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Abstract
We conjecture that certain curvature invariants of compact hyperkédhler manifolds
are positive/negative. We prove the conjecture in complex dimension four, give an
“experimental proof” in higher dimensions, and verify it for all known hyperkéhler
manifolds up to dimension eight. As an application, we show that our conjecture leads
to a bound on the second Betti number in all dimensions.

1 Introduction

In [22] Rozansky and Witten introduced new invariants of hyperk&hler manifolds. These
invariants are defined by taking copies of the curvature tensor and the holomorphic sym-
plectic form of the hyperkahler manifold, and contracting indices to get a form that can
be integrated over the manifold, giving an R-valued invariant. The pattern by which one
contracts the indices is encoded in a trivalent graph I', and the corresponding invariant is
written br.

These Rozansky-Witten invariants were studied by the author in [25]. Let M be a
hyperkéhler manifold of complex dimension 2n (in this article we will always assume our
hyperkihler manifolds are compact and irreducible, i.e., simply connected and with h2? = 1;
and by dimension we will always mean the complex dimension). Let ©™ be the trivalent
graph consisting of n disjoint copies of the trivalent graph

S

with two vertices. Together with Hitchin [25, 11], the author proved that

n! [R]*"

bor (M) = (472n)" (volM)n—1’

where ||R||? is the £2-norm of the curvature and volM is the volume of M. In particular,
bon (M) is positive. More recent investigations have led to the following conjecture. Let
Oj. denote the trivalent graph with 2k vertices consisting of a cycle of k small loops; thus
0; =0 and

@Qz@ @3=v @4=m @5=?—}i etc.
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2 1 INTRODUCTION

Conjecture 1 Let M be a hyperkdhler manifold of complex dimension 2n. Then for 2 <
k < n the Rozansky-Witten invariant bgn-rg, (M) is negative if k is even and positive if k
is odd.

Our evidence for this conjecture takes three forms.

1. We prove the conjecture in dimension 2n = 4, i.e., we prove that bg, (M) is always
negative.

2. We give an “experimental proof” in higher dimensions.

3. We verify the conjecture for all currently known hyperkahler manifolds in dimensions
six and eight.

Using results of Salamon [23] and Verbitsky [31], Guan [10] bounded the Betti numbers of
four-dimensional hyperkahler manifolds. The Rozansky-Witten invariants can be computed
in terms of the Betti numbers and this suffices to show that b, (M) < 0.

By “experimental proof” we mean the following. We generate a random multi-array
of complex numbers with the same symmetries as the curvature tensor of a hyperkahler
manifold. We take copies of this multi-array and contract indices according to the trivalent
graph ©,. Repeating this computation hundreds of times, we always get negative real
numbers. This suggests that bgn—2¢, (M) is negative because the integrand of this invariant
is negative at all points of M. We perform similar computations for O3, always getting
positive real numbers, and therefore expect that the integrand of bgn-sg, (M) is positive at
all points of M.

In dimensions six and eight we have Hilbert schemes of points on K3 surfaces and general-
ized Kummer varieties; their Rozansky-Witten invariants were calculated by the author [25],
and one can readily verify the conjecture is true for these examples. In dimension six there
is one additional example due to O’Grady [21], whose Hodge numbers were calculated by
Mongardi, Rapagnetta, and Sacca [18]. In six dimensions the Rozansky-Witten invariants
can be computed in terms of the Hodge numbers, and this leads to a verification of the
conjecture for O’Grady’s example too.

As an application, we prove that if bgn-2¢,(M) < 0 then the second Betti number b, is
bounded. For this result we use a recent result of Jiang [13] which gives an upper bound on
bon (M). The degree two cohomology group H2(M,Z) plays a central role in hyperkihler
geometry. For example, Theorem 4.3 of Huybrechts [12] states that in each dimension there
exist only finitely many deformation types of irreducible hyperkéhler manifolds such that
the lattice (H?(M,Z),q) is isomorphic to a given one, where § denotes a certain positive
integral multiple of the Beauville-Bogomolov quadratic form ¢q. Bounding by therefore rep-
resents a first step toward proving finiteness of hyperkédhler manifolds. Note however that
q and ¢ are not unimodular in general, so even for fixed by infinitely many lattices could
arise. A different approach to bounding b, is to analyze the Looijenga-Lunts-Verbitsky de-
composition of the cohomology of the hyperkéhler manifold. Under a hypothesis on the
irreducible representations that appear in this decomposition, the author [30] and Kim and
Laza [15] proved that in six dimensions by < 23 (which would be a sharp bound) and in
eight dimensions b; < 24. Kim and Laza also proved bounds in higher dimensions, again
assuming certain restrictions on the Looijenga-Lunts-Verbitsky decomposition.

Finally, we compare our results to recent work of Cao and Jiang [3] and Jiang [13]. They
investigated the Todd class of a hyperkahler manifold and showed that it is quasi-effective,



which translates into positivity of certain Rozansky-Witten invariants. Our conjecture ap-
pears to be stronger, and it implies their results in some cases.

Soon after the preprint of this paper was posted on the arXiv, Beckmann and Song
posted a preprint with similar results [2]. They arrived independently at the conjectural
bound bgn-2¢,(M) < 0 and explored its consequences, particularly for the Riemann-Roch
polynomial of M. In dimension four they also considered orbifold examples, particularly
those described by Fu and Menet [6].

The author would like to thank Simon Salamon for comments on an earlier draft of this
paper, the Max Planck Institute for Mathematics in Bonn for its hospitality and financial
support, and the NSF for support through grants DMS-1206309, DMS-1555206, and DMS-
2152130.

2 Rozansky-Witten invariants

Rozansky-Witten invariants were defined in [22], and an equivalent formulation was given
by Kapranov [14] (see also Kontsevich [16]). We will briefly describe the latter, which is
the approach most closely followed in Sawon [25] and Hitchin and Sawon [11]. Let M be
a compact hyperkihler manifold of complex dimension 2n. We fix a compatible complex
structure and regard M as a Kéahler manifold. Using the holomorphic symplectic form o to
identify T and Q', we can regard the Riemann curvature tensor as a section in

QYL (M,EndT) = Q" (M, Q' @ Q' o T) =2 Q% (M, Q' @ Q' @ Q).
The fact that M is hyperkahler implies additional symmetries, so that we get
® € Q%Y M, Sym*Qt).

Let T be an oriented trivalent graph with 2n vertices. Taking 2n copies of ® and 3n copies
of the dual ¢ of the symplectic form, we can contract indices according to I' to get a section
in (QO1)®27(M). Anti-symmetrizing gives

[(®) € Q%2"(M).

Example 2 Denote by © and Ok, k > 2, the trivalent graphs

o= @2—@ egzv @—ﬁ etc.

Then
@((I))Jﬁ = (Dabcgq)efgﬁa—aea—bf&cg € 90)2(M)’

and
02(®) it = Paved®efoh PijiPrmnopd " 55" 5* 597 € Q04 (M).

The orientation of I is defined in a way that takes care of any ambiguity in how to order
the terms and their indices.

Finally, we can multiply by ¢” € Q2"9(M) and integrate the resulting (2n, 2n)-form over
M.



4 2 ROZANSKY-WITTEN INVARIANTS

Definition The Rozansky- Witten invariant of the hyperkahler manifold M corresponding to
the trivalent graph T is

b (M) = W /M I(®)o™.

We now assume that M is irreducible, i.e., simply connected and with h?° = 1. Then
H%’Qk(]\/[) is generated by the class of * for k = 1,...,n. In particular, if T is a trivalent
graph with 2k vertices then

_k 2k
[[(®)] = pr(o"] € Hz*" (M)
for some constant Sr. Hitchin and Sawon [11] proved the following result.

Proposition 3
1R
Peo = 2n volM

where ||R||* is the L*-norm of the curvature tensor of M and volM is its volume. In
particular, Bg > 0.

We can now calculate the Rozansky-Witten invariant associated to ©™, the disjoint union
of n copies of the graph ©. We find

O T B2yl Jy 7T Gy ), 77 T antn)n (volM)n1 T

Here we used the fact that

/M o = (2171) /M(a +5)2 = 22n(n))? /M (Sf‘f; — 22 (1) 2vol M.

n

In Sawon [24] it was conjectured that this invariant is related to Chern numbers, and this
was proved in Hitchin and Sawon [11].

Theorem 4 R
bon (M) = 48"n!AY2[M)|

where

. 1 1
AV2 =14 —cy+ —— (72 — 4¢

313 — 44 16
7 5760 cy cocy + CG) +

)+ sameas

967680

is the characteristic class given by the square root of the A—polynomial.
Generalizing Sg > 0, we make the following conjecture.

Conjecture 5 For all irreducible hyperkdhler manifolds M of complex dimension 2n and
for 2 <k <n we have

3 < 0 ifk is even,
O\ > 0 ifk is odd.

Equivalently f k
< 0 ifk is even,
b(._)nfk@k (M) { > 0 Zf k is odd.



The second statement is equivalent to the first because

1

o M) = n—k n=n _
bon-re, (M) 7(87r2)"n!ﬂ@ ﬁ@k/MUU

n!
(2m2)"

BgfkﬁekvolM

and fg > 0. For k = 2 we have the following result, proved on pages 67 to 72 of Sawon [25].

Theorem 6 The invariant bgn—20,(M) is a linear combination of Chern numbers, which
can be computed explicitly in any dimension. In dimensions four and siz we have

bo (M) = — 3 (& — 2e4) [M]

and 8
boo, (M) = fg(llcg — 26¢acy + 12¢6)[M].

Theorem 17 of Sawon [25] also gives the following.

Theorem 7 For k > 2 and M an irreducible hyperkéihler manifold of dimension 2n, the
invariant bgn-re, (M) is a rational function of Chern numbers.

Remark 8 Up to dimension siz all Rozansky- Witten invariants are linear combinations of
Chern numbers; in particular, this is true for bo,(M). However, this is no longer true for
a general Rozansky-Witten invariant in higher dimensions. For example, Theorem 22 of
Sawon [25] (summarized in Section 5 of Sawon [26]) says that in dimension eight bez (M)
is not a linear combination of Chern numbers, and it follows that nor is bee,(M).

We end this section by briefly recalling Rozansky and Witten’s original formulation,
which will be used in the calculations of Section 4. If we denote by T'M the real tangent
bundle of a hyperkahler manifold M, then there is a decomposition

TMeprC=V®S§

into the tensor product of a (complex) rank 2n vector bundle V' and a trivializable rank 2
vector bundle S. The Levi-Civita connection on 7'M ®@g C reduces to an Sp(n)-connection on
V', and the holomorphic symplectic form ¢ and Riemann curvature tensor ® are equivalent
to a symplectic form ¢ on V and a section Q of Sym®V. Rozansky and Witten take copies
of € and 2 and contract indices according to the trivalent graph, then integrate to produce
br(M), much like before (see equations 3.41 and 3.43 of [22]). For example, for I' = © in
dimension 2n = 2 we would take
QupcpQerane*FePF e,

Anti-symmetrizing over the free indices D and H is basically equivalent to contracting with
the skew form ePH and thus

1

be(M) = W/ QapopQerame Pl @9 ePH gyol.
™ M

For I' = ©5 in dimension 2n = 4 we would take

AE_BF _IM_JN _CK _OG
QapcpQereaQr ik dMmnope €7 € e e el
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Anti-symmetrizing over the free indices D, H, L, and P is basically equivalent to contracting
with the totally skew form
(DHLP ._ DH.LP  DL.PH  DP_HL

)

and thus

by (M) = —

AE BF IM _JN CK OG _DHLP g1
(2m)*

/QABCDQEFGHQIJKLQMNOPG
M

Remark 9 It is interesting that the final contractions with e?H and ePHLY mean that we

are really using a 4-valent graph to contract indices. For bo(M) this would be the 4-valent

graph

while for bo,(M) it would be the sum of the 4-valent graphs

O-8-

These 4-valent graphs are really encoding the invariant theory of Sp(n)-representations. The
bundle V' corresponds to the standard representation C2" of Sp(n), whereas ) is a section of
Sym*V which corresponds to Sym*C2". If we decompose Sym2(Sym4C2") into irreducible
Sp(n)-representations, we find the trivial representation appears with multiplicity one. In-
deed, we can identify C2" with its dual using the symplectic form, and then the invariant
subspace of Sym?(Sym*C2") is

Sym?(Sym*C?")%P(™) = Homg,(,,) (Sym*C?", Sym*C?"),

which is one-dimensional by Schur’s lemma applied to the irreducible representation Sym*C2™.
This means there is a unique quadratic invariant of Q, which gives bg(M).

The decomposition of Sym4(Sym4C2”) contains four copies of the trivial representation’,
and thus there are four quartic invariants. These correspond to the graphs

0.0 O ¥

The first gives the Rozansky-Witten invariant bez (M), and the sum of the other three gives
bo,(M). In fact, each individual graph gives a way of contracting indices and thus produces
a curvature integral, but it is not clear what these individual curvature integrals represent.
Although Congecture 5 states that be,(M) < 0 in dimension four, and Beo, < 0 in higher di-
mensions, we do not expect that these individual curvature integrals are all negative. Indeed,
computations like those in Section 4 suggest that they are not (more precisely, computations
suggest that the three terms in the integrand for Be, are not individually pointwise negative;
only their sum is pointwise negative).
There is also a unique cubic invariant of €); it corresponds to the graph

a

1'We use the form interface to LiE at wwwmathlabo.univ-poitiers.fr/~maavl/LiE/form.html.




and looks like
AE_BF CI_DJ _GK _HL
QapepEreu kLe” e e e e e .
Again, it is not clear what the resulting curvature integral represents. For more relations

between graphs and the invariant theory of Sp(n), see Garoufalidis and Nakamura [8].

3 Dimension four
In this section we prove Conjecture 5 in dimension four.

Theorem 10 Let M be an irreducible hyperkdhler manifold of complex dimension four.
Then
b@2 (M) < 0.

Proof In dimension four we can write the Rozansky-Witten invariants in terms of Chern
numbers, which can be written in terms of Betti numbers. Then we can apply Guan’s
bounds on the Betti numbers [10]. Specifically, from Sawon [25] (or Hitchin and Sawon [11])
we have

bo2(M) = 2(7c} — 4cq)[M]
b92(M) = 7%(63 7264)[M]v
and from Section 8 of [28] we have
G[M] = 736+ by — by
C4[M] = 48 + 12b2 - 3b3

Therefore
bo, (M) = —512 + 16by — 4bs.

Guan [10] proved that by and b3 can take only finitely many values; the maximum value of
bo, (M) occurs when by = 23 and b3 = 0, and thus

b, (M) < —144.

Remark 11 We also have
be2 (M) = 3968 — 16by + 4bs,

whose minimum value according to Guan’s bounds [10] again occurs when by = 23 and
b3 =0, and thus
be2(M) > 3600.

These values are realized by the Hilbert scheme S, and the bounds are therefore sharp.
The mazimum value according to Guan’s bounds [10] occurs when by = 3 and by = 68 (not
realized by any currently known hyperkahler manifold), and thus

bz (M) < 4192.
In terms of AV2[M] = Targibe2 (M) these bounds become

25 ~q
29 < A1/2 <
32_A [M] <

131
144°
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4 “Experimental proof”

The Maple code for our “experimental proof” of Conjecture 5 is in Appendix A, and a
dictionary for the variables is in Table 1.

E[Z’ﬂ GIJ

EE[i, j.k,1] JIKL . (JJ KL | TK LT | JLJK

EEE][i, j,k,l,m,p] el JKLMP

M[i7jvk7l] QIJKL

Vi, j, k] Uikt = QaprsQoprretePP

Th O re’t = Vrxre X e’t = QaprQoprret“ePPe et

W[i’jv ka l] \I/AIBJ\I/CKDLFACGDB

Th2 @Q(Q)IJKLGIJKL:\I/AIBJ\I;CKDLeAC€DB€IJKL

Uli, j, k.1, m, p] Uars¥orprV ey rpetP el elB

Th3 O3(WrsxLmpe7KEMP =W g1V okpLY prppetl e F P Bl TREMP

Table 1: Dictionary for Maple code

The first step is to specify the dimension (in the given code we select 2n = 6). In
a suitable basis we can assume that /7 is the standard skew form, so we define El[i, j]
accordingly. Similarly, EE[i, j,k,l] and EEEJi, j, k,l,m,p] are defined to be the standard
totally antisymmetric forms.

Next we generate a random multi-array of complex numbers to represent the curvature
tensor Qi of a hyperkdhler manifold. We first set R[i, 7, k,{] to be a totally symmetric
form with random complex entries satisfying —1 < Re < 1 and —1 < Zm < 1. The
curvature tensor €7 yx must satisfy a reality condition, and thus we define MTi, j, k, 1] by
adding RJ[i, j, k, ] to its conjugate under the appropriate reality condition.

Next we take copies of M[i, j, k,!] and E[i, j] and contract indices according to a trivalent
graph T'. There is one intermediate step: we compute Vi, j, k, ], which corresponds to the
tensor

Urykr = QaprsQoprre*?e??
given by contracting according to the unitrivalent graph ¢ . This piece appears in all of
our graphs O, ©,, and O3, etc., and by computing Vi, j, k, ] once and reusing it in later
computations we can speed up the algorithm considerably.

The code outputs the values Th, Th2, and Th3. We can iterate this computation hun-
dreds of times and verify that Th and Th3 are always positive and Th2 is always negative.
Of course, we know that T'h must be positive because at each point of M

QupcpQeraretfBreCCPH
is the £2-norm of the curvature tensor, and likewise Th is the £2-norm of M][i, j, k,1]. As
observed earlier, this implies that bg(M) > 0 in two dimensions, and B¢ > 0 in arbitrary
dimension, because up to a universal positive constant Sg is the integral over M of

QABCDQEFGHGAEGBFGCGEDH'

Similarly, the computational verification that Th2 is always negative suggests that

AE_BF _IM_JN _CK _OG
QapcpercaQr ik dunope €7 € e e e



should be a pointwise negative function on M. This would imply that bg, (M) < 0 in four
dimensions, and Bg, < 0 in arbitrary dimension. Finally, the verification that Th3 is always
positive suggests that be, (M) > 0 in six dimensions, and fe, > 0 in arbitrary dimension.

Remark 12 The value of this “experimental proof” is that it suggests an approach to a
rigorous proof of the conjecture. Namely, it suggests that these particular Rozansky- Witten
invariants are positive (respectively, negative) because their integrands are pointwise positive
(respectively, negative), and moreover, that this should be the consequence of a purely alge-
braic computation. If successful, this would mean that we could obtain valuable topological
information about hyperkdahler manifolds from purely algebraic identities.

5 Dimensions six and eight

In this section we verify Conjecture 5 for all currently known hyperkéhler manifolds in
complex dimensions six and eight. In dimension six these are the Hilbert scheme of points on
a K3 surface SB, the generalized Kummer variety K3(A) (see Beauville [1]), and O’Grady’s
example OG6 [21]. In dimension eight these are S and K4(A). The Rozansky-Witten
invariants of SI™ and K, (A) up to dimension eight were calculated in Sawon [25] (see
Appendix E.1); the results are reproduced below.

2n Sl K, (A) 0G6
2| be 48
4| bee 3600 3888
bo, —144 —432
6 | bes 373248 442368 442368
bee, —13824 —36864 —36864
bo, 512 2560 3072
8 | bes 49787136 64800000
boro, —1693440 —4320000
bez 57600 288000
beos, 56448 240000
be, —1824 —12000
b= 348 —1500

The last invariant in dimension eight, b=, corresponds to the trivalent graph which is the
skeleton of a cube,

[1]

We have also included the invariants of OG6 in this table; let us explain how they are
calculated. The Hodge numbers were calculated by Mongardi, Rapagnetta, and Sacca [18];
they are
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1
0 0
1 6 1
0 0 0 0
1 12 173 12 1
0 0 0 0 0 0
1 6 173 1144 173 6 1.
0 0 0 0 0 0
1 12 173 12 1
0 0 0 0
1 6 1
0 0
1

From this we can compute the Hirzebruch x,-genus

6
Xy = Y (=1)7hPoyP =4 — 24y 4 348y — 1168y° + 348y* — 24y + 49°.
p,q=0
By Riemann-Roch, the coefficients x? = 2220(—1)%“‘1 can be written in terms of Chern
numbers, and these relations can be inverted to give

BIM] = T7212° — 184y} — 82 = 30720
caca[M] = 1368x° —208x! —8x? = 7680
ce[M] = 36x"—16x' +4x? = 1920

(see Appendix B of [25]). Finally, in dimension six we can compute all Rozansky-Witten
invariants in terms of Chern numbers, and we find

bos(M) = 21(31c¢3 — 44cgcq + 16¢6)[M] = 442368
boo,(M) = —z5(11c3 — 26cocs + 12¢6)[M] = —36864
b93 (M) = %(Cg’ — 3cocy + 366)[M] = 3072.

Remark 13 [t is perhaps surprising that some of the Rozansky- Witten invariants of K3(A)
and OG6 are the same. Here is an explanation for this. In dimension ten, there is a relation
between S and O’Grady’s example OG10: they can be deformed to Lagrangian fibrations
that are locally isomorphic away from singular fibres. More precisely, on the complement of
the singular fibres one fibration is a torsor over the other (see Sawon [27], or de Cataldo,
Rapagnetta, and Sacca [4] where this relation was used to calculate the Hodge numbers
of OG10). In particular, the two fibrations have the same discriminant locus and their

fibres have the same polarization type. By Theorem 2 of Sawon [28], \/E[M] (equivalently,
bon (M)) can be calculated from the degree of the discriminant locus and the polarization
type, and therefore bos (SP)) = bgs (0G10).

Wu [32] described a similar relation between Ks(A) and OG6, i.e., after deforming to
Lagrangian fibrations, one is a (compactified) torsor over the other. As the two fibrations
will again have the same discriminant locus and polarization type, we can conclude as above
that bes(K3(A)) = bes(0G6). The relation bee,(M) = 2123% — 1bgs(M) (proved in the
next section) then gives boe,(K5(A)) = bee, (OG6) too.
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6 Applications

Our first goal in this section is to prove the following inequality involving Rozansky-Witten
invariants and the second Betti number. This generalizes Lemma 3 of Guan [10] to arbitrary
dimension; it was known to Guan (see the Remark following Lemma 3 of [10]) but he did
not publish an explicit proof (though see Lemma 1 of Kurnosov [17]). The key idea is to
substitute a decomposition of the second Chern class ¢; = g + p* into some formulae for
Rozansky-Witten invariants appearing in Hitchin and Sawon [11]. This decomposition of co
and some of the calculations in the proof of Theorem 14 were also used by Cao and Jiang
to prove Lemma 3.3 of [3].

Theorem 14 Let M be an irreducible hyperkdhler manifold of complex dimension 2n. Then
b@n (M) Z —(bg + 2n — 2)b@n—2@2 (M)

In this section we will denote the Beauville-Bogomolov quadratic form of M by Q €
Sym?H?(M,Z)*, and denote its dual by ¢ € Sym*H?(M, Q) c H*(M, Q).

Lemma 15 Let u be an arbitrary element of H>(M,R). Then

(2n—1)(bor (M)+2bo 20, (M) ( / qu) > (2n-3)bon (M) ( / qu) ( / u) |

Proof The second Chern class ¢, of M can be written as p + p*, with p € Sym?H? (M,Q)
and p' in the primitive cohomology Hérim(M ,Q). Up to scale, ¢ is the unique element
of Sym*H?(M, Q) that remains of type (2,2) with respect to all complex structures on M.
Since ¢y also remains of type (2,2) with respect to all complex structures, its first component
p must be a multiple u of ¢, i.e.,

cy = pq+pr.

n—1-n—1

The constant p can be determined by multiplying by ™ & and integrating

/ 620_71715_7171 _ /L/ qa_nfla_nfl'
M M

5 = 12 + 2ugpt + (p7)°.
and integrating yields

Moreover

Multiplying by o™ 25" 2

/ C%O’n_Qa'n_Q _ /’('2/ q20_n—26_n—2+0+/ (pL)2o_n—26_n—2
M M M

Z /”'2 / q20_n—26_n—2.
M

On the first line we have used the fact that o 2"2 € Sym®" ?H?(M,Q) and p* €
Hérim(M ,Q) are orthogonal, and on the second line we have used the Hodge-Riemann bi-
linear relations. Substituting the formula for p into the inequality yields

2 2
(/ Cgo_n—Qan—2> (/ qa_n—lo,n—1> 2 (/ czo_n—lo_n—l) </ qQUn—QO_n—2> .
M M M M
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The terms involving co can be rewritten as Rozansky-Witten invariants. Specifically, Equa-
tion 8 of Hitchin and Sawon [11] states that

167n [, coo™ 1™

e = fM onan

Similarly, using Chern-Weil theory (see Section 4 of [11] or Chapter 2 of Sawon [25]) we find
that

(167%)*n(n — 1) [,, c3o" 2" 2
fM ongn

Substituting these into the inequality and simplifying gives

2
s ([ 2 ) [ o).

Multiplying both sides by mﬁg_Q J¢"a™ > 0 converts the terms involving Ss into
genuine Rozansky-Witten invariants,

n(ben (M)+2bgn-20,(M)) ( A ) q0”15"1>2 > (n—1)bgn (M) ( /M q20”25"2> ( /M 0"5") .

The terms involving o and & can be rewritten so that they only depend on the combination
u := o + 7; for example

B8 + 2B, =

~\2n—2
/ qo_n—la_n—l _ fM q%‘z:_%) .
M n—1

After simplifying, this gives

(2n—1)(bor (M)+2bo—20, (M) ( / qu> > (2n-3)bon (M) ( / q2u2n4) ( / u) |

Since the resulting inequality will remain true under a deformation of the complex structure,
it must be true for an arbitrary element u € H?(M, R). 0

The proof of Theorem 14 now proceeds by rewriting the integrals involving « in terms of
the Beauville-Bogomolov form Q(u). As we will see, the second Betti number by naturally
appears.

Proof The Fujiki relation [7] says that there is a constant A\ depending only on M such
that

[ = xqwr 1)
M
for all u € H?(M, C). Moreover, because g remains of type (2,2) under deformations of the

complex structure, Corollary 23.17 of Huybrechts’ notes in [9] implies that there exists a
constant A\, such that

/ @ = AQu) ! (2)
M
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for all u € H2(M, C). Similarly, ¢? remains of type (4, 4) under deformations of the complex
structure, so there exists a constant A\, such that

|t = s 3)

for all u € H?(M, C). We need to determine A, and Ag2.

Let {e1,...,ep,} be an orthonormal basis for H?(M,C) with respect to the Beauville-
Bogomolov form @Q; then

ba
=3
i=1
Substituting v = e; + te; + sey, for distinct ¢, j, and k, into the Fujiki relation gives
/ (e; +tej + sex)®™ = AQ(e; + te; + se)™ = M1+ t2 + s*)".
M

By comparing the constant, 2772, t2~%, and t?s?"~* terms we find that

2n 2 2n—2 4 2n—4
e = A, e;e; =\ , e;e; =\ ,
/M (2) Mmoo 1 4) Ju " 2
2n 2 2 2n—4 n
Cete T =\ .
(2,2,2n—4> /Melefek 1,1,n—2

To calculate A, we substitute ¢ = > e? and u = e; into Equation 2, which gives

Ag = )‘qQ(ej)n_l

M
/e?"—kg /e?ef”_2
M M

i
A(7)
()

by +2n —2
Al —— .
( 2n —1 >

To calculate \,2 we substitute ¢* = (3" €?)? = > 6?“‘2#]‘ e7es and u = ej, into Equation 3,

= A+ (b2—-1)
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which gives

Az = )\qu(ek)”_Q

/ Z e + Z e?e? ei"_4
M i#]

2n 4 2n—4 2.2 2n—4 2 2n—2 2 2n—2
/ e + E / €; €y + E / e;ejey + E / e;ey + E / €;ek
M i#k M M ik M M

i,5,k distinct Jj#k

(2(3)) + (bg — 1)(bg — 2)?(1’2’3’_2)) +2(b2 — 1)?2(%)
(b2 +2n —2)(b2 +2n — 4) o
(2n —1)(2n —3)

= A+ (ba—1)

= A

In particular, Equations 1, 2, and 3 hold for v € H?(M,R). Substituting them into the
inequality of Lemma 15, and using the above calculations of A; and A;2, we find that the
factors of A and Q(u) on each side cancel. After simplifying we are left with

(ben (M) + 2bgn-20,(M))(ba 4+ 2n — 2) > bgn (M) (b2 + 2n — 4),
which can be rearranged to give
bon (M) > —(bz + 2n — 2)bgn-26,(M).
O

Our main conjecture, Conjecture 5, asserts that bgn-2¢,(M) < 0, which would give the
following.

Corollary 16 If bgn-2¢,(M) < 0 then the second Betti number by is bounded above.

Proof Because bgn-z2g,(M) is a (rational) linear combination of Chern numbers, if it is
negative then it must be < —1/C,, where C, is a positive integer depending only on n. On
the other hand, Jiang proved that A'/2[M] is strictly less than 1 (Corollary 5.5 of [13]), and
this implies that

bon (M) = 48" n!AY2[M] < 48™n!.

Theorem 14 then gives

by +2n — 2
48"n) > bon (M) > —(by + 21 — 2)bgn—20, (M) > ﬁcin
n

80 by is bounded above by 48™n!C),, — 2n + 2. O

Example 17 In dimension four we already have the sharp bound by < 23, due to Guan [10].
In dimension sixz we have

. 1
Al/Q[M] = 557630 (310% — 4dcgeq + 16¢6) [ M],

so AY2[M] < 1 implies

967679 23224296

bos (M) < 483! =
o2 (M) < 967680 35
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In addition 8
boo,(M) = —£(1lc§ — 26¢2¢4 + 12¢6)[M],

50 bee, (M) < 0 would imply bee, (M) < —. Therefore

23224296
35

which simplifies to give

8
> b@s(M) > —(bg —|—4)b@@2(M) > (bg —1—4)%,

2903033 > bs.

In fact, we can improve on this. The first step is the following surprising relation.
Lemma 18 Let M be an irreducible hyperkdhler manifold of complex dimension siz. Then
bes (M) + 3bee, (M) = 2'73*x(On) = 223",

Proof Writing the left-hand side as a linear combination of Chern numbers, we find

48

bes (M) + 3bee, (M) = g(

10¢3 — 9eacy + 2c6)[M].

By the Riemann-Roch theorem, x(Ops) can also be written as a linear combination of Chern
numbers, and a calculation reveals agreement with the above expression up to the constant
21034, Finally, one notes that x(Oys) = 4 for an irreducible hyperkihler manifold of complex
dimension six. 0

Our Conjecture 5 immediately yields a lower bound for bgs (M).

Corollary 19 If bge, (M) < 0 then bgs(M) > 2123, Equivalently,

. 1 1
A2 M) = Tgagiter (M) > 5.

Now we can improve the upper bound on the second Betti number bs.
Theorem 20 If boo,(M) < 0 then
by < 1451519.

Remark 21 We expect that this bound must be extremely crude. There are three known
examples of irreducible hyperkdhler manifolds in dimension six, and their second Betti num-
bers are 7, 8, and 23. The results of Sawon [30] and Kim and Laza [15] suggest that 23 is
most likely the largest possible value for bs.

Proof Combining Theorem 14, bge, (M) < 0, and Lemma 18 gives

bes (M) 3bes (M)
b 4 < = .
2182 Dee, (M) bos(M) — 27730

The right-hand side is a decreasing function of bgs (M), so it is maximized when bgs (M) is
smallest. Now bgs (M) > 2123* and

24
bes(M) = ﬁ(?)lcg — 44cgcy + 16¢6)[M] € —
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therefore bgs (M) is at least 21231 + 22 and substituting this value gives

bs + 4 < 1451523.

We also obtain an upper bound for bgs (M).

Proposition 22 If bge,(M) < 0 then bgs(M) < 21937, Equivalently,

1 7

A2 (M) = mgiter (M) < ¢

Remark 23 This would improve on Jiang’s bound Al/z[M] < 1 (though note that Jiang’s
bound holds in all dimensions, not just dimension siz).

Proof The second Betti number bs must be at least three, and therefore the inequality at
the start of the last proof gives

3bgs (M)
< —
1< hoe (M) — 2123

Rearranging gives bgs (M) < 210347, O

Example 24 For the Hilbert scheme S of three points on a K3 surface we have bgs (M) =
373248 and by = 23. This implies that we have equality in

3bes (M)
4< )
brtds bes (M) — 21234

It follows that in the decomposition of the second Chern class co = p + p* in the proof of
Lemma 15, we must have p* = 0. In other words, cy = p lies in the part Sym2H2(M, Q) of
H*(M, Q) which is generated by H?(M, Q).

Example 25 For the generalized Kummer variety K3(A) and O’Grady’s example OG6 we
have bgs (M) = 442368 and by = 7 and 8, respectively. This implies that we have equality in
3bgs (M)

by +4< — O
2t S ) — 2173

for OG6, but strict inequality for Ks(A). Thus for OG6, p- = 0 and ¢y lies in Sym*H?(M, Q),
but for K5(A) this is no longer true.
7 Comparisons to other work

Cao and Jiang proposed (Conjecture 3.6 in [3]), and Jiang later proved (Corollary 5.3 in [13]),
that Todd classes of hyperkéahler manifolds are quasi-effective, in the following sense.

Theorem 26 Let X be a hyperkahler manifold of complex dimension 2n and L a nef and
big line bundle on X. Then fM tdop_2; L% >0 for all 0 < i < n.
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This is equivalent to proving [, tdan_2;0°c" > 0, or in other words, proving that certain
Rozansky-Witten invariants are positive. For example, consider the quasi-effectivity of tdy,
which is equivalent to

o _po 1 2 n
/M tdgo" 25" 2 = /M %(303 —c4)o" 2" > 0.
This case was already proved by Cao and Jiang, Theorem 3.2 in [3], by writing

tdy = (6dY2)o(td?)y 4 (6dV/2)a(6d"?)s + (£dY/?)4(tdY/?),
= 2(tdY?)4 + (td'/?)2

1
= —(76% —deq) + —cg,

and then showing that both

/(703—4@)0”_25”_2 and /cga”_zﬁn_Q
M M

are positive.
Now as already observed in the proof of Lemma 15, using Chern-Weil theory (see Sec-
tion 4 of Hitchin and Sawon [11] or Chapter 2 of Sawon [25]) we can show that

B8 + 286, = (87%)*n(n — 1) [, (s3)0" *o" > — (872)*n(n—1) [, 4630"*257172,
fyomor [y onan

In the same way we find that

Sﬂ _(87)n(n 1) [, (=sa)o" 26" (87%)*n(n — 1) [,(2¢5 — deg)o" 252

9 ©2 — fM onEn - f]u onEn :
Here s = 2!chy = —2cy and s4 = 4lchy = 2¢3 — 4cy. Therefore we observe that the three
inequalities

/ tdgo™ 26772 > 0, / (td'/?),6" 2572 > 0, and  fBe, <0
M M

are equivalent to

o pme 9 me 7 9 me 9 me
3/ C%O’n 20_n 2>/ 64077, 20_n 27 Z C%Un 20_71 2> C40’n 2O_n 2’
M M M M

1 2 _m— —2om—
- C%O’n 20_n 2> C40’n 20_n 27
2 M M

respectively. Because || o c30"26"~2 is positive these inequalities are ordered weakest to
strongest. In particular, our Conjecture 5 that g, < 0is strictly stronger than the inequality
fM(td1/2)4U"_26"_2 > 0, which in turn is strictly stronger than Cao and Jiang’s result that
J3y tdao™ 2672 > 0.

For higher degrees k > 3 we suspect that Jiang’s theorem that [, tdaxo™ *6"~% > 0
may also follow from our Conjecture 5 that (—1)*+18g, > 0, though we probably need to

and
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combine it with some inequality analogous to the positivity of [, 30" 26"~ 2 in the k = 2
case.

Finally, let us mention positivity of Chern numbers. The Chern numbers of Hilbert
schemes of K3 surfaces can be calculated using the methods of Ellingsrud, Gottsche, and
Lehn [5]. Those of generalized Kummer varieties were calculated up to dimension eight and
twenty by Sawon [24] and Nieper-Wiflkirchen [19], respectively, in both cases using Rozansky-
Witten invariants. Those of OG6 were calculated by Mongardi, Rapagnetta, and Sacci [18]
(see Section 5). These and other calculations have provoked the following questions (see
Appendix B of [19], Conjecture 5.8 of Jiang [13], and Questions 4.7 and 4.8 of Oberdieck,
Song, and Voisin [20]).

Question Let M be an irreducible hyperkédhler manifold of complex dimension 2n and let
n=3'_, k; be a partition. Is it true that coy, - - - car, [M] is positive?

Question Let M be an irreducible hyperkahler manifold of complex dimension 2n and let
n=3"'_, k; be a partition. Is it true that (—1)"chay, - - - chax, [M] is positive?

For example, Proposition 3.7 of [20] gives an affirmative answer to the second question
for generalized Kummer varieties in all dimensions.

Now every Chern number cag, - - - cok, [M] and chay, - - - chay, [M] can be written in terms
of Rozansky-Witten invariants, but Conjecture 5 only concerns Rozansky-Witten invariants
involving the particular trivalent graphs ©;. Up to dimension six these are, in fact, all
Rozansky-Witten invariants; but in higher dimensions the Chern numbers cag, - - - cox, [M]
and chag, - - - chag, [M] cannot be written as linear combinations of Rozansky-Witten invari-
ants involving only the graphs 0. Consequently it is unclear how Conjecture 5 is related
to the above questions, if at all.
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A Maple code

> E = Adrray(1.2:n,1.2-n, datatype = float[8]) :
for i from 1 to n do

E[2-i—1,2-i]=1:

E[2:4,2:i—1]=-1:

od:

> EE = Array(1.2'n,1.2-n,1.2-n,1.2-n, datatype = float[8]) :
for i from 1 to 2-n do
forjfrom 1 to2-n do
for kfrom 1 to 2-n do
for /from 1 to 2-n do
EE[i,j, k1] == E[i,j]"E[k 1]+ E[i, k]-E[L,j] + E[i, []-E[J, k] :
od:
od:
od:
od:

> EFE = Array(1.2-n,1.2-n,1.2-n,1.2-n,1.2-n,1..2:n, datatype = float[8]) :
for i from 1 to 2-n do
forjfrom 1 to2-n do
for kfrom 1 to 2-n do
for /from 1 to 2-n do
for m from 1 to 2-n do
for p from 1 to 2-n do
EEE[i,j, k I,m,p] = E[i,j|-EE[k, [, m,p]+ E[i, k|- EE[l, m, p,j| + E[i, |- EE[m, p, ], k]
+ E[i,m]-EE[p,j, k1] + E[i,p]-EE[j, k,[,m]:
od:
od:
od:
od:
od:
od:

> R:= drray(1.2-n,1.2-n,1.2-n,1.2-n, datatype = complex|[8]) :
forifrom 1 to 2-n do
for j from 1 to 2-n do
for k from 1 to 2-n do
for /from 1 to 2-n do
ifi > jthen R[i,j, k, I] = R[j, ik, []
elifj > kthen R[4}, k, []:= R[i, k,J, ]
elif t > /then R[4, j, k, [] :== R[i,j, [, k]

else R[L,j, k1] = =240 _ 04 [
10

2-rand
%2()—1.0 b

end if:
od:
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od:
od:
od:

> M:= Array(1.2-n,1.2-n,1.2-n,1.2- n, datatype = complex[8]) :

forifrom 1 to2-n do

forj from 1 to 2-n do
for k from 1 to 2-n do

for /from 1 to 2-n do
t=20:
ifimod2=1thena:=i+1
elsea:=i—1:t:=1r+1
end if:
ifjmod2=1thend :=;+ 1
elseb:=j—1:t=1¢t+1
end if:
ifkimod2=1thenc:=k+1
elsec:=k—1:t=¢t+1
end if:
if/ mod2=1thend :=1/+1
elsed =/—1:t=¢t+1
end if:
Mi,j, k1] = R[ij, k1] + (—l)t-conjugate(R[a, b,c,d]):
od:

od:

od:

od:

> V= drray(1.2:n,1.2-n,1.2-n,1.2-n, datatype = complex[8]) :
for i from 1 to 2-n do

forjfrom 1 to 2-n do

for k from 1 to 2-n do

for /[ from 1 to 2-n do

Vi, j, k1] == add(add(add(add(M|[a, b,i,j"M|c,d, k,[]-E[a, c]-E[b,d],a=1.2-n),b
=1.2'n),c=1.2'n),d=1.2'n):

od:

od:

od:
od:

> Th := add(add(add(add(V[i,j, k I-E[i, k]-E[j,1],i=1.2-n),j=1.2'n),k=1.2-n),l=1
.2-n);

Th :=1881.99949351646 + 0.1 (6))

> W= Array(1.2-n,1.2-n,1.2-n,1..2-n, datatype = complex[8]) :
forifrom 1 to 2-n do
forj from 1 to 2-n do
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for k from 1 to 2-n do
for /from 1 to2-n do
Wi, j, k1] = add(add(add(add(V|a,i, b,j]-V|[c, k,d,1]-E[a, c]-E[d, b],a=1.2-n),b
=1.2'n),c=1.2'n),d=1.2'n):
od:
od:
od:
od:

> Th2 = add(add(add(add(W i, j, k, []-EE[i,}, k,1],i=1.2'n),j=1.2'n),k=1.2-n),/=1
.2-n);

Th2 = -2.49382174560616 10° + 1.77635683940025 10™° 1 Q)

> U:= Array(1.2-n,1.2:n,1.2-n,1.2-n,1.2-n,1.2-n, datatype = complex[8]) :
forifrom 1 to2-ndo
forj from 1 to 2-n do
for k from 1 to 2-n do
for /from 1 to 2-n do
for m from 1 to 2-n do
for p from 1 to 2-n do
Uli,j, k I, m,p] = add(add(add(add(add(add(V]a, i, b,j]-V|[c, k, d,1]-V]e,m,f, p
‘Ela,d)-E[c,f]'E[e,b],a=1.2'n),b=1.2'n),c=1.2'n),d=1.2-n),e=1.2-n),f
=1.2-n):
od:
od:
od:
od:
od:
od:

> Th3 = add(add(add(add(add(add(U|[i,j, k, I, m,p|-EEE[i, ], k, [, m,pl,i=1.2'n),j=1.2
‘n),k=1.2-n),I1=1.2n),m=1.2-n),p=1.2-n);

Th3 = 9.06073037332295 10° — 8.36735125631094 107! 1 3
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