adversary
who knows all other entries but one cannot infer that one entry from the query output, with high
confidence. The parameters € and 0 restricts the confidence as measured by the Type-I and II errors
[49]. Smaller values of € € [0,00) and ¢ € [0, 1] imply stronger privacy and plausible deniability for
the participants.
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For non-private PCA with n i.i.d. samples in d dimensions, the popular Oja’s algorithm (provided in
Algorithm 1) achieves the optimal error of sin(?, v1) = ©(y/d/n), where the error is measured by
the sine function of the angle between the estimate, v, and the principal component, v, [45]. For
differentially private PCA, there is a natural fundamental question: what is the extra cost we pay in
the error rate for ensuring (&, 0)-DP?

We introduce a novel approach we call DP-PCA (Algorithm 3) and show that it achieves an error
bounded by sin(d,v) = O(y/d/n + d/(en)) for sub-Gaussian-like data defined in Assumption 1,
which is a broad class of light-tailed distributions that includes Gaussian data as a special case.
The second term characterizes the cost of privacy and this is tight; we prove a nearly matching
information theoretic lower bound showing that no (e, §)-DP algorithm can achieve a smaller error.
This significantly improves upon a long line of existing private algorithms for PCA, e.g., [14, 9,
38, 36, 23]. These existing algorithms are analyzed for fixed and non-stochastic data and achieve
sub-optimal error rates of O(+/d/n + d®/? /(sn)) even in the stochastic setting we consider.

A remaining question is whether the sub-Gaussian-like assumption, namely Assumption A.4, is
necessary or if it is an artifact of our analysis and our algorithm. It turns out that such an assumption
on the lightness of the tail is critical; we prove an algorithmic independent and information theoretic
lower bound (Theorem 5.4) to show that, without such an assumption, the cost of privacy is lower

bounded by 2(1/d/(en)). This proves a separation of the error depending on the lightness of the tail.

We start with the formal description of the stochastic setting in Section 2 and present Oja’s algorithm
for non-private PCA. Our first attempt in making this algorithm private in Section 3 already achieves
near-optimal error, if the data is strictly from a Gaussian distribution. However, there are two
remaining challenges that we describe in detail in Section 4: (%) the excessive number of iterations of
Private Oja’s Algorithm (Algorithm 2) prevents using typical values of ¢ used in practice, and (i) for
general sub-Gaussian-like distributions, the error does not vanish even when the noise in the data (as
measured by a certain fourth moment of a function of the data) vanishes. The first challenge is due to
the analysis that requires amplification by shuffling [24] that is restrictive. The second is due to its
reliance on gradient norm clipping [1] that does not adapt to the geometry of the current gradients.
This drives the design of DP-PCA in Section 5 that critically relies on two techniques to overcome
each challenge, respectively. First, minibatch SGD (instead of single sample SGD) significantly
reduces the number iterations, thus obviating the need for amplification by shuffling. Next, private
mean estimation (instead of gradient norm clipping and noise adding) adapts to the geometry of the
problem and adds the minimal noise necessary to achieve privacy. The main idea of this geometry
adaptive stochastic gradient update is explained in detail in Section 6, along with a sketch of a proof.

Notations. For a vector z € R?, we use ||z|| to denote the Euclidean norm. For a matrix X € R?*4,
we use || X ||z = max,|=1 || Xvl|2 to denote the spectral norm. We use I to denote d x d identity
matrix. For n € Z*, let [n] := {1,2,...,n}. Let S;"! denote the unit d-sphere of /s, i.e.,
S§=t = {x € R?: ||z = 1}. O() hides logarithmic factors in 7, d, and the failure probability C.

2 Problem formulation and background on DP

Typical PCA assumes i.i.d. data {; € R?} from a distribution and finds the first eigenvector of
Y = E[(z; — E[z;])(z; — E[2;]) 7] € R¥*<. Our approach allows for a more general class of data
{A; € R¥*d} that recovers the standard case when A; = (z; — E[x;])(x; — E[z;]) .

Assumption 1 (2, {\;}L,, M, V, K, k, a,7?)-model). Let A1, As, ..., A, € R be a sequence
of (not necessarily symmetric) matrices sampled independently from the same distribution that
satisfy the following with PSD matrices ¥ € R¥? and H,, € R¥?, and positive scalar parameters
M,V K, k, a, and’yQ:

A.L. Let Y := E[A;], for a symmetric positive semidefinite (PSD) matrix . € R4*4, \; denote the
i-th largest eigenvalue of 3, and k := A1 /(A1 — A2),

A.2. ||4; — X2 < MM almost surely,

A.3. max {||E [(4; - )(4 — ) T]|

S JE (A = )T (A4 - D), } < N3V,
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S)uu' (A; — ) T]. We denote v* := max =1 || Hul2.

1/(2a)
A4, max|y|=1,|jv|=1 E [exp ((W) )} < 2, where H, = (1/A)E[(A; —

The first three assumptions are required for PCA even if privacy is not needed. The last assumption
provides a Gaussian-like tail bound that determines how much noise we need to introduce in the
algorithm for (g, §)-DP. The following lemma is useful in the analyses.

Lemma 2.1. Under A.1 and A.4 in Assumption 1, for any unit vector u, v, with probability 1 — (,
" (4] = B)o* < K2\ Hyl2log™ (2/C) - (D

2.1 Qja’s algorithm

In a non-private setting, the following streaming algorithm introduced in [69] achieves optimal sample

complexity as analyzed in [45]. It is a projected stochastic gradient ascent on the objective defined on
the empirical covariance: max|j,=1(1/n) > 1 w' A;w.

Algorithm 1: (Non-private) Oja’s Algorithm

1 Choose wy uniformly at random from the unit sphere

[

fort =1,2,...,Tdow; + wi_1 + NtArwi_1 , wy < wi/||wi]
Return wp

Central to our analysis is the following error bound on Oja’s Algorithm from [45].

Theorem 2.2 ([45, Theorem 4.1]). Under Assumptions A.1-A.3, suppose the step size n; =
Ty Jor some o > 1/2 and § = 20max (kMa, k? (V + 1) a?/log(1 + (¢/100))).
If T > £ then there exists a constant C' > 0 such that Algorithm 1 outputs wr achieving w.p. 1 — (,

2ce
in? (g vy) < C10801/0) ( az,iszH(g) ) | .

2 (2a—1) T

2.2 Background on Differential Privacy

Differential privacy (DP), introduced in [21], is a de facto mathematical measure for privacy leakage
of a database accessed via queries. It ensures that even an adversary who knows all other entries
cannot identify with a high confidence whether a person of interest participated in a database or not.

Definition 2.3 (Differential privacy [21]). Given two multisets S and S’, we say the pair (S, S’)
is neighboring if |S \ S'| + |S" \ S| < 1. We say a stochastic query q over a dataset S satisfies
(e, 9)-differential privacy for some ¢ > 0 and § € (0,1) if P(q(S) € A) < e°P(q(S’) € A) + 6 for
all neighboring (S, S") and all subset A of the range of q.

Small values of € and ¢ ensures that the adversary cannot identify any single data point with high
confidence, thus providing plausible deniability. We provide useful DP lemmas in Appendix B. Within
our stochastic gradient descent approach to PCA, we rely on the Gaussian mechanism to privatize
each update. The sensitivity of a query q is defined as Ay := SUPpeighoring (5,57 [12(S) — a(S)|-

Lemma 2.4 (Gaussian mechanism [22]). For a query q with sensitivity A4, € € (0,1), and ¢ € (0, 1),
the Gaussian mechanism outputs q(S) +N (0, (Ay(1/2log(1.25/8))/)?14) and achieves (&, 5)-DP.

This is a special case of a family of output perturbation mechanisms which includes the Laplace
mechanism [21] and stair-case mechanisms [34]. The latter is shown to be optimal in one-dimension
[35] and for hypothesis testing under local DP [48]. Another mechanism we frequently use is the
private histogram learner of [56], whose analysis is provide in Appendix B, along with various
composition theorems to provide end-to-end guarantees.

2.3 Comparisons with existing results in private PCA

We briefly discuss the most closely related work and provide more previous work in Appendix A. Most
existing results assume a fixed data under a deterministic setting where each sample has a bounded
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Algorithm 2: Private Oja’s Algorithm

Input: S = {A; € R¥*4}"_ privacy (¢, ), learning rates {n, }_;

Randomly permute S and choose wq uniformly at random from the unit sphere
Set DP noise multiplier: o < C'log(n/d)/(ev/n)
Set clipping threshold: 3 « CA\yvVd(K~ylog®(nd/¢) + 1)
fort=1,2,...,ndo
Sample z; ~ N (0,1,)
wy 4= wy—1 + 1 clipg (Agwi—1) + 29 Baz; where clipg(z) = 2 - min{1, ﬁ}
wy = wy/|[wi
Return w,,
norm, ||| < 3, and the goal is to find the top eigenvector of ¥ := (1/n) 27 (x; — 1) (2 — 1) T

for the empirical mean ji. For the purpose of comparisons, consider Gaussian z; ~ N(0, ) with
|z || < 8 =0(y/A1dlog(n/¢)) for all i € [n] with probability 1 — ¢. The first line of approaches in
[9, 14, 23] is a Gaussian mechanism that outputs PCA (X 4 Z), where Z is a symmetric matrix with

i.i.d. Gaussian entries with a variance ((32/ne)+/21log(1.25/8))? to ensure (&, §)-DP. The tightest
result in [23, Theorem 7] achieves

sin(d,v1) = O(/@'(\/E—!— W)) ; 3)

with high probability, under a strong assumption that the spectral gap is very large: A\; — Ay =
w(d3/?\/log(1/5)/(en)). In a typical scenario with A; = O(1), this requires a large sample size
of n = w(d?/?/e). Since this Gaussian mechanism does not exploit the statistical properties of
i.i.d. samples, the second term in this upper bound is larger by a factor of d'/? compared to the
proposed DP-PCA (Corollary 5.2). The error rate of Eq. (3) is also achieved in [38, 36] by adding
Gaussian noise to the standard power method for computing the principal components. When the
spectral gap, A1 — Ao, is smaller, it is possible to trade-off the dependence in x and the sampling ratio
d/n, which we do not address in this work but is surveyed in Appendix A.

3 First attempt: making Oja’s Algorithm private

Following the standard recipe in training with DP-SGD, e.g., [1] and a recent work [75], we introduce
Private Oja’s Algorithm in Algorithm 2. At each gradient update, we first apply gradient norm
clipping to limit the contribution of a single data point and next add an appropriately chosen Gaussian
noise from Lemma 2.4 to achieve (e, §)-DP, end-to-end. The choice of clipping threshold 3 ensures
that, with high probability under our assumption, we do not clip any gradients. The choice of noise
multiplier « ensures (g, 0)-DP.

One caveat in streaming algorithms is that we access data n times, each with a private mechanism,
but accessing only a single data point at a time. To prevent excessive privacy loss due to such a large
number of data accesses, we apply a random shuffling in line 1 Algorithm 2, in order to benefit from
a standard amplification by shuffling [24, 29]. This gives an amplified privacy guarantee that allows
us to add a small noise proportional to oc = O(log(n/d)/(ey/n)). Without the shuffle amplification,
we will instead need a larger noise scaling as « = O(log(n/d)/e), resulting in a suboptimal utility
guarantee. However, this comes with a restriction that the amplification holds only for small values
of e = O(4/log(n/d)/n). Our first contribution in the proposed DP-PCA (Algorithm 3) is to expand
this range to ¢ = O(1), which includes the practical regime of interest ¢ € [1/2, 5].

Lemma 3.1 (Privacy). If ¢ = O(y/log(n/d)/n) and the noise multiplier is chosen to be o =
Q (log(n/d)/(ev/n)), then Algorithm 2 is (¢,5)-DP.
Under Assumption 1, we select gradient norm clipping threshold /3 such that no gradient exceeds f3.

Lemma 3.2 (Gradient clipping). Let 3 = C\Vd(K~ylog®(nd/¢) + 1) for some constant C' > 0.
Then with probability 1 — (, ||Aywi—1]|| < B for any fixed w,_; independent of Ay, for all t € [n].

We provide proofs of both lemmas and the next theorem in Appendix D. When no clipping is applied,
we can use the standard analysis of Oja’s Algorithm from [45] to prove the following utility guarantee.



Theorem 3.3 (Utility). Given n iid. samples {A; € R4} | satisfying Assumption 1 with
parameters (X, M,V, K, k,a,v?), if

dr(y+1) log(1/4)
im0

with a large enough constant, then there exists a positive universal constant c; and a choice of
learning rate 1, that depends on (t, M, V, K, a, A1, \1 — Ag, n, d, &, §) such that Algorithm 2 with
a choice of ¢ = 0.01 outputs w,, that achieves with probability 0.99,

Vo (v+1)2d%log*(1/5) ) >

sin? (wn,v1) = O (IiQ(n + 2,2

n = O~(/€2+I€M+/€2V+

&)

where 5() hides poly-logarithmic factors in n, d, 1/e, and log(1/6) and polynomial factors in K.

The first term in Eq. (5) matches the non-private error rate for Oja’s algorithm in Eq. (2) with
a = O(logn) and T = n, and the second term is the price we pay for ensuring (&, §)-DP.

Remark 3.4. For a canonical setting of a Gaussian data with A; = xzm;r and z; ~ N(0,%), we
have, for example from [70, Lemma 1.12], that M = O(dlog(n)), V = 0O(d), K =4, a =1, and
7% = O(1). Theorem 3.3 implies the following error rate:

sin? (W, v1) = O(K&Q(% + 61212%72”(21/5))> . (6)

Comparing to a lower bound in Theorem 5.3, this is already near optimal. However, for general
distributions satisfying Assumption 1, Algorithm 2 (in particular the second term in Eq. (5)) can
be significantly sub-optimal. We explain this second weakness of Private Oja’s Algorithm in the

following section (the first weakness is the restriction on € = O(y/log(n/d)/n)).

4 Two remaining challenges

We explain the two remaining challenges in Private Oja’s Algorithm and propose techniques to
overcomes these challenges that lead to the design of DP-PCA (Algorithm 3).

First challenge: restricted range of = = O(+/log(n/d)/n). This is due to the large number, n, of
iterations that necessitates the use of the amplification by shuffling in Theorem D.1. We reduce the

number of iterations with minibatch SGD. For T" = O(log2 n)andt =1,2,...,T, we repeat

Bt—1
. wn B
Wy < wi—1 + % Z clipg(Ajw;—1) + Ugﬁ 2, and wy < wy/|lwy]| , (7
i=1+B(t—1)

where z; ~ N(0,I;) and the minibatch size is B = |n/T'|. Since the dataset is accessed only
T = O(log2 n) times, the end-to-end privacy is analyzed with the serial composition (Lemma B.3)
instead of the amplification by shuffling. This ensures (&, §)-DP for any € = O(1), resolving the first
challenge, and still achieves the utility guarantee of Eq. (5).

Second challenge: excessive noise for privacy. This is best explained with an example.

Example 4.1 (Signal and noise separation). Consider a setting with A; = ;rza:ZT andx; = s;+n;
where s; = v with probability half and s; = —v otherwise for a unit norm vector v and n; ~
N(0,02T). We want to find the principal component of . = E[z;x] ] = vv' + %1, which is v.
This construction decomposes the signal and the noise. For A; = vl + smzT + nisiT + nmlT the
signal component is determined by v that is deterministic due to the sign cancelling. The noise
component is s;n; + n;s,] +n;n, which is random. We can control the Signal-to-Noise Ratio
(SNR), 1/0?, by changing o2, and we are particularly interested in the regime where o? is small. As
we are interested in 0> < 1, this satisfies Assumption 1 with \; = 1+ 0%, Ay = 0%, V = O(do?),
K =0(1), a = 1, and v* = o2. Substituting this into Eq. (5), Private Oja’s Algorithm achieves
~ (02d N d? log(1/6)>

sin?(wy,,v1) = O - 22

®)

where we are interested in 0 < 1.
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Figure 1: 2-d PCA under the Gaussian data from Remark 3.4 (left) shows that the average gradient
(red arrow) is smaller than the range of the minibatch of 400 gradients (blue dots). Under Example 4.1
(right), the range can be made arbitrarily smaller than the average gradient.

Algorithm 3: Differentially Private Principal Component Analysis (DP-PCA)

Input: S = {A;}" ,, (¢,0), batch size B € Z, learning rates {n; th/lBJ’ probability ¢ € (0,1)

Choose wy uniformly at random from the unit sphere

fort=1,2,...,7 = [n/B] do
Run Private Top Eigenvalue Estimation (Algorithm 4) with (£/2, §/2)-DP and failure
probability ¢/(2T") on {A B(t_l)Hwt,l}iL:Bl/ 2} Let the returned estimation be A, > 0.
Run Private Mean Estimation (Algorithm 5) with (¢/2, §/2)-DP, failure probability ¢/(2T),
and the estimated eigenvalue 2A; on { Ap_1)4|B/2)+iWi—1 }Z,E 12, Let the returned
mean gradient estimate be §;, € R%.
L Wi wer+mge s we  wi/|lwy
Return wp

This is problematic since the second term, due to the DP noise, does not vanish as the randomness
o2 in the data decreases. We do not observe this for Gaussian data where signal and noise scale
proportionally as shown below. We reduce the noise we add for privacy, by switching from a simple
norm clipping, that adds noise proportional to the norm of the gradients, to private estimation, that
only requires the noise to scale as the range of the gradients, i.e. the maximum distance between
two gradients in the minibatch. The toy example above showcases that the range can be arbitrarily
smaller than the maximum norm (Fig. 1). We want to emphasize that although the idea of using
private estimation within an optimization has been conceptually proposed in abstract settings, e.g., in
[51], DP-PCA is the first setting where (¢) such separation between the norm and the range of the
gradients holds under any statistical model, and hence (i¢) the long line of recent advances in private
estimation provides significant gain over the simple DP-SGD [1].

5 Differentially Private Principal Component Analysis (DP-PCA)

Combining the two ideas of minibatch SGD and private mean estimation, we propose DP-SGD. We
use minibatch SGD of minibatch size B = O(n/ log? n) to allow for larger range of ¢ = O(1). We
use Private Mean Estimation to add an appropriate level of noise chosen adaptively according to
Private Eigenvalue Estimation. We describe details of both sub-routines in Section 6.

We show an upper bound on the error achieved by DP-PCA under an appropriate choice of the
learning rate. We provide a complete proof in Appendix E.1 that includes the explicit choice of the
learning rate 7; in Eq. (67), and a proof sketch is provided in Section 6.1.

Theorem 5.1. For ¢ € (0,0.9), DP-PCA guarantees (¢,0)-DP for all S, B, {, and 6. Given n
ii.d. samples {A; € R4} satisfying Assumption 1 with parameters (X, M,V, K, k, a,?), if

n = 0fe + kM + 52V +

~( W dl/Q(logél/é))g/2 d/vy(logg(l/é))l/2 N dlog(1/0)

). ©
€

with a large enough constant and § < 1/n, then there exists a positive universal constant ¢; and
a choice of learning rate n; that depends on (t, M, V, K, a, A1, \1 — Ao, n, d, €, d) such that
T = |n/B| steps of DP-PCA in Algorithm 3 with choices of ( = 0.01 and B = c¢in/(logn)?,



outputs wp such that with probability 0.99,
. ~ |V d+/log(1/6
sin (wp,v1) = O (m( n+w>> , (10)

where O(-) hides poly-logarithmic factors inn, d, 1/e, and log(1 /9) and polynomial factors in K.

We further interpret this analysis and show that (i) DP-PCA is nearly optimal when the data is
from a Gaussian distribution by comparing against a lower bound (Theorem 5.3); and (ii) DP-
PCA significantly improves upon the private Oja’s algorithm under Example 4.1. We discuss the
necessity of some of the assumptions at the end of this section, including how to agnostically find the
appropriate learning rate scheduling.

Near-optimality of DP-PCA under Gaussian distributions. Consider the case of i.i.d. samples
{z;}?_, from a Gaussian distribution from Remark 3.4.

Corollary 5.2 (Upper bound; Gaussian distribution). Under the hypotheses of Theorem 5.1 and
{A; = x;z] Y™, with Gaussian random vectors x;’s, after T = n/B steps, DP-PCA outputs wr
that achieves, with probability 0.99,

sin(wp,v,) = O <l€ <\/z—|— d”logi(l/a)>> ) (11)

We prove a nearly matching lower bound, up to factors of 1/ A1 /A2 and y/log(1/6). One caveat is
that the lower bound assumes pure-DP with § = 0. We do not yet have a lower bound technique for
approximate DP that is tight, and all known approximate DP lower bounds have gaps to achievable
upper bounds in its dependence in log(1/4), e.g., [5, 62]. We provide a proof in Appendix C.1.

Theorem 5.3 (Lower bound; Gaussian distribution). Let M. be a class of (g,0)-DP estimators that
map n i.i.d. samples to an estimate © € RY. A set of Gaussian distributions with (X1, \2) as the first
and second eigenvalues of the covariance matrix is denoted by Py, »,). For d>c where ¢ > 0 is
some absolute constant, there exists a universal constant C' > 0 such that

: A . d d [ Ao
n > _— — — .
ogii Pe;?}l),h) Eg~pn [sin(9(S),v1)] > Cmin (/{ <\/;+ €n> YR 1) (12)

Comparisons with private Oja’s algorithm. We demonstrate that DP-PCA can significantly
improve upon Private Oja’s Algorithm with Example 4.1, where DP-PCA achieves an error bound
of sin(wr, v1) = O(o\/d/n + od\/log(1/5)/(en)). As the noise power o decreases DP-PCA
achieves a vanishing error, whereas Private Oja’s Algorithm has a non-vanishing error in Eq. (8).
This follows from the fact that the second term in the error bound in Eq. (10) scales as ~, which can
be made arbitrarily smaller than the second term in Eq. (5) that scales as (y + 1). Further, the error
bound for DP-PCA holds for any £ = O(1), whereas Private Oja’s Algorithm requires significantly

smaller e = O(y/log(n/d)/n).

Remarks on the assumptions of Theorem 5.1. We have an exponential dependence of the sample
complexity in the spectral gap, n > exp(x?). This ensures we have a large enough T = |n/B] to
reduce the non-dominant second term in Eq. (2), in balancing the learning rate 7, and 7' (which is
explicitly shown in Eqgs. 69 and (70) in the Appendix). It is possible to get rid of this exponential
dependence at the cost of an extra term of O(k*~2d? log(1/8)/(en)?) in the error rate in Eq. (10),
by selecting a slightly larger T = cx2log® n. A Gaussian-like tail bound in Assumption A.4 is
necessary to get the desired upper bound scaling as O(d+/log(1/6)/(en)) in Eq. 11, for example.
The next lower bound shows that without such assumptions on the tail, the error due to privacy scales
as Q(y/d A log(1/6)/(en)). We believe that the dependence in d is loose, and it might be possible to
get a tighter lower bound using [52]. We provide a proof and other lower bounds in Appendix C.

Theorem 5.4 (Lower bound without Assumption A.4). Let M. be a class of (¢, )-DP estimators
that map n i.i.d. samples to an estimate © € R?. A set of distributions satisfying Assumptions A.1-A.3



with M = O(d + \/ne/d), V = O(d) and v = O(1) is denoted by P. For d > 2, there exists a

universal constant C' > 0 such that

inf sup Eg.pn [sin(0(5),v1)] > Crmin (\/d/\ log (1 = ™) /9) , 1) . (13)

VEM: pep En

Currently, DP-PCA requires choices of the learning rates, 7, that depend on possibly unknown
quantities. Since we can privately evaluate the quality of our solution, one can instead run multiple
instances of DP-PCA with varying n; = ¢;/(ca + t) and find the best choice of ¢; > 0 and ¢z > 0.
Let wr(c1, ¢2) denote the resulting solution for one instance of {n, = ¢1/(c2 + t)}{_,. We first

set a target error ¢. For each round i = 1, .. ., we will run algorithm for (c1, co) = [2071,271] x
[27iFL 2=i+2  2i-1and (¢, cp) = [270FE, 2742 211 x [2¢=1 271 1] and compute each
sin(wr(c1,c2),v1) privately, each with privacy budget ¢; = m’éi = % We

terminate the algorithm once there there is a wy (¢, ¢2) satisfies sin(wy(c1, c2),v1) < ¢. Itis clear
that this search meta-algorithm terminate in logarithmic round, and the total sample complexity only
blows up by a poly-log factor.

6 Private mean estimation for the minibatch stochastic gradients

DP-PCA critically relies on private mean estimation to reduce variance of the noise required to
achieve (g, 0)-DP. We follow a common recipe from [56, 50, 54, 8, 15]. First, we privately find an
approximate range of the gradients in the minibatch (Alg. 4). Next, we apply the Gaussian mechanism
to the truncated gradients where the truncation is tailored to the estimated range (Alg. 5).

Step 1: estimating the range. We need to find an approximate range of the minibatch of gradients in
order to adaptively truncate the gradients and bound the sensitivity. Inspired by a private precondition-
ing mechanism designed for mean estimation with unknown covariance from [53], we propose to use
privately estimated top eigenvalue of the covariance matrix of the gradients. For details on the version
of the histogram learner we use in Alg. 4 in Appendix E.2, we refer to [61, Lemma D.1]. Unlike the
private preconditioning of [53] that estimates all eigenvalues and requires n = O(d®/? log(1/6) /)
samples, we only require the top eigenvalue and hence the next theorem shows that we only need
n = O(dlog(1/9)/e).

Theorem 6.1. Algorithm 4 is (¢,6)-DP. Let g; = A;u for some fixed vector u, where A; satisfies A.1
and A.4 in Assumption 1 such that the mean is Elg;] = Yu and the covariance is E[(g; — Xu)(g; —

Yu) '] = A\2H,,. With a large enough sample size scaling as

B—0 (K2 d log(dlog(1/(6¢))/ (<)) logQG(Bd/C)log(l/(@))) e <K2 d log(1/5)> 7

9 S

Algorithm 4 outputs A achieving A € [(1/V2)M}||Hyll2, V2A3|| Hyl|2] with probability 1 — ¢, where

the pair (K > 0,a > 0) parametrizes the tail of the distribution in A.4 and O(-) hides logarithmic
factors in B,d,1/(,1og(1/6), and e.

We provide a proof in Appendix E.2. There are other ways to privately estimate the range. Some
approaches require known bounds such as 02, < \2(H,);; < o2, for all i € [d] [56], and other

min — — Ymax

agnostic approaches are more involved such as instance optimal universal estimators of [17].

Step 2: Gaussian mechanism for mean estimation. Once we have a good estimate of the top
eigenvalue from the previous section, we use it to select the bin size of the private histogram and
compute the truncated empirical mean. Since truncated empirical mean has a bounded sensitivity, we
can use Gaussian mechanism to achieve DP. The algorithm is now standard in DP mean estimation,
e.g., [56, 50]. However, the analysis is slightly different since our assumptions on g;’s are different.
For completeness, we provide the Algorithm 5 in Appendix E.3.

The next lemma shows that the Private Mean Estimation is (g, d)-DP, and with high probability
clipping does not apply to any of the gradients. The returned private mean, therefore, is distributed as
a spherical Gaussian centered at the empirical mean of the gradients. This result requires that we have
a good estimate of the top eigenvalue from Alg. 4 such that A ~ A\2||H,||2. This analysis implies



that we get an unbiased estimate of the gradient mean (which is critical in the analysis) with noise
scaling as O(A\;y+/dlog(1/8)/(eB)), where 42 = maxy; ||| =1 ||[Hu||2 (Which is critical in getting
the tight sample complexity in the second term of the final utility guarantee in Eq. (10)). We provide
a proof in Appendix E.3.

Lemma 6.2. Fore € (0,0.9) and any 6 € (0,1), Algorithm 5 is (¢,0)-DP. Let g; = A;u for some
fixed vector u, where A; satisfies A.1 and A.4 in Assumption 1 such that the mean is E[g;] = Zu
and the covariance is E|(g; — Su)(g: — Su)T] = XN2H,. If A € [N2||Hyll2/v/2, V2A2|| H,||2),
d < 1/B, and B = Q((\/dlog(1/5)/e)log(d/((d))) then, with probability 1 — ¢, g; € § +

[—3K\/X log®(Bd/¢), 3K VA 1og“(Bd/()] foralli € [B].

6.1 Proof sketch of Theorem 5.1

We choose B = O(n/ log? n) such that we access the dataset only 7' = ©(log” n) times. Hence we
do not need to rely on amplification by shuffling. To add Gaussian noise that scales as the standard
deviation of the gradients in each minibatch (as opposed to potentially excessively large mean of the
gradients), DP-PCA adopts techniques from recent advances in private mean estimation. Namely,
we first get a private and accurate estimate of the range from Theorem 6.1. Using this estimate, A,
Private Mean Estimation returns an unbiased estimate of the empirical mean of the gradients, as long
as no truncation has been applied as ensured by Lemma 6.2. This gives

B
1
Wy = Wi—1 + 1N (B ;AB(t—1)+iwt—1 + ﬁt%) ; (14)
for z; ~ N(0,1) and 3; = 8KV 24, log" (Bd/C)y/2d10g(2.8/9) Using rotation invariance of spherical
Gaussian random vectors and the fact thatjﬁut,l || = 1, we can reformulate it as
B
1
wy < wy_1 + 1 (B ; Ap@-1)+i + Bth> W1 (15)
Ay

This process can be analyzed with Theorem 2.2 with A, substituting A;.

7 Discussion

Under the canonical task of computing the principal component from i.i.d. samples, we show the
first result achieving an optimal error rate. This critically relies on two ideas: minibatch SGD and
private mean estimation. In particular, private mean estimation plays a critical role in the case when
the range of the gradients is significantly smaller than the norm; we achieve an optimal error rate that
cannot be achieved with the standard recipe of gradient clipping.

Assumption A.4 can be relaxed to heavy-tail bounds with bounded &-th moment on A;, in which case
we expect the second term in Eq. (10) to scale as O(d(+/log(1/9)/en)'~1/¥), drawing analogy from
a similar trend in a computationally inefficient DP-PCA without spectral gap [62, Corollary 6.10].
When a fraction of data is corrupted, recent advances in [84, 58, 46] provide optimal algorithms for
PCA. However, existing approach of [62] for robust and private PCA is computationally intractable.
Borrowing ideas from robust and private mean estimation in [61], one can design an efficient
algorithm, but at the cost of sub-optimal sample complexity. It is an interesting direction to design an
optimal and robust version of DP-PCA. Our lower bounds are loose in its dependence in log(1/4).
Recently, a promising lower bound technique has been introduced in [52] that might close this gap.

There are two ways to extend our framework to general rank-r PCA, whose analyses are promising
research directions. First, applying Hotelling’s deflation method [40], we can iteratively find the PCA
components one by one, by alternating our DP-PCA and deflation. For example, in one step of the
iteration, we only update the current iterate vector in the directions orthogonal to all the previously
found PCA components. Repeating this steps gives the estimates of the top principal components.
Secondly, we can directly apply Oja’s algorithm. We keep track of a r-dimensional subspace in the
Oja’s update rule for PCA, and perform QR decomposition to keep the iterates on the Grassmannian
manifold. It might be possible to extend the analysis of [42] to analyze the private version.
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