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Supervised machine learning is often used to detect phishing websites. However, the scarcity of phishing data for training purposes
limits the classifier’s performance. Further, machine learning algorithms are prone to adversarial attacks: small perturbations on
attack data can bypass the classifier. These problems make machine learning less effective for phishing detection. We propose two
Generative Adversarial Network (GAN) based approaches that synthesize phishing and legitimate samples to mimic real-world
websites. Information about real-world datasets is obtained from ten publicly available phishing datasets which are used by the
AAE (Adversarial Autoencoder) and WGAN (Wasserstein GAN) for generating synthetic data. Using both real and synthesized data,
we demonstrate how to implement classifiers with higher performance and more resistance to adversarial attacks. We propose a
set of hypotheses and validate them through experiments to demonstrate: (i) indistinguishability of synthesized samples from actual
ones, (ii) susceptibility of classifiers to adversarial attacks, (iii) mitigating adversarial attacks by training on larger datasets that
include correctly labeled synthesized samples, and (iv) better performance of classifiers trained on large datasets. Our AAE and
WGAN have been trained on a wide range of datasets, making us optimistic about its widespread applicability.

Index Terms—Phishing Detection, Adversarial Attacks, Adversarial Auto-encoder

I. INTRODUCTION

Phishing attacks, even with sophisticated detection algo-

rithms, still dominate the cyber-crime landscape. FBI’s Internet

Crime Complaint Center (IC3) reports phishing (including its

various forms such as vishing, smishing, and pharming) to be

the most prevalent crime type by number in 2019, with an

estimated 12.5 billion USD in financial losses worldwide be-

tween 2013-2018 [1, 2]. Adversaries learn from their previous

attempts to (i) improve attacks and lure more victims and (ii)

bypass existing detecting algorithms to obtain sensitive users’

information [3, 4] for nefarious purposes.

Social engineering attacks in general, and phishing attacks

specifically, are problematic not because of the vulnerability

in systems but due to the misjudgment of humans in dis-

tinguishing legitimate entities from fake ones. Consequently,

several counter-measures have been studied in the literature,

differing with respect to the methodologies and the types of

attacks they protect against. Machine learning algorithms have

shown promising results [5, 6, 7, 8]. Machine learning requires

large volumes of labeled data for training the classifiers [9],

which are then deployed for detecting phishing websites.

Issues related to unavailability of data in the phishing context

are well-known [10]. Machine learning algorithms are also

prone to attacks, such as techniques devised by attackers for

bypassing the classifiers. Our preliminary works on applying

machine learning for phishing detection have demonstrated the

following challenges.

Data Gathering. Complexities involved in gathering attack

data and reluctance of parties owning datasets to share them

due to concerns such as privacy, confidentiality, and liabil-

ity [11] are barriers that have prevented high volume phishing

datasets from becoming available. There exists repositories

that collect links of phishing websites; examples include

PhishTank.com and OpenPhish.com. However, such

websites only provide a list of links. Creating a labeled

phishing dataset involves accessing the links, visiting the

malicious websites, extracting the features, and performing

classification. These extra steps are complex tasks requiring

expertise.

Data Volume. While the volume of the training dataset is

critical for obtaining a high accuracy of the detection model,

obtaining such a dataset is not an easy task. The low number

of existing phishing datasets [10] does not allow the learning

classifier to converge, and we get inconsistent values for

accuracy.

Adversarial Attack. Malicious users often attempt to poison

the training set or bypass the detection algorithms. In the con-

text of phishing detection, the adversary creates new phishing

websites, e.g., by manipulating feature set to bypass the model

and evade being caught by the classifiers.

In this paper, we focus on two goals: (i) improving the F1
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score of classification algorithms by augmenting the dataset,

and (ii) making the detection algorithm robust against ad-

versarial sampling attacks. With respect to the first goal, we

propose a deep-learning approach to synthesize new samples

that preserve existing data properties. This obviates the need

for actual data collection. These samples are added to the

training datasets. This is needed when data is unavailable,

or the collection process is laborious or infeasible. We use

synthesized samples to demonstrate adversarial attacks on the

classifier model for the second goal. We can make the clas-

sifiers significantly more attack-resistant by injecting labeled

synthesized samples into the training set and re-training the

models.

A. Our Approach

We advocate the use of two synthesized data genera-

tion algorithms, namely, Adversarial Autoencoder (AAE) and

Wasserstein Generative Adversarial Network (WGAN), to

mimic websites that match the ones generated by actual

attackers. We generate both phishing and legitimate samples,

which are used to augment real-world datasets.

The use of synthesized samples solves multiple problems.

First, it addresses the scarcity of phishing data. Second,

constructing a dataset from phishing sites requires visiting the

website and processing the data to make it amenable for anal-

ysis. This is labor-intensive and requires visiting malicious,

often illegal, websites. Samples gathered from such sites are

often very limited in size and, therefore, insufficient for ma-

chine learning algorithms. The synthesized data from multiple

sites can have novel malicious combinations not present in

the individual sites. Third, some synthesized samples can be

correctly labeled and inserted into the training dataset to make

the algorithms more robust against adversarial attacks.

We formulate several hypotheses to demonstrate different

aspects of our work. Our first task is to evaluate if a learning

algorithm can distinguish synthesized samples from original

ones. We next evaluate if the synthesized phishing samples

can circumvent the trained model. This demonstrates the

propensity of learning models to exploratory attacks [12] by

which an attacker perturbs some features to test if the sample

will bypass the classifier. Subsequently, we check if injecting

a small portion of synthesized samples, labeled correctly, into

the training set results in learning algorithms more resistant to

exploratory attacks. Finally, we evaluate if using a smaller

number of samples negatively affects the learning scores

and whether adding synthesized samples (both legitimate and

phishing) improves the F1 score of models, even for original

datasets not generated by our AAE and WGAN models.

We conducted experiments on ten phishing datasets [13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24] and seven classification

algorithms namely Decision Tree (DT), Gradient Boosting

(GB), k-Nearest Neighbors (KNN), Random Forest (RF),

Support Vector Machine with two kernels: Linear (SVM(l))

and Gaussian (SVM(r)) kernel, and a Deep Neural Networks

(DNN). Results demonstrate that our proposed deep-learning

generative approaches proved all of the defined hypotheses.

B. Key Contributions

Key contributions of this paper are given below.

• We develop two generative models of AAE and WGAN

that can synthesize phishing and legitimate websites that

mimic original ones to augment the training dataset. AAE

outperforms WGAN in different ways.

• We exemplify the widespread applicability of our ap-

proach on ten publicly available phishing datasets and

seven different classification algorithms.

• We define a measure to evaluate the closeness of original

measured data to synthetic data generated by proposed

algorithms. We show that synthesized data are less likely

to be distinguished from original data.

• We quantify the improvement of the F1 score of models

by using synthesized data. We demonstrate that adding

labeled synthesized samples to the training increases the

performance of classification algorithms.

• We discuss how to design robust classifiers using syn-

thetic data that can withstand adversarial attacks.

The rest of the paper is organized as follows. In Section II,

we describe related work on machine learning based phishing

detection and provide some background on generative net-

works. In Section III, we model the attacker and describe how

to produce synthesized samples using two different generative

networks. In Section IV, we create the experimental configu-

ration and discuss our results. In Section V, we conclude the

paper and mention some future work.

II. RELATED WORK

Machine learning algorithms are well-suited for detecting

whether a given website is phishing. Earlier machine learning

approaches [5, 6, 7, 8, 25, 26] used features from diverse

perspectives using public datasets or their own ones. The

models were trained on phishing and legitimate datasets to

predict whether unknown instances are genuine or phishing.

A. Phishing Detection By Machine Learning

Content-based features. Zhou et al. [27] extracted 154 fea-

tures based on the content of a webpage using four time-based,

two search-based, and 11 heuristic features to create a labeled

dataset. They created a balanced dataset with 8180 instances.

Zhou et al. concluded that Random Tree was the best classifier,

achieving a precision of 99.4% and 0.1% false positive rate.

Niakanlahiji et al. [5] introduced PhishMon, that uses fea-

tures derived from HTTP responses, SSL certificates, HTML

documents, and JavaScript files. It does not rely on third-party

services to extract features, it is language agnostic, and detects

phishing instances in real-time. The authors reported accuracy

of 95% on their datasets.

Subasi et al. [28] used one of the existing datasets that we

also have used in our experiments to compare performance of

Adaboost algorithm and multi boosting on phishing detection.

They demonstrated that Adaboost outperformed Multiboost-

ing, achieving accuracy scores as high as 97.61%.

Visual similarity. Mao et al. [7] studied visual similarity of

phishing and legitimate websites by automatically comparing
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the respective Cascading Style Sheets (CSS). The authors

proposed a learning-based aggregation analysis mechanism for

distinguish phishing websites from legitimate ones.

Shirazi et al. [29] defined fingerprint of a legitimate website.

The fingerprint uniquely represents a legitimate website by

considering both its visual and textual characteristics. Machine

learning techniques were used to detect the similarity of

suspicious websites with fingerprints of genuine websites.

The approach fingerprinted 14 legitimate websites and tested

against 1446 unique phishing samples. Authors reported an

accuracy of at least 98% for all legitimate websites. The goal

of this work was detecting whether a given website is being

targeted by phishers. The goal of our current paper, like most

other works on phishing detection, tries to check whether a

given website is phishing or genuine.

URL-based detection. Phishing instance detection by analyz-

ing the URL of phishing websites have also been proposed.

Hong et al. [25] consider only the URL of the website and

collect a handful of lexical features that have been proposed

by other researchers and combine them with features obtained

from the blacklisted domains. The results show F-1 scores of

84%.

Sahinguz et al. [6] used a set of natural language processing

based features of URLs of websites. They ran seven different

classifiers for detecting phishing websites and achieved a

97.98% accuracy rate. This study is language independent

and can detect phishing websites in real-time without needing

third-party services.

Al-Ahmadi et al. [30] trained a Long Short-Term Memory

(LSTM) as Generative Adversarial Network (GAN) to syn-

thesize new URL. They also trained a Convolutional Neural

Network (CNN) as a discriminator to decide whether the

URLs are phishing or not. These two components are working

together to improve the overall performance. Authors reported

an accuracy of 97.5%, which is significantly high.

Kamran et al. [31] proposed a conditional GAN for

synthesizing adversarial examples and also detecting phishing

URLs. Authors used a game-theory perspective to understand

the rationale for the decision-making processes of the attacker

and the defender.

Haynes et al. [32] concluded that using deep learning

neural networks on URL-based features alone failed to achieve

high accuracy in detecting phishing websites. In a separate

experiment, the authors used language transformers that rep-

resent context-dependent text sequences for detecting phishing

websites. These transformers were able to learn directly from

the text in URLs and were able to distinguish between legit-

imate and malicious websites without feature definition and

extraction. Transformer-based approaches outperformed other

approaches and achieved accuracy of more than 95% in all

cases.

Hybrid approaches. Jain et al. [8] extracted 19 different

features from the URL and the source code of websites

to distinguish phishing websites from legitimate ones. The

features are extracted from the client-side and do not rely on

third-party services. They achieved a 99.39% true positive rate

and the overall accuracy was 99.09%.

B. Data Generation Approaches

Dataset quality and quantity also effect the performance of

machine learning algorithms. Shirazi et al. [13] observed that

datasets used by researchers are often biased with respect to

the features based on the URL or content. Moreover, some

of the features become obsolete with time or as new attacks

emerge. Sometimes the authors extract features for the first

page of legitimate websites, but not the other pages. Machine

learning algorithms must be trained on enough data samples,

but there is not a simple way to estimate the needed dataset

size. The right size often depends on the complexity of the

problem and that of the learning algorithm and falls under the

sample size determination problem.

Figueroa et al. described a sample size prediction algorithm

that conducted weighted fitting of learning curves in an active

learning algorithm [33]. Active learning systems attempt to

minimize the number of required labeled data and maximize

the accuracy of the model by asking queries in the form of

unlabeled instances to be marked by another agent such as the

domain expert [34].

Small datasets often create inaccurate learning models, so

the right size dataset is critically important. Data gathering and

labeling are challenging and often times expensive operations.

Since getting enough attack data may be infeasible, many data

augmentation techniques have been proposed and used in the

literature [35, 36, 37, 38]. However, our approach focuses

exclusively on phishing samples, and has been tested on a

large set of datasets for evaluation.

Shirazi et al. [35] used an adversarial algorithm to generate

new synthesized samples for increasing the dataset size. This

work further showed how these synthesized phishing samples

can evade the classifier. The authors used a heuristic algorithm

for feature manipulation in order to generate samples. Our

current paper extends the AAE network so that it is capable

of generating more sophisticated samples with a well-studied

algorithm which ensures that the sample matches real-world

data. In addition, we also demonstrate the use of WGAN for

generating synthetic samples in this work. Our previous work

[35] also does not provide any solution that protects against

exploratory attacks. Our current work demonstrates how to

train the model to make it resilient to exploratory attacks.

Other domains including social analytics [39, 40, 41],

privacy [42], health informatics [43], video traffic classifi-

cation [44] also face the issue of limited data availability

and data incompleteness. In many cases, data collection and

maintenance require effort and poses challenges due to data

privacy, confidentiality, and liability issues. Behavioral and so-

cial network data are inherently sparse and incomplete because

sometimes the behavioral indicators are not shown or recorded

[45]. Muramudalige et al. [46] showed an adversarial data

generation technique with novel feature mapping techniques

to synthesize sparse, incomplete, and small datasets while

mapping into complex objects. The proposed method was

validated via three real-world datasets, which were small and

incomplete.

Adversarial deep-learning approaches for data generation

have been used in several domains due to their accuracy and
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efficacy. Goodfellow et al. [47] presented the use of GAN

for data generation without requiring comprehensive problem-

specific theoretical basis or empirical verification [48]. The

first such GAN architecture [47] is only capable of capturing

the precise distribution of continuous and complete data but

cannot be used for learning the distribution of discrete vari-

ables [49].

Since there is a critical need to capture data distribution

with discrete features for diverse application domains such as

phishing, medical, crime data, etc., Makhzani et al. [50] pro-

posed the AAE, which is a probabilistic autoencoder that uses

the GAN framework as a variational inference algorithm for

both discrete and continuous latent variables. Choi et al. [49]

focused on learning the distribution of discrete features, such

as diagnosis or medication codes, using a combination of

an autoencoder and the adversarial framework. Wasserstein

GAN (WGAN) [51] is another well-known technique used in

various domains for both continuous and discrete distributions

such as image generations [52] and Internet traffic genera-

tion [53]. WGAN has a unique loss function (Earth-Mover

(EM) distance or Wasserstein-1) to calculate the difference

between actual and generated data distributions. Kattadige et

al. [44] applied the same feature mapping techniques proposed

in [46] with WGAN to synthesize video traffic data for more

accurate video types classification. In this work, we use AAE

and WGAN to generate more realistic phishing and legitimate

website samples.

Chen et al. [54] presented an attack-agnostic defense mech-

anism for detecting poisoning attacks, which means it is not

designed to detect specific types of attack. In this work,

authors proposed two novel designs. First, a synthetic data

generation that uses conditional GAN (cGAN). In the next

step, a WGAN is set up to learn the distribution present in

the predictions related to the synthesized data. By defining a

detection boundary, attack samples can be distinguished from

original samples.

III. OUR APPROACH

In this section, we first present our threat model. We then

discuss the synthetic data generation techniques using AAE

and WGAN which we use to produce phishing and legitimate

samples. We then discuss our experimental methodology.

Finally, we briefly explain the ML classifiers that we used

in our experiments.

A. Threat Model

We define the threat model by stating our assumptions in

terms of goal, knowledge, and influence of an attacker [35].

Attacker’s Goal. We assume an attacker will aim to attack the

integrity of the system by making the system label a phishing

instance as legitimate.

Attacker’s Knowledge. We assume an attacker only knows

about the features of the phishing instances but not the learning

model parameters. This is a realistic assumption as an attacker

may have access to the definition of existing datasets but

not the specific implementation of a classifier. The attacker

does not have any information about other system parameters

like the algorithms that have been used, dataset instances, or

learning parameters.

Shirazi et al. [35] demonstrated the vulnerabilities of learn-

ing models against adversarial sampling attacks using a feature

manipulation approach. However, in this current work, we

focus on evaluating adversarial samples and their effect on

phishing detection, similar to that of [35], and also address

the problem of inadequate volume of phishing dataset.

Attacker’s Influence. Ling et al. [55] discuss two types of

attacks: (a) Causative Attacks and (b) Exploratory Attacks.

In Causative Attacks, the attacker mislabels a portion or the

entire training data to affect the algorithm. In other words,

the attacker poisons the training data. In Exploratory Attacks,

the attacker crafts samples so as to evade the classifier without

direct influence. In this study, we assume the adversary carries

out exploratory attacks and targets the integrity of the system;

he cannot inject adversarial samples into the training set to

carry out causative attacks.

B. Adversarial Autoencoder (AAE) for Synthesized Data

Generation

We utilize the AAE for synthesizing both phishing and

legitimate samples. Since AAE can generate both continuous

and discrete data distributions, it is very suitable for generating

discrete feature sets of datasets described in Subsection IV-A.

The high-level architecture of the AAE is depicted in Figure 1.

The autoencoder derives a compressed knowledge representa-

tion of the original input, which reconstructs the same data

distribution.

q(z) =

∫
x

q(z|x)pd(x)dx (1)

An aggregated posterior distribution of q(z) on the latent code

is defined with the encoding function q(z|x) and the data

distribution pd(x) as shown in Eq. 1 where x denotes real

phishing dataset. In this work, we synthesize phishing and

legitimate samples separately, where we train two different

AAEs for each dataset.

The operating principle of AAE is that the autoencoder

seeks to minimize the reconstruction error while the adversar-

ial network attempts to minimize the adversarial cost. Recon-

struction phase and regularization phase are two simultaneous

phases that arise during training. In the reconstruction phase,

the autoencoder’s data reconstruction error, often referred to

as the loss, is minimized. The regularization phase relates

to the adversarial component of the network. It minimizes

the adversarial cost to fool the discriminator by maximally

regularizing an aggregated posterior distribution q(z) to the

prior p(z) distribution.

The simultaneous training process leads the discriminative

adversarial network into believing that the samples from

hidden code q(z) come from the prior distribution p(z) [50]. A

normal distribution is exploited as the arbitrary previous p(z)
in this work. After the training process, the adversarial network

synthesizes samples similar to the actual samples through the

prior distribution p(z).
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loss function is also capable of providing a continuous and

usable gradient compared to many other loss functions [51].

Therefore, WGAN is useful for these types of contexts where

only small and discrete training data is available.

In both AAE and WGAN, we train separate generative

models for phishing and legitimate samples in each dataset,

which enables capturing different underlying trends of phish-

ing and legitimate samples with different sets of distinct

features. The feature values are varied in many value ranges.

Thus, the values are normalized between -1 and 1 before

feeding to the AAE or WGAN and are denormalized after data

generation. The synthesized phishing and legitimate samples

are subsequently integrated into a single dataset. Now we have

two datasets:

1) Original Dataset that has both phishing and legiti-

mate samples and was obtained from publicly available

datasets. The original dataset is used to generate synthe-

sized samples.

2) Synthesized Dataset that consists of new synthesized

phishing and legitimate samples generated by the AAE

or WGAN.

After we synthesize data, we apply both original and

synthesized datasets in our experiments in Section IV.

D. Experimental Methodology

We define five hypotheses based on the goals introduced in

Section I. We define five scores, corresponding to the five hy-

potheses. Each score empirically evaluates the corresponding

hypothesis.

Hypothesis-1. The classification algorithm has acceptable

performance on the dataset without considering any

synthesized sample, i.e., the performance is acceptable on the

dataset that contains only original samples. This hypothesis

serves to demonstrate that we are using the most appropriate

classification algorithm for the datasets. Hypothesis-1 states

that the classification algorithms reproduce the accuracy close

to that reported by original authors of the respective datasets.

In other words, we need to evaluate that our classification

algorithms outperform, or are at least as good as, the perfor-

mance reported by authors of those datasets. For cases where

the authors do not report any results, the accuracy needs to be

in an acceptable range. We train and test our classifiers without

considering synthesized samples and compare results with the

authors’ results to prove this hypothesis. ∆1 that evaluates

Hypothesis-1 is defined as follows.

∆1 is the difference between the accuracy reported by

original authors of the dataset and the accuracy we got in

our experiments. Positive values or close to zero are desired

as it proves that the accuracy of our model is better or close

to what the original authors reported.

Hypothesis-2. Synthesized samples are indistinguishable from

actual data with regards to the machine learning classification

algorithm. Hypothesis-2 demonstrates that a machine learning

algorithm will not be able to distinguish synthesized samples

from actual ones. For this purpose, a classification algorithm

is designed to distinguish synthesized samples from original

ones. We construct a dataset including original samples and

synthesized samples. Label of samples indicate if a sample is

original or synthesized, and we do not care if the samples are

phishing or legitimate. We then train a classifier to distinguish

original samples from synthesized ones. ∆2 is the F1 score

of this experiment. We denote the best F1 as ∆2

Max. We

denote the average F1 over all classifiers as ∆2

Avg . Average F1

on different classifiers is important because a classifier may

perform well on few datasets, but do poorly on others.

Hypothesis-3. Synthesized samples, generated by the AAE

and WGAN, will evade the classifier and be mislabeled

more than original samples. Mislabeling may happen for both

phishing and legitimate samples. In other words, synthesized

phishing samples will be incorrectly labeled as legitimate more

than original phishing samples. Note that, if this is indeed the

case, then attackers can create such synthesized samples that

will easily evade the classifiers.

We first train a classifier with only the original samples in

the dataset. This guarantees that the algorithms do not have

information about synthesized samples. We then test classifiers

with two sets of samples: once with original dataset and then

with synthesized samples generated by each of synthesizer

algorithms. The difference of these two sets of results is

defined as ∆3 score.

∆3 specifies the difference in F1 score of a model when it is

tested on original samples and synthesized samples. The lower

values for ∆3 shows that the F1 of model against synthesized

samples is lower than F1 of model against original samples.

In other words, it indicates that the pair of classifier and

dataset are more vulnerable against synthesized samples. It

should be said that this vulnerability is not because of the

classifier we have used in this experiment but it is related

to the pair of classifier and dataset together. In other words,

different classifier or an extended dataset may mitigate this

vulnerability.

Hypothesis-4. Re-training classifiers on datasets that have

been injected with synthesized samples will improve the F1

score of the models with regards to synthesized samples. This

hypothesis considers the mitigation vulnerability. Injecting

synthesized samples in training set will improve the F1 score

to the level when there was no synthesized samples in the

training or testing datasets.

∆4 calculates the difference between the F1 of a classifier

when it is tested with synthesized samples: once it is trained

only with original samples, and once it is trained with both

original and synthesized samples. Higher values on ∆4 are

desired.

Hypothesis-5. Augmenting dataset with synthesized samples

improves F1 score with respect to the original samples. A

useful application of the proposed approach is to increase the

size of the training set without the need to gather real data.

∆5 is defined for this purpose.

∆5 defines the improvement of the F1 of the original

samples, i.e., we calculate the difference between the F1 of two

classifiers when it is tested with only original samples: once

it is trained on only original samples and, once it is trained

on both original and synthesized samples. This score helps

to understand if adding synthesized samples can improve the

accuracy of the classifier with regards to the original samples.
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Table I summarises hypotheses and scores we defined in

this section.

E. Machine Learning Classifier

We consider six statistical classification algorithms available

in the Scikit-learn tool [56] to train and evaluate our model.

These are Decision Tree (DT), Gradient Boosting (GB), k-

Nearest Neighbors (KNN), Random Forest (RF), Gaussian

Naive Bayes (GNB), and Support Vector Machine with two

kernels: Linear (SVM(l)) and Gaussian (SVM(r)) kernel.

These algorithms are widely used in the literature for phishing

detection and achieved promising results. In addition to these

statistical algorithms, we have also implemented a deep neural

network model to compare the results. This can demonstrate

vulnerability of Deep Neural Network (DNN) algorithms to

evaluate against poisoning attack in the context of phishing

detection. For each experiment, we optimize specific param-

eters of each classifier to obtain the best results and prevent

overfitting. We fine-tuned each algorithm with wide ranges of

hyper-parameters to get the best performing model.

For DT, we varied the maximum depth from 2 to 20. For

GB algorithm, we checked learning rates from 0.05 to 1
with 20 estimators and a maximum depth of 10. We checked

the RF algorithm with different numbers of estimators, vary-

ing between 10 to 200 estimators. For KNN algorithm, we

varied the number of neighbors parameters from 3 to 25.

For SVM with linear kernel, we checked C parameters with

the following values: {0.001, 0.01, 0.1, 1, 10}. For SVM with

Gaussian kernel, in addition to C parameter, we checked

Gamma parameters with {0.01, 0.1, 1} values.

For DNN, we used a network with one input layer, two

hidden layers, and one output layer. The first hidden layer

includes 32 hidden nodes, and the second hidden layer has

16 hidden nodes and the ReLu activation function. For the

output layer, we used the sigmoid activation function. We used

dropout regularization with 0.2 rate and binary cross-entropy

loss function. We trained each network with 500 epochs and

an early stopping method with a patience of 200.

IV. EXPERIMENTS AND EVALUATION

We conduct a set of experiments to empirically prove the

hypotheses that are defined in Section III. We start with

introducing the datasets used, followed by experiments we

conducted for each hypothesis and their results.

A. Summary of Phishing Datasets

We use ten phishing datasets publicly available on the

Internet. We list the total number of instances for each dataset,

and also the number of phishing and legitimate instances.

In addition, we explain the number and types of features in

each dataset. Types of features are essential as they explain

the characteristics of datasets on which our algorithms can

be executed. In addition, we mention the highest accuracy

reported by the original authors of the dataset, if it was

available, for comparison purposes.

DS1: Shirazi et al. [13] phishing dataset focuses on a subset

of domain-name-based features without requiring third-party

services. This dataset includes 7 features with 1K legitimate

samples and 1.2K phishing samples; total of 2.2K samples.

The reported accuracy varies between 97 to 98 on the valida-

tion set and is unknown for live phishing URLs.

DS2: Rami et al. [14] dataset was shared through the UCI

machine learning repository [57]. Authors detected charac-

teristics that help discern phishing websites from legitimate

ones, including long URL, IP address in URL, adding prefixes

and suffixes to the domain, and request URL. The authors

defined 30 features that can be categorized as follows: URL-

based, abnormal-based, HTML-based, JavaScript-based, and

domain name-based features. abnormal-based are features

extracted based on abnormality on URLs, e.g. DNS records

did not find in WHOIS database. The authors also analyzed

the most significant features of the detection algorithm. The

authors reported 92.2 for accuracy on this dataset. We used

all 30 features in our experiments, regardless of their relative

importance.

DS3: Abdelhamid et al. [15] dataset is listed in the UCI ma-

chine learning repository [57]. The essential features include

HTML content-based features and some that require third-

party service inquiries, such as DNS servers that perform

domain-name age lookup. The best accuracy reported for this

dataset is 97.

DS4: Tan et al. [16] published their dataset on Mendeley

dataset library. It includes 48 URL-based and HTML-based

features. The authors integrated a feature selection phase with

a training phase and chose the ten best features with a random

forest classifier. We used all 48 features in our experiments.

The best accuracy reported is 96.

DS5: Hannousse et al. [17] dataset includes more than 11,000

phishing and legitimate URLs with 87 extracted features from

three different categories: 56 extracted from the structure and

syntax of URLs, 24 extracted from the page contents, and

seven are extracted by querying external services. The dataset

consists of 50% of phishing and 50% of legitimate instances.

The best accuracy reported by the authors is 96.6.

DS6: Vrbancic et al. [18, 19] dataset has 111 URL-based

features without considering the contents of webpages or

using third-party services. This dataset includes more than

146,000 instances of phishing and legitimate websites. The

best accuracy reported for this dataset 94.39.

DS7: Moruf et al. [20, 21] dataset consists of 7,200 phishing

and 5,800 legitimate websites with 35 features. The authors

added image identity, page style, layout identity, and text

identity features. The authors reported an accuracy of 98.3.

DS8: Mahmodi et al. [22, 23] dataset of 8,000 legitimate and

phishing instances had 75 URL and content-based features.

The authors reported an accuracy of 97.0.

DS9: Muhammad et al. [24] dataset of 15,000 instances of

phishing and legitimate websites had 79 URL-based features.

The best reported accuracy for this dataset is 96.5.

DS10: Marchal et al. [58, 59] released a URL-based phishing

dataset with more than 96 thousands instances. Authors argued

that phishing URLs usually have few relationships between the

URL part that must be registered (low-level domain) and the

remaining part of the URL (upper-level domain, path, query).

They defined the concept of intra-URL relatedness and, to
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TABLE I: Summary of Hypotheses. For each hypothesis, we defined two experiments (Exp.1 and Exp.2) and calculated

difference. Org means only original data was used for training or testing and Syn indicates use of synthesized data. Syn.

∪ Org. indicates use of both original and synthesized data. Target specifies result of classification labels for experiment.

Phi vs. Leg indicates classifier distinguished phishing samples from legitimate ones and Syn vs. Org indicates distinguishing

synthesized samples from original ones.

Hypothesis Training Testing
Target

# Description Exp1 Exp2 Exp1 Exp2

Hyp-1 Reproducing datasets authors accuracy Org Org Org Org Leg vs. Phi
Hyp-2 Distinguishing synthesized and original samples Syn. ∪ Org. – Syn. ∪ Org. – Syn vs. Org
Hyp-3 Mislabeling of synthesized samples Org Org Org Syn Leg vs. Phi
Hyp-4 Recovery performance for synthesized samples Org Syn. ∪ Org. Syn Syn Leg vs. Phi
Hyp-5 Increased performance for original samples Syn ∪ Org Org Org Org Leg vs. Phi

TABLE II: Summary of datasets. This table summarises

datasets we used in our experiments, including Name we

used in this paper, released Year, author’s reported Accuracy,

dataset instance sizes (number of Legitimate, Phishing, and

Total instances), number of Features and types of features

(URL-based, page-content-based (Pg.), and inquiring 3rd.

party services).

Dataset Size (K) Features
N Y T L P T F URL Pg. 3rd.

DS1 2018 98.0 1 1.2 2.2 7 X X

DS2 2012 92.2 6.2 4.9 11.1 30 X X

DS3 2014 97 0.6 0.7 1.3 9 X X

DS4 2018 96 5.0 5.0 10.0 48 X X

DS5 2020 96.6 5.7 5.7 11.4 87 X X X

DS6 2020 - 58.0 30.7 88.7 111 X

DS7 2020 98.3 5.9 7.2 13.1 35 X

DS8 2020 97.0 2.2 1.8 4.0 76 X X

DS9 2020 - 7.8 7.6 15.8 79 X

DS9 2014 - 48.0 47.9 95.9 12 X X

evaluate it, extracted 12 features from words that compose

a URL based on query data from Google and Yahoo search

engines. For this dataset, the best-reported accuracy is 96.28.

Table II summarizes the number of instances, features, and

the portion of legitimate vs. phishing instances in each dataset.

We also specify whether these datasets have URL-based, page-

content-based, and third-party-based features.

B. Hyp-1: Reproducing results cited by original authors

We evaluate Hypothesis-1 as it questions whether our pro-

posed method can reproduce the accuracy close to the accuracy

reported by the original authors of datasets without considering

any synthesized samples. We use 80% of data for training

purposes and 20% for testing in five-fold cross-validation. We

run all experiments ten times and report the mean accuracy.

Table III summarises the accuracy scores we achieved for

all ten datasets and seven classification algorithms. It also

expresses reported accuracy by authors. For calculating ∆1

Acc,

we selected the maximum accuracy we got among seven

classifiers (declared in bold font) and then subtracted the

reported accuracy by authors.

Positive values for ∆1

Acc indicate our model outperformed

the accuracy of original authors. For 6 out of 10 datasets, we

TABLE III: Evaluation for Hyp-1. This table reports the

accuracy of all classifiers and datasets when trained to detect

phishing samples from legitimate samples without considering

synthesized samples. The best performance among different

classifiers is in bold. When tested on different datasets, the av-

erage performance for each classifier is also reported. It shows

reported performance by original authors of each dataset. Also,

it shows ∆1

Acc metric or the difference between best reported

performance and reported performance by original authors.

DT GB KNN RF SVC(l) SVM(r) DNN Auth. ∆1

Acc

DS1 95.9 96.8 96.2 97.3 95 95.2 96.2 98 -0.7
DS2 96.7 97 94.8 97.3 93.2 96.3 96.7 92.2 5.1
DS3 91.6 93.6 93.2 92.8 90 94.0 90.8 97 -3
DS4 97.6 98.2 87.3 98.6 94.6 91.8 97.4 96 2.6
DS5 94.2 95.8 93 96.5 95.1 95.3 95.5 96.6 -0.1
DS6 95.6 95.2 88.1 97.1 93 94.7 96 94.39 2.71
DS7 99.1 99.1 99 99.2 93.9 94.2 99.1 98.3 0.9
DS8 99.1 99.9 97.9 99.6 98.8 80.6 99 97 2.9
DS9 97.2 98.3 97 98.5 96.3 96.9 97.9 96.5 2
DS10 93.6 92.9 89.4 95.5 83.1 87.5 89.6 96.28 -1.33

Avg. 96.06 96.68 93.59 97.24 93.3 92.65 95.82 96.44 1.11

are reporting positive ∆1

Acc values. For the four datasets of

DS1, DS3, DS5, and DS10 that we report negative values for

∆1

Acc, the results are not statistically significant. In average,

the accuracy we are reporting is 1.11% better than the accuracy

reported by original authors of this dataset. In addition, the

best average accuracy we got among classifiers belonging to

RF classifiers is higher than the average accuracy reported by

the original authors. These results prove Hypothesis-1.

C. Hyp-2: Distinguishing synthesized samples

We evaluate Hypothesis 2 to see if synthesized samples are

distinguishable from original samples. Both AAE and WGAN

algorithms generated 10K phishing and 10K legitimate sam-

ples for each dataset. We train our set of classifiers on synthe-

sized samples (positive labels) and original samples (negative

labels). We test each classifier to evaluate the performance

to predict label of each given sample. We use 80% of data

for training purposes and 20% for testing in five-fold cross-

validation. Although some datasets are imbalanced, we report

the best performing F1 scores in Table IV, separately for both

AAE and WGAN algorithms.
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DS DT GB KNN RF SVC(l) SVC(r) DNN Max

A W A W A W A W A W A W A W A W

DS1 56 54.5 54.3 51.1 46.2 39.2 51 48.8 0 0 47 32.8 38.3 29.2 56 54.5

DS2 82.9 84 88.1 88.4 72.5 77.3 90.7 91.5 9.8 9.7 89.9 88.3 82.8 84.8 90.7 91.5

DS3 12.7 20.8 14.2 27 14.4 24.8 15.3 26.6 0 0 13.9 20.5 11 27.2 15.3 27.2

DS4 94.2 92.3 96.2 96 89 92.1 97.5 97.4 54.2 11 93.7 93.8 96.7 97.6 97.5 97.6

DS5 99.9 99.5 99.8 100 74.5 85.2 99.9 100 74.4 20.6 92.9 96.4 96.7 99 99.9 100

DS6 99.3 100 99.1 100 90.3 96.6 99.8 100 87.7 98.4 96.7 99.9 99.6 100 99.8 100

DS7 90.2 95.3 93.1 96.7 85.7 88.5 97.2 98.2 17.1 0 78.7 72.4 91.6 95.3 97.2 98.2

DS8 99.1 98.9 99.2 99.5 73.8 86.3 99.6 99.9 28.4 40.1 75.3 41.4 89.9 97.4 99.6 99.9

DS9 99.9 99.8 100 100 93.3 96 100 100 88.7 90 98.7 92.8 99.5 99.8 100 100

DS10 97.9 99.7 98.9 99.8 91.8 94.1 98.9 99.9 70.4 73.1 93.3 95.3 97.1 99.7 98.9 99.9

Avg. 83.21 84.48 84.29 85.85 73.15 78.01 84.99 86.23 43.07 34.29 78.01 73.36 80.32 83 84.99 86.23

TABLE IV: F1 score for Hyp-2. Table reports results of F1 scores for different classifiers for two synthesizer algorithms of

AAE and WGAN for all datasets. It also reports Maximum F1 score for each dataset and Average for each classifiers.

We fine-tune all classifiers over datasets in this experiment.

The lower ∆2

Max F1
scores demonstrate the lack of ability

to distinguish synthesized samples from legitimate ones and

support our Hypothesis-2. Table IV summarises ∆2

Max F1

scores as we defined in Section III. For each triple of classifier,

dataset, and synthesizer algorithm (AAE or WGAN), we report

the F1 score. We also report the best F1 score for each pair

of datasets and algorithms and the average F1 score for each

pair of classifier and algorithm. As Table IV shows, the best

F1 scores for DS1 and DS3, declared by ∆2

Max F1
, are very

low. For other datasets, the ∆2

Max F1
are reasonably high,

with the lowest values for DS2 are 90.7 for AAE, and 91.5

for WGAN. While ∆2 values are significant, the average of

different classifies over our datasets is very low. The highest

average score belongs to the RF classifier for both AAE and

WGAN synthesizers, 84.99 and 86.23. In other words, on

average, the RF classifier is able to detect synthesized samples,

no matter what algorithm was used, better than any other

classification algorithm we tested. These results show that

while classifiers may successfully discriminate synthesized

samples from original ones in some datasets, the average

results are low and prove our hypothesis that synthesized

samples are difficult to distinguish from original ones on

average.

D. Hyp-3: Performance of synthesized samples

To prove Hypothesis-3, we checked the F1 score of clas-

sifiers against synthesized samples, with two generators of

AAE and WGAN, with models trained exclusively on original

samples. This will demonstrate whether synthesized samples

can bypass the models and go undetected and samples of what

algorithms are more likely to bypass. We calculated ∆3, as the

difference F1 score of classifiers trained exclusively on original

samples and tested once on synthesized samples and once only

on original samples. For reporting results, we averaged the

difference between the F1 scores of models trained on original

samples when models were tested once against original sam-

ples and once against synthesized samples on different datasets

for both algorithms. That number shows how F1 between these

two testing sets changes, either increasing or decreasing on

average. We have used 2000 synthesized phishing samples and

2000 legitimate samples for testing purposes.

Figure 3 depicts ∆3 scores for different classifiers, datasets,

and algorithms. Different classifiers faced a decrease in ∆3 at

least 5%, and for 3 of those, around 10%. SVM with Gaussian

kernel is the worst with 10% and 20% for AAE and WGAN

algorithms, respectively. This is a clear sign that all tested

algorithms in this experiment are vulnerable to synthesized

samples. In addition, AAE was able to synthesize samples that

are evading classifiers more than WGAN, a sign that indicates

AAE is more successful.

In addition, Figure 3 shows the ∆3 for different datasets.

On average, the ∆3 score has been decreased by around 5%

for all datasets, some datasets up to 15%; a clear sign that

synthesized samples can evade the classifier. Among different

datasets, DS4, DS5, DS9, and DS10 have more decrease in

learning scores.

These results demonstrate that our synthesized phishing

and legitimate samples are able to evade trained classifiers,

a clear sign of vulnerability for models for both our clas-

sification algorithms and datasets. Our experiments used ten

public phishing datasets, seven conventional machine learning

classifiers, and two synthesizing algorithms. Our experiments

were carried out on a wide range of datasets and classifica-

tion algorithms which demonstrates the problem of evading

classifiers.

E. Hyp-4: Mitigating against adversarial samples

In order to prove Hypothesis-4, we injected synthesized

samples to measure if the F1 score increased. We define ∆4,

which is the difference F1 score between when models were

trained only with original samples and when they were trained

with both original and synthesized samples. For each dataset,

we injected 80% synthesized samples into the training set

and reserved 20% for testing. Figure 4 explains the results

of experiments for ∆4 based on a classifier, datasets, and

synthesizing algorithms.
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DS DT GB KNN RF SVC(l) SVC(r) DNN Max

A W A W A W A W A W A W A W A W

DS1 1 1.6 0.4 1.6 1.4 1.6 0.2 1 0.8 0.4 1 0.7 1.6 0.8 0.85 1.09

DS2 -1 -0.4 -1.2 -1.3 1 0.8 0.3 0 0.1 0.1 0.3 -0.4 -0.8 -1.3 0.4 -0.16

DS3 0.9 -0.9 0.4 0.6 -0.7 -0.9 -0.7 -3.7 0.9 4.1 -1.1 -1.1 2.7 -1.5 0.28 -0.2

DS4 -1.5 -0.9 -1.2 -0.3 1 1.9 -0.3 -0.7 -0.8 -1.1 -0.3 2.3 -0.5 0.1 -0.48 -0.36

DS5 0 0.2 -0.5 -0.8 -1.5 1.1 0.3 -0.4 -0.4 -1.6 3.2 -0.5 -0.3 -1.2 0.3 -0.44

DS6 0.3 -0.1 -1.3 0.2 -0.1 0.5 0.1 0.2 -0.3 -0.3 10 0 0.2 0.1 2.42 1.24

DS7 0 0.2 -0.2 -0.6 0 0.1 -0.1 0 -0.2 -0.8 -0.3 0.1 -0.1 -0.7 -0.19 -0.11

DS8 0.1 -1.1 -0.4 -0.7 -0.1 -1 0.2 -0.3 1 -0.4 1.5 0 1.3 -0.1 0.65 -0.49

DS9 0.2 -0.5 -0.2 -0.5 -0.6 -1 -0.4 0.2 -1.5 -0.7 0 -2.6 -0.7 0.1 -0.53 -0.7

DS10 -0.5 -0.3 -0.1 -0.5 -0.9 0 0.7 -0.2 -5.3 0.5 -2.1 -1.2 -2.7 -0.1 -1.53 -0.15

Avg. -0.05 -0.22 -0.43 -0.23 -0.05 0.31 0.03 -0.39 -0.57 0.02 1.22 -0.27 0.07 -0.38

TABLE V: F1 score for Hyp-5. Table reports results of F1 scores for different classifiers for two synthesizer algorithms of

AAE and WGAN for all datasets. It also reports Maximum F1 score for each dataset and Average for each classifiers.

datasets with the lowest number of instances. This shows that

our approach can be useful to enhance the size of the dataset

and have higher performance. On average, results of SVM

with the linear kernel (SVM(l)) have been increased by more

than 1.2% with AAE.

The improvement in F1 score that ∆5 scores have demon-

strated proves Hypothesis-5. In other words, extending the

dataset with synthesized samples helped to improve the F1

score of the system for both synthesized and original samples.

V. CONCLUSION AND FUTURE WORK

Supervised machine learning is a promising approach for

phishing detection. Adequate amount of data about phishing

websites are often infeasible to obtain for reasons of privacy,

confidentiality, and liability. In order to address this problem,

we develop AAE and WGAN based technique for generating

data that mimic phishing and genuine websites. We ensure

that the features of the synthesized phishing samples can be

realistically produced by an attacker. We use 10 publicly avail-

able datasets (with different feature sets) for our experiments.

Our experiments ensure that injecting synthesized data in the

training set improved the F1 score of the learning algorithms.

Moreover, including some correctly labeled synthesized data

in the training set produced algorithms that were significantly

more robust to exploratory attacks. Our future work involves

the use the AAE and WGAN for other security related domains

where it is hard to obtain attack data, e.g. generating attack

data for Internet of Things or Cyber Physical Systems. In this

study, we evaluated only statistical learning models. In future,

we plan to explore the vulnerability of neural networks against

adversarial attacks. We also plan to explore different attack

types and make learning models more robust against wider

range of attacks.
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