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Supervised machine learning is often used to detect phishing websites. However, the scarcity of phishing data for training purposes
limits the classifier’s performance. Further, machine learning algorithms are prone to adversarial attacks: small perturbations on
attack data can bypass the classifier. These problems make machine learning less effective for phishing detection. We propose two
Generative Adversarial Network (GAN) based approaches that synthesize phishing and legitimate samples to mimic real-world
websites. Information about real-world datasets is obtained from ten publicly available phishing datasets which are used by the
AAE (Adversarial Autoencoder) and WGAN (Wasserstein GAN) for generating synthetic data. Using both real and synthesized data,
we demonstrate how to implement classifiers with higher performance and more resistance to adversarial attacks. We propose a
set of hypotheses and validate them through experiments to demonstrate: (i) indistinguishability of synthesized samples from actual
ones, (ii) susceptibility of classifiers to adversarial attacks, (iii) mitigating adversarial attacks by training on larger datasets that
include correctly labeled synthesized samples, and (iv) better performance of classifiers trained on large datasets. Our AAE and

WGAN have been trained on a wide range of datasets, making us optimistic about its widespread applicability.

Index Terms—Phishing Detection, Adversarial Attacks, Adversarial Auto-encoder

I. INTRODUCTION

Phishing attacks, even with sophisticated detection algo-
rithms, still dominate the cyber-crime landscape. FBI’s Internet
Crime Complaint Center (IC3) reports phishing (including its
various forms such as vishing, smishing, and pharming) to be
the most prevalent crime type by number in 2019, with an
estimated 12.5 billion USD in financial losses worldwide be-
tween 2013-2018 [1, 2]. Adversaries learn from their previous
attempts to (i) improve attacks and lure more victims and (ii)
bypass existing detecting algorithms to obtain sensitive users’
information [3, 4] for nefarious purposes.

Social engineering attacks in general, and phishing attacks
specifically, are problematic not because of the vulnerability
in systems but due to the misjudgment of humans in dis-
tinguishing legitimate entities from fake ones. Consequently,
several counter-measures have been studied in the literature,
differing with respect to the methodologies and the types of
attacks they protect against. Machine learning algorithms have
shown promising results [5, 6, 7, 8]. Machine learning requires
large volumes of labeled data for training the classifiers [9],
which are then deployed for detecting phishing websites.
Issues related to unavailability of data in the phishing context
are well-known [10]. Machine learning algorithms are also
prone to attacks, such as techniques devised by attackers for
bypassing the classifiers. Our preliminary works on applying

machine learning for phishing detection have demonstrated the
following challenges.
Data Gathering. Complexities involved in gathering attack
data and reluctance of parties owning datasets to share them
due to concerns such as privacy, confidentiality, and liabil-
ity [11] are barriers that have prevented high volume phishing
datasets from becoming available. There exists repositories
that collect links of phishing websites; examples include
PhishTank.com and OpenPhish.com. However, such
websites only provide a list of links. Creating a labeled
phishing dataset involves accessing the links, visiting the
malicious websites, extracting the features, and performing
classification. These extra steps are complex tasks requiring
expertise.
Data Volume. While the volume of the training dataset is
critical for obtaining a high accuracy of the detection model,
obtaining such a dataset is not an easy task. The low number
of existing phishing datasets [10] does not allow the learning
classifier to converge, and we get inconsistent values for
accuracy.
Adversarial Attack. Malicious users often attempt to poison
the training set or bypass the detection algorithms. In the con-
text of phishing detection, the adversary creates new phishing
websites, e.g., by manipulating feature set to bypass the model
and evade being caught by the classifiers.

In this paper, we focus on two goals: (i) improving the F1
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score of classification algorithms by augmenting the dataset,
and (ii) making the detection algorithm robust against ad-
versarial sampling attacks. With respect to the first goal, we
propose a deep-learning approach to synthesize new samples
that preserve existing data properties. This obviates the need
for actual data collection. These samples are added to the
training datasets. This is needed when data is unavailable,
or the collection process is laborious or infeasible. We use
synthesized samples to demonstrate adversarial attacks on the
classifier model for the second goal. We can make the clas-
sifiers significantly more attack-resistant by injecting labeled
synthesized samples into the training set and re-training the
models.

A. Our Approach

We advocate the use of two synthesized data genera-
tion algorithms, namely, Adversarial Autoencoder (AAE) and
Wasserstein Generative Adversarial Network (WGAN), to
mimic websites that match the ones generated by actual
attackers. We generate both phishing and legitimate samples,
which are used to augment real-world datasets.

The use of synthesized samples solves multiple problems.
First, it addresses the scarcity of phishing data. Second,
constructing a dataset from phishing sites requires visiting the
website and processing the data to make it amenable for anal-
ysis. This is labor-intensive and requires visiting malicious,
often illegal, websites. Samples gathered from such sites are
often very limited in size and, therefore, insufficient for ma-
chine learning algorithms. The synthesized data from multiple
sites can have novel malicious combinations not present in
the individual sites. Third, some synthesized samples can be
correctly labeled and inserted into the training dataset to make
the algorithms more robust against adversarial attacks.

We formulate several hypotheses to demonstrate different
aspects of our work. Our first task is to evaluate if a learning
algorithm can distinguish synthesized samples from original
ones. We next evaluate if the synthesized phishing samples
can circumvent the trained model. This demonstrates the
propensity of learning models to exploratory attacks [12] by
which an attacker perturbs some features to test if the sample
will bypass the classifier. Subsequently, we check if injecting
a small portion of synthesized samples, labeled correctly, into
the training set results in learning algorithms more resistant to
exploratory attacks. Finally, we evaluate if using a smaller
number of samples negatively affects the learning scores
and whether adding synthesized samples (both legitimate and
phishing) improves the F1 score of models, even for original
datasets not generated by our AAE and WGAN models.

We conducted experiments on ten phishing datasets [13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24] and seven classification
algorithms namely Decision Tree (DT), Gradient Boosting
(GB), k-Nearest Neighbors (KNN), Random Forest (RF),
Support Vector Machine with two kernels: Linear (SVM(l))
and Gaussian (SVM(r)) kernel, and a Deep Neural Networks
(DNN). Results demonstrate that our proposed deep-learning
generative approaches proved all of the defined hypotheses.

B. Key Contributions

Key contributions of this paper are given below.

o We develop two generative models of AAE and WGAN
that can synthesize phishing and legitimate websites that
mimic original ones to augment the training dataset. AAE
outperforms WGAN in different ways.

o« We exemplify the widespread applicability of our ap-
proach on ten publicly available phishing datasets and
seven different classification algorithms.

o We define a measure to evaluate the closeness of original
measured data to synthetic data generated by proposed
algorithms. We show that synthesized data are less likely
to be distinguished from original data.

o We quantify the improvement of the F1 score of models
by using synthesized data. We demonstrate that adding
labeled synthesized samples to the training increases the
performance of classification algorithms.

o We discuss how to design robust classifiers using syn-
thetic data that can withstand adversarial attacks.

The rest of the paper is organized as follows. In Section II,
we describe related work on machine learning based phishing
detection and provide some background on generative net-
works. In Section III, we model the attacker and describe how
to produce synthesized samples using two different generative
networks. In Section IV, we create the experimental configu-
ration and discuss our results. In Section V, we conclude the
paper and mention some future work.

II. RELATED WORK

Machine learning algorithms are well-suited for detecting
whether a given website is phishing. Earlier machine learning
approaches [5, 6, 7, 8, 25, 26] used features from diverse
perspectives using public datasets or their own ones. The
models were trained on phishing and legitimate datasets to
predict whether unknown instances are genuine or phishing.

A. Phishing Detection By Machine Learning

Content-based features. Zhou et al. [27] extracted 154 fea-
tures based on the content of a webpage using four time-based,
two search-based, and 11 heuristic features to create a labeled
dataset. They created a balanced dataset with 8180 instances.
Zhou et al. concluded that Random Tree was the best classifier,
achieving a precision of 99.4% and 0.1% false positive rate.

Niakanlahiji et al. [5] introduced PhishMon, that uses fea-
tures derived from HTTP responses, SSL certificates, HTML
documents, and JavaScript files. It does not rely on third-party
services to extract features, it is language agnostic, and detects
phishing instances in real-time. The authors reported accuracy
of 95% on their datasets.

Subasi et al. [28] used one of the existing datasets that we
also have used in our experiments to compare performance of
Adaboost algorithm and multi boosting on phishing detection.
They demonstrated that Adaboost outperformed Multiboost-
ing, achieving accuracy scores as high as 97.61%.

Visual similarity. Mao et al. [7] studied visual similarity of
phishing and legitimate websites by automatically comparing
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the respective Cascading Style Sheets (CSS). The authors
proposed a learning-based aggregation analysis mechanism for
distinguish phishing websites from legitimate ones.

Shirazi et al. [29] defined fingerprint of a legitimate website.

The fingerprint uniquely represents a legitimate website by
considering both its visual and textual characteristics. Machine
learning techniques were used to detect the similarity of
suspicious websites with fingerprints of genuine websites.
The approach fingerprinted 14 legitimate websites and tested
against 1446 unique phishing samples. Authors reported an
accuracy of at least 98% for all legitimate websites. The goal
of this work was detecting whether a given website is being
targeted by phishers. The goal of our current paper, like most
other works on phishing detection, tries to check whether a
given website is phishing or genuine.
URL-based detection. Phishing instance detection by analyz-
ing the URL of phishing websites have also been proposed.
Hong et al. [25] consider only the URL of the website and
collect a handful of lexical features that have been proposed
by other researchers and combine them with features obtained
from the blacklisted domains. The results show F-1 scores of
84%.

Sahinguz et al. [6] used a set of natural language processing
based features of URLs of websites. They ran seven different
classifiers for detecting phishing websites and achieved a
97.98% accuracy rate. This study is language independent
and can detect phishing websites in real-time without needing
third-party services.

Al-Ahmadi et al. [30] trained a Long Short-Term Memory
(LSTM) as Generative Adversarial Network (GAN) to syn-
thesize new URL. They also trained a Convolutional Neural
Network (CNN) as a discriminator to decide whether the
URLSs are phishing or not. These two components are working
together to improve the overall performance. Authors reported
an accuracy of 97.5%, which is significantly high.

Kamran er al. [31] proposed a conditional GAN for
synthesizing adversarial examples and also detecting phishing
URLs. Authors used a game-theory perspective to understand
the rationale for the decision-making processes of the attacker
and the defender.

Haynes et al. [32] concluded that using deep learning

neural networks on URL-based features alone failed to achieve
high accuracy in detecting phishing websites. In a separate
experiment, the authors used language transformers that rep-
resent context-dependent text sequences for detecting phishing
websites. These transformers were able to learn directly from
the text in URLs and were able to distinguish between legit-
imate and malicious websites without feature definition and
extraction. Transformer-based approaches outperformed other
approaches and achieved accuracy of more than 95% in all
cases.
Hybrid approaches. Jain er al. [8] extracted 19 different
features from the URL and the source code of websites
to distinguish phishing websites from legitimate ones. The
features are extracted from the client-side and do not rely on
third-party services. They achieved a 99.39% true positive rate
and the overall accuracy was 99.09%.

B. Data Generation Approaches

Dataset quality and quantity also effect the performance of
machine learning algorithms. Shirazi et al. [13] observed that
datasets used by researchers are often biased with respect to
the features based on the URL or content. Moreover, some
of the features become obsolete with time or as new attacks
emerge. Sometimes the authors extract features for the first
page of legitimate websites, but not the other pages. Machine
learning algorithms must be trained on enough data samples,
but there is not a simple way to estimate the needed dataset
size. The right size often depends on the complexity of the
problem and that of the learning algorithm and falls under the
sample size determination problem.

Figueroa et al. described a sample size prediction algorithm
that conducted weighted fitting of learning curves in an active
learning algorithm [33]. Active learning systems attempt to
minimize the number of required labeled data and maximize
the accuracy of the model by asking queries in the form of
unlabeled instances to be marked by another agent such as the
domain expert [34].

Small datasets often create inaccurate learning models, so
the right size dataset is critically important. Data gathering and
labeling are challenging and often times expensive operations.
Since getting enough attack data may be infeasible, many data
augmentation techniques have been proposed and used in the
literature [35, 36, 37, 38]. However, our approach focuses
exclusively on phishing samples, and has been tested on a
large set of datasets for evaluation.

Shirazi et al. [35] used an adversarial algorithm to generate
new synthesized samples for increasing the dataset size. This
work further showed how these synthesized phishing samples
can evade the classifier. The authors used a heuristic algorithm
for feature manipulation in order to generate samples. Our
current paper extends the AAE network so that it is capable
of generating more sophisticated samples with a well-studied
algorithm which ensures that the sample matches real-world
data. In addition, we also demonstrate the use of WGAN for
generating synthetic samples in this work. Our previous work
[35] also does not provide any solution that protects against
exploratory attacks. Our current work demonstrates how to
train the model to make it resilient to exploratory attacks.

Other domains including social analytics [39, 40, 41],
privacy [42], health informatics [43], video traffic classifi-
cation [44] also face the issue of limited data availability
and data incompleteness. In many cases, data collection and
maintenance require effort and poses challenges due to data
privacy, confidentiality, and liability issues. Behavioral and so-
cial network data are inherently sparse and incomplete because
sometimes the behavioral indicators are not shown or recorded
[45]. Muramudalige et al. [46] showed an adversarial data
generation technique with novel feature mapping techniques
to synthesize sparse, incomplete, and small datasets while
mapping into complex objects. The proposed method was
validated via three real-world datasets, which were small and
incomplete.

Adversarial deep-learning approaches for data generation
have been used in several domains due to their accuracy and
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efficacy. Goodfellow et al. [47] presented the use of GAN
for data generation without requiring comprehensive problem-
specific theoretical basis or empirical verification [48]. The
first such GAN architecture [47] is only capable of capturing
the precise distribution of continuous and complete data but
cannot be used for learning the distribution of discrete vari-
ables [49].

Since there is a critical need to capture data distribution
with discrete features for diverse application domains such as
phishing, medical, crime data, efc., Makhzani et al. [50] pro-
posed the AAE, which is a probabilistic autoencoder that uses
the GAN framework as a variational inference algorithm for
both discrete and continuous latent variables. Choi et al. [49]
focused on learning the distribution of discrete features, such
as diagnosis or medication codes, using a combination of
an autoencoder and the adversarial framework. Wasserstein
GAN (WGAN) [51] is another well-known technique used in
various domains for both continuous and discrete distributions
such as image generations [52] and Internet traffic genera-
tion [53]. WGAN has a unique loss function (Earth-Mover
(EM) distance or Wasserstein-1) to calculate the difference
between actual and generated data distributions. Kattadige et
al. [44] applied the same feature mapping techniques proposed
in [46] with WGAN to synthesize video traffic data for more
accurate video types classification. In this work, we use AAE
and WGAN to generate more realistic phishing and legitimate
website samples.

Chen et al. [54] presented an attack-agnostic defense mech-
anism for detecting poisoning attacks, which means it is not
designed to detect specific types of attack. In this work,
authors proposed two novel designs. First, a synthetic data
generation that uses conditional GAN (cGAN). In the next
step, a WGAN is set up to learn the distribution present in
the predictions related to the synthesized data. By defining a
detection boundary, attack samples can be distinguished from
original samples.

III. OUR APPROACH

In this section, we first present our threat model. We then
discuss the synthetic data generation techniques using AAE
and WGAN which we use to produce phishing and legitimate
samples. We then discuss our experimental methodology.
Finally, we briefly explain the ML classifiers that we used
in our experiments.

A. Threat Model

We define the threat model by stating our assumptions in
terms of goal, knowledge, and influence of an attacker [35].
Attacker’s Goal. We assume an attacker will aim to attack the
integrity of the system by making the system label a phishing
instance as legitimate.

Attacker’s Knowledge. We assume an attacker only knows
about the features of the phishing instances but not the learning
model parameters. This is a realistic assumption as an attacker
may have access to the definition of existing datasets but
not the specific implementation of a classifier. The attacker
does not have any information about other system parameters

like the algorithms that have been used, dataset instances, or
learning parameters.

Shirazi et al. [35] demonstrated the vulnerabilities of learn-
ing models against adversarial sampling attacks using a feature
manipulation approach. However, in this current work, we
focus on evaluating adversarial samples and their effect on
phishing detection, similar to that of [35], and also address
the problem of inadequate volume of phishing dataset.
Attacker’s Influence. Ling e al. [55] discuss two types of
attacks: (a) Causative Attacks and (b) Exploratory Attacks.
In Causative Attacks, the attacker mislabels a portion or the
entire training data to affect the algorithm. In other words,
the attacker poisons the training data. In Exploratory Attacks,
the attacker crafts samples so as to evade the classifier without
direct influence. In this study, we assume the adversary carries
out exploratory attacks and targets the integrity of the system;
he cannot inject adversarial samples into the training set to
carry out causative attacks.

B. Adversarial Autoencoder (AAE) for Synthesized Data
Generation

We utilize the AAE for synthesizing both phishing and
legitimate samples. Since AAE can generate both continuous
and discrete data distributions, it is very suitable for generating
discrete feature sets of datasets described in Subsection IV-A.
The high-level architecture of the AAE is depicted in Figure 1.
The autoencoder derives a compressed knowledge representa-
tion of the original input, which reconstructs the same data
distribution.

a(z) = / a(z12)pa(a)da 0

An aggregated posterior distribution of ¢(z) on the latent code
is defined with the encoding function ¢(z|z) and the data
distribution pg(z) as shown in Eq. 1 where x denotes real
phishing dataset. In this work, we synthesize phishing and
legitimate samples separately, where we train two different
AAEs for each dataset.

The operating principle of AAE is that the autoencoder
seeks to minimize the reconstruction error while the adversar-
ial network attempts to minimize the adversarial cost. Recon-
struction phase and regularization phase are two simultaneous
phases that arise during training. In the reconstruction phase,
the autoencoder’s data reconstruction error, often referred to
as the loss, is minimized. The regularization phase relates
to the adversarial component of the network. It minimizes
the adversarial cost to fool the discriminator by maximally
regularizing an aggregated posterior distribution ¢(z) to the
prior p(z) distribution.

The simultaneous training process leads the discriminative
adversarial network into believing that the samples from
hidden code ¢(z) come from the prior distribution p(z) [50]. A
normal distribution is exploited as the arbitrary previous p(z)
in this work. After the training process, the adversarial network
synthesizes samples similar to the actual samples through the
prior distribution p(z).
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Fig. 1: The high-level architecture of synthetic data generation approach. The adversarial autoencoder (AAE) generates both
phishing and legitimate samples. The top row represents the standard autoencoder that reconstructs the data from the latent
code z. The next row shows the discriminator network that predicts whether the samples emerge from the hidden code of the
autoencoder ¢(z) or the user-defined prior distribution p(z) [50]. pq(x) denotes the data distribution. ¢(z|x) and p(x|z) denote
the encoding and decoding distributions respectively. After the data generation, a machine learning classifier (f.) described in

Subsection III-E is applied for different classification tasks.
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Fig. 2: The high-level architecture of Wasserstein Generative
Adversarial Network (WGAN)

The synthesized dataset has the characteristics of phishing
samples generated by real-world attackers and the character-
istics of legitimate samples collected from real websites. We
feed them into a classification algorithm that can distinguish
phishing samples from legitimate ones. This classifier is
unaware of whether the samples are synthesized or actual.
The instances are labeled as legitimate or phishing, and the
classifier will predict them subsequently.

C. Wasserstein Generative Adversarial Network (WGAN)

Similar to AAE, we use the WGAN for synthesizing both
phishing and legitimate samples. Since WGAN is fluent in
generating both continuous and discrete data distributions, it
is very suitable for generating discrete feature sets of datasets
described in Subsection IV-A. The high-level architecture of
the WGAN is depicted in Figure 2.

Let P, and P, be the actual and generated distributions
respectively. Typically in GAN architecture, instead of evaluat-
ing the density of the distribution (P,-), we can define a random
variable Z with a noise (known) distribution p. (z) and send it

through a parametric function gg : Z — A& that is capable of
synthesizing samples from a certain distribution Py [51]. To
achieve the objective in WGAN, two deep-neural networks,
i.e., generator () and discriminator compete each other in
the training phase. In WGAN, the discriminator is called the
critic (C). C determines the real and fake samples from p, (z)
and G confuses C' by convincing that synthesized samples
reach from the real distribution (P,.). Eventually, the G will
be capable of generating data samples that are similar to real
samples by mapping its distribution (Py) to Pg. The contest
between GG and C' is a two-player minimax game with value
function V(C, G) [47]:

n}ip max V(C,G) = Egp, (2)[logC(x)]+

Einp.(2)llog(1 — C(G(2)))]

Further, WGAN has a distinct loss function to compute
the difference between actual (PP,) and generated (P,) data
distributions compared to the ordinary GAN. WGAN uses
the Earth-Mover (EM) distance or Wasserstein-1 as the loss
function [51] while GAN calculates the loss via the standard
cross-entropy [47]. Earth-Mover (EM) distance can be defined
as follows.

W(PWPQ) =

2

inf

YEIT (Pr,Pg)
where P, P, is the set of all joint distributions v(z,y),
whose marginal distributions are P, and P,. In other words,
the similarity between actual and generated data is calculated
by finding the infimum of the expected values of distances
between data points from the distributions of actual and
generated data [53].

Further, training of WGANSs does not require maintaining a
careful balance of the GG and the C, and also does not require a
cautious design of the network architecture. The Wasserstein

E (2~ [l = yll] 3)
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loss function is also capable of providing a continuous and
usable gradient compared to many other loss functions [51].
Therefore, WGAN is useful for these types of contexts where
only small and discrete training data is available.

In both AAE and WGAN, we train separate generative
models for phishing and legitimate samples in each dataset,
which enables capturing different underlying trends of phish-
ing and legitimate samples with different sets of distinct
features. The feature values are varied in many value ranges.
Thus, the values are normalized between -1 and 1 before
feeding to the AAE or WGAN and are denormalized after data
generation. The synthesized phishing and legitimate samples
are subsequently integrated into a single dataset. Now we have
two datasets:

1) Original Dataset that has both phishing and legiti-
mate samples and was obtained from publicly available
datasets. The original dataset is used to generate synthe-
sized samples.

2) Synthesized Dataset that consists of new synthesized
phishing and legitimate samples generated by the AAE
or WGAN.

After we synthesize data, we apply both original and
synthesized datasets in our experiments in Section I'V.

D. Experimental Methodology

We define five hypotheses based on the goals introduced in
Section I. We define five scores, corresponding to the five hy-
potheses. Each score empirically evaluates the corresponding
hypothesis.

Hypothesis-1. The classification algorithm has acceptable

synthesized samples. Label of samples indicate if a sample is
original or synthesized, and we do not care if the samples are
phishing or legitimate. We then train a classifier to distinguish
original samples from synthesized ones. A? is the F1 score
of this experiment. We denote the best F1 as A%, . We
denote the average F1 over all classifiers as A% 4- Average F1
on different classifiers is important because a classifier may
perform well on few datasets, but do poorly on others.

Hypothesis-3. Synthesized samples, generated by the AAE
and WGAN, will evade the classifier and be mislabeled

more than original samples. Mislabeling may happen for both

phishing and legitimate samples. In other words, synthesized

performance on the dataset without considering any

synthesized sample, i.e., the performance is acceptable on the

dataset that contains only original samples. This hypothesis
serves to demonstrate that we are using the most appropriate
classification algorithm for the datasets. Hypothesis-1 states
that the classification algorithms reproduce the accuracy close
to that reported by original authors of the respective datasets.
In other words, we need to evaluate that our classification
algorithms outperform, or are at least as good as, the perfor-
mance reported by authors of those datasets. For cases where
the authors do not report any results, the accuracy needs to be
in an acceptable range. We train and test our classifiers without
considering synthesized samples and compare results with the
authors’ results to prove this hypothesis. A! that evaluates
Hypothesis-1 is defined as follows.

A' is the difference between the accuracy reported by
original authors of the dataset and the accuracy we got in
our experiments. Positive values or close to zero are desired
as it proves that the accuracy of our model is better or close
to what the original authors reported.

Hypothesis-2. Synthesized samples are indistinguishable from

actual data with regards to the machine learning classification

algorithm. Hypothesis-2 demonstrates that a machine learning
algorithm will not be able to distinguish synthesized samples
from actual ones. For this purpose, a classification algorithm
is designed to distinguish synthesized samples from original
ones. We construct a dataset including original samples and

phishing samples will be incorrectly labeled as legitimate more
than original phishing samples. Note that, if this is indeed the
case, then attackers can create such synthesized samples that
will easily evade the classifiers.

We first train a classifier with only the original samples in
the dataset. This guarantees that the algorithms do not have
information about synthesized samples. We then test classifiers
with two sets of samples: once with original dataset and then
with synthesized samples generated by each of synthesizer
algorithms. The difference of these two sets of results is
defined as A3 score.

A3 specifies the difference in F1 score of a model when it is

tested on original samples and synthesized samples. The lower
values for A shows that the F1 of model against synthesized
samples is lower than F1 of model against original samples.
In other words, it indicates that the pair of classifier and
dataset are more vulnerable against synthesized samples. It
should be said that this vulnerability is not because of the
classifier we have used in this experiment but it is related
to the pair of classifier and dataset together. In other words,
different classifier or an extended dataset may mitigate this
vulnerability.
Hypothesis-4. Re-training classifiers on datasets that have
been injected with synthesized samples will improve the F1
score of the models with regards to synthesized samples. This
hypothesis considers the mitigation vulnerability. Injecting
synthesized samples in training set will improve the F1 score
to the level when there was no synthesized samples in the
training or testing datasets.

A* calculates the difference between the F1 of a classifier

when it is tested with synthesized samples: once it is trained
only with original samples, and once it is trained with both
original and synthesized samples. Higher values on A* are
desired.
Hypothesis-5. Augmenting dataset with synthesized samples
improves F1 score with respect to the original samples. A
useful application of the proposed approach is to increase the
size of the training set without the need to gather real data.
AP is defined for this purpose.

A5 defines the improvement of the F1 of the original
samples, i.e., we calculate the difference between the F1 of two
classifiers when it is tested with only original samples: once
it is trained on only original samples and, once it is trained
on both original and synthesized samples. This score helps
to understand if adding synthesized samples can improve the
accuracy of the classifier with regards to the original samples.
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Table I summarises hypotheses and scores we defined in
this section.

E. Machine Learning Classifier

We consider six statistical classification algorithms available
in the Scikit-learn tool [56] to train and evaluate our model.
These are Decision Tree (DT), Gradient Boosting (GB), k-
Nearest Neighbors (KNN), Random Forest (RF), Gaussian
Naive Bayes (GNB), and Support Vector Machine with two
kernels: Linear (SVM(l)) and Gaussian (SVM(r)) kernel.
These algorithms are widely used in the literature for phishing
detection and achieved promising results. In addition to these
statistical algorithms, we have also implemented a deep neural
network model to compare the results. This can demonstrate
vulnerability of Deep Neural Network (DNN) algorithms to
evaluate against poisoning attack in the context of phishing
detection. For each experiment, we optimize specific param-
eters of each classifier to obtain the best results and prevent
overfitting. We fine-tuned each algorithm with wide ranges of
hyper-parameters to get the best performing model.

For DT, we varied the maximum depth from 2 to 20. For
GB algorithm, we checked learning rates from 0.05 to 1
with 20 estimators and a maximum depth of 10. We checked
the RF algorithm with different numbers of estimators, vary-
ing between 10 to 200 estimators. For KNN algorithm, we
varied the number of neighbors parameters from 3 to 25.
For SVM with linear kernel, we checked C' parameters with
the following values: {0.001,0.01,0.1,1,10}. For SVM with
Gaussian kernel, in addition to C' parameter, we checked
Gamma parameters with {0.01,0.1,1} values.

For DNN, we used a network with one input layer, two
hidden layers, and one output layer. The first hidden layer
includes 32 hidden nodes, and the second hidden layer has
16 hidden nodes and the ReLu activation function. For the
output layer, we used the sigmoid activation function. We used
dropout regularization with 0.2 rate and binary cross-entropy
loss function. We trained each network with 500 epochs and
an early stopping method with a patience of 200.

IV. EXPERIMENTS AND EVALUATION

We conduct a set of experiments to empirically prove the
hypotheses that are defined in Section III. We start with
introducing the datasets used, followed by experiments we
conducted for each hypothesis and their results.

A. Summary of Phishing Datasets

We use ten phishing datasets publicly available on the
Internet. We list the total number of instances for each dataset,
and also the number of phishing and legitimate instances.
In addition, we explain the number and types of features in
each dataset. Types of features are essential as they explain
the characteristics of datasets on which our algorithms can
be executed. In addition, we mention the highest accuracy
reported by the original authors of the dataset, if it was
available, for comparison purposes.

DS1: Shirazi et al. [13] phishing dataset focuses on a subset
of domain-name-based features without requiring third-party

services. This dataset includes 7 features with 1K legitimate
samples and 1.2K phishing samples; total of 2.2K samples.
The reported accuracy varies between 97 to 98 on the valida-
tion set and is unknown for live phishing URLs.

DS2: Rami er al. [14] dataset was shared through the UCI
machine learning repository [57]. Authors detected charac-
teristics that help discern phishing websites from legitimate
ones, including long URL, IP address in URL, adding prefixes
and suffixes to the domain, and request URL. The authors
defined 30 features that can be categorized as follows: URL-
based, abnormal-based, HTML-based, JavaScript-based, and
domain name-based features. abnormal-based are features
extracted based on abnormality on URLs, e.g. DNS records
did not find in WHOIS database. The authors also analyzed
the most significant features of the detection algorithm. The
authors reported 92.2 for accuracy on this dataset. We used
all 30 features in our experiments, regardless of their relative
importance.

DS3: Abdelhamid et al. [15] dataset is listed in the UCI ma-
chine learning repository [57]. The essential features include
HTML content-based features and some that require third-
party service inquiries, such as DNS servers that perform
domain-name age lookup. The best accuracy reported for this
dataset is 97.

DS4: Tan et al. [16] published their dataset on Mendeley
dataset library. It includes 48 URL-based and HTML-based
features. The authors integrated a feature selection phase with
a training phase and chose the ten best features with a random
forest classifier. We used all 48 features in our experiments.
The best accuracy reported is 96.

DS5: Hannousse et al. [17] dataset includes more than 11,000
phishing and legitimate URLs with 87 extracted features from
three different categories: 56 extracted from the structure and
syntax of URLs, 24 extracted from the page contents, and
seven are extracted by querying external services. The dataset
consists of 50% of phishing and 50% of legitimate instances.
The best accuracy reported by the authors is 96.6.

DS6: Vrbancic et al. [18, 19] dataset has 111 URL-based
features without considering the contents of webpages or
using third-party services. This dataset includes more than
146,000 instances of phishing and legitimate websites. The
best accuracy reported for this dataset 94.39.

DS7: Moruf et al. [20, 21] dataset consists of 7,200 phishing
and 5,800 legitimate websites with 35 features. The authors
added image identity, page style, layout identity, and text
identity features. The authors reported an accuracy of 98.3.
DS8: Mahmodi er al. [22, 23] dataset of 8,000 legitimate and
phishing instances had 75 URL and content-based features.
The authors reported an accuracy of 97.0.

DS9: Muhammad et al. [24] dataset of 15,000 instances of
phishing and legitimate websites had 79 URL-based features.
The best reported accuracy for this dataset is 96.5.

DS10: Marchal et al. [58, 59] released a URL-based phishing
dataset with more than 96 thousands instances. Authors argued
that phishing URLs usually have few relationships between the
URL part that must be registered (low-level domain) and the
remaining part of the URL (upper-level domain, path, query).
They defined the concept of intra-URL relatedness and, to
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TABLE I: Summary of Hypotheses. For each hypothesis, we defined two experiments (Exp.l and Exp.2) and calculated
difference. Org means only original data was used for training or testing and Syn indicates use of synthesized data. Syn.
U Org. indicates use of both original and synthesized data. Target specifies result of classification labels for experiment.
Phi vs. Leg indicates classifier distinguished phishing samples from legitimate ones and Syn vs. Org indicates distinguishing
synthesized samples from original ones.

Hypothesis Training Testing

# Description Expl Exp2 ‘ Expl Exp2 Target
Hyp-1 Reproducing datasets authors accuracy ‘ Org Org : Org Org : Leg vs. Phi
Hyp-2 Distinguishing synthesized and original samples : Syn. U Org. - , Syn. U Org -, Synvs. Org
Hyp-3 Mislabeling of synthesized samples | Org Org | Org Syn | Leg vs. Phi
Hyp-4 Recovery performance for synthesized samples | Org Syn. U Org. | Syn Syn | Leg vs. Phi
Hyp-5 Increased performance for original samples I Syn U Org Org ! Org Org | Leg vs. Phi

TABLE II: Summary of datasets. This table summarises
datasets we used in our experiments, including Name we
used in this paper, released Year, author’s reported Accuracy,
dataset instance sizes (number of Legitimate, Phishing, and
Total instances), number of Features and types of features
(URL-based, page-content-based (Pg.), and inquiring 3rd.
party services).

Dataset Size (K) Features
N Y T L P T  F URL Pg 3rd
DS1 2018 98.0} 1 1.2 2.2} 7 v Y
DS2 2012 922 62 49 111,30 v V
DS3 2014 97 , 06 07 13, 9 v v
DS4 2018 96 1 50 50 100148 v
DS5 2020 96.6' 57 57 114187 v v
DS6 2020 - '580 307 88.7'111 v
DS7 2020 983,59 72 131, 35 v
DS8 2020 970,22 18 40,76 v Vv
DS9 2020 - ;78 76 158,79
DS9 2014 - 479 v v

1 48.0 9591 12

evaluate it, extracted 12 features from words that compose
a URL based on query data from Google and Yahoo search
engines. For this dataset, the best-reported accuracy is 96.28.

Table II summarizes the number of instances, features, and
the portion of legitimate vs. phishing instances in each dataset.
We also specify whether these datasets have URL-based, page-
content-based, and third-party-based features.

B. Hyp-1: Reproducing results cited by original authors

We evaluate Hypothesis-1 as it questions whether our pro-
posed method can reproduce the accuracy close to the accuracy
reported by the original authors of datasets without considering
any synthesized samples. We use 80% of data for training
purposes and 20% for testing in five-fold cross-validation. We
run all experiments ten times and report the mean accuracy.

Table III summarises the accuracy scores we achieved for
all ten datasets and seven classification algorithms. It also
expresses reported accuracy by authors. For calculating Al
we selected the maximum accuracy we got among seven
classifiers (declared in bold font) and then subtracted the
reported accuracy by authors.

Positive values for AY . indicate our model outperformed
the accuracy of original authors. For 6 out of 10 datasets, we

TABLE III: Evaluation for Hyp-1. This table reports the
accuracy of all classifiers and datasets when trained to detect
phishing samples from legitimate samples without considering
synthesized samples. The best performance among different
classifiers is in bold. When tested on different datasets, the av-
erage performance for each classifier is also reported. It shows
reported performance by original authors of each dataset. Also,
it shows A . metric or the difference between best reported
performance and reported performance by original authors.

DT GB KNN RF SVC(I) SVM(r) DNN Auth. Al __
DSl | 959 968 962 973 95 952 962, 98 0.7
DS2 | 967 97 948 973 932 963 967, 922 5.1
DS3 | 91.6 93.6 932 928 90 940 908 | 97 3
DS4 1976 982 873 986 946 918 974, 96 26
DS5 1942 958 93 965 95.1 953 9551966 -0.1
DS6 1956 952 881 971 93 947 96 19439 271
DS7 199.1 991 99 992 939 942 99.1 1 983 0.9
DS8 ' 99.1 999 979 996 988 8.6 99 ! 97 29
DS9 '972 983 97 985 963 969 979 ' 965 2
Ds1o} 93.6 929 894 955 83.1 875 89.6 }96.28 -1.33
Avg. 196.06 96.68 93.59 97.24 933  92.65 95.8219644 1.11

are reporting positive Ay values. For the four datasets of
DS1, DS3, DS5, and DS10 that we report negative values for
Al ., the results are not statistically significant. In average,
the accuracy we are reporting is 1.11% better than the accuracy
reported by original authors of this dataset. In addition, the
best average accuracy we got among classifiers belonging to
RF classifiers is higher than the average accuracy reported by
the original authors. These results prove Hypothesis-1.

C. Hyp-2: Distinguishing synthesized samples

We evaluate Hypothesis 2 to see if synthesized samples are
distinguishable from original samples. Both AAE and WGAN
algorithms generated 10K phishing and 10K legitimate sam-
ples for each dataset. We train our set of classifiers on synthe-
sized samples (positive labels) and original samples (negative
labels). We test each classifier to evaluate the performance
to predict label of each given sample. We use 80% of data
for training purposes and 20% for testing in five-fold cross-
validation. Although some datasets are imbalanced, we report
the best performing F1 scores in Table IV, separately for both
AAE and WGAN algorithms.
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DS DT GB KNN RF SVCQ) SVC(r) DNN Max
A W A W A W A W A W A W A W A W

DSI | 56 5451543 5111462 3921 51 4881 0 0 ! 47 328383 292! 56 545
DS2 ' 829 84 | 881 884,725 773,907 915, 98 97 | 899 883 | 828 848,907 91.5
DS3 | 127 208 | 142 27 1144 248 1153 266! 0 0 139 205! 11 2721153 272
DS4 1 942 923 | 962 96 |, 89 921 | 975 974 | 542 11 | 937 938|967 97.6, 9.5 97.6
DS5 | 999 9951998 100 ' 745 8521999 100 ' 744 206 ' 929 964 ' 967 99 ' 99.9 100
DS6 1 993 100 | 99.1 100 | 903 96.6 | 99.8 100 | 87.7 984 | 967 99.9 | 99.6 100 | 99.8 100
DS7 | 902 953 1931 967 ! 857 8851972 9821171 0 !787 724916 9531972 982
DS8 1 99.1 989 | 992 995 | 73.8 863 | 99.6 999 | 284 40.1 | 753 414 | 899 974, 99.6 99.9
DS9 1 999 998 ' 100 100 ' 933 96 ! 100 100 ! 887 90 987 928 ' 995 998! 100 100
DSI0, 979 997 | 989 998 | 91.8 94.1 | 989 999 | 70.4 73.1 | 933 953 | 97.1 99.7| 98.9 99.9
Avg. 18321 84.48 18429 8585 173.15 78.01 18499 86.23 143.07 34.2978.01 73.36180.32 83 18499 86.23

TABLE IV: F1 score for Hyp-2. Table reports results of F1 scores for different classifiers for two synthesizer algorithms of
AAE and WGAN for all datasets. It also reports Maximum F1 score for each dataset and Average for each classifiers.

We fine-tune all classifiers over datasets in this experiment.
The lower A%, . 5, scores demonstrate the lack of ability
to distinguish synthesized samples from legitimate ones and
support our Hypothesis-2. Table IV summarises A?MW 1
scores as we defined in Section III. For each triple of classifier,
dataset, and synthesizer algorithm (AAE or WGAN), we report
the F1 score. We also report the best F1 score for each pair
of datasets and algorithms and the average F1 score for each
pair of classifier and algorithm. As Table IV shows, the best
F1 scores for DS1 and DS3, declared by A%, = 1, are very
low. For other datasets, the A%, ., are reasonably high,
with the lowest values for DS2 are 90.7 for AAE, and 91.5
for WGAN. While A? values are significant, the average of
different classifies over our datasets is very low. The highest
average score belongs to the RF classifier for both AAE and
WGAN synthesizers, 84.99 and 86.23. In other words, on
average, the RF classifier is able to detect synthesized samples,
no matter what algorithm was used, better than any other
classification algorithm we tested. These results show that
while classifiers may successfully discriminate synthesized
samples from original ones in some datasets, the average
results are low and prove our hypothesis that synthesized
samples are difficult to distinguish from original ones on
average.

D. Hyp-3: Performance of synthesized samples

To prove Hypothesis-3, we checked the F1 score of clas-
sifiers against synthesized samples, with two generators of
AAE and WGAN, with models trained exclusively on original
samples. This will demonstrate whether synthesized samples
can bypass the models and go undetected and samples of what
algorithms are more likely to bypass. We calculated A3, as the
difference F1 score of classifiers trained exclusively on original
samples and tested once on synthesized samples and once only
on original samples. For reporting results, we averaged the
difference between the F1 scores of models trained on original
samples when models were tested once against original sam-
ples and once against synthesized samples on different datasets
for both algorithms. That number shows how F1 between these

two testing sets changes, either increasing or decreasing on
average. We have used 2000 synthesized phishing samples and
2000 legitimate samples for testing purposes.

Figure 3 depicts A® scores for different classifiers, datasets,
and algorithms. Different classifiers faced a decrease in A? at
least 5%, and for 3 of those, around 10%. SVM with Gaussian
kernel is the worst with 10% and 20% for AAE and WGAN
algorithms, respectively. This is a clear sign that all tested
algorithms in this experiment are vulnerable to synthesized
samples. In addition, AAE was able to synthesize samples that
are evading classifiers more than WGAN, a sign that indicates
AAE is more successful.

In addition, Figure 3 shows the A3 for different datasets.
On average, the A3 score has been decreased by around 5%
for all datasets, some datasets up to 15%; a clear sign that
synthesized samples can evade the classifier. Among different
datasets, DS4, DS5, DS9, and DS10 have more decrease in
learning scores.

These results demonstrate that our synthesized phishing
and legitimate samples are able to evade trained classifiers,
a clear sign of vulnerability for models for both our clas-
sification algorithms and datasets. Our experiments used ten
public phishing datasets, seven conventional machine learning
classifiers, and two synthesizing algorithms. Our experiments
were carried out on a wide range of datasets and classifica-
tion algorithms which demonstrates the problem of evading
classifiers.

E. Hyp-4: Mitigating against adversarial samples

In order to prove Hypothesis-4, we injected synthesized
samples to measure if the F1 score increased. We define A%,
which is the difference F1 score between when models were
trained only with original samples and when they were trained
with both original and synthesized samples. For each dataset,
we injected 80% synthesized samples into the training set
and reserved 20% for testing. Figure 4 explains the results
of experiments for A* based on a classifier, datasets, and
synthesizing algorithms.
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Fig. 3: Percentage decrease of accuracy and F1 score for models trained exclusively on original samples but tested on original

samples over those tested only on original samples.

(a) Classifiers performance

B AAE B WGAN

DT GB KNN RF  SVM() SVM(r) DNN

(b) Datasets Performance

B AAE B WGAN

-20

DS1 DS2 DS3 Ds4 DS5 Ds6e DS7 Ds8 Ds9 DS10

Fig. 4: This figure depicts the percentage of increase in F1 score when the model is trained with both original and synthesized
samples or it is trained exclusively with original samples without considering synthesized samples. In both cases, models are

tested with synthesized samples.

(a) Classifiers performances

B AAE B WGAN
20

DT GB KNN RF  SVM() SVM(r) DNN

Figure 4 depicts improvements over F1 score that happened
after injecting synthesized samples into the training set. Note
that A* is significantly high when we consider the average
on datasets and classifiers. A? scores, for all cases, have
improved. Among different classifiers, KNN and SVM with
Gaussian kernel.

The average of A* is 7.4% and 6.1% respectively, while the
decrease in F1 score in the previous experiment was 7.1% and
5.6%. This shows that the F1 score has improved by the same
amount degraded in the previous experiment. These results
prove that Hypothesis-4, as the proposed approach, was able
to recover the model to the level that we had when we were
using only original samples.

(b) Datasets performances

B AAE B WGAN
25

DS1 DS2 DS3 DsS4 DsS5 Dsé DS7 DS8 DS9 Ds10

E Hyp-5: Improving F1 score for original dataset.

In previous experiments, we showed injecting synthesized
samples into the training set mitigates the vulnerability against
synthesized samples. However, this is not the only benefit
of using our approach. We want to analyze if augmenting
the training dataset with synthesized samples improves the
F1 score of the models over those trained only on original
samples. We denote A® as this difference. Table V summarizes
results for two algorithms of AAE and WGAN.

Table V demonstrates F1 score has been slightly improved
for different datasets and algorithms. As original scores for
these models are significantly high, even a small improve-
ment is considerable. Besides, the improvement for specific
algorithms is significant. For example, the F1 score has been
increased for the DS1 dataset in all cases. DS1 is one of the
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DS DT GB KNN RF SVCQ) SVC(r) DNN Max
LA W A W A W A W A W A W A W A W
DS1 : 1 1.6 : 0.4 1.6 : 14 1.6 : 0.2 1 : 08 04 : 1 0.7 : 1.6 08 : 0.85 1.09
DS2 v -1 04, -12 -13, 1 08 03 o ,01 01,03 -04,-08 -13, 04 -0.16
DS3 : 09 -09 : 04 0.6 : -0.7  -0.9 : -0.7  -3.7 : 09 41 :—1.1 -1.1 : 27 -15 : 0.28 -0.2
DS4 1 -15 -09,-12 03, 1 19,-03 -07,-08 -1.1,-03 23 ,-05 0.1 ,-048 -0.36
DS5 : 0 0.2 : -0.5 -0.8 : -1.5 1.1 : 03 -04 : -0.4 -1.6: 32 -05 :-0.3 -1.2 : 03 -0.44
ps¢ . 03 -01,-13 02 ,-01 05,01 02 ,-03 -03, 10 0 ,02 01,242 124
DS7 : 0 0.2 : -0.2  -0.6 : 0 0.1 : -0.1 0 : -0.2  -0.8 : -03 0.1 : -0.1  -0.7 :—0.19 -0.11
ps§ . 01 -11,-04 -07,-01 -1 ,02 -03, 1 -04, 15 0 ,13 -01,065 -049
DS9 : 02 -05 : -02  -0.5 : -06 -1 :-0.4 0.2 : -1.5 -0.7: 0 -26 :-0.7 0.1 :-0.53 -0.7
psio, -05 -03,-01 -05,-09 O0 ,07 -02,-53 05,-21 -12,-27 -0.1,-1.53 -0.15

Avg. 1 005 -022-0.43 -023,-0.05 0.310.03

2039 1-0.57 0.02 1122 -02710.07

2038 |

TABLE V: F1 score for Hyp-5. Table reports results of F1 scores for different classifiers for two synthesizer algorithms of
AAE and WGAN for all datasets. It also reports Maximum F1 score for each dataset and Average for each classifiers.

datasets with the lowest number of instances. This shows that
our approach can be useful to enhance the size of the dataset
and have higher performance. On average, results of SVM
with the linear kernel (SVM(l)) have been increased by more
than 1.2% with AAE.

The improvement in F1 score that A® scores have demon-
strated proves Hypothesis-5. In other words, extending the
dataset with synthesized samples helped to improve the F1
score of the system for both synthesized and original samples.

V. CONCLUSION AND FUTURE WORK

Supervised machine learning is a promising approach for
phishing detection. Adequate amount of data about phishing
websites are often infeasible to obtain for reasons of privacy,
confidentiality, and liability. In order to address this problem,
we develop AAE and WGAN based technique for generating
data that mimic phishing and genuine websites. We ensure
that the features of the synthesized phishing samples can be
realistically produced by an attacker. We use 10 publicly avail-
able datasets (with different feature sets) for our experiments.
Our experiments ensure that injecting synthesized data in the
training set improved the F1 score of the learning algorithms.
Moreover, including some correctly labeled synthesized data
in the training set produced algorithms that were significantly
more robust to exploratory attacks. Our future work involves
the use the AAE and WGAN for other security related domains
where it is hard to obtain attack data, e.g. generating attack
data for Internet of Things or Cyber Physical Systems. In this
study, we evaluated only statistical learning models. In future,
we plan to explore the vulnerability of neural networks against
adversarial attacks. We also plan to explore different attack
types and make learning models more robust against wider
range of attacks.
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