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Abstract

We conjecture that certain curvature invariants of compact hyperkähler manifolds
are positive/negative. We prove the conjecture in complex dimension four, give an
“experimental proof” in higher dimensions, and verify it for all known hyperkähler
manifolds up to dimension eight. As an application, we show that our conjecture leads
to a bound on the second Betti number in all dimensions.

1 Introduction

In [22] Rozansky and Witten introduced new invariants of hyperkähler manifolds. These
invariants are defined by taking copies of the curvature tensor and the holomorphic sym-
plectic form of the hyperkähler manifold, and contracting indices to get a form that can
be integrated over the manifold, giving an R-valued invariant. The pattern by which one
contracts the indices is encoded in a trivalent graph �, and the corresponding invariant is
written b�.

These Rozansky-Witten invariants were studied by the author in [25]. Let M be a
hyperkähler manifold of complex dimension 2n (in this article we will always assume our
hyperkähler manifolds are compact and irreducible, i.e., simply connected and with h

2,0 = 1;
and by dimension we will always mean the complex dimension). Let ⇥n be the trivalent
graph consisting of n disjoint copies of the trivalent graph

��✏�
with two vertices. Together with Hitchin [25, 11], the author proved that

b⇥n(M) =
n!

(4⇡2n)n
kRk

2n

(volM)n�1
,

where kRk
2 is the L

2-norm of the curvature and volM is the volume of M . In particular,
b⇥n(M) is positive. More recent investigations have led to the following conjecture. Let
⇥k denote the trivalent graph with 2k vertices consisting of a cycle of k small loops; thus
⇥1 = ⇥ and

⇥2 =

✏
�

�
� ⇥3 =

e eeJJ ⌦⌦ ⇥4 =

e ee e ⇥5 =

e ee ee
etc.
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2 1 INTRODUCTION

Conjecture 1 Let M be a hyperkähler manifold of complex dimension 2n. Then for 2 

k  n the Rozansky-Witten invariant b⇥n�k⇥k
(M) is negative if k is even and positive if k

is odd.

Our evidence for this conjecture takes three forms.

1. We prove the conjecture in dimension 2n = 4, i.e., we prove that b⇥2(M) is always
negative.

2. We give an “experimental proof” in higher dimensions.

3. We verify the conjecture for all currently known hyperkähler manifolds in dimensions
six and eight.

Using results of Salamon [23] and Verbitsky [31], Guan [10] bounded the Betti numbers of
four-dimensional hyperkähler manifolds. The Rozansky-Witten invariants can be computed
in terms of the Betti numbers and this su�ces to show that b⇥2(M) < 0.

By “experimental proof” we mean the following. We generate a random multi-array
of complex numbers with the same symmetries as the curvature tensor of a hyperkähler
manifold. We take copies of this multi-array and contract indices according to the trivalent
graph ⇥2. Repeating this computation hundreds of times, we always get negative real
numbers. This suggests that b⇥n�2⇥2

(M) is negative because the integrand of this invariant
is negative at all points of M . We perform similar computations for ⇥3, always getting
positive real numbers, and therefore expect that the integrand of b⇥n�3⇥3

(M) is positive at
all points of M .

In dimensions six and eight we have Hilbert schemes of points on K3 surfaces and general-
ized Kummer varieties; their Rozansky-Witten invariants were calculated by the author [25],
and one can readily verify the conjecture is true for these examples. In dimension six there
is one additional example due to O’Grady [21], whose Hodge numbers were calculated by
Mongardi, Rapagnetta, and Saccà [18]. In six dimensions the Rozansky-Witten invariants
can be computed in terms of the Hodge numbers, and this leads to a verification of the
conjecture for O’Grady’s example too.

As an application, we prove that if b⇥n�2⇥2
(M) < 0 then the second Betti number b2 is

bounded. For this result we use a recent result of Jiang [13] which gives an upper bound on
b⇥n(M). The degree two cohomology group H2(M,Z) plays a central role in hyperkähler
geometry. For example, Theorem 4.3 of Huybrechts [12] states that in each dimension there
exist only finitely many deformation types of irreducible hyperkähler manifolds such that
the lattice (H2(M,Z), q̃) is isomorphic to a given one, where q̃ denotes a certain positive
integral multiple of the Beauville-Bogomolov quadratic form q. Bounding b2 therefore rep-
resents a first step toward proving finiteness of hyperkähler manifolds. Note however that
q and q̃ are not unimodular in general, so even for fixed b2 infinitely many lattices could
arise. A di↵erent approach to bounding b2 is to analyze the Looijenga-Lunts-Verbitsky de-
composition of the cohomology of the hyperkähler manifold. Under a hypothesis on the
irreducible representations that appear in this decomposition, the author [30] and Kim and
Laza [15] proved that in six dimensions b2  23 (which would be a sharp bound) and in
eight dimensions b2  24. Kim and Laza also proved bounds in higher dimensions, again
assuming certain restrictions on the Looijenga-Lunts-Verbitsky decomposition.

Finally, we compare our results to recent work of Cao and Jiang [3] and Jiang [13]. They
investigated the Todd class of a hyperkähler manifold and showed that it is quasi-e↵ective,
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which translates into positivity of certain Rozansky-Witten invariants. Our conjecture ap-
pears to be stronger, and it implies their results in some cases.

Soon after the preprint of this paper was posted on the arXiv, Beckmann and Song
posted a preprint with similar results [2]. They arrived independently at the conjectural
bound b⇥n�2⇥2

(M) < 0 and explored its consequences, particularly for the Riemann-Roch
polynomial of M . In dimension four they also considered orbifold examples, particularly
those described by Fu and Menet [6].

The author would like to thank Simon Salamon for comments on an earlier draft of this
paper, the Max Planck Institute for Mathematics in Bonn for its hospitality and financial
support, and the NSF for support through grants DMS-1206309, DMS-1555206, and DMS-
2152130.

2 Rozansky-Witten invariants

Rozansky-Witten invariants were defined in [22], and an equivalent formulation was given
by Kapranov [14] (see also Kontsevich [16]). We will briefly describe the latter, which is
the approach most closely followed in Sawon [25] and Hitchin and Sawon [11]. Let M be
a compact hyperkähler manifold of complex dimension 2n. We fix a compatible complex
structure and regard M as a Kähler manifold. Using the holomorphic symplectic form � to
identify T and ⌦1, we can regard the Riemann curvature tensor as a section in

⌦1,1(M,EndT ) = ⌦0,1(M,⌦1
⌦ ⌦1

⌦ T ) ⇠= ⌦0,1(M,⌦1
⌦ ⌦1

⌦ ⌦1).

The fact that M is hyperkähler implies additional symmetries, so that we get

� 2 ⌦0,1(M, Sym3⌦1).

Let � be an oriented trivalent graph with 2n vertices. Taking 2n copies of � and 3n copies
of the dual �̃ of the symplectic form, we can contract indices according to � to get a section
in (⌦0,1)⌦2n(M). Anti-symmetrizing gives

�(�) 2 ⌦0,2n(M).

Example 2 Denote by ⇥ and ⇥k, k � 2, the trivalent graphs

⇥ = ��✏�
⇥2 =

✏
�

�
� ⇥3 =

e eeJJ ⌦⌦ ⇥4 =

e ee e etc.

Then
⇥(�)d̄h̄ = �abcd̄�efgh̄�̃

ae
�̃
bf
�̃
cg

2 ⌦0,2(M),

and
⇥2(�)d̄h̄l̄p̄ = �abcd̄�efgh̄�ijkl̄�mnop̄�̃

ae
�̃
bf
�̃
im

�̃
jn
�̃
ck
�̃
go

2 ⌦0,4(M).

The orientation of � is defined in a way that takes care of any ambiguity in how to order
the terms and their indices.

Finally, we can multiply by �
n
2 ⌦2n,0(M) and integrate the resulting (2n, 2n)-form over

M .
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Definition The Rozansky-Witten invariant of the hyperkähler manifold M corresponding to
the trivalent graph � is

b�(M) =
1

(8⇡2)nn!

Z

M
�(�)�n

.

We now assume that M is irreducible, i.e., simply connected and with h
2,0 = 1. Then

H0,2k
@̄

(M) is generated by the class of �̄k for k = 1, . . . , n. In particular, if � is a trivalent
graph with 2k vertices then

[�(�)] = ��[�̄
k] 2 H0,2k

@̄
(M)

for some constant ��. Hitchin and Sawon [11] proved the following result.

Proposition 3

�⇥ =
1

2n

kRk
2

volM

where kRk
2 is the L

2-norm of the curvature tensor of M and volM is its volume. In
particular, �⇥ > 0.

We can now calculate the Rozansky-Witten invariant associated to ⇥n, the disjoint union
of n copies of the graph ⇥. We find

b⇥n(M) =
1

(8⇡2)nn!

Z

M
⇥(�)n�n =

1

(8⇡2)nn!
�
n
⇥

Z

M
�
n
�̄
n =

n!

(4⇡2n)n
kRk

2n

(volM)n�1
> 0.

Here we used the fact that
Z

M
�
n
�̄
n =

1�2n
n

�
Z

M
(� + �̄)2n = 22n(n!)2

Z

M

!
2n
J

(2n)!
= 22n(n!)2volM.

In Sawon [24] it was conjectured that this invariant is related to Chern numbers, and this
was proved in Hitchin and Sawon [11].

Theorem 4
b⇥n(M) = 48nn!Â1/2[M ]

where

Â
1/2 = 1 +

1

24
c2 +

1

5760
(7c22 � 4c4) +

1

967680
(31c32 � 44c2c4 + 16c6) + . . .

is the characteristic class given by the square root of the Â-polynomial.

Generalizing �⇥ > 0, we make the following conjecture.

Conjecture 5 For all irreducible hyperkähler manifolds M of complex dimension 2n and
for 2  k  n we have

�⇥k

⇢
< 0 if k is even,
> 0 if k is odd.

Equivalently

b⇥n�k⇥k
(M)

⇢
< 0 if k is even,
> 0 if k is odd.



5

The second statement is equivalent to the first because

b⇥n�k⇥k
(M) =

1

(8⇡2)nn!
�
n�k
⇥ �⇥k

Z

M
�
n
�̄
n =

n!

(2⇡2)n
�
n�k
⇥ �⇥kvolM

and �⇥ > 0. For k = 2 we have the following result, proved on pages 67 to 72 of Sawon [25].

Theorem 6 The invariant b⇥n�2⇥2
(M) is a linear combination of Chern numbers, which

can be computed explicitly in any dimension. In dimensions four and six we have

b⇥2(M) = �
4

5
(c22 � 2c4)[M ]

and

b⇥⇥2(M) = �
8

35
(11c32 � 26c2c4 + 12c6)[M ].

Theorem 17 of Sawon [25] also gives the following.

Theorem 7 For k > 2 and M an irreducible hyperkähler manifold of dimension 2n, the
invariant b⇥n�k⇥k

(M) is a rational function of Chern numbers.

Remark 8 Up to dimension six all Rozansky-Witten invariants are linear combinations of
Chern numbers; in particular, this is true for b⇥3(M). However, this is no longer true for
a general Rozansky-Witten invariant in higher dimensions. For example, Theorem 22 of
Sawon [25] (summarized in Section 5 of Sawon [26]) says that in dimension eight b⇥2

2
(M)

is not a linear combination of Chern numbers, and it follows that nor is b⇥⇥3(M).

We end this section by briefly recalling Rozansky and Witten’s original formulation,
which will be used in the calculations of Section 4. If we denote by TM the real tangent
bundle of a hyperkähler manifold M , then there is a decomposition

TM ⌦R C = V ⌦ S

into the tensor product of a (complex) rank 2n vector bundle V and a trivializable rank 2
vector bundle S. The Levi-Civita connection on TM⌦RC reduces to an Sp(n)-connection on
V , and the holomorphic symplectic form � and Riemann curvature tensor � are equivalent
to a symplectic form ✏ on V and a section ⌦ of Sym4

V . Rozansky and Witten take copies
of ✏ and ⌦ and contract indices according to the trivalent graph, then integrate to produce
b�(M), much like before (see equations 3.41 and 3.43 of [22]). For example, for � = ⇥ in
dimension 2n = 2 we would take

⌦ABCD⌦EFGH✏
AE

✏
BF

✏
CG

.

Anti-symmetrizing over the free indices D and H is basically equivalent to contracting with
the skew form ✏

DH , and thus

b⇥(M) =
1

(2⇡)2

Z

M
⌦ABCD⌦EFGH✏

AE
✏
BF

✏
CG

✏
DH

dvol.

For � = ⇥2 in dimension 2n = 4 we would take

⌦ABCD⌦EFGH⌦IJKL⌦MNOP ✏
AE

✏
BF

✏
IM

✏
JN

✏
CK

✏
OG

.
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Anti-symmetrizing over the free indices D, H, L, and P is basically equivalent to contracting
with the totally skew form

✏
DHLP := ✏

DH
✏
LP + ✏

DL
✏
PH + ✏

DP
✏
HL

,

and thus

b⇥2(M) =
1

(2⇡)4

Z

M
⌦ABCD⌦EFGH⌦IJKL⌦MNOP ✏

AE
✏
BF

✏
IM

✏
JN

✏
CK

✏
OG

✏
DHLP

dvol.

Remark 9 It is interesting that the final contractions with ✏
DH and ✏

DHLP mean that we
are really using a 4-valent graph to contract indices. For b⇥(M) this would be the 4-valent
graph

✓⌘
◆⇣
✓⌘
◆⇣

,

while for b⇥2(M) it would be the sum of the 4-valent graphs✏
�

�
�

✏� ��+
✏
�

�
�@@�� +

��✏�
��✏�

.

These 4-valent graphs are really encoding the invariant theory of Sp(n)-representations. The
bundle V corresponds to the standard representation C2n of Sp(n), whereas ⌦ is a section of
Sym4

V which corresponds to Sym4C2n. If we decompose Sym2(Sym4C2n) into irreducible
Sp(n)-representations, we find the trivial representation appears with multiplicity one. In-
deed, we can identify C2n with its dual using the symplectic form, and then the invariant
subspace of Sym2(Sym4C2n) is

Sym2(Sym4C2n)Sp(n) ⇠= HomSp(n)(Sym
4C2n

, Sym4C2n),

which is one-dimensional by Schur’s lemma applied to the irreducible representation Sym4C2n.
This means there is a unique quadratic invariant of ⌦, which gives b⇥(M).

The decomposition of Sym4(Sym4C2n) contains four copies of the trivial representation1,
and thus there are four quartic invariants. These correspond to the graphs

✓⌘
◆⇣
✓⌘
◆⇣

[ ✓⌘
◆⇣
✓⌘
◆⇣ ✏

�
�
�

✏� ��
✏
�

�
�@@��

��✏�
��✏�

.

The first gives the Rozansky-Witten invariant b⇥2(M), and the sum of the other three gives
b⇥2(M). In fact, each individual graph gives a way of contracting indices and thus produces
a curvature integral, but it is not clear what these individual curvature integrals represent.
Although Conjecture 5 states that b⇥2(M) < 0 in dimension four, and �⇥2 < 0 in higher di-
mensions, we do not expect that these individual curvature integrals are all negative. Indeed,
computations like those in Section 4 suggest that they are not (more precisely, computations
suggest that the three terms in the integrand for �⇥2 are not individually pointwise negative;
only their sum is pointwise negative).

There is also a unique cubic invariant of ⌦; it corresponds to the graph

✓⌘
◆⇣
 TT

1We use the form interface to LiE at wwwmathlabo.univ-poitiers.fr/⇠maavl/LiE/form.html.
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and looks like
⌦ABCD⌦EFGH⌦IJKL✏

AE
✏
BF

✏
CI

✏
DJ

✏
GK

✏
HL

.

Again, it is not clear what the resulting curvature integral represents. For more relations
between graphs and the invariant theory of Sp(n), see Garoufalidis and Nakamura [8].

3 Dimension four

In this section we prove Conjecture 5 in dimension four.

Theorem 10 Let M be an irreducible hyperkähler manifold of complex dimension four.
Then

b⇥2(M) < 0.

Proof In dimension four we can write the Rozansky-Witten invariants in terms of Chern
numbers, which can be written in terms of Betti numbers. Then we can apply Guan’s
bounds on the Betti numbers [10]. Specifically, from Sawon [25] (or Hitchin and Sawon [11])
we have

b⇥2(M) = 4
5 (7c

2
2 � 4c4)[M ]

b⇥2(M) = �
4
5 (c

2
2 � 2c4)[M ],

and from Section 8 of [28] we have

c
2
2[M ] = 736 + 4b2 � b3

c4[M ] = 48 + 12b2 � 3b3.

Therefore
b⇥2(M) = �512 + 16b2 � 4b3.

Guan [10] proved that b2 and b3 can take only finitely many values; the maximum value of
b⇥2(M) occurs when b2 = 23 and b3 = 0, and thus

b⇥2(M)  �144.

⇤

Remark 11 We also have

b⇥2(M) = 3968� 16b2 + 4b3,

whose minimum value according to Guan’s bounds [10] again occurs when b2 = 23 and
b3 = 0, and thus

b⇥2(M) � 3600.

These values are realized by the Hilbert scheme S
[2], and the bounds are therefore sharp.

The maximum value according to Guan’s bounds [10] occurs when b2 = 3 and b3 = 68 (not
realized by any currently known hyperkähler manifold), and thus

b⇥2(M)  4192.

In terms of Â1/2[M ] = 1
4822!b⇥2(M) these bounds become

25

32
 Â

1/2[M ] 
131

144
.
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4 “Experimental proof”

The Maple code for our “experimental proof” of Conjecture 5 is in Appendix A, and a
dictionary for the variables is in Table 1.

E[i, j] ✏
IJ

EE[i, j, k, l] ✏
IJKL := ✏

IJ
✏
KL + ✏

IK
✏
LJ + ✏

IL
✏
JK

EEE[i, j, k, l,m, p] ✏
IJKLMP

M [i, j, k, l] ⌦IJKL

V [i, j, k, l]  IJKL := ⌦ABIJ⌦CDKL✏
AC

✏
BD

Th ⇥(⌦)JL✏JL =  IJKL✏
IK

✏
JL = ⌦ABIJ⌦CDKL✏

AC
✏
BD

✏
IK

✏
JL

W [i, j, k, l]  AIBJ CKDL✏
AC

✏
DB

Th2 ⇥2(⌦)IJKL✏
IJKL =  AIBJ CKDL✏

AC
✏
DB

✏
IJKL

U [i, j, k, l,m, p]  AIBJ CKDL EMFP ✏
AD

✏
CF

✏
EB

Th3 ⇥3(⌦)IJKLMP ✏
IJKLMP =  AIBJ CKDL EMFP ✏

AD
✏
CF

✏
EB

✏
IJKLMP

Table 1: Dictionary for Maple code

The first step is to specify the dimension (in the given code we select 2n = 6). In
a suitable basis we can assume that ✏

IJ is the standard skew form, so we define E[i, j]
accordingly. Similarly, EE[i, j, k, l] and EEE[i, j, k, l,m, p] are defined to be the standard
totally antisymmetric forms.

Next we generate a random multi-array of complex numbers to represent the curvature
tensor ⌦IJKL of a hyperkähler manifold. We first set R[i, j, k, l] to be a totally symmetric
form with random complex entries satisfying �1  Re  1 and �1  Im  1. The
curvature tensor ⌦IJKL must satisfy a reality condition, and thus we define M [i, j, k, l] by
adding R[i, j, k, l] to its conjugate under the appropriate reality condition.

Next we take copies of M [i, j, k, l] and E[i, j] and contract indices according to a trivalent
graph �. There is one intermediate step: we compute V [i, j, k, l], which corresponds to the
tensor

 IJKL := ⌦ABIJ⌦CDKL✏
AC

✏
BD

given by contracting according to the unitrivalent graph e. This piece appears in all of
our graphs ⇥, ⇥2, and ⇥3, etc., and by computing V [i, j, k, l] once and reusing it in later
computations we can speed up the algorithm considerably.

The code outputs the values Th, Th2, and Th3. We can iterate this computation hun-
dreds of times and verify that Th and Th3 are always positive and Th2 is always negative.
Of course, we know that Th must be positive because at each point of M

⌦ABCD⌦EFGH✏
AE

✏
BF

✏
CG

✏
DH

is the L
2-norm of the curvature tensor, and likewise Th is the L

2-norm of M [i, j, k, l]. As
observed earlier, this implies that b⇥(M) > 0 in two dimensions, and �⇥ > 0 in arbitrary
dimension, because up to a universal positive constant �⇥ is the integral over M of

⌦ABCD⌦EFGH✏
AE

✏
BF

✏
CG

✏
DH

.

Similarly, the computational verification that Th2 is always negative suggests that

⌦ABCD⌦EFGH⌦IJKL⌦MNOP ✏
AE

✏
BF

✏
IM

✏
JN

✏
CK

✏
OG
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should be a pointwise negative function on M . This would imply that b⇥2(M) < 0 in four
dimensions, and �⇥2 < 0 in arbitrary dimension. Finally, the verification that Th3 is always
positive suggests that b⇥3(M) > 0 in six dimensions, and �⇥3 > 0 in arbitrary dimension.

Remark 12 The value of this “experimental proof” is that it suggests an approach to a
rigorous proof of the conjecture. Namely, it suggests that these particular Rozansky-Witten
invariants are positive (respectively, negative) because their integrands are pointwise positive
(respectively, negative), and moreover, that this should be the consequence of a purely alge-
braic computation. If successful, this would mean that we could obtain valuable topological
information about hyperkähler manifolds from purely algebraic identities.

5 Dimensions six and eight

In this section we verify Conjecture 5 for all currently known hyperkähler manifolds in
complex dimensions six and eight. In dimension six these are the Hilbert scheme of points on
a K3 surface S[3], the generalized Kummer variety K3(A) (see Beauville [1]), and O’Grady’s
example OG6 [21]. In dimension eight these are S

[4] and K4(A). The Rozansky-Witten
invariants of S

[n] and Kn(A) up to dimension eight were calculated in Sawon [25] (see
Appendix E.1); the results are reproduced below.

2n S
[n]

Kn(A) OG6
2 b⇥ 48
4 b⇥2 3600 3888

b⇥2 �144 �432
6 b⇥3 373248 442368 442368

b⇥⇥2 �13824 �36864 �36864
b⇥3 512 2560 3072

8 b⇥4 49787136 64800000
b⇥2⇥2

�1693440 �4320000
b⇥2

2
57600 288000

b⇥⇥3 56448 240000
b⇥4 �1824 �12000
b⌅ 348 �1500

The last invariant in dimension eight, b⌅, corresponds to the trivalent graph which is the
skeleton of a cube,

⌅ =
@

�

�

@ .

We have also included the invariants of OG6 in this table; let us explain how they are
calculated. The Hodge numbers were calculated by Mongardi, Rapagnetta, and Saccà [18];
they are
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1
0 0

1 6 1
0 0 0 0

1 12 173 12 1
0 0 0 0 0 0

1 6 173 1144 173 6 1
0 0 0 0 0 0

1 12 173 12 1
0 0 0 0

1 6 1
0 0

1

.

From this we can compute the Hirzebruch �y-genus

�y =
6X

p,q=0

(�1)qhp,q
y
p = 4� 24y + 348y2 � 1168y3 + 348y4 � 24y5 + 4y6.

By Riemann-Roch, the coe�cients �
p =

P6
q=0(�1)qhp,q can be written in terms of Chern

numbers, and these relations can be inverted to give

c
3
2[M ] = 7272�0

� 184�1
� 8�2 = 30720

c2c4[M ] = 1368�0
� 208�1

� 8�2 = 7680
c6[M ] = 36�0

� 16�1 + 4�2 = 1920

(see Appendix B of [25]). Finally, in dimension six we can compute all Rozansky-Witten
invariants in terms of Chern numbers, and we find

b⇥3(M) = 24
35 (31c

3
2 � 44c2c4 + 16c6)[M ] = 442368

b⇥⇥2(M) = �
8
35 (11c

3
2 � 26c2c4 + 12c6)[M ] = �36864

b⇥3(M) = 8
35 (c

3
2 � 3c2c4 + 3c6)[M ] = 3072.

Remark 13 It is perhaps surprising that some of the Rozansky-Witten invariants of K3(A)
and OG6 are the same. Here is an explanation for this. In dimension ten, there is a relation
between S

[5] and O’Grady’s example OG10: they can be deformed to Lagrangian fibrations
that are locally isomorphic away from singular fibres. More precisely, on the complement of
the singular fibres one fibration is a torsor over the other (see Sawon [27], or de Cataldo,
Rapagnetta, and Saccà [4] where this relation was used to calculate the Hodge numbers
of OG10). In particular, the two fibrations have the same discriminant locus and their

fibres have the same polarization type. By Theorem 2 of Sawon [28],
p
Â[M ] (equivalently,

b⇥n(M)) can be calculated from the degree of the discriminant locus and the polarization
type, and therefore b⇥5(S[5]) = b⇥5(OG10).

Wu [32] described a similar relation between K3(A) and OG6, i.e., after deforming to
Lagrangian fibrations, one is a (compactified) torsor over the other. As the two fibrations
will again have the same discriminant locus and polarization type, we can conclude as above
that b⇥3(K3(A)) = b⇥3(OG6). The relation b⇥⇥2(M) = 21233 �

1
3b⇥3(M) (proved in the

next section) then gives b⇥⇥2(K3(A)) = b⇥⇥2(OG6) too.
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6 Applications

Our first goal in this section is to prove the following inequality involving Rozansky-Witten
invariants and the second Betti number. This generalizes Lemma 3 of Guan [10] to arbitrary
dimension; it was known to Guan (see the Remark following Lemma 3 of [10]) but he did
not publish an explicit proof (though see Lemma 1 of Kurnosov [17]). The key idea is to
substitute a decomposition of the second Chern class c2 = µq + p

? into some formulae for
Rozansky-Witten invariants appearing in Hitchin and Sawon [11]. This decomposition of c2
and some of the calculations in the proof of Theorem 14 were also used by Cao and Jiang
to prove Lemma 3.3 of [3].

Theorem 14 Let M be an irreducible hyperkähler manifold of complex dimension 2n. Then

b⇥n(M) � �(b2 + 2n� 2)b⇥n�2⇥2
(M).

In this section we will denote the Beauville-Bogomolov quadratic form of M by Q 2

Sym2H2(M,Z)⇤, and denote its dual by q 2 Sym2H2(M,Q) ⇢ H4(M,Q).

Lemma 15 Let u be an arbitrary element of H2(M,R). Then

(2n�1)(b⇥n(M)+2b⇥n�2⇥2
(M))

✓Z

M
qu

2n�2

◆2

� (2n�3)b⇥n(M)

✓Z

M
q
2
u
2n�4

◆✓Z

M
u
2n

◆
.

Proof The second Chern class c2 of M can be written as p+ p
?, with p 2 Sym2H2(M,Q)

and p
? in the primitive cohomology H4

prim(M,Q). Up to scale, q is the unique element

of Sym2H2(M,Q) that remains of type (2, 2) with respect to all complex structures on M .
Since c2 also remains of type (2, 2) with respect to all complex structures, its first component
p must be a multiple µ of q, i.e.,

c2 = µq + p
?
.

The constant µ can be determined by multiplying by �
n�1

�̄
n�1 and integrating

Z

M
c2�

n�1
�̄
n�1 = µ

Z

M
q�

n�1
�̄
n�1

.

Moreover
c
2
2 = µ

2
q
2 + 2µqp? + (p?)2.

Multiplying by �
n�2

�̄
n�2 and integrating yields

Z

M
c
2
2�

n�2
�̄
n�2 = µ

2

Z

M
q
2
�
n�2

�̄
n�2 + 0 +

Z

M
(p?)2�n�2

�̄
n�2

� µ
2

Z

M
q
2
�
n�2

�̄
n�2

.

On the first line we have used the fact that q�
n�2

�̄
n�2

2 Sym2n�2H2(M,Q) and p
?

2

H4
prim(M,Q) are orthogonal, and on the second line we have used the Hodge-Riemann bi-

linear relations. Substituting the formula for µ into the inequality yields

✓Z

M
c
2
2�

n�2
�̄
n�2

◆✓Z

M
q�

n�1
�̄
n�1

◆2

�

✓Z

M
c2�

n�1
�̄
n�1

◆2 ✓Z

M
q
2
�
n�2

�̄
n�2

◆
.
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The terms involving c2 can be rewritten as Rozansky-Witten invariants. Specifically, Equa-
tion 8 of Hitchin and Sawon [11] states that

�⇥ =
16⇡2

n
R
M c2�

n�1
�̄
n�1

R
M �n�̄n

.

Similarly, using Chern-Weil theory (see Section 4 of [11] or Chapter 2 of Sawon [25]) we find
that

�
2
⇥ + 2�⇥2 =

(16⇡2)2n(n� 1)
R
M c

2
2�

n�2
�̄
n�2

R
M �n�̄n

.

Substituting these into the inequality and simplifying gives

n(�2
⇥ + 2�⇥2)

✓Z

M
q�

n�1
�̄
n�1

◆2

� (n� 1)�2
⇥

✓Z

M
q
2
�
n�2

�̄
n�2

◆✓Z

M
�
n
�̄
n

◆
.

Multiplying both sides by 1
(8⇡2)nn!�

n�2
⇥

R
�
n
�̄
n

> 0 converts the terms involving �s into
genuine Rozansky-Witten invariants,

n(b⇥n(M)+2b⇥n�2⇥2
(M))

✓Z

M
q�

n�1
�̄
n�1

◆2

� (n�1)b⇥n(M)

✓Z

M
q
2
�
n�2

�̄
n�2

◆✓Z

M
�
n
�̄
n

◆
.

The terms involving � and �̄ can be rewritten so that they only depend on the combination
u := � + �̄; for example

Z

M
q�

n�1
�̄
n�1 =

R
M q(� + �̄)2n�2

�2n�2
n�1

� .

After simplifying, this gives

(2n�1)(b⇥n(M)+2b⇥n�2⇥2
(M))

✓Z

M
qu

2n�2

◆2

� (2n�3)b⇥n(M)

✓Z

M
q
2
u
2n�4

◆✓Z

M
u
2n

◆
.

Since the resulting inequality will remain true under a deformation of the complex structure,
it must be true for an arbitrary element u 2 H2(M,R). ⇤

The proof of Theorem 14 now proceeds by rewriting the integrals involving u in terms of
the Beauville-Bogomolov form Q(u). As we will see, the second Betti number b2 naturally
appears.

Proof The Fujiki relation [7] says that there is a constant � depending only on M such
that

Z

M
u
2n = �Q(u)n (1)

for all u 2 H2(M,C). Moreover, because q remains of type (2, 2) under deformations of the
complex structure, Corollary 23.17 of Huybrechts’ notes in [9] implies that there exists a
constant �q such that

Z

M
qu

2n�2 = �qQ(u)n�1 (2)
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for all u 2 H2(M,C). Similarly, q2 remains of type (4, 4) under deformations of the complex
structure, so there exists a constant �q2 such that

Z

M
q
2
u
2n�4 = �q2Q(u)n�2 (3)

for all u 2 H2(M,C). We need to determine �q and �q2 .

Let {e1, . . . , eb2} be an orthonormal basis for H2(M,C) with respect to the Beauville-
Bogomolov form Q; then

q =
b2X

i=1

e
2
i .

Substituting u = ei + tej + sek, for distinct i, j, and k, into the Fujiki relation gives

Z

M
(ei + tej + sek)

2n = �Q(ei + tej + sek)
n = �(1 + t

2 + s
2)n.

By comparing the constant, t2n�2, t2n�4, and t
2
s
2n�4 terms we find that

Z

M
e
2n
i = �,

✓
2n

2

◆Z

M
e
2
i e

2n�2
j = �

✓
n

1

◆
,

✓
2n

4

◆Z

M
e
4
i e

2n�4
j = �

✓
n

2

◆
,

and
✓

2n

2, 2, 2n� 4

◆Z

M
e
2
i e

2
je

2n�4
k = �

✓
n

1, 1, n� 2

◆
.

To calculate �q we substitute q =
P

e
2
i and u = ej into Equation 2, which gives

�q = �qQ(ej)
n�1

=

Z

M

⇣X
e
2
i

⌘
e
2n�2
j

=

Z

M
e
2n
j +

X

i 6=j

Z

M
e
2
i e

2n�2
j

= �+ (b2 � 1)
�
�n
1

�
�2n

2

�

= �

✓
b2 + 2n� 2

2n� 1

◆
.

To calculate �q2 we substitute q2 = (
P

e
2
i )

2 =
P

e
4
i +

P
i 6=j e

2
i e

2
j and u = ek into Equation 3,
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which gives

�q2 = �q2Q(ek)
n�2

=

Z

M

0

@
X

e
4
i +

X

i 6=j

e
2
i e

2
j

1

A e
2n�4
k

=

Z

M
e
2n
k +

X

i 6=k

Z

M
e
4
i e

2n�4
k +

X

i,j,k distinct

Z

M
e
2
i e

2
je

2n�4
k +

X

i 6=k

Z

M
e
2
i e

2n�2
k +

X

j 6=k

Z

M
e
2
je

2n�2
k

= �+ (b2 � 1)
�
�n
2

�
�2n

4

� + (b2 � 1)(b2 � 2)
�
� n
1,1,n�2

�
� 2n
2,2,2n�4

� + 2(b2 � 1)
�
�n
1

�
�2n

2

�

= �
(b2 + 2n� 2)(b2 + 2n� 4)

(2n� 1)(2n� 3)
.

In particular, Equations 1, 2, and 3 hold for u 2 H2(M,R). Substituting them into the
inequality of Lemma 15, and using the above calculations of �q and �q2 , we find that the
factors of � and Q(u) on each side cancel. After simplifying we are left with

(b⇥n(M) + 2b⇥n�2⇥2
(M))(b2 + 2n� 2) � b⇥n(M)(b2 + 2n� 4),

which can be rearranged to give

b⇥n(M) � �(b2 + 2n� 2)b⇥n�2⇥2
(M).

⇤

Our main conjecture, Conjecture 5, asserts that b⇥n�2⇥2
(M) < 0, which would give the

following.

Corollary 16 If b⇥n�2⇥2
(M) < 0 then the second Betti number b2 is bounded above.

Proof Because b⇥n�2⇥2
(M) is a (rational) linear combination of Chern numbers, if it is

negative then it must be  �1/Cn where Cn is a positive integer depending only on n. On
the other hand, Jiang proved that Â1/2[M ] is strictly less than 1 (Corollary 5.5 of [13]), and
this implies that

b⇥n(M) = 48nn!Â1/2[M ] < 48nn!.

Theorem 14 then gives

48nn! > b⇥n(M) � �(b2 + 2n� 2)b⇥n�2⇥2
(M) �

b2 + 2n� 2

Cn
,

so b2 is bounded above by 48nn!Cn � 2n+ 2. ⇤

Example 17 In dimension four we already have the sharp bound b2  23, due to Guan [10].
In dimension six we have

Â
1/2[M ] =

1

967680
(31c32 � 44c2c4 + 16c6)[M ],

so Â
1/2[M ] < 1 implies

b⇥3(M)  4833!
967679

967680
=

23224296

35
.
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In addition

b⇥⇥2(M) = �
8

35
(11c32 � 26c2c4 + 12c6)[M ],

so b⇥⇥2(M) < 0 would imply b⇥⇥2(M)  �
8
35 . Therefore

23224296

35
� b⇥3(M) � �(b2 + 4)b⇥⇥2(M) � (b2 + 4)

8

35
,

which simplifies to give
2903033 � b2.

In fact, we can improve on this. The first step is the following surprising relation.

Lemma 18 Let M be an irreducible hyperkähler manifold of complex dimension six. Then

b⇥3(M) + 3b⇥⇥2(M) = 21034�(OM ) = 21234.

Proof Writing the left-hand side as a linear combination of Chern numbers, we find

b⇥3(M) + 3b⇥⇥2(M) =
48

35
(10c32 � 9c2c4 + 2c6)[M ].

By the Riemann-Roch theorem, �(OM ) can also be written as a linear combination of Chern
numbers, and a calculation reveals agreement with the above expression up to the constant
21034. Finally, one notes that �(OM ) = 4 for an irreducible hyperkähler manifold of complex
dimension six. ⇤

Our Conjecture 5 immediately yields a lower bound for b⇥3(M).

Corollary 19 If b⇥⇥2(M) < 0 then b⇥3(M) > 21234. Equivalently,

Â
1/2[M ] =

1

4833!
b⇥3(M) >

1

2
.

Now we can improve the upper bound on the second Betti number b2.

Theorem 20 If b⇥⇥2(M) < 0 then

b2  1451519.

Remark 21 We expect that this bound must be extremely crude. There are three known
examples of irreducible hyperkähler manifolds in dimension six, and their second Betti num-
bers are 7, 8, and 23. The results of Sawon [30] and Kim and Laza [15] suggest that 23 is
most likely the largest possible value for b2.

Proof Combining Theorem 14, b⇥⇥2(M) < 0, and Lemma 18 gives

b2 + 4 
b⇥3(M)

�b⇥⇥2(M)
=

3b⇥3(M)

b⇥3(M)� 21234
.

The right-hand side is a decreasing function of b⇥3(M), so it is maximized when b⇥3(M) is
smallest. Now b⇥3(M) > 21234 and

b⇥3(M) =
24

35
(31c32 � 44c2c4 + 16c6)[M ] 2

24

35
Z,



16 7 COMPARISONS TO OTHER WORK

therefore b⇥3(M) is at least 21234 + 24
35 , and substituting this value gives

b2 + 4  1451523.

⇤

We also obtain an upper bound for b⇥3(M).

Proposition 22 If b⇥⇥2(M) < 0 then b⇥3(M)  210347. Equivalently,

Â
1/2[M ] =

1

4833!
b⇥3(M) 

7

8
.

Remark 23 This would improve on Jiang’s bound Â
1/2[M ] < 1 (though note that Jiang’s

bound holds in all dimensions, not just dimension six).

Proof The second Betti number b2 must be at least three, and therefore the inequality at
the start of the last proof gives

7 
3b⇥3(M)

b⇥3(M)� 21234
.

Rearranging gives b⇥3(M)  210347. ⇤

Example 24 For the Hilbert scheme S
[3] of three points on a K3 surface we have b⇥3(M) =

373248 and b2 = 23. This implies that we have equality in

b2 + 4 
3b⇥3(M)

b⇥3(M)� 21234
.

It follows that in the decomposition of the second Chern class c2 = p + p
? in the proof of

Lemma 15, we must have p
? = 0. In other words, c2 = p lies in the part Sym2H2(M,Q) of

H4(M,Q) which is generated by H2(M,Q).

Example 25 For the generalized Kummer variety K3(A) and O’Grady’s example OG6 we
have b⇥3(M) = 442368 and b2 = 7 and 8, respectively. This implies that we have equality in

b2 + 4 
3b⇥3(M)

b⇥3(M)� 21234

for OG6, but strict inequality for K3(A). Thus for OG6, p? = 0 and c2 lies in Sym2H2(M,Q),
but for K3(A) this is no longer true.

7 Comparisons to other work

Cao and Jiang proposed (Conjecture 3.6 in [3]), and Jiang later proved (Corollary 5.3 in [13]),
that Todd classes of hyperkähler manifolds are quasi-e↵ective, in the following sense.

Theorem 26 Let X be a hyperkähler manifold of complex dimension 2n and L a nef and
big line bundle on X. Then

R
M td2n�2iL

2i
> 0 for all 0  i  n.
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This is equivalent to proving
R
M td2n�2i�

i
�̄
i
> 0, or in other words, proving that certain

Rozansky-Witten invariants are positive. For example, consider the quasi-e↵ectivity of td4,
which is equivalent to

Z

M
td4�

n�2
�̄
n�2 =

Z

M

1

720
(3c22 � c4)�

n�2
�̄
n�2

> 0.

This case was already proved by Cao and Jiang, Theorem 3.2 in [3], by writing

td4 = (td1/2)0(td
1/2)4 + (td1/2)2(td

1/2)2 + (td1/2)4(td
1/2)0

= 2(td1/2)4 + (td1/2)22

=
1

2880
(7c22 � 4c4) +

1

576
c
2
2,

and then showing that both
Z

M
(7c22 � 4c4)�

n�2
�̄
n�2 and

Z

M
c
2
2�

n�2
�̄
n�2

are positive.
Now as already observed in the proof of Lemma 15, using Chern-Weil theory (see Sec-

tion 4 of Hitchin and Sawon [11] or Chapter 2 of Sawon [25]) we can show that

�
2
⇥ + 2�⇥2 =

(8⇡2)2n(n� 1)
R
M (s22)�

n�2
�̄
n�2

R
M �n�̄n

=
(8⇡2)2n(n� 1)

R
M 4c22�

n�2
�̄
n�2

R
M �n�̄n

.

In the same way we find that

5

2
�⇥2 =

(8⇡2)2n(n� 1)
R
M (�s4)�n�2

�̄
n�2

R
M �n�̄n

= �
(8⇡2)2n(n� 1)

R
M (2c22 � 4c4)�n�2

�̄
n�2

R
M �n�̄n

.

Here s2 = 2!ch2 = �2c2 and s4 = 4!ch4 = 2c22 � 4c4. Therefore we observe that the three
inequalities

Z

M
td4�

n�2
�̄
n�2

> 0,

Z

M
(td1/2)4�

n�2
�̄
n�2

> 0, and �⇥2 < 0

are equivalent to

3

Z

M
c
2
2�

n�2
�̄
n�2

>

Z

M
c4�

n�2
�̄
n�2

,
7

4

Z

M
c
2
2�

n�2
�̄
n�2

>

Z

M
c4�

n�2
�̄
n�2

,

and
1

2

Z

M
c
2
2�

n�2
�̄
n�2

>

Z

M
c4�

n�2
�̄
n�2

,

respectively. Because
R
M c

2
2�

n�2
�̄
n�2 is positive these inequalities are ordered weakest to

strongest. In particular, our Conjecture 5 that �⇥2 < 0 is strictly stronger than the inequalityR
M (td1/2)4�n�2

�̄
n�2

> 0, which in turn is strictly stronger than Cao and Jiang’s result thatR
M td4�n�2

�̄
n�2

> 0.
For higher degrees k � 3 we suspect that Jiang’s theorem that

R
M td2k�n�k

�̄
n�k

> 0
may also follow from our Conjecture 5 that (�1)k+1

�⇥k > 0, though we probably need to
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combine it with some inequality analogous to the positivity of
R
M c

2
2�

n�2
�̄
n�2 in the k = 2

case.
Finally, let us mention positivity of Chern numbers. The Chern numbers of Hilbert

schemes of K3 surfaces can be calculated using the methods of Ellingsrud, Göttsche, and
Lehn [5]. Those of generalized Kummer varieties were calculated up to dimension eight and
twenty by Sawon [24] and Nieper-Wißkirchen [19], respectively, in both cases using Rozansky-
Witten invariants. Those of OG6 were calculated by Mongardi, Rapagnetta, and Saccà [18]
(see Section 5). These and other calculations have provoked the following questions (see
Appendix B of [19], Conjecture 5.8 of Jiang [13], and Questions 4.7 and 4.8 of Oberdieck,
Song, and Voisin [20]).

Question Let M be an irreducible hyperkähler manifold of complex dimension 2n and let
n =

Pt
i=1 ki be a partition. Is it true that c2k1 · · · c2kt [M ] is positive?

Question Let M be an irreducible hyperkähler manifold of complex dimension 2n and let
n =

Pt
i=1 ki be a partition. Is it true that (�1)nch2k1 · · · ch2kt [M ] is positive?

For example, Proposition 3.7 of [20] gives an a�rmative answer to the second question
for generalized Kummer varieties in all dimensions.

Now every Chern number c2k1 · · · c2kt [M ] and ch2k1 · · · ch2kt [M ] can be written in terms
of Rozansky-Witten invariants, but Conjecture 5 only concerns Rozansky-Witten invariants
involving the particular trivalent graphs ⇥k. Up to dimension six these are, in fact, all
Rozansky-Witten invariants; but in higher dimensions the Chern numbers c2k1 · · · c2kt [M ]
and ch2k1 · · · ch2kt [M ] cannot be written as linear combinations of Rozansky-Witten invari-
ants involving only the graphs ⇥k. Consequently it is unclear how Conjecture 5 is related
to the above questions, if at all.
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A Maple code

> > 

> > 

> > 

> > 

> > 

n 3 :

E Array 1 ..2 n, 1 ..2 n, datatype = float 8 :
for i from 1 to n do
 E 2  i 1, 2 i 1 :
 E 2 i, 2 i 1 1 :
od:

EE Array 1 ..2 n, 1 ..2 n, 1 ..2 n, 1 ..2 n, datatype = float 8 :
for i from 1 to 2 n do
 for j from 1 to 2 n do
  for k from 1 to 2 n do
   for l from 1 to 2 n do
    EE i, j, k, l E i, j E k, l E i, k E l, j E i, l E j, k :
   od:
  od:
 od:
od:

EEE  Array 1 ..2 n, 1 ..2 n, 1 ..2 n, 1 ..2 n, 1 ..2 n, 1 ..2 n, datatype = float 8 :
for i from 1 to 2 n do
 for j from 1 to 2 n do
  for k from 1 to 2 n do
   for l from 1 to 2 n do
    for m from 1 to 2 n do
     for p from 1 to 2 n do
      EEE i, j, k, l, m, p E i, j EE k, l, m, p E i, k EE l, m, p, j E i, l EE m, p, j, k

E i, m EE p, j, k, l E i, p EE j, k, l, m :
     od:
    od:
   od:
  od:
 od:
od:

R Array  1 ..2 n, 1 ..2 n, 1 ..2 n, 1 ..2 n, datatype = complex 8 :
for i from 1 to 2 n do
 for j from 1 to 2 n do
  for k from 1 to 2 n do
   for l from 1 to 2 n do
    if i j then R i, j, k, l R j, i, k, l
     elif j k then R i, j, k, l R i, k, j, l
     elif k l then R i, j, k, l R i, j, l, k

     else R i, j, k, l
2 rand

1012 1.0
2 rand

1012 1.0 I

    end if:
   od:
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> > 

> > 

> > 

> > 

> > 

(1)(1)

  od:
 od:
od:  

M Array 1 ..2  n, 1 ..2  n, 1 ..2  n, 1 ..2  n, datatype = complex 8 :
for i from 1 to 2 n do
 for j from 1 to 2 n do
  for k from 1 to 2 n do
   for l from 1 to 2 n do
    t 0 : 
    if i mod 2 = 1 then a i 1
     else a i 1 : t t 1
    end if:
    if j mod 2 = 1 then b j 1
     else b j 1 : t t 1 
    end if:
    if k mod 2 = 1 then c k 1
     else c k 1 : t t 1
    end if:
    if l mod 2 = 1 then d l 1
     else d l 1 : t t 1
    end if:
    M i, j, k, l R i, j, k, l 1 t conjugate R a, b, c, d :
   od:
  od:
 od:
od:

V Array 1 ..2 n, 1 ..2 n, 1 ..2 n, 1 ..2 n, datatype = complex 8 :
for i from 1 to 2 n do
 for j from 1 to 2 n do
  for k from 1 to 2 n do
   for l from 1 to 2 n do
    V i, j, k, l add add add add M a, b, i, j M c, d, k, l E a, c E b, d , a = 1 ..2 n , b

= 1 ..2 n , c = 1 ..2 n , d = 1 ..2 n :
   od:
  od:
 od:
od:

Th add add add add V i, j, k, l E i, k E j, l , i = 1 ..2 n , j = 1 ..2 n , k = 1 ..2 n , l = 1
..2 n ;

Th := 1881.99949351646 0. I

W Array 1 ..2 n, 1 ..2 n, 1 ..2 n, 1 ..2 n, datatype = complex 8 :    
for i from 1 to 2 n do
 for j from 1 to 2 n do
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> > 

> > 
(2)(2)

> > 

> > 

(3)(3)

  for k from 1 to 2 n do
   for l from 1 to 2 n do
    W i, j, k, l add add add add V a, i, b, j V c, k, d, l E a, c E d, b , a = 1 ..2 n , b

= 1 ..2 n , c = 1 ..2 n , d = 1 ..2 n :
   od:
  od:
 od:
od: 

Th2 add add add add W i, j, k, l EE i, j, k, l , i = 1 ..2 n , j = 1 ..2 n , k = 1 ..2 n , l = 1
..2 n ; 

Th2 := 2.49382174560616 105 1.77635683940025 10-13 I

U Array 1 ..2 n, 1 ..2 n, 1 ..2 n, 1 ..2 n, 1 ..2 n, 1 ..2 n, datatype = complex 8 :
for i from 1 to 2 n do
 for j from 1 to 2 n do
  for k from 1 to 2 n do
   for l from 1 to 2 n do
    for m from 1 to 2 n do
     for p from 1 to 2 n do
      U i, j, k, l, m, p add add add add add add V a, i, b, j V c, k, d, l V e, m, f, p

E a, d E c, f E e, b , a = 1 ..2 n , b = 1 ..2 n , c = 1 ..2 n , d = 1 ..2 n , e = 1 ..2 n , f
= 1 ..2 n :

     od:
    od:
   od:
  od:
 od:
od:

Th3 add add add add add add U i, j, k, l, m, p EEE i, j, k, l, m, p , i = 1 ..2 n , j = 1 ..2
n , k = 1 ..2 n , l = 1 ..2 n , m = 1 ..2 n , p = 1 ..2 n ;  

Th3 := 9.06073037332295 106 8.36735125631094 10-11 I



22 REFERENCES

References

[1] A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, Jour.
Di↵. Geom. 18 (1983), 755–782.

[2] T. Beckmann and J. Song, Second Chern class and Fujiki constants of hyperkähler
manifolds , preprint arXiv:2201.07767.

[3] Y. Cao and C. Jiang, Remarks on Kawamata’s e↵ective non-vanishing conjecture for
manifolds with trivial first Chern classes, Math. Z. 296 (2020), no. 1–2, 615–637.

[4] M. de Cataldo, A. Rapagnetta, and G. Saccà, The Hodge numbers of O’Grady 10
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