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CHAOS AND GEOMETRICAL OPTICS

L.A.Bunimovich∗ UDC 517.938

Chaotic evolution of dynamical systems is caused by the divergence of nearby orbits, i. e., by the
intrinsic instability of the dynamics. The best way to see how the divergence of orbits may occur is
to consider the orbits as the rays of light, i. e., within the framework of the geometrical optics. We
discuss the basic mechanisms of chaos and demonstrate how the discovery of these mechanisms
allowed one to enrich the geometrical optics by some new fundamental ideas and notions.

1. INTRODUCTION

A fundamental principle of classical mechanics states that the orbits of conservative systems follow
geodesics on a manifold of constant energy [1]. Hadamard [2] was the first to observe the instability of
the dynamics if a manifold of constant energy has a negative curvature. Exponential instability (i. e., the
chaotic behavior) and ergodicity of geodesic flows on surfaces of constant negative curvature were proved by
Hedlund and Hopf [3–5]. It was known even before that geodesic flows on surfaces with positive curvature
demonstrate a regular, and sometimes even integrable (e. g., on ellipsoids) dynamics.

These results formed a very natural intuition in physics and mathematical communities that the posi-
tive curvature always generates stable dynamics, while the negative curvature is the only cause of instability,
when the neughboring orbits tend to diverge in the phase space of a conservative mechanical system. More-
over, bearing in mind this very natural and seemingly so “obvious” ideology, Hopf [6] even claimed that if the
positive curvature is confined on a “small” piece of a manifold, then a geodesic flow still will be unstable and
ergodic (i. e., chaotic in modern terminology) because the orbits will spend much more time on the negative
curvature part than on the part with positive curvature.

Following these ideas, N. S.Krylov made a major breakthrough in the fundamentals of statistical
mechanics by establishing that the dynamics of a gas of hard spheres is also exponentially unstable, as the
dynamics of geodesic flows on surfaces of negative curvature [7]. His idea was that the dispersing boundary
of spheres plays a role analogous to the negative curvature for geodesic flows forcing the initially close orbits
to diverge fast in the phase space of a system. This idea was essentially generalized and put on a firm
mathematical ground by Ya.G. Sinai [8, 9].

In [8], a class of the so-called Sinai billiards was introduced. A billiard is a dynamical system generated
by the uniform motion of a point particle within some domain Q (called a billiard table), which undergoes
elastic reflections (i. e., the angle of reflection equals the angle of incidence) off the boundary ∂Q. Analogously,
one can describe the dynamics of billiards as the evolution of the rays of light in a billiard table Q with
the boundary ∂Q formed by mirrors. In the Sinai billiards, the boundary is smooth and dispersing, i. e.,
∂Q is convex inward the billiard table Q. In a more general case, where the boundary is not smooth,
the corresponding billiards are called dispersing. The mechanism which generates the chaotic dynamics
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of geodesic flows on the surface with negative curvature and in dispersing billiards is naturally called the
mechanism of dispersing.

In [8], Sinai has laid a foundation of the mathematical theory of billiards, which is now at the center
of the modern theory of dynamical systems. Moreover, soon after the publication of work [8], the theory of
billiards took a leading role in the theory of dynamical systems, which was played before by geodesic flows.
This happened because of the discovery of a new fundamental mechanism of chaos [10–12], which was called
the mechanism of defocusing by late B.V.Chirikov.

To a great surprise to both physicist and mathematician communities, it was proved [10, 11] that a
focusing boundary (i. e., a boundary that is convex outward a billiard table) can generate chaotic dynamics.
Even having rigorous mathematical proof, the physicist community could not believe that such a phenomenon,
which contradicts a very clear, natural, and seemingly unbeatable intuition, may exist. Only after numerous
computer experiments, physicists agreed that mathematicians can still discover new fundamental physical
phenomena.

A natural definition of a dispersing mirror is that any parallel beam of rays after reflection off this
mirror becomes divergent. On the contrary, a parallel beam of rays becomes convergent (focuses) after
reflection off a focusing mirror. A mirror is called neutral if it has a zero curvature, i. e., any parallel beam
of rays remains parallel after reflection off such a mirror.

The essence of the mechanism of defocusing is that after the focusing (convergence) a beam of rays
may defocus and become divergent (dispersing). If after the defocusing this beam travels for a longer time
than the time of covergence before the defocusing, then, as a result, divergence beats convergence and there
occurs a local instability of the dynamics, which generates chaos. A large class of chaotic billiards with a
focusing boundary was built in [10–12].

The mechanism of defocusing is more general than the mechanism of dispersing. Indeed, dispersing
demands that the orbits always diverge, while defocusing allows orbits also to converge, and divergence must
beat convergence just on average (in time). There is no surprise that after the discovery of the mechanism of
defocusing, examples of chaotic geodesic flows on surfaces with pieces of positive curvature were built [13–15].
All these papers followed the construction of chaotic billiards with a focusing boundary. So, billiards got
into the forefront of the theory of dynamical systems. Indeed, Hopf’s idea [6] is absolutely nonconstructive.
In fact, till now there are no examples of chaotic geodesic flows on surfaces/manifolds with pieces of positive
curvature, which demonstrate that this idea may work.

Chaotic focusing billiards introduced in [10–12] used only focusing components with a constant curva-
ture (arcs of circles). Therefore, a natural question was what types of focusing mirrors (arcs) could be pieces
of a boundary for chaotic billiards. First, in [16] it was demonstrated that small perturbations of circular
arcs would work. Then, in [17, 18], two dual classes of focusing mirrors were studied and proved to work.

Finally, in [19], a class of absolutely focusing mirrors was introduced (actually, this name was coined
later [20]). The further studies have shown that the property to be absolutely focusing is a sufficient [21–23]
and necessary [24] condition for a focusing arc to be part of a chaotic billiard table.

Absolute focusing is a new notion in the geometrical optics, which has been inspired by the studies
of the dynamics of billiards. Observe that a narrow parallel beam of rays cannot have two consecutive
reflections off a dispersing (or planar) mirror, while it may have any number of consecutive reflections off a
focusing mirror.

A mirror is focusing if it focuses any planar beam of rays falling on this mirror after the first (just
one!) reflection. The focusing mirror is absolutely focusing if any parallel beam of rays leaves this mirror
as a focusing (convergent) beam after the last reflection in any series of consecutive reflections off this
mirror [19, 20]. There are of course focusing but not absolutely focusing mirrors [20, 23]. Independently,
in [23], a more restrictive class of focusing mirrors was formally introduced. However, it was proved [20] that
this class coincides with the class of absolutely focusing mirrors. In fact, this formally more restrictive but
actually equivalent property was used in [21] in the studies of ergodic two-dimensional billiards.

In the next section, we present the properties and examples of the absolutely focusing mirrors. The
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last section deals with high-dimensional billiards (in dimensions greater than two), where astigmatism, i. e.,
another optical phenomenon, plays a leading role.

2. ABSOLUTELY FOCUSING MIRRORS

We start with a formal definition of billiards and explain that the dynamics of these systems can
completely be described by two classical formulas of the geometrical optics in dimension two, and by an
additional classical formula in higher dimensions.

A billiard table Q is a bounded domain in a d-dimensional Euclidean space with the boundary ∂Q
consisting of a finite number of smooth manifolds (curves if d = 2). The minimum required smoothness is
C2, but one needs C3 if statistical (ergodic) properties are of interest. A ray (or a point particle) moves by
inertia within a billiard table Q and is reflected off the boundary according to the law of elastic reflections,
i. e., the angle of incidence equals the angle of reflection. Therefore, billiards are Hamiltonian systems, where
the potential is equal to zero within Q and to infinity on the boundary. It is also clear that the billiard orbits
are broken lines, i. e., consist of a finite (if the orbit is periodic) or infinite number of straight segments.

The best and clearest characterization of the billiard dynamics is in terms of wave fronts orthogonal
to narrow beams of rays. These local beams are characterized by a curvature of the front on the “central”
ray in a local (i. e., narrow) beam of rays.

The dynamics of billiards consists in propagation with a constant speed (which can be put equal to
unity) and reflections off the boundary ∂Q. In the process of propagation within the billiard table, the
curvature of a narrow beam of rays changes according to the following classical formula of the geometrical
optics:

κ−1
t = κ−1

0 + t, (1)

where κ0 is the initial curvature of the front and κt is its curvature at the time t.
It immediately follows from Eq. (1) that a divergent (dispersing) front corresponding to κ0 > 0 always

remains dispersing. However, a focusing (convergent) front corresponding to κ0 < 0 becomes divergent at
the time instant equal to |κ−1

0 |. Therefore, a natural basic idea to construct chaotic billiards with focusing
components is to put them sufficiently far apart from the other boundary components in order to give beams
of rays an ample time to defocus and diverge.

Reflections of wave fronts at the boundary are described by another classical formula of the geometrical
optics, called the mirror formula,

κ+ = κ− +
2k

cosφ
, (2)

where κ− and κ+ are the curvatures of the front of a beam of rays right before and after reflection off the
boundary, respectively, φ is the angle of reflection, and k is the curvature of the boundary at the point of
reflection. It is clear that the dispersing fronts in dispersing billiards (where the curvature of the boundary
is strictly positive) forever remain dispersing, which leads to the chaotic behavior by the mechanism of
dispersing. However, if at least one boundary component of a billiard table is focusing, then the situation
becomes much more subtle and, in fact, richer.

Indeed, it is commonly known that billiards in circles are integrable. Indeed, this fact follows from
tangency of the orbits in such billiards to one and the same circle, which is concentric to the boundary.

The first example of a chaotic focusing billiard [10, 11] was obtained from the circle by cutting out
its piece by a chord, which is shorter than the diameter (Fig. 1b). In the integrable circle billiard, the
convergence and divergence of rays are in balance (it is integrability). The billiard in Fig. 1b allows one to
make an average path between two reflections off the focusing part of the boundary longer. As a result, we
get a chaotic billiard where the time of divergence of the orbits (rays) is on average longer than the time of
their convergence.

It was already mentioned that all focusing components (mirrors) at the boundary of chaotic billiards
should be absolutely focusing, i. e., focus all parallel beams of rays falling on these components after the
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Fig. 1. “Perturbed” dispersing billiard (a), the first chaotic focusing billiard (b), and the skewed lemon (c),
which is a perturbation of the billiard on panel (b).

last reflection off this mirror. All arcs of circles are absolutely focusing [11]. Also, any focusing mirror
could be cut into absolutely focusing mirrors, i. e., any sufficiently short focusing mirror is also absolutely
focusing [23]. To get a non-absolutely focusing mirror, we should move away from the circles. For instance,
a semi-ellipse cut over its minor axis remains absolutely focusing if its eccentricity is less than

√
2, but it

becomes non-absolutely focusing when the eccentricity exceeds
√
2 [20, 23].

By far, the so-called stadium billiard, which is the most famous among chaotic focusing billiards, can
immediately be obtained from that in Fig. 1b. To do this, we just use a famous geometric-optical method of
constructing images. According to it, if a ray hits a planar (zero curvature) mirror, then, instead of reflecting
the ray from such a planar mirror, one can reflect the entire region (resonator or the billiard table) with
respect to such a planar mirror and continue the ray as a straight (oriented) line. After such a reflection,
we get, from the billiard table in Fig. 1b, a new billiard table which has the shape of a figure eight. We
now take two common tangents to the two halves of eight. Then we will get a billiard table with two
semicircles connected by two segments tangent to them, i. e., a “stadium.” It is worthwhile to mention that
this billiard is a singular (“degenerate”) example because there exists a continuous family of orbits of period
two (bouncing ball orbits, as physicists call them). Actually, the singularity of this billiard makes the study
more complicated than, e. g., the analysis of squash billiards where the arcs of two circles with different radii
are connected by two tangent segments.

The discovery of the mechanism of defocusing came out of a standard idea to perturb a dispersing
billiard by adding small focusing components (Fig. 1a). It turned out though [11] that the dispersing part
can be completely cut out, but the billiard in Fig. 1a remains to be chaotic.

After understanding the mechanism of defocusing, a natural idea (algorithm) how to construct chaotic
billiards with focusing components immediately comes. Indeed, we just make all the focusing components
absolutely focusing and put them sufficiently far apart. This idea was realized in, e. g., [21, 22]. For a long
time, it was considered the only way of how focusing billiards could become chaotic.

However, a new surprise has recently come, which shows that the mechanism of defocusing is much
more general and ubiquitous than we thought before. It was proved in [25] that the billiard in Fig. 1c is
chaotic. Observe that the boundary of billiards of this class consists of two arcs of two circles which are not
far from each other. Instead, they are very close. Indeed, each of these two circles contains the entire billiard
table.

This billiard is called a skewed lemon (or a squeezed lemon). It can naturally be considered as a
“small” perturbation of the first example of a chaotic focusing billiard in Fig. 1b. Indeed, this billiard is
chaotic if the curvature of a larger circle is sufficiently small [25]. Therefore, the defocusing mechanism
works in a much more general setting than the standard way of putting focusing mirrors sufficiently far
apart. Clearly, we still do not understand this mechanism of chaos well enough.
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3. HIGH-DIMENSIONAL BILLIARDS AND ASTIGMATISM

A fundamental paper [8] was dealing with two-dimensional Sinai billiards. Higher-dimensional Sinai
billiards were studied in another Sinai’s paper [9]. By combining Eqs. (1) and (2), one gets a continued
fraction which describes the curvature of a wave front after n reflections off the boundary [8]. This continued
fraction has 2n elements defined by the lengths of free paths between reflections off the boundary and by
the curvatures and incidence angles at the points of reflection [8]. For billiard tables with dimension d ≥ 3,
the orbits are described by operator-valued continued fractions [9], which are analogous in structure to
continued fractions in the case of dimension two, but the curvature is substituted by the curvature operator
(also called the second fundamental form) of the boundary at the point of reflections. In the case of Sinai
and dispersing billiards, the curvature operators are strictly positive and the analysis of the corresponding
continued fractions requires just technical efforts.

However, if the boundary of a billiard table has at least one focusing component (mirror), then the
well-known optical phenomenon of astigmatism becomes to be a major obstacle to chaos (i. e., to divergence
of rays in the process of dynamics).

To explain why and how it happens, let us consider reflection of a narrow beam of rays off a spherical
mirror. Take at first the plain P which contains (and therefore uniquely defines) the center of the corre-
sponding (to the mirror) sphere and the velocity vector of the central ray in the beam under consideration.
It is easy to see that during the entire series of consecutive reflections off the mirror, the curvature of the
section of the beam front by the plain P will be described by Eqs. (1) and (2). Indeed, the velocity vector
will belong to the two-dimensional plane P during the entire series of consecutive reflections off the mirror.
Therefore, it is the case of dimension 2.

Consider now the plane P ′ which also contains the velocity vector but is orthogonal to the plane P .
The evolution of the curvature of the section of the front by the orthogonal plane P ′ is described by another
classical formula of the geometrical optics, which is called Coddington’s formula.

Coddington’s formula has the following form:

κ′+ = κ′− + 2k cosφ, (3)

where the notations are the same as in the mirror formula (2), but κ′ corresponds to the curvature of the
section of the front by the plane P ′.

At first sight, there is a very little difference between the mirror formula (2) and Coddington’s for-
mula (3). Indeed, the only difference is in the last term, where cosφ is in the denominator of Eq. (2) and
in the numerator of Eq. (3). But in fact the mirror formula (2) shows that the curvature of the front at the
moment of reflection undergoes a jump (by at least 2k), while in the orthogonal plane P ′, the change in
the curvature depends on the incidence angle φ. In particular, this change can be arbitrarily small if the
incidence angle of the beam is almost tangent to the mirror at the point of reflection.

This phenomenon of the different strength of focusing under different angles of incidence is called the
astigmatism. Because of the astigmatism, there were claims that the mechanism of defocusing works (and
exists) only in dimension two.

These claims turned out to be false, and the examples of high-dimensional (in fact, arbitrarily dimen-
sional) chaotic billiards with focusing components were proved to exist [26–28]. However, one has to pay for
astigmatism. Recall that in two-dimensional chaotic billiards, a focusing component of the boundary can be
arbitrarily close to the entire circle (see, e. g., Fig. 1b). In a dimension greater than two, focusing mirrors
(focusing components of the boundary of a billiard table) cannot exceed a relatively small piece of a sphere.
Consider, e. g., a spherical cap, i. e., a section of a sphere by some plane, and take the smallest of the two
pieces. Consider now a cone with the vertex at the center of the sphere, which consists of segments connect-
ing the center of the sphere to the boundary of the spherical cap. It could be derived from Coddington’s
formula that in order to ensure that a billiard is chaotic, the angle of this cone cannot exceed π/2. So, due
to astigmatism, spherical caps in chaotic high-dimensional billiards should be relatively small.
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The simplest example of a nowhere dispersing

Fig. 2. A nowhere dispersing three-dimensional
chaotic billiard.

three-dimensional chaotic billiard is shown in Fig. 2. Here,
a proper (not too large) spherical cap is put on the top
of a sufficiently large cube [26]. This type of billiards is
proved to be chaotic in any finite dimension [27].

The notion (and meaning) of absolutely focusing
mirrors does not depend on dimension. However, so far
only relatively small spherical caps have been shown to
be absolutely focusing mirrors. Finding other examples of
high-dimensional absolutely focusing mirrors could be of
interest for the geometrical optics and certainly for various
applications.

Another interesting problem, first of all for the
chaos theory, is to find a high-dimensional analog of
skewed lemons (see Fig. 1c).

4. CONCLUDING REMARKS

Discovery of the mechanism of defocusing and the introduction of the notion of absolutely focusing
mirrors allowed one to extend the chaos theory to a much larger class of dynamical systems. Quite a few
optical devices have been built in many physical laboratories mainly to analyze the phenomenon of quantum
chaos.

However, many interesting problems in the billiard dynamics and its natural counterpart dealing with
the dynamics of rays in resonators, the illumination of domains (billiard tables), etc., still remain open. The
situation is completely understood only in dimension two. In higher dimensions, there are relatively few
results on the dynamics of billiards with focusing components.

First of all, the only example of absolutely focusing mirrors is provided by sufficiently small spherical
caps [26, 27]. Therefore, a natural question is whether or not other absolutely focusing mirrors exist in
dimensions greater than two.

Moreover, all known examples of nowhere dispersing chaotic billiards with dimensions greater than
two also have flat (zero-curvature) components of the boundary. Is it possible to build a chaotic billiard with
all focusing components of the boundary of the corresponding billiard table? In dimension two, the answer
is yes, but it is not known in higher dimensions. A related, but much more difficult question is whether or
not there exist chaotic billiards with convex billiard tables in dimensions greater than two.

Answering these questions will essentially advance our understanding of possible types of the dynamics
of rays in resonators.
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