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ABSTRACT. A central tool in the study of nonhomogeneous random matrices,
the noncommutative Khintchine inequality, yields a nonasymptotic bound on
the spectral norm of general Gaussian random matrices X = >, g;A; where
g; are independent standard Gaussian variables and A; are matrix coefficients.
This bound exhibits a logarithmic dependence on dimension that is sharp when
the matrices A; commute, but often proves to be suboptimal in the presence
of noncommutativity. In this paper, we develop nonasymptotic bounds on the
spectrum of arbitrary Gaussian random matrices that can capture noncom-
mutativity. These bounds quantify the degree to which the spectrum of X
is captured by that of a noncommutative model Xy, that arises from free
probability theory. This “intrinsic freeness” phenomenon provides a powerful
tool for the study of various questions that are outside the reach of classical
methods of random matrix theory. Our nonasymptotic bounds are easily ap-
plicable in concrete situations, and yield sharp results in examples where the
noncommutative Khintchine inequality is suboptimal. When combined with
a linearization argument, our bounds imply strong asymptotic freeness for a
remarkably general class of Gaussian random matrix models that may be very
sparse, have dependent entries, and lack any special symmetries. When com-
bined with a universality principle, our bounds extend beyond the Gaussian
setting to general sums of independent random matrices.

1. INTRODUCTION

The study of the spectrum of random matrices arises as a central problem
in many areas of mathematics. Motivated by topics ranging from mathematical
physics to operator algebras, much of classical random matrix theory is concerned
with the study of highly homogeneous matrix ensembles, such as those with i.i.d.
entries or that are invariant under symmetry groups. Deep results obtained over
the past six decades by numerous mathematicians have resulted in a very detailed
understanding of the asymptotic properties of such models [2, 38].

In contrast, many problems in areas such as functional analysis [15, 31] and
in applied mathematics [39, 5] fall outside the scope of classical random matrix
theory. The random matrix models that arise in such problems possess two common
features. On the one hand, such models are often highly nonhomogeneous and lack
any natural symmetries. On the other hand, the type of questions that arise in
these areas are generally nonasymptotic in nature, as the study of nonhomogeneous
models often does not lend itself naturally to an asymptotic formulation.

The above considerations motivate the need for nonasymptotic methods that can
capture the spectral properties of essentially arbitrarily structured nonhomogeneous
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random matrices. It may appear hopeless at first sight that anything at all can be
said at this level of generality. Nonetheless, as we will recall below, there exists a
set of tools, known colloquially as “matrix concentration inequalities”, that makes
it possible to compute certain spectral statistics of very general nonhomogeneous
random matrices up to logarithmic factors in the dimension. The results of this
paper provide a powerful refinement of this theory that makes it possible to achieve
sharp results in many situations that are outside the reach of classical methods.

1.1. Matrix concentration inequalities. As a guiding motivation for this paper,
consider the problem of estimating the spectral norm (i.e., largest singular value)
of an arbitrary d x d self-adjoint random matrix with centered jointly Gaussian
entries. Any such matrix X can be represented as

X :zn:giAia (1.1)
i=1

where A; € My(C)s, are deterministic self-adjoint d x d matrices and g; are i.i.d.
standard real Gaussian variables. As was noted in [33], the noncommutative Khint-
chine inequality of Lust-Piquard and Pisier [31, §9.8] implies that'

o(X) S ElX| 5 o(X)V/logd, (1.2)

n
>
i=1
Thus the expected spectral norm of any Gaussian random matrix can be explicitly
computed up to a logarithmic factor in the dimension.

It should be emphasized that (1.1) is an extremely general model: no assumption
is made on the covariance of the entries of X, so that the model can capture ar-
bitrary variance profiles and dependencies between the entries. Analogues of (1.2)
extend even further to the model X = . Z; where Z; are arbitrary independent
random matrices. Due to their generality and ease of use, these “matrix concentra-
tion inequalities” [39] have had a major impact on numerous applications. On the
other hand, the utility of (1.2) is limited by the gap between the upper and lower
bounds, which becomes increasingly severe in high dimension.

To understand the origin of this gap, it is instructive to recall the basic principle
behind the proofs of almost all known matrix concentration inequalities: the norm
of a random matrix is largest when the coefficients A; commute. This idea arises
clearly in proofs of these inequalities [39, 40, 43]: the key step is application of trace
inequalities that permute the order of the matrices A;, which become equalities
when all A; commute. In the latter case, the upper bound of (1.2) is typically of
the correct order. Indeed, by simultaneously diagonalizing A;, we may assume X
is a diagonal matrix. Then o(X)? = |[EX?| = max; Var(X;;), while

E[X|| = Emax |X;| < 0(X)+/logd

under mild assumptions (as the maximum of d Gaussian variables is typically of
order v/logd, see, e.g., [26, §3.3]). On the other hand, when the coefficients A; do
not commute, it is observed in many examples that it is the lower bound of (1.2)
that is of the correct order. This is already the case for the most basic model of

where we define

o(X)? = |EX?|| = : (1.3)

We write z Sy if ¢ < Cy for a universal constant C, and z <y if ¢ Sy and y < x.
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random matrix theory: when X has i.i.d. standard Gaussian entries X;; for 7 > j,
it is classical that E||X| =< vd = o(X) [38, §2.3].

Such examples raise the tantalizing question whether there exists a refinement
of (1.2) that can capture the correct behavior of nonhomogeneous random matrices
beyond the commutative case. To date, a satisfactory answer to this question has
been obtained only in the special case that X has independent entries X;; for i > j
with arbitrary variances Var(X;;) = bfj. In this case, [6] showed that

E[| X[ £ o(X) + max |bi;| /logd, o(X)? =max) b3, (14)
1] ? X
J

which can be reversed under mild assumptions. The key feature of (1.4) is that
the dimensional factor enters here through a smaller parameter o, (X) = max;; |b;;|
that controls which extreme case of (1.2) dominates: diagonal matrices satisfy
04+(X) = o(X), in which case we recover the upper bound of (1.2); but as soon as
0.(X) < (logd)~20(X), the lower bound of (1.2) is of the correct order.

The existence of the bound (1.4) hints at the possibility that an analogous refine-
ment of (1.2) might hold even in the setting of general Gaussian random matrices
(1.1). In particular, one may conjecture the existence of a general bound

E|X|| < 0(X) + 0uu(X)(log d)’ (15)

for some S > 0, where o(X) is as in (1.3) and 0., (X) is a parameter that is small
when the coefficients A; are far from being commutative. This question was first
considered by Tropp [41], who introduced a number of important ideas that form the
basis for the present paper. Using these ideas, Tropp was able to prove a bound of
the form (1.5) for a special class of models that satisfy strong symmetry assumptions
(and for general models with a dimensional factor (logd)3 in the leading term). To
date, however, a general bound of the form (1.5) has remained elusive.

1.2. Free probability. The challenge in proving an inequality of the form (1.5)
is to capture the intrinsic noncommutativity of the matrices A;. There is however
an entirely different way to introduce noncommutativity into (1.1) that arises from
Voiculescu’s theory of free probability [44, 29]: one may modify the model by
replacing the scalar Gaussian coefficients ¢g; by noncommuting random matrices
or operators. When noncommutativity is externally introduced into (1.1) in this
manner, the dimensional factor in (1.2) is unnecessary regardless of the properties
of the matrices A; (see (1.10) below). However, on its face, this appears to shed
little light on the behavior of the original model (1.1).

Remarkably, this intuition proves to be incorrect. The central theme that will
be developed in this paper is described informally by the following principle:

When the coefficient matrices A; are sufficiently noncommutative,
the spectral statistics of the random matriz model X =Y, g; A; are
already accurately captured by free probability.

This “intrinsic freeness” phenomenon will prove to have far-reaching implications:
it will enable us to prove nonasymptotic bounds of the form (1.5) in complete
generality (both for Gaussian random matrices and for general sums of independent
random matrices), and to develop new asymptotic results in free probability in far
more general situations than are accessible by previous methods.
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Before we can formulate precise results along these lines, we must briefly recall
some relevant notions of free probability. We will use the following terminology.

Definition 1.1. A standard Wigner matriz of dimension N is an N x N self-adjoint
random matrix GV whose entries on and above the diagonal are independent real
Gaussian variables with mean zero and variance %

Free probability provides an asymptotic description of the behavior of Wigner
matrices as N — oo. Let GV ,...,GY be independent standard Wigner matrices;
the associated limiting objects are certain infinite-dimensional self-adjoint operators
S1,---,8n that form a free semicircular family, together with a trace 7 acting on
the algebra generated by these operators. We postpone the precise definitions of
these objects to Section 4.1; for our purposes, they may be viewed as an algebraic
tool that allows us to compute spectral properties of large random matrices. In
particular, a celebrated result of Voiculescu [44] states that

lim Eftrp(GY,...,GM)] = 7(p(s1,...,5n)) (1.6)
N—o0
for any noncommutative polynomial p, where tr(M) := 4 Tr(M) denotes the nor-
malized trace of a matrix M € My(C). In an important paper, Haagerup and
Thorbjgrnsen [21] showed that the weak asymptotic freeness property (1.6) may be
considerably strengthened to obtain convergence in norm

Jim Bp(GY, - GNI] = lpsn, - 50)] (L.7)

for any noncommutative polynomial p. This strong asymptotic freeness property
has important applications in the theory of operator algebras [21, 19, 20].

A noncommutative analogue of the random matrix model (1.1) is obtained by
replacing the scalar Gaussian coefficients g; by standard Wigner matrices:

XN=>"42G). (1.8)
=1

When N = 1, this model coincides with (1.1); however, as N increases, the ma-
trices GV become increasingly noncommutative. The weak and strong asymptotic
freeness properties (1.6) and (1.7) imply that the behavior of the spectrum of XV
as N — oo is captured by the infinite-dimensional operator

n
Xfree = ZAz ® s; (19)

i=1
in that limy oo Etr[(XV)P] = (tr@7)(XE..) and imy o0 E[| XV = || Xfee||- The

study of such models plays a fundamental role in [21].

While X may be viewed abstractly as the limiting object associated to X%,
its considerable utility (from the perspective of this paper) is that it enables explicit
computation of many spectral statistics of the random matrices X. For example,

as we will recall in Section 2.1, the norm || Xfce| admits an explicit formula in terms
of the matrices A4; [27] and admits the simple estimates [31, p. 208]

U(X) < ||Xfree|| < QU(X) (110)

Similarly, the limiting spectral distribution of X may be computed by means of
a (matrix-valued) Dyson equation as in classical random matrix theory [21, 1].
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1.3. Overview of main results. We now give a brief overview of the main results
of this paper. A detailed presentation of our results will be given in Section 2, while
various examples that illustrate our results will be discussed in Section 3.

1.3.1. Gaussian random matrices. To illustrate the general principle described in
Section 1.2, let us begin by stating a special case of one of our main results. For
any centered d X d random matrix X as in (1.1), we denote by Cov(X) € My2(C)s,
the covariance matrix of its d? scalar entries, that is,
n
Cov(X)ijm = E[X;; X = Z(As)ij(As)kl

s=1

which we view as a d? x d? positive semidefinite matrix. We now define

v(X)? = [|Cov(X)[| = sup > |Tr[AM]*.
Tr|M[2<1 7
It should be far from apparent at this point that the parameter v(X) captures
noncommutativity of the matrices A;; this will be explained in Section 1.4. Note,
for example, that v(X) =< max;; |b;;| in the setting of (1.4) (cf. section 3.1).

Theorem 1.2. For the model (1.1) we have
E||X|| < || Xgee| + Cv(X)20(X)? (logd)?,
where Xeee is defined in (1.9) and C is a universal constant.

Using (1.10) and Young’s inequality, Theorem 1.2 immediately implies a com-
pletely general bound of the form (1.5):

E||X| < o(X) + v(X)(logd)?. (1.11)

However, Theorem 1.2 is much sharper in that its leading term captures the exact
quantity predicted by free probability. In many cases, our results will make it
possible to prove that E||X| = (1 4+ 0(1))]|Xtee||, that is, to compute the norm
exactly to leading order, as soon as v(X)/o(X) = o((logd)~?2).

Our main results for Gaussian random matrices (see Sections 2.1 and 2.2) are
considerably more general than Theorem 1.2. In particular:

e Our main results are formulated for arbitrary Gaussian random matrices, which
may have nonzero mean and may be non-self-adjoint.

e We bound the support of the full spectrum sp(X) C sp(Xfree) + [—¢, €] with high
probability, where ¢ < v(X)2a(X)2 (logd).

e We obtain nonasymptotic upper and lower bounds on the moments, resolvent,
and other spectral statistics of X in terms of Xyee.

The “intrinsic freeness” phenomenon that is captured by these results has strong
implications both for matrix concentation inequalities and in free probability.

1.3.2. Asymptotic freeness. While our main results are nonasymptotic in nature,
they give rise to remarkable new asymptotic results in free probability: when com-
bined with the linearization trick of [21], our results establish strong asymptotic
freeness (1.7) for a very large class of random matrix models. For example, we
will prove the following result, as well as an analogous strong law (which yields a.s.
convergence) that will be formulated in Section 2.3.
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Theorem 1.3. Let s1,...,5y, be a free semicircular family. For each N > 1, let
HY,...,HY be independent self-adjoint random matrices of dimension d = d(N) >
N such that each HY has jointly Gaussian entries, E[TH}] = 0, and E[(H{)?] = 1.

a. If v(HY) =o0(1) as N — oo for all k, then for any polynomial p
lim Eftrp(HY, ..., HY)] =7(0(s1,...,5m)).
N—o00
b. If v(HY) = o((log d)=%) as N — oo for all k, then for any polynomial p

S Blp(HY, )= (1,5
— 00

A striking consequence of Theorem 1.3 is the unexpected ubiquity of the strong
asymptotic freeness property. To date, strong asymptotic freeness has been proved
only for Wigner matrices and for certain highly symmetric ensembles; for a detailed
overview of prior results, see [13, 8] and the references cited therein. In contrast,
neither symmetry nor independent entries plays any role in Theorem 1.3, which
enables us to establish strong asymptotic freeness in models that appear to lie far
outside the reach of previous methods (for example, for sparse Wigner matrices
of dimension d with only O(dlog* d) nonzero entries, see Example 3.5). For many
such models, even weak asymptotic freeness (1.6) was not previously known.

1.3.3. Sums of independent random matrices. When viewed as matrix concentra-
tion inequalities, bounds such as (1.11) are easily applicable in concrete situations
and yield results of optimal order in many examples where classical matrix concen-
tration inequalities are suboptimal. To illustrate this, we will discuss in Section 3
a variety of explicit examples that appear, at this level of generality, to be outside
the reach of classical methods of random matrix theory.

Nonetheless, the main results of this paper are obtained for Gaussian random
matrices, which may be restrictive in applications. One important reason for the
broad utility of classical matrix concentration inequalities [39] is that they extend to
arbitrary sums of independent random matrices, a setting that captures many non-
Gaussian models that arise in practice. It turns out, however, that non-Gaussian
versions of our results already follow as a consequence of the Gaussian inequalities,
so that the focus of this paper on Gaussian inequalities is not a significant restric-
tion. Indeed, in the follow-up work [10], it is shown that the spectrum of any sum
of independent random matrices behaves, under mild conditions, like that of the
Gaussian random matrix whose entries have the same mean and covariance. When
the results of the present paper are applied to the resulting Gaussian matrices,
one immediately obtains non-Gaussian extensions of our main results. For sake of
illustration we state a non-Gaussian analogue of Theorem 1.2 here, as well as a tail
bound that may be compared with the matrix Bernstein inequality [39].

Theorem 1.4. Let Z1,...,Z, be arbitrary independent d x d self-adjoint centered
random matrices, and let X =" | Z;. Then

E[|X|| < | Xpeell + C{vio? (logd)? + R¥0% (logd)? + Rlog d}
and
P[|X| > | Xree| + C{vZoZ(logd)? + 0,12 + R305¢5 + Rt}] < de™

for all t > 0, where C is a universal constant, o = |EX2|2, v = ||Cov(X)] 2,
1 .
T = SUD||y|| uw|=1 E[[{(v, Xw)[?]Z < v, R = | max; || Zilll[lcc, and Xtree is the free
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model associated to the centered Gaussian random matrixz whose entries have the
same covariance as those of X (in particular, | Xree| < 20).

We refer to [10] for analogous extensions of all the main results of this paper.
(Further discussion of non-Gaussian extensions may be found in Section 8.2.2.)

1.4. Overview of the proofs.

1.4.1. Crossings. Before we describe the main technique used in our proofs, let us
briefly outline the origin of the key parameter v(X) that quantifies noncommuta-
tivity in our results, and its relation to free probability.

The simplest way to understand the difference between the random matrix X
and its free counterpart Xfee is in terms of their moments. Let us recall that these
moments may be expressed combinatorially as [29, pp. 128-129]

Eftr X = > > A Ay
meP2([2p]) (i1, i2p)~T

and

(tron)(Xp) = Y, S A A,

TENC2([2p]) (i1,...,02p)~T

where Py([2p]) and NCy([2p]) denote the families of all pair partitions and non-
crossing pair partitions of [2p], respectively, and (i1,...,i2,) ~ 7 signifies that
ir = i; whenever {k,l} € 7. In other words, what distinguishes free probability
from classical probability is the absence of crossings, that is, of terms of the form
D Ai Ay Ay Ay -+ in the moment formulae.

In free probability, the vanishing of crossings arises from the noncommutativity
of the semicircular family s;. Even in (1.1), however, crossings may be intrinsically
suppressed due to the noncommutativity of the coefficients A;. It is a beautiful
idea of Tropp [41] to quantify the latter effect by the parameter
" :
> AUA VAW A,

ij=1

w(X) = sup HE[XlUXQVXll/VXQ]Hi: sup
UV,W UV,W

)

where X7, X5 are i.i.d. copies of X and the supremum is taken over all (nonrandom)
unitary matrices U, V,W of the same dimension as X. Note that when all A;
commute, w(X) > |, AiA;AA; T = (3, 42?1 = o(X); but if w(X) <
o(X), the contribution of crossings will be suppressed.

Unfortunately, the quantity w(X) is very unwieldy and is difficult to compute
in practice. Moreover, as will be explained below, the quantity that will arise in
our proofs is not w(X), but rather w(X) for an auxiliary matrix X of much higher
dimension. To control this parameter, we will show in Section 4.2 that

w(X) < v(X)20(X)?, (1.12)

which enables us to formulate our results in terms of the much simpler quantity
v(X) that is readily computable in concrete situations. In particular, it follows that
v(X) does indeed capture noncommutativity, as it controls w(X).

The notion that smallness of w(X) should lead to free behavior is implicit in the
work of Tropp [41]. However, the attempt in [41] to exploit this idea by means of
moment recursions appears to be insufficiently powerful to capture this phenomenon
without imposing strong symmetry assumptions on the coefficients A;. A key new
idea of this paper enables us to capture this phenomenon in its full strength.
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1.4.2. Interpolation. The central idea behind our proofs is the following construc-
tion. Let G¥, ..., GY be independent standard Wigner matrices as in Section 1.2,
and let D, ..., DY be independent N x N diagonal matrices with i.i.d. standard
Gaussians on the diagonal. Define for ¢ € [0, 1] the random matrix

XV =Y Aie(/aD) +1-qG)).
=1

The point of this construction is that the family (X év )ac[o,1],Nen enables us to

interpolate between X and Xpg.e.. Indeed, Xév = XV is the model (1.8), whose
moments converge as N — 0o to those of Xfee by (1.6) (this is the only property
that will be used in our proofs; strong asymptotic freeness will not be assumed).
On the other hand, it is readily verified that X{" has the same moments as X in
the sense E[tr X?] = Etr[(X{V)?] for every p, N € N.

In order to bound the moments of X by those of Xf.ce, it suffices to bound the
rate at which the moments change along the above interpolation. Given that the
moments of X and Xgee differ only by terms involving crossings, it is natural to
expect that the rate of change along the interpolation will be controlled by the
contributions of the crossings. It will turn out that the construction of the matrices
X év has precisely the right form in order to capture this phenomenon in terms of the
parameters described in the previous section. More precisely, the explicit expression
for the derivative din tr[(X¥)P], which can be computed using a standard Gaussian
interpolation lemma [37, §1.3], can be controlled in terms of the quantity

W(X) = supw(X).
N

The resulting differential inequality may be integrated to bound the moments of X
in terms of the moments of Xgee and the parameter w(X). As the latter is nearly
impossible to compute, we finally obtain a practical bound @(X) < v(X)20(X)2
using (1.12) and v(X3V) = v(X), o(X{) = o(X).

The above interpolation method proves to be a powerful tool for capturing “in-
trinsic freeness”. The same method can be used to control not just the moments,
but also various other spectral statistics. In particular, we will control the full spec-
trum of X by that of X¢... by applying the interpolation method to large moments
of the resolvent E[tr|z1 — X|72P]. Such control of the full spectrum is crucial for
the applications of our results to free probability described in Section 1.3.2.

Remark 1.5. After the results of this paper were completed, we learned that a dif-
ferent interpolation method was recently used by Collins, Guionnet, and Parraud
[13] to obtain a quantitative form of the strong asymptotic freeness of Wigner ma-
trices due to Haagerup-Thorbjgrnsen. Rather than interpolating between scalar
Gaussians and Wigner matrices, [13] interpolate in the opposite direction, between
Wigner matrices and a semicircular family, using the free Ornstein-Uhlenbeck semi-
group. The latter approach can only capture the noncommutativity of the Wigner
matrices themselves, in contrast to the results of this paper that capture the non-
commutativity of the coefficient matrices A; (“intrinsic freeness”) and therefore open
the door to the study of general Gaussian random matrices. On the other hand,
by exploiting the special structure of Wigner matrices, the methods of [13] can be
adapted to obtain higher order expansions [30] which play a key role in the recent
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work on the Peterson-Thom conjecture [7]. Taken together, all these results illus-
trate the power of interpolation methods for the study of quantitative phenomena
in free probability theory and random matrix theory.

1.5. Organization of this paper. The rest of this paper is organized as follows.
In Section 2, the main results of this paper will be presented in full detail. The
utility of our main results will then be illustrated in a number of concrete examples
in Section 3. Section 4 briefly reviews some basic notions of free probability, and
introduces various tools that are used throughout the rest of the paper. The proofs
of our main results are given in Sections 5-7.

The final Section 8 is devoted to a discussion of various broader questions arising
from our main results. In particular, we will show that there cannot exist a canonical
choice of the parameter o,,(X) in the inequality (1.5), as any such parameter must
violate some natural property of the spectral norm. This disproves a conjecture,
formulated in [41, 43, 5], which suggests that the parameter v(X) in our main
results can be replaced by a certain smaller parameter o, (X) that will be defined
below. We conclude by discussing a number of further questions.

1.6. Notation. The following notations will be frequently used throughout this
paper. We write [n] := {1,...,n} for n € N. For a bounded operator X on a Hilbert
space, we denote by || X| its operator (i.c., spectral) norm and by | X| := (X*X)z.
The spectrum of X is denoted as sp(X). If X is self-adjoint and h : R — C is
measurable, then the operator h(X) is defined by the usual functional calculus (in
particular, if X is a self-adjoint matrix, h is applied to the eigenvalues while keeping
the eigenvectors fixed). The algebra of d X d matrices with values in a *-algebra A is
denoted as M4(.A), and its subspace of self-adjoint matrices is denoted as Mg(A)sa-
For complex matrices M € Mg4(C), we always denote by Tr M := 2?21 M;; the
unnormalized trace and by tr M := éTrM the normalized trace. We use the
convention that when an expectation is followed by square brackets, the expectation
is applied before any external operations (in particular, E[X]* := (EX)®).

2. MAIN RESULTS

2.1. Concentration of the spectrum. The strongest results of this paper apply
to arbitrary random matrices with jointly Gaussian entries (this model is more
general than the one that was assumed for sake of illustration in the introduction).
To define this model, fix d > 2 and n € N, let Ay, ..., A, € My(C), let g1,...,gn be
i.i.d. real Gaussian variables with zero mean and unit variance, and let s1,...,s,
be a free semicircular family (cf. Section 4.1). We now define

n

X = 14()4—2:‘911417 Xfree = A0®1+ZA1®81 (21)

=1 i=1

In formulating our results, it will sometimes be convenient to assume in addition
that the model is self-adjoint, that is, that Ag, ..., A, € Mg(C)sa. In such cases this
assumption will be made merely for notational convenience and is not a restriction,
as will be explained in Remark 2.6 below.
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The following parameters will play a fundamental role in the sequel:

o(X)? =D ATA V[ D A4 | = |EXTX| vV [EXX,
=1 1=1

o (X)?i=  sup Y |w,Aw)* = sup E[(v,Xw)]’],
loll=llwll=1 = lol=llw]=1

v(X)? = sup Y |Te[AiM]* = [Cov(X)]],

Te|M[2<1 ]

where X := X — EX. It follows readily from the definitions that o,(X) < v(X)
and 0, (X) < o(X). As the following combination will appear frequently, we let
9(X)? = v(X)o(X).

Note that the definitions of these parameters do not involve Ag.
We can now formulate our main result on concentration of the spectrum of X.
Here sp(M) denotes the spectrum of a self-adjoint operator M.

Theorem 2.1. For the model (2.1) with Ay, ..., A € My(C)sa, we have
P[sp(X) C sp(Xtree) + C{(X)(log d) T + o (X)}[~1,1]] > 1 — "
for allt > 0, where C is a universal constant.

The spectrum of Xy, always consists of a finite union of bounded intervals [1].
Theorem 2.1 implies that when v(X) < (logd)~20(X), all eigenvalues of X are
close to the spectrum of Xgee. In particular, not only must the extreme eigenvalues
of X lie close to the edge of the spectrum of X, but also the interior eigenvalues
cannot lie far inside the gaps in the spectrum of Xg.ce.

When specialized to the extreme eigenvalues, Theorem 2.1 yields a bound on the
spectral norm of X. We formulate it here directly for non-self-adjoint matrices.

Corollary 2.2. For the model (2.1) with Ag,..., A, € My(C), we have
P[[[X] > | Xeel| + Co(X)(logd)? + Cou(X)t] < e
for allt > 0, where C is a universal constant. Moreover,
B[| X < || Xpueel| + C3(X)(log d) .
Theorem 2.1 and Corollary 2.2 will be proved in Section 6.

Remark 2.3. In order to apply Corollary 2.2 in concrete situations, we must be
able to compute or estimate || Xfc||. For ease of reference, we presently recall two
useful facts; further discussion and references may be found in Section 4.1. In the
following, Amax(M) denotes the maximal eigenvalue of a self-adjoint matrix M.

Lemma 2.4 (Lehner). For the model (2.1) with Ag, ..., A, € Mg(C)sa, we have

n
HXfreeH = ;’I:lz:lt)% ér;fo Amax (Zl +edo + z; AZZAZ> s
1=
where the infimum is over positive definite Z € My(C)sa. The infimum may be
further restricted to Z for which the matriz in Amax (- - ) is a multiple of the identity.
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Lemma 2.5 (Pisier). For the model (2.1) with Ag,..., A, € M4(C), we have

zn: ATA; zn: AA;
i=1

i=1
Note that the combination of Corollary 2.2 and Lemma 2.5 immediately yields
a Gaussian matrix concentration inequality of the form (1.5).

1
2

%
Aol V o (X) < [[Xtreell < || Aol + +

Remark 2.6. For simplicity, we formulated results such as Theorem 2.1 and Lemma
2.4 for self-adjoint matrices. The following standard device makes it possible to
reduce the general case to the self-adjoint case. Given Ay,..., A, € M4(C), define
the matrices Ao, ..., A, € M2¢(C)sa, X, and Xgee as

i 0 Al o 0 X % _ 0 Xfree

A’L_ |:A;k 0:|> X = |:X* 0:|> Xfree— |:Xf*ree 0 .
Then it is not difficult to show (see Section 4.2.3) that

sp(X) U {0} = sp(|X|) U —sp(|X|) U {0},
and analogously for Xfee; moreover, we have
o(X)=0(X), o.(X)=0.(X), vX)<V20(X).

Applying Theorem 2.1 to X therefore shows that in the non-self-adjoint case, the
singular values of X concentrate around those of Xgee. Similarly, we can apply
Lemma 2.4 t0 Xgee to obtain an explicit formula for | Xtreel|-

The above construction does not require the matrices A; to be square. However,
if A; are dy X do matrices with d; < ds, the singular values of X are unchanged if we
add dy —d; zero rows to the matrix. Thus there is no loss of generality in restricting
attention to square matrices, as we do for simplicity throughout this paper.

2.2. Spectral statistics. The results of the previous section quantify concentra-
tion of the eigenvalues of X near the spectrum of Xg.e.. We now formulate several
complementary results that quantify the closeness of the spectral distributions of
X and Xgee. We begin by stating a bound on the moments.

Theorem 2.7. For the model (2.1) with Aog, ..., A, € My(C), we have
[Blir[XPP)2 — (tr & 7)(| Xneo ) 5| < 2075(X)
for all p € N.

Let us emphasize that unlike the results of Section 2.1, Theorem 2.7 gives a
two-sided bound on X in terms of Xgee. This opens the door to obtaining sharp
asymptotics from our nonasymptotic bounds.

The same method of proof is readily applied to other spectral statistics. To
illustrate this, we will bound the matrix-valued Stieltjes transform, which plays an
important role in operator-valued free probability [28, Chapters 9-10]. A bound of
this kind is most naturally formulated for self-adjoint matrices.

Theorem 2.8. For the model (2.1) with Ay, ..., A, € My(C)sa, define the matriz-
valued Stieltjes transforms G(Z), Guee(Z) € Ma(C) as

G(Z):=E[(Z-X)Y, Gireo(Z) = (1A @ T)(Z @1 — Xpree) ']

Then we have

IG(Z) — Grree(Z)]| < 9(X)*||(Im 2) 77|
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for all Z € My(C) with Im Z := £(Z — Z*) > 0.
Following [21, §6], Theorem 2.8 implies a bound on smooth spectral statistics.
Corollary 2.9. For the model (2.1) with Ay, ..., A, € Mg(C)sa, we have
Bler £(X0)] — (tr @ 1) (Xieo) ]| S 500 fllwons s
for every f € WOL(R).
Theorems 2.7-2.8 and Corollary 2.9 will be proved in Section 5.

2.3. Strong asymptotic freeness. By combining the bounds of Sections 2.1-2.2
with the linearization trick of [21], we will be able to establish strong asymptotic
freeness for a remarkably general class of random matrices. We presently give a
complete formulation of our main result in this direction.

Theorem 2.10. Let sq,..., S, be a free semicircular family. For each N > 1, let
HN, ... HY be independent self-adjoint random matrices of dimension d = d(N) >
N such that each HY has jointly Gaussian entries,

lim ||E[H]|| =0, lim [[E[(H)?*] — 1] =0

N—o00 N —oc0

for all k. Then the following hold.
a. If v(HY) =o0(1) as N — oo for all k, then
lim Eftrp(HY,..., HN)] =7(p(s1,...,5m))
N —o0
for every noncommutative polynomial p.
b. If v(HN) = o((logd)~2) as N — oo for all k, then
Jim Blp(H . HY)] = ot sl
—00
Nlim lp(HY ..., HN|| = Ip(s1,-..,5m)|| a.s.,
— 00
lim trp(HY,...,HY) =7(p(s1,...,5m)) a.s.
N—oc0
for every noncommutative polynomial p.

Let us recall that the type of convergence in part b of Theorem 2.10, called
strong convergence in distribution, has even stronger implications: it implies that
both the spectral distribution and support of the spectrum of any polynomial
p(HYN, ..., HY) converges to that of p(sy,...,s,) as N — oo in the sense of weak
convergence and Hausdorff convergence, respectively; see [14, Proposition 2.1].

Surprisingly, the conclusion of Theorem 2.10 appears to be new at this level of
generality already for a single random matrix m = 1. In this case, we obtain the
following result in the spirit of classical random matrix theory.

Corollary 2.11. Let HY be a self-adjoint random matriz of dimension d = d(N)
with jointly Gaussian entries, and assume that

IEEV =o(1),  IE(HY)? - 1] =o(1),  o(HY) = o(logd)~})

as N — oco. Then the empirical distribution

d
1
gy =g ZZ_; Ox; (HN)
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of the eigenvalues \;(HN) of HN converges weak‘ly a.s. to the semicircle law

LWEN i),U,SC a.s., s (dx) \/ — 2 Lizj<2 dx,

and we have convergence of the norm ||[H™| — 2 a.s. as N — oo.

Let us emphasize that Corollary 2.11 (and Theorem 2.10) makes no structural
assumptions on the variance or dependence pattern of HYV beyond the minimal
isotropy conditions E[HY] ~ 0 and E[(H")?] ~ 1. Previous results on Gaussian
random matrices with dependent entries require restrictive structural assumptions
to obtain even the semicircle law, cf. [17] and the references therein.

Theorem 2.10 and Corollary 2.11 will be proved in Section 7.

3. EXAMPLES

The aim of this section is to illustrate our main results in concrete examples. In
Section 3.1 we consider Gaussian random matrices with independent entries, while
Section 3.2 discusses some simple examples of random matrix models with depen-
dent entries. Section 3.3 is concerned with Gaussian sample covariance matrices,
whose samples may be neither independent nor identically distributed. Section 3.4
is concerned with bounds on the smallest singular value of random matrices.

3.1. Independent entries. In this section, we consider the case of real symmet-
ric Gaussian random matrices with independent entries (nonsymmetric or complex
matrices may be considered analogously, but we restrict attention to the real sym-
metric case for simplicity). More precisely, let X be the d x d symmetric random
matrix with entries X;; = b;;g;;, where {g;; : ¢ > j} arei.i.d. standard real Gaussian
random variables and {b;; : ¢ > j} are given nonnegative scalars. We let bj; := b;;
and gj; := ¢;;. This model may be expressed in the form (2.1) as

X = ZgijbijEija (3.1)
2]
where Ej;; = e;jef and E;; = (e;e] + eje;) for i > j. Here and in the sequel,
€1,...,eq denotes the coordinate basis of Rd.

The independent entry setting is the only general model of nonhomogeneous
random matrices for which satisfactory norm bounds were obtained prior to this
work [6, 42, 24]. In particular, it was proved in [6, Theorem 1.1] that

max bij+/logd (3.2)

E[X|| < (2 +¢) max Zb \[

for any 0 < &€ < 1, where C' is a universal constant. The constant 2 in the leading
term is optimal, as E||X|| = 24 o(1) as d — oo when X is a standard Wigner
matrix, that is, when b;; = ﬁ for all 4,j. Moreover, (3.2) is nearly sharp in the
sense that the inequality can be reversed up to a universal constant under mild
assumptions [6, §3.5] (a completely sharp dimension-free bound, but without the
optimal constant in the leading term, was proved in [24]).

Nonetheless, even in the special case of independent entries, the general results
of this paper can yield a significant improvement over (3.2).
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Lemma 3.1. For the model (3.1), we have

o(X = max /Z b3;, mi?xbij <o.(X) <v(X) < \/ﬁrr%?xbij.

In particular,
C
EJ|X | < (14 )| Xieeel| + — max b (log d)? (3.3)
for any e > 0, where C is a universal constant.

Proof. The expression for o(X)? = ||[EX?| follows readily as
= Z eie; Z b?j (3.4)
i J

is a diagonal matrix. Moreover, that v(X)? > 0.(X)? > max;; E[| X;;|*] = max;; bZ;
follows immediately from the definitions in Section 2.1.

On the other hand, as the pairs of entries (X;;, X;;) are independent for distinct
indices i > j, we have Cov(X) = €, Ci; where C’” is the covariance matrix of
(Xij, X;i). Thus v(X)? = [|Cov(X)| = max;>; ||Cij|| < 2max;; b?j.

To conclude, it remains to invoke Corollary 2.2 and to note that co(X)(logd)? <
el| Xtreel| +%’U(X)(log d)? for any ¢, > 0 by Young’s inequality and Lemma 2.5. [J

While the second term of (3.3) has a slightly suboptimal power on the logarithm
as compared to (3.2), this term is already negligible when

max b?j < logd)™ maXZb > (3.5)
ij

As soon as this is the case, the bound (3.3) improves on (3.2) in that the leading
term 20(X) is replaced by the sharp free probability quantity || Xfee|. We always
have || Xpeel < 20(X) by Lemma 2.5, but this inequality often turns out to be
strict in nonhomogeneous situations. To understand this phenomenon better, it is
instructive to compute || Xfee|l in the present setting.

Lemma 3.2. For the model (3.1), we have

| Xtree|| = elﬁf mlax{xl—i—z:b mj}—Q sup Z wle”w],

eAd-1

where we denote by R++ = {z € R?: 2 > 0} the positive orthant and by A%~1 =
{z e RT: 2 >0, Y,z; = 1} is the standard simplex in RY. We always have
[ Xreel| < 20(X). If B = (b;) is an irreducible nonnegative matriz, then equality
[ Xtree|l = 20(X) holds if and only if max; 3= ; b7; = min; 3, b;.

Remark 3.3. The irreducibility assumption entails no loss of generality. In the
general case, we may write B = @, B; in terms of its irreducible components B;,
and Xpee = €, Xfree,i decomposes accordingly. As || Xfeel = max; || Xgree,i|, the
characterization of when || Xfee| = 20(X) reduces to the irreducible case.

Proof of Lemma 3.2. Define
f(2)=2""+ b}Ei;ZE;

(2]
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Fix any Z > 0 so that f(Z) is a multiple of the identity. Then f(Z) = diag(f(Z2)),
where dlag(M)U = Miiéij. Using that (Z_l)ii > (Zii)_l (as HZ%61”||Z—%61” > 1),
it follows readily that f(Z) > f(diag(Z)). Thus Lemma 2.4 implies

) ) 1 2
(| X tree|| = ér;fo)\max(f(dlag(Z))) = inf max{xijquijxj}.
J

zeRE i

We can further compute

[ Xteell = inf  sup Zwl{ —|—Zb xj}—Q sup Z wZZb”wj,

zeR L weAd-T cAd-1

where we used the Sion minimax theorem to exchange the infimum and supremum.

If we apply Cauchy—Schwarz to the rightmost expression for ||Xfeel/, we obtain
| Xtree| < 2maxi[zj bfj]2 = 20(X) directly. Therefore, when || X.eol = 20(X),
the maximizing vector w € A%~! must yield equality in Cauchy-Schwarz. The
latter implies there exists p > 0 such that Bw = pw and | Xpeel| = 2¢/p. In
particular, if B is irreducible, then p = p(B) is the largest eigenvalue of B by
the Perron-Frobenius theorem [18, p. 53]. It remains to recall that the inequality

p(B) < max; ) b7, is strict unless max; Y, b7, = min; Y, b7, cf. [18, p. 63]. O

In other words, under the mild assumption (3.5), the constant 2 in (3.2) is sub-
optimal and the results of the present paper yield strictly better bounds on E|| X||
as soon as Z] 7 Z ka for some ¢,k (and X does not decompose as a block-
diagonal matrix). In such cases, Lemma 3.2 can be used to explicitly compute or
estimate || Xfeel|. The latter quantity has also been studied by completely different
methods in [16], to which we refer for complementary results.

Even when max; y j bfj = min; Y, j b%j7 however, our main results yield far
stronger conclusions than just a bound on the spectral norm. Indeed, by (3.4),
this corresponds precisely to the case where E[X?] = ¢(X)?1; thus any indepen-
dent family of such matrices is strongly asymptotically free by Theorem 2.10.

Corollary 3.4. Let sq1,...,8, be a free semicircular family. For each N > 1, let
HY ... HY be independent random matrices of dimension d = d(N) > N of the
form (3.1), such that the variance pattern (b3;) of HY satisfies

max Z b?j = min Z bfj =1, max bfj = o((logd)™®)
7 - 2 - )
j J

for every k, N. Then
lim |[p(HY,..., H)| = llp(s1,...,8m)| a.s.,
N—oc0

lim trp(HY, ..., HN) =1(p(s1,...,5m)) a.s.
N—o0
for every noncommutative polynomial p.

Corollary 3.4 provides a large class of new examples of strongly asymptotically
free random matrices. Let us highlight a particularly interesting case.

Ezample 3.5 (Sparse Wigner matrices). Let G = ([d], E) be a k-regular graph with
d vertices. A G-sparse Wigner matriz is a d X d real symmetric random matrix X
such that X;; = k*%gijl{i,j}eE for ¢ > j, where {g;; : ¢ > j} are i.i.d. standard
Gaussians. Note that X has only kd nonzero entries.
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Now consider any sequence of ky-regular graphs Gy with dy vertices, and let
HY,...,HY be independent G y-sparse Wigner matrices. Then Corollary 3.4 shows
that H{Y,..., HY are strongly asymptotically free as soon as ky > (logdy)>.

This example is striking for at least two reasons. First, all but a vanishing frac-
tion of the entries of the matrices H;Y are zero (for example, d log4 d nonzero entries
already suffice), so that strong asymptotic freeness is achieved here with far less
randomness than is present in standard Wigner matrices. Second, no assumption
whatsoever made on the graphs Gy except their regularity; in particular, the dis-
tributions of H}¥ need not possess any special symmetries. Let us note that even
weak asymptotic freeness was previously known in the present setting only under
very strong restrictions on the variance pattern, cf. [36, 3].

Beyond norm bounds and asymptotic freeness, applying Theorems 2.1 or 2.8 to
the independent entry model (3.1) provides detailed information on the spectrum
of X for arbitrary variance patterns b?j satisfying the mild assumption (3.5). In
the interest of brevity we do not spell out these conclusions further.

3.2. Dependent entries. The aim of this section is to discuss some simple ex-
amples of random matrices with dependent entries. Unlike the independent entry
model of the previous section, the only general nonasymptotic bound that was
previously available in the dependent setting is the noncommutative Khintchine
inequality (1.2) and analogous matrix concentration inequalities.

The following examples illustrate that, in many cases, our results are able to
remove the dimensional factor in (1.2) under mild assumptions. To this end, note
that for any random matrix X with centered jointly Gaussian entries, we have
E|X| 2 o(X) by (1.2) and Remark 2.6. On the other hand, Corollary 2.2 and
Lemma 2.5 imply that E||X|| < o(X) as soon as v(X)(logd)? < o(X). We aim to
understand when the latter condition holds in concrete examples.

3.2.1. Patterned random matrices. Our first example is a model where independent
Gaussians are placed in a matrix according to a given pattern. More precisely, let
g1, - - -, gn be i.i.d. standard real Gaussian variables and let S1, ..., S, be a partition
of [d] x [d]. We define X such that X, = d~zg; for (j, k) € S;; thus

- L kyes;
X =" giA, (Aq)jn = ~LECS (3.6)
=1 \/Zi

Many classical patterned random matrix models, such as random Toeplitz or Hankel
matrices, are special cases of this model; cf. [9].
Lemma 3.6. For the model (3.6), we have E|| X || < o(X) when max; |S;| < ﬁ.

Proof. As S1,...,S, partition [d] x [d], we have
1
o(X)? > tr (ZA:AZ») == Z 1S;] = 1.

On the other hand, as (Xy1)(x,1)es, are independent for distinct 4, we have Cov(X) =
@, Ci where C; is the covariance matrix of (Xx),)es,.- Therefore

v(X)? = ||Cov(X)| = max ||C;|| = max If“;I.

The assumption now immediately implies v(X)(logd)? < o(X). O
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Lemma 3.6 shows that when max; |S;| < W, the dimensional factor in the
noncommutative Khintchine inequality (1.2) is unnecessary. On the other hand,
Gaussian Toeplitz matrices provide an example with max; |S;| = d for which the
dimensional factor in the noncommutative Khintchine inequality is necessary: in
this case o(X) = 1 and E||X|| < Iogd [39, §4.4]. Thus Lemma 3.6 is nearly the
best one can hope for. This kind of “phase transition” between regimes where the
noncommutative Khintchine inequality is and is not accurate is a common feature
that will be observed in several other examples.

For a general choice of pattern Si,...,S,, the parameter o(X) may be difficult
to compute explicitly. However, for special choices of patterns we can obtain much
stronger information. The following simple example provides a model where strong
asymptotic freeness arises for matrices that contain many dependent entries.

Ezample 3.7 (Special patterned matrices). Suppose S1, ..., S, satisfy the following:
1. Each S; is symmetric (that is, (k,1) € S; & (I,k) € S;).
2. Each S; has at most one entry in each row of [d] x [d].

3. max; |S;| < ﬁ

The first assumption implies that each A; is a symmetric matrix. The second
assumption implies that A? is a diagonal matrix; moreover,

1
(E[Xz})kk - Z(Azz)kk - E Z ISi has an entry in row k — 1

7

for all k as S1,...,S, partition [d] x [d], so that E[X?] = 1. The third assumption
implies that v(X) < (logd)~2. Matrices of this kind therefore satisfy the assump-
tions of Theorem 2.10. Thus if H{, ..., H¢ are independent matrices satisfying the
above assumptions, then they are strongly asymptotically free as d — oo.

3.2.2. Independent columns. Our second example is the model where the columns
Xq,...,Xy of the random matrix X are independent centered Gaussian vectors
with arbitrary covariance matrices ¥q,...,%4. In this situation, all the relevant
matrix parameters can be easily computed in explicit form.

Lemma 3.8. For the independent columns model, we have

d

2.

i=1

[BX X = o IBXCX)) = maxTe[Si],  v(X)? = max |34

In particular,

d 2

>

=1

E[X| <(1+ 6){

+m.axTr[zz-]%} + < max [ (log o)
1 K3

for any € > 0, where C is a universal constant.

Proof. It follows readily from the definition of X that E[XX*| =" . %;, E[X*X] =
> Tr[¥] esef, and Cov(X) = €, %;, which yields the first equation display. It
remains to invoke Corollary 2.2, Lemma 2.5, and Young’s inequality. (]

Lemma 3.8 shows that we have E|| X|| < ¢(X) in the independent column model
as soon as the last term in the norm bound is dominated by either of the first two
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terms. For example, this is the case if each X; has sufficently large effective rank

b

k(%) := > (logd)3.

Conversely, when the effective rank is too small the dimensional factor in the non-
commutative Khintchine inequality may be necessary: for example, in the special
case X; = e;e; where X is a diagonal matrix with i.i.d. standard Gaussians on the
diagonal, it is readily seen that ¢(X) = 1 and E|| X|| < +/logd.

On the other hand, we may have E||X|| < o(X) regardless of the effective rank
when the first term in the norm bound dominates. For example, when X has i.i.d.
columns, that is, when ¥; = --- = ¥4 = X, Lemma 3.8 implies

E|X| = Vd|[2] + VTr=.

This special case is well known, see, e.g., [43, Lemma 5.4].

3.2.3. Independent blocks. Our third example is the model

Xl’l .. Xl,m
X=1: - (3.7)
Xm,l xmm

where X7 are independent r X r random matrices.

Lemma 3.9. Consider the model (3.7) where X*J are independent centered Gauss-
1an random matrices. Then we have

1

5 }

2

E|X| < (1+5){max + max
i J

> EX(X)
J

E(X")* X"
2

C -
+ — max v(X*) (log rm)%
ij

for any € > 0, where C is a universal constant.
Proof. A simple computation shows that |[EXX*|| = max; || 3=, X"/(X*/)*|| and
|EX*X| = max; || > ,(X%)*X"I|. Moreover, as the blocks X*J are independent,

Cov(X) = @, ; Cov(X"/) and thus v(X)* = [[Cov(X)| = max; ;v(X"7)* Tt
remains to invoke Corollary 2.2, Lemma 2.5, and Young’s inequality. ]

The independent block model (3.7) may be viewed as intermediate between the
independent entry model (3.1) and fully dependent random matrices. As a partic-
ularly simple example, consider the case where X%/ are all i.i.d. copies of the same
centered Gaussian random matrix Z. Then Lemma 3.9 yields

E|X|| S Vima(Z) +v(Z) (logrm)®,

3
so that E|| X|| < o(X) as soon as ¢(Z)? 2 %U(Z)Z. On the other hand, the
case m = 1 encodes any centered Gaussian matrix, for which the dimensional factor
of the noncommutative Khintchine inequality cannot be removed.
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3.2.4. Gaussian on a subspace. The examples discussed so far all feature a form
of “structured independence”, where certain subsets of entries are assumed to be
independent. This is by no means necessary for the validity of our bounds. Our
fourth example illustrates a simple situation that lacks any independence.

A matrix with i.i.d. real Gaussian entries may be viewed equivalently as the
model defined by the isotropic Gaussian distribution on My(R). This model may
generalized as follows. Let M C My(R) be any linear subspace of dimension
dim M = k of the space of d x d real matrices, and let X be the random ma-
trix defined by the isotropic Gaussian distribution on M. Equivalently,

k
X =3 g
i=1

where Aj,..., Ay is any orthonormal basis of M (that is, Tr[A}A;] = §;;) and
g1, ..., 0k are i.i.d. real standard Gaussian variables. Note that this model has fully
dependent entries when M is in general position.

Lemma 3.10. When X is an isotropic real Gaussian matriz on a linear subspace
M C My(R), we have E||X|| = ¢(X) as soon as dim M > dlog®d.

Proof. Let dimM = k. Then o(X)? > tr[>, ATA;] = % On the other hand, note

(
that Cov(X) = >0, t(A4;)e(A;)*, where ¢ : My(R) — R? maps a matrix to its
vector of entries. But here ¢t(A;) were assumed to be orthonormal, so Cov(X) is a
projection matrix. Thus v(X)? = ||Cov(X)|| = 1. As explained at the beginning of
Section 3.2, We therefore have E||X|| < ¢(X) as soon as (logd)® < &. O

When M = span{e;ej : |i — j| < 7}, we have dim M < (r+1)d, o(X) < vr + 1,
and E||X|| > E max;; |XU| 2 +/logd. Thus the conclusion of Lemma 3.10 may fail
when dim M < dlogd. While this particular example is rather special (as X has
independent entries), the beauty of Lemma 3.10 is that it applies to any M.

3.3. Generalized sample covariance matrices. Let X be any d x m random
matrix with centered jointly Gaussian entries. We will refer to X X* as a generalized
sample covariance matrix. Indeed, as %X X* = % Z;ll X; X/ in terms of the
columns Xq,...,X,, of X, we see that %X X* is a sample covariance matrix in
the special case that the data Xi,...,X,, are i.i.d. (see, e.g., [23]). In the general
setting, one may still think of %X X* as a sample covariance matrix, but where
the samples need not be independent or identically distributed.

The main question of interest in this setting is to estimate the deviation of the
sample covariance matrix from the actual covariance matrix || XX* — EXX*||. We
presently show that an estimate of this kind can be derived from Theorem 2.1 us-
ing a simple variant of the linearization trick that is used in Theorem 2.10. While
linearization generally yields asymptotic results for any polynomial, the present ex-
ample illustrates that nonasymptotic bounds can be derived for specific polynomials
by a careful analysis of the linearization argument. Alternatively, the interpolation
method used in the proofs of our main results can be adapted directly to yield
quantitative bounds for polynomials (we do not pursue this here).
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Theorem 3.11. Let Ay, ..., A, be arbitrary d X m matrices with complex entries,
and define X and Xgee as in (2.1) with Ag = 0. Then we have

E|XX* — EXX"| < | XtreeXfoo — EXX* @ 1
+ C{o(X)v(X) log (d+m) +9(X)? log? (d+m)},
where C' is a universal constant.

The proof of Theorem 3.11 will be given at the end of this section. To clarify
its meaning, it is instructive to note that EXX* = (id ® 7)[Xfee X{ioo]; therefore,
| Xtree X froe — EXX*™ ® 1| is precisely the free analogue of || XX* — EXX*|.

In order to apply Theorem 3.11 in concrete situations, we must be able to com-
pute or bound its right-hand side. To this end, the following result may be viewed
as the direct analogue of Lemma 2.5 in the present setting.

Proposition 3.12. In the setting of Theorem 3.11, we have
1P < || Xppee Xfee — EXX* @1 <T
with .
I':=2|EXEX*"X]|X"]||2 + |[EX"X].
Proof. We use the standard construction of a free semicircular family on Fock space,
cf. [29, pp. 102-108] or [31, §9.9] (this construction will not be used in our main
results). Let F(C") := Cw & @Pr—,(C")®* be the free Fock space over C", where
the unit vector w is called the vacuum vector. For any h € C", the creation operator
I(h) € B(F(C™)) is defined by setting for any 1, ...,z € C"
l(h)w := h, [(h) (1@ - @x) =h@T] ® - @ ).
Then the self-adjoint operators si, ..., s, defined by s; = I(e;) + I(e;)* form a free
semicircular family with respect to the vacuum state 7(z) := (w, zw) on B(F(C")).

As we assumed Ay = 0, we may represent Xeee = U+V with U := >, A; ®@1(e;)
and V := )", A; ®l(e;)*. The property I(e;)*l(e;) = 0;;1 (which is readily verified
from the definition of I(h)) yields the identities

VUV =) AA;@1=EXX"®1, UU=) Aj/A21=EX'X®l,

and
VUUVT =) AEX*X]A; ©1=EXEX"X]X"|®1
We therefore obtain by the triangle inequality
[ Xtree Xfree — EXX* @ 1| = |[UV* + VU* + UU*|| < 2|UV*|| + |U|* =T,
establishing the upper bound.

To prove the lower bound, note first that

[ Xtree X e — EXX* ®1|| > sup (0 @ w, (XgreeXfoo — EXX* @120 @w)?

llvll=1

= sup (v @w, VU*UV* v @ w)? = [|E[X B[X*X] X*]|7,
ol =1

where we used U*(v®w) = 0. On the other hand, by the reverse triangle inequality
[ Xtree Xfree =~ EXX* @ 1] 2 [|U|* = 2|UV*[| = |EX*X|| — 2||E[X E[X"X] X*]|]=.

The lower bound follows using max(a,b) > 2a + 1b. O
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To illustrate these bounds, consider the case where the columns of X are i.i.d.
centered Gaussian vectors with covariance ¥ (so that %X X* is a classical sample
covariance matrix). Then Theorem 3.11 and Proposition 3.12 yield

k(D) rkT(Tz) } .

BIA XX - ) < {2y 2

cuz{ (1 y rksfl))ilogz(d—&—m) . <1 y rkS))élogi(wm)}

mi m3

where 1k(X) := Tr[X]/||X]|, and we used Lemma 3.8 to compute o(X) and v(X).
The leading term in this bound dominates when rk(X) is not too small. The latter
restriction is not optimal: it was shown in [23] that when X has i.i.d. columns,
E||LXX* — 3| always agrees with the leading term in the above inequality up to
a universal constant. On the other hand, our general bounds apply to arbitrary
nonhomogeneous random matrices X, and yield the sharp constant in the leading-
order term. (In the special case that X has independent Gaussian entries, a bound
with a slightly weaker leading-order term was obtained in [11].)

We now turn to the proof of Theorem 3.11. The key idea is the following lemma,
which provides an explicit linearization of the polynomial (X, X*) — X X* 4+ A.

Lemma 3.13. Let A. = (||JEXX*|| +4e?)1 — EXX*, and define

1
Xfree AEQ ®1

0 0 X A 0 0
S
A2 0 0 O AZ2®1 0 0 0
Then we have
sp(X.) C Sp(Xiree,c) + [—€,¢] =
2 + &,

)Ur(XfreeXf);ee + As ® 1)%
A (XirooXfpe + Ac @1)2 —¢

[N
(AVARVAN

{)\+(XX* +A)
A (XX*+ Ap)
for any e > 0, where Ay (Z) :=supsp(Z) and A\_(Z) := infsp(Z).
Proof. By Remark 2.6, we have
sp(X2) U{0} = sp((X X" + A)?) U —sp((X X" + A.)?) U {0},

and analogously for )V(freeﬁ. If sp(XE) C sp()V(fmw) + [—¢,¢], then clearly

A (XX* + A2)% <Ay (Xtroe Koo + Ae ® 1) + e
On the other hand, as Xfree’g can have a zero eigenvalue, it follows that either

A (XX 4+ A2 > A (XpeeXfe + A ®1)2 — €
or A\_(XX*+A.)2 <e. But the latter is impossible, as A\_ (X X* 4+ A.)z > 2. O

We can now complete the proof of Theorem 3.11.
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Proof of Theorem 3.11. We adopt throughout the proof the notation and conclu-
sions Lemma 3.13. By Remark 2.6, we have 0, (X.) = 0.(X) and 5(X.) < 235(X).
We may therefore apply Theorem 2.1 to XE to obtain

PAL(XX" + A)? < A (XirooXfree + Ay ® 1) + (1),
)\,(XX* + As(t))% > A (XtreeXfree + As(t) ®1)2 — E(t)] >1- e_tz

=

for all ¢ > 0, where e(t) = c{f)(X)(log%(d+m) +0.(X)t} for a universal constant c.
(Note that X, is 2(d-+m)-dimensional, but we may bound log(2(d+m)) < log(d+m)
as d +m > 2 for notational simplicity.) Now note that

A (XX* 4+ A) = A (X X* —EXX™) + |[EXX*|| + 4e?,
and analogously for Xfe.. Moreover, we have
A (Xtree X free + Ae ® 1) < A (Xpree Xfpoo + Ae ® 1) < 50(X)? + 427
by Lemma 2.5. Thus we obtain
A (XX* 4 A7 <A (Xpee X + A @ D)7 42 —>
M (XX* —EXX") <A (XreeXfeo — EXX* ®1) + 26/50(X)2 + 4¢2 + &2

by squaring both sides of the first inequality and applying the previous two equation

displays. Analogously, using (y — )3 > y* — 2y — €2 for y,e > 0 yields

A(XX* 4+ A2 > A (XpeeXfwe + Ac®@1)2 — =
A (XX —EXX") > A (XtreeXfoee — EXX* ®1) — 264/50(X)2 + 4e2 — €2,
But as ||Z]| = max(A+(Z), —A_(Z)), we have shown that
P[|XX* — EXX*[| > | XreoXfroo — EXX* ® 1| 4 50(X)e(t) + 52(t)%] < e .
The conclusion follows by integrating this tail bound and using 0.(X) < 9(X). O

3.4. Smallest singular value. The initial motivation for the results of this paper
arose from the question whether classical matrix concentration inequalities can be
sharpened. Consequently, the focus of our examples has been on norm bounds for
various random matrix models. Unlike classical matrix concentration inequalities,
however, our main results enable us to control the entire spectrum and not merely
the spectral norm. This makes it possible to address questions that are outside the
scope of classical matrix concentration inequalities.

As an illustration, let us derive in this section a bound on the smallest singular
value spin(X) := inf sp(|X|) of a general Gaussian random matrix X.

Theorem 3.14. Let Ay, ..., A, be arbitrary d x m matrices with complex entries,
and define X and Xgeo as in (2.1). Then we have

2

P[Smin(X) S Srnin(Xfree) - C{)(X) lOg% (d + m) - CU* (X)t] S eit
for allt > 0, where C is a universal constant. In particular,

E[Smin (X)] > Smin(Xtree) — C3(X) log? (d + m).
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Proof. The conclusion of Lemma 3.13 continues to hold verbatim if we define A, :=
4£21 and exchange the roles of X and X*. Thus Theorem 2.1 yields

P\ (X2 +42(6)%1)F < A (| Xeo|® +46(£)*1)7 —(t)] < e

for all t > 0, where £(t) := C{0(X) log (d+m) + 0.(X)t}. The conclusion follows
as A_ (| Xiree| 2 +46(£)21)2 > Spin(Xeree) and A_ (| X [2+42(£)21)2 < spmin(X) +2¢(2).
The expectation bound follows by integrating the tail bound and ¢, (X) <9(X). O

While $pin(Xfree) can be computed using the methods of [27, §5], the following
crude bound already yields nontrivial results in various examples.

Lemma 3.15. Consider the setting of Theorem 3.14 with EX = 0. Then we have
Smin(Xfree) 2 Smin(EX*X)% - ||EXX*||%

Proof. We use the same Fock space construction Xgee = U 4+ V' as in the proof of
Proposition 3.12. Then we may estimate by the reverse triangle inequality

Smin(Xiree) = inf [|(U+V)zl| > inf [[Uz| —[[V],

llzll=1 llzll=1

and the conclusion follows as |[Uz||? = (z, (EX*X®1)z) and ||V]]? = |[EXX*||. O

The above results provide information on the smallest singular value of random
matrices that may be nonhomogeneous and have dependent entries. Even subopti-
mal bounds on the smallest singular value in this setting are fundamentally outside
the scope of classical matrix concentration inequalities. As a simple example, we
consider a variant of the patterned matrices of Example 3.7.

Ezample 3.16 (Special patterned matrices). Let g1, ..., g, be i.i.d. standard Gauss-
ian variables, and let Sp,...,S, be a partition of the set [d] x [m] with d > m.
Then we can define the d x m patterned random matrix X such that X;;, = g; for
(4, k) € S;. Let us assume in addition that each S; has at most one entry in each
row and column of [d] x [m]. Then we may readily compute as in Example 3.7 that
E[X*X] = d1 and E[XX*] = m1, so that Theorem 3.14 and Lemma 3.15 yield

E[Smin(X)] > Vd — /m — Cdi (log d) 7 max | S;]7.

When each |S;| = 1, that is, when X is a rectangular matrix with i.i.d. standard
Gaussian entries, such a bound is well known (e.g., [15]) and is in agreement with the
classical asymptotics of the smallest singular value in the proportional dimension
regime d — 00, m = yd with v € (0,1) due to Bai and Yin [4]. The present results
show that the same bound remains valid to leading order even if we introduce
considerable dependence among the matrix entries: for example, in the proportional
dimension regime it suffices that max; |S;| < W.

Remark 3.17. The above results are meaningful only when Sy (Xfee) > 0. When
Smin (Xfree) = 0 (for example, in square case d = m of Example 3.16), it may still
be the case that X is invertible a.s. even though Xg.. is not, but the problem
of quantitatively estimating spmin(X) in this setting is of a fundamentally different
nature. At present, results of the latter kind for nonhomogeneous random matrices
are known only under restrictive structural assumptions [34].
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4. PRELIMINARIES

The aim of this section is to recall some mathematical background and to intro-
duce a few basic estimates that will be used in the remainder of the paper.

4.1. Free probability. We begin by recalling some basic notions of free probabil-
ity; the reader is referred to [29] for an introduction to this topic.

For our purposes, a unital C*-algebra may be thought of concretely as an algebra
A of bounded operators on a complex Hilbert space which is self-adjoint (a € A
implies a* € A), is closed in the operator norm, and contains the identity 1 € A.
A state is a linear functional 7 : A — C that is positive 7(a*a) > 0 and unital
7(1) = 1. A state is called faithful if 7(a*a) = 0 implies a = 0.

Definition 4.1. A C*-probability space is a pair (A, 1), where A is a unital C*-
algebra and 7 is a faithful state.

The simplest example of a C*-probability space is (Mg4(C),tr). The introduc-
tion of general C*-probability spaces enables us to extend computations involving
matrices and traces to infinite-dimensional operators. The assumption that 7 is
faithful ensures that ||a|| = lim,_ o T(|a|”)% [29, Proposition 3.17].

The basic infinite-dimensional object of interest in this paper is a free semicircular
family. We will define this notion combinatorially as in [29, p. 128]. For any integer
p, denote by Pao([p]) the collection of all pairings of [p] := {1,...,p}, that is, of
partitions of [p] each of whose blocks consists of exactly two elements. We denote
by NCa([p]) € P2([p]) the collection of those pairings = that are noncrossing, i.e.,
that do not contain {7, j},{k,l} € mso that i < k < j <.

Definition 4.2. A family s1,...s, € A of self-adjoint elements in a C*-probability
space (A, 7) is called a free semicircular family if

T(Sky =" 8k,) = Z H Ok;k;
mENC2([p]) {i.j}em
for every p > 1, k1,...,k, € [n].

The elements s; are “semicircular” in the sense that for p € N,

() = INCalp)| = [ a7 VA a?da

2

-2

are the moments of the standard semicircle distribution, cf. [29, p. 123 and p. 29].

The latter is precisely the limiting spectral distribution of large Wigner matrices.
1

In particular, note that [|s;]| = lim, o, 7(s.7)2 = 2.

More generally, the weak asymptotic freeness theorem of Voiculescu [44] states
that a free semicircular family arises as the limiting object associated to independent
Wigner matrices. A self-contained proof of this fact may be readily obtained as a
special case of the argument in Section 7.1 below.

Theorem 4.3 (Voiculescu). Let GY, ..., G be independent standard Wigner ma-
trices in the sense of Definition 1.1. Then we have

lim E[tr(GkN1 GkN )] =7(sk, - Sk,)
N—o0 P P

for everyp > 1, k1,...,ky € [n].



MATRIX CONCENTRATION AND FREE PROBABILITY 25

We now turn our attention to the basic random matrix model (2.1) of this paper.
In the proofs of our main results, it will suffice to consider self-adjoint coefficient
matrices Ag,..., A, € M4(C)sn due to Remark 2.6. In addition to X and Xgee
defined in (2.1), we also introduce the intermediate model

XVi=Ag@14) A 0GY, (4.1)
i=1
where GV,... GY are independent standard Wigner matrices of dimension N.

Theorem 4.3 enables us to compute the limiting spectral statistics of XV,
Corollary 4.4. Let Ay, ..., Ap, € My(C)ga. Then
Jim Bftr f(XV)] = (tr @ 7)( (X))
for any polynomial or bounded continuous function f: R — C.
Proof. For the function f(z) = zP with p € N, we compute explicitly

Etr|(XV)) = 3 tr(Ay A E[r Gy, - Gi ] T2 (tr @ 1) (XD,
i1yeensip=1
by Theorem 4.3. The conclusion extends to any polynomial f by linearity. For
bounded continuous f, it remains to note that as ||Xgee| < 2> 1, [|4i]] < oo,

moment convergence implies weak convergence [29, p. 116]. (]

We finally discuss a number of methods to compute or estimate the spectral
statistics of Xgee. First, we note that the moments of Xg. are readily computed
using Definition 4.2: for every p € N, we obtain

(tron) (X, = > S tr(Ai, - Ay, (4.2)

meNC2([p]) (41,--yip)~m

where (i1,...,4p) ~ 7 denotes that i), = i; for every {k,l} € .

An explicit expression for the norm || Xfree| was given in Lemma 2.4 above. This
fundamental result was proved by Lehner [27, Corollary 1.5], where it is formu-
lated only in the case that Ay > 0 is positive semidefinite. However, the general
formulation is readily derived from this special case.

Proof of Lemma 2.4. We first note that ¢ := || Xree|| > ||(id ® 7)(Xree)|| = | Ao]|-
Thus Xfree +t1 > 0 and Ag + t1 > 0. Applying [27, Corollary 1.5] yields
Z V¢ Ag+ 11+ ZAiZAi ,

i=1

||Xfree + tl” = égfo

where the infimum may be further restricted to Z for which the matrix in the norm
on the right-hand side is a multiple of the identity. But as Xg.ee + t1 > 0, we have
[ Xtree + t1|| = Amax(Xtree) + ¢, and analogously for the norm on the right-hand
side. It remains to use that || Xeel = Amax(Xeree) V —Amax (—Xtree)- O

Finally, the estimates on || Xfec|| in Lemma 2.5 were proved by Pisier [31, p. 208]
in the case Ag = 0 (the proof is very similar to that of Proposition 3.12 above).
The extension to general Ay follows immediately, however, using || Ap|| < || Xtreell <
| Xtree — Ao @ 1|| + || Ao|| (the first inequality was explained above in the proof of
Lemma 2.4, and the second is the triangle inequality).
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4.2. Matrix parameters. The aim of this section is to develop some basic prop-
erties of the parameters o(X), 0. (X),v(X) defined in Section 2.1, and of the matrix
alignment parameter w(X) that was defined in Section 1.4.

4.2.1. The matriz alignment parameter. We will in fact need a somewhat more

general parameter than w(X) in our proofs, so we begin by defining the relevant

notion. Let Ag,...,An, A}, ..., Al € My(C)sa, and define the random matrices

X =Ay+> " 94 and X' = Aj + > | gl A} as in (2.1). We define

i

w(X,X') ;= sup
Uv,Ww

i

> AUAVAW A,

1,j=1

where the supremum is taken over all unitary matrices U, V,W € My(C). Note
that the definition of w(X, X’) does not involve Ay, Ay, that w(X, X') = w(X’, X)
(by taking the adjoint inside the norm), and that w(X, X’) depends only on the
marginal distributions of X and X’ (in particular, the Gaussian random variables
(g:) and (g}) that define X, X’ may have an arbitrary dependence). Note also that
we only defined w(X, X’) for self-adjoint coefficient matrices A;, A;; the definition
may be generalized to non-self-adjoint matrices, but this will not be needed in the
sequel. In agreement with the notation of Section 1.4, we let w(X) := w(X, X).

The matrix alignment parameter w(X) was introduced by Tropp in [41] to quan-
tify the contribution of crossings to the moments of X. A key idea of [41] is that
upper bounds in terms of w(X) may be obtained by complex interpolation. The
following variant of this idea suffices for our purposes.

Lemma 4.5. Let YV ... Y™ be arbitrary d x d complex random matrices, and
let pr,...,ps > 1 satisfy Zi:l ﬁ = 1. Then we have

> Eltr YW AY D AYE Ay @]
i,j=1

Proof. We aim to show that F(Y7,...,Yy) := Z” E[trAinA;-YgAZ-YgA;-KL] sat-
isfies |F(V1,..., Y)| < w(X, X)[Yilly, - [Yillp,, wheve V], = Bltr|Y ] de-
notes the L, (S,)-norm. Recall that the spaces L, (.Sp) form a complex interpolation
scale Ly (S;) = (Lp(Sp), Lq(Sq))e with 1 = % + g [32, §2]. By the classical com-
plex interpolation theorem for multilinear maps [12, §10.1], the map

1 1 F(Yy,...,Y.
(,...7) — log sup PV, Ya))
I Pa YieoYa 1Yallpy o [Yallp,

4
< w(X, X)* T[ Eltr [y @ ).
k=1

: : : g1 1 4. y4 1 _

is convex, and thus its maximum over A={(y, ) €00, 35, - =1}
is attained at one of the extreme points of A. It therefore suffices to prove the
conclusion in the case that p; = 1 for some i. By cyclic permutation of the trace,
we may assume py = 1 and pi, p2, p3 = oo. But in this case

n
sup  sup |F(Y1,...,Yy)| = sup AV ALY AV AL = w(X, X7)*
[Velloo <1 [|Yall1 <1 Ivell<1 ] 52
k=1,2,3 k=1,2,3

follows from the fact that every Y € My(C) with ||Y|| < 1 is a convex combination
of unitaries (by singular value decomposition and the fact that any vector z € R?
with ||2]|sc < 1is a convex combination of vectors in {—1, +1}4). O
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4.2.2. Bounding the matriz alignment parameter. The aim of this section is to prove
the following bound on the matrix alignment parameter.

Proposition 4.6. We have w(X, X')* < v(X)o(X)v(X)o(X').
To this end, we will require two simple observations.

Lemma 4.7. In the proof of Proposition 4.6, there is no loss of generality in
assuming that Tr[A;A;] = 0 and Tr[A[A}] = 0 for all i # j. In particular, this
assumption implies v(X) = max; || 4;||us and v(X') = max; || A||us.-

Proof. We first note that the parameters o(X), v(X), w(X, X') only depend on the
distributions of the random matrices X, X’, and not on their representations in
terms of A;, A;. This is evident from the expressions for o(X) and v(X) given
in section 2.1, and as w(X, X') = supy v |IE[XUX"VXWX"]||5 where X" is a
copy of X’ that is independent of X. It therefore suffices to find random matrices
Y,Y’ that are equidistributed with X, X’ and satisfy the desired properties.

To this end, note first that My(C)s, is a real vector space of dimension d?,
endowed with the Hilbert-Schmidt inner product. Moreover, the distribution of X
is a real Gaussian measure on this space. If we denote by Cy,...,Cg € My(C)sa
the (unnormalized) orthogonal eigenvectors of the corresponding covariance matrix,
it follows that X has the same distribution as Y = Ay + ), ¢;C;, and Tr[C;C;] = 0
for i # j by construction. Finally, note that Cov(Y) = . ¢(C;)c(C;)*, where
v My(C) — C% maps a matrix to its vector of entries. As the vectors 1(C;) are
orthogonal in C%°, they are also eigenvectors of Cov(Y). It follows that v(Y)2 =
|[Cov(Y)|| = max; ||C;||4g. The analogous construction applies to X'. O

Lemma 4.8. Let By, ..., Bg € My(C) satisfy Tr[B} B;j] = 6,5 foralll <i < j <mn.
2
Then we have Z?:l B!Y B, = Tr[Y]1 for every Y € My(C).

2 2
Proof. Note that 2?21 BYB; = EH*Y H, where H = Zle h;B; and hy,...,hg
are i.i.d. standard complex Gaussians. Thus by unitary invariance of the complex
Gaussian distribution, we may replace By, ..., Bg2 by any other orthonormal basis

of My(C). Tt follows that Y| BYB, = Y0 | erejYeref = Ty[Y]1. O
We now complete the proof of Proposition 4.6.

Proof of Proposition 4.6. By Lemma 4.7, we can assume that Tr[A4;A4;] = 0 and
Tr[AjA%] = 0 for ¢ # j. In particular, we may choose an orthonormal basis
Bl, ey Bd2 of Md((C) so that Al = ||Ai||HSBi for i = 1, ., n.

Now note that we can estimate by Cauchy-Schwarz

i=1 =1

w(X, X = sup  sup
UV.W |zl llyll<1

< ( sup ZIIAMIIZ> <Sup sup Yy
|

lel <1527 VW yll<1,25

> AVAW ALy

Jj=1

2>§
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Furthermore,
n n 2 P n 2
S| avaway <max|Ailks || Y AV BW ALy
i=117=1 i=1 || j=1
= max||4;[fs D (4, AjAky) Tr[A] A}
jik=1

n
< max || A [fis max || Afllfs Y [ A501°,
j=1
where we used Lemma 4.8 in the equality and Tr[AjA}] = 0 for i # j in the
second inequality. It remains to note that sup, <y S Aiz]]? = o(X)? and
max; || A;|lus = v(X) by Lemma 4.7, and analogously for X' O

4.2.3. Self-adjoint dilation. While we defined w(X, X’) only for self-adjoint X, X,
we may extend the resulting inequalities to the general case by self-adjoint dilation
as explained in Remark 2.6. For completeness, we presently provide proofs of the
claims made in Remark 2.6. We first prove the following.

Lemma 4.9. Let T be a bounded operator on a Hilbert space H, and denote by T
the self-adjoint operator on H & H defined by

< 0 T
r=[2 7]
Then sp(T) U {0} = sp(|T) U —sp(|T|) U {0}.

Proof. Let T = V|T| be the polar decomposition of T, where V is a partial
isometry with initial space (ker7)® and final space cl(ranT) = (ker T*)%. As
TT* = V|T]?V* = VT*TV*, it follows that sp(T*T) U {0} = sp(TT*) U {0}. Thus

oo [TT* 0 ]
72 = { 0 T (4.3)
implies that sp(|7]) U {0} = sp(|T'|) U {0}. On the other hand, as
brr 1o
U*TU = -T, U—_O _1
and U is unitary, we have sp(T') = —sp(T"). The conclusion follows. O

We now verify that o(X),0.(X),v(X) are well behaved under dilation.
Lemma 4.10. In the setting of Remark 2.6, we have
o(X)=0(X), o.(X)=0.(X), v(X)<vX)<V2u(X).
Proof. We begin by noting that by (4.3)

o Y EXX* 0
o7 = o = | [P 50| = o0

Next, note that
U*(JU()Q = sup sup E[|{(vi, Xws) + <v2,X*w1>|2].

loal2+llval[2=1 [Jwa |2 +[lw2][2=1
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)

Thus clearly 0.(X) > 0.(X), while by the triangle inequality
0.(X) <ou(X)  sup sup — ([lor[[[[wal| + [[oz]l[wr]]) = . (X).

lvalP+llve [[P=1 [Jwa |2+ [lws]2=1

Finally, note that

v(X)? = sup E[|Tr[X M] + Tr[X*N]|?],
IMIIEs+INFs=1

so that v(X) < v(X) < v2v(X) follows in the same manner as for o, (X). O

4.3. Gaussian analysis. We now recall some Gaussian tools that will be used in
the sequel. The following is classical [37, Lemma 1.3.1].

Lemma 4.11 (Gaussian interpolation). Let Y and Z be independent centered
Gaussian vectors in R™ with covariance matrices £ and 27, respectively. Let

Y, =VtY +V1—tZ
fort €10,1]. Then we have

d 1< 9’ f
GE0 = 5 3 -2 B 5]

ij=1
for any smooth f : R™ — C with derivatives of polynomial growth.
A special case is the following (see, e.g., [25, §5.5]).

Corollary 4.12 (Gaussian covariance identity). Let Y, Z be independent centered
Gaussian vectors in R™ with covariance matriz X2, and let

Y/ =tY +V1-12Z
fort €10,1]. Then we have
1
E[f(Y)g(Y)] - E[f(Y)]E[g(Y)] :/0 E[(Vf(Y),2Vg(Y{))]dt
for any smooth f,g: R™ — C with derivatives of polynomial growth.

Proof. Let Y, Z,Z' be independent centered Gaussian vectors with covariance ma-
trix ¥, and let G = (Y,Y), G’ = (Z,2"), and Gy = Vt G+ /1T —tG'. Then

1
d
E[f(Y)g(Y)] - E[f(Y)]E[g(Y)] = /O S EH (Gl dt,
where H(z,y) = f(x)g(y). The conclusion follows from Lemma 4.11 and the fact
that (VtY + V1 —tZ,v/tY + /1 —tZ') is equidistributed with (Y, Y}). O

We finally recall the following [25, p. 41].

Lemma 4.13 (Gaussian concentration). Let Y be a standard Gaussian vector in
R™ and let f : R™ — R be an L-Lipschitz function. Then

Pf(Y)>Ef(Y)+t] <e"/2L°  forallt> 0.

It is instructive to spell out the application of Gaussian concentration to (2.1),
which explains the significance of the parameter o, (X).
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Corollary 4.14. Consider the model (2.1) with Ay, ..., A, € My(C), and let F :
M4(C) = R be L-Lipschitz with respect to the operator norm. Then

P[F(X) > BF(X) +1] < e ©/2%0-(X0"  for all t > 0.
If Ay, ..., A, € My(C)sa, it suffices to assume F is L-Lipschitz on Mg(C)g,.
Proof. We may write F'(X) = f(g1,...,9n) := F(Ao + >, 9iAi). Thus
Z(% —yi){v, Ajw)

%

=L sup

lloll=llwll=1

£@) - F)l < LH S A

< Lo (X)lz -yl

by Cauchy-Schwarz and the definition of o, (X) (cf. Section 2.1). The conclusion
follows by applying Lemma 4.13 to f(g1,-..,gn)- O

5. SPECTRAL STATISTICS

The next three sections contain the proofs of the main results of this paper. In
the present section, we begin by proving our bounds on the spectral statistics that
were formulated in Section 2.2. These results illustrate the main proof technique of
this paper in its simplest form. The support of the spectrum will be investigated
in the next section using a more involved variant of the same method.

5.1. The basic construction. Throughout the proofs of our main results in Sec-
tions 2.1 and 2.2, we will fix Ay,..., A, € Myg(C)s, and let X and Xge be defined
asin (2.1). (Where relevant, the extension to the non-self-adjoint case will be done
at the end of the proof using Remark 2.6.)

Let G¥,...,GY be independent standard Wigner matrices as in Definition 1.1,
and let DY, ..., DY be independent N x N diagonal matrices with i.i.d. standard
Gaussians on the diagonal. We define for ¢ € [0, 1] the random matrix

XVi=Ag014) A (VaDY +/1-qGM). (5.1)

i=1

Note that X' = X" as defined in (4.1). On the other hand, X}V is a block-diagonal
matrix with i.i.d. copies of X on the diagonal. In particular, we have

Eftr h(X{)] = E[tr h(X)],
Eftr h(X})] = Eftr h(X")]

(5.2)

for any function A : R — C. The basic idea behind our proofs is to interpolate
between E[tr h(X{Y)] and E[tr h(X{)] using Lemma 4.11.

To simplify the expressions that will arise in the analysis, it will be convenient
to define for ¥y = (Yirs)1<i<n,1<s<r<n the notation

XN(y) = AO & 1 + Z Z Yirs Ai’l‘S) Airs = Ai & ETS7
i=1 1<s<r<N
where F,s are as defined in Section 3.1. Moreover, let Y, Z be centered Gaussian

vectors all of whose entries Y. = (DV),.s and Z;.s = (GV),s are independent with
variances d,.; and %, respectively. Then Xév = XN(\/ﬁY +V1I—q2).
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5.2. Proof of Theorem 2.7. In order to prove Theorem 2.7, we apply the above
program to the moments. We begin with a simple computation.

Lemma 5.1. For any p € N, we have

2p—2
d N2 XNk N\2p—2—Fk
TRUCIEETDY zz( - Bl A (A P
Proof. Let Y = (Yirs)ign)r>s and Z = (Zirs)ien),r>s be the Gaussian vectors
defined above. As both these vectors have independent entries, their covariance
matrices XY and $Z are diagonal with Var(Y;,s) = 6,5 and Var(Z;,.s) = % Ap-
plying Lemma 4.11 to the function f(y) = tr X~ (y)?? therefore yields

P = 3 (e el

VeY ++/1—qZ)|.
i r>s s

The conclusion follows by a straightforward computation. [

As was explained in Section 1.4, we expect that the interpolation between X
and Xpee will be controlled only by the crossings in the moment formulae. This is
however not immediately obvious from the expression in Lemma 5.1. To make this
phenomenon visible, we need a simple lemma.

Lemma 5.2. E[h(X])] = E[(id ® tr)(h(X)))] ® 1 for every h: R — C.

Proof. The distributions of DY and G are invariant under conjugation by any
signed permutation matrix. Therefore, if we let II be an N x N signed permutation
matrix chosen uniformly at random (independently of X év ), then

ER(XN]=ER(1eoI)*XN1e1I))] =E[(1®I)*A(X))(1e).

It remains to note that E[(1 @ II)*M (1 ®II)] = (id® tr)(M) @ 1 for any matrix M
(this is elementary when M = A ® B, and extends to general M by linearity). O

The key observation is now the following.

Corollary 5.3. For any p € N, we have

2p—2

p Z ZZ ( rs )trAWSE[( ) ]A,LTSE[(XN)QP 2— k] 0.

i r>s

Proof. Note first that E2, = E2, + E2, for r # s. Thus
(4i ® Es)E[(X))")(Ai @ Ery) =
Nk Nk
(Ai ® EM)E[(Xq ) }(Aﬁ ® EM‘) + (Ai ® ESS)E[(Xq ) ](Al ® ESS)

for r # s by Lemma 5.2. Summing over r > s yields

%ZA”SE[(X;V)]C}A”S = % Z(AirrE[(X;v)k]Airr + AzesE[(Xév)k]Azss)

r>s r>s

<1 - ) ZAWE o) A
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The latter identity may be equivalently written as

1
Z <5rs - N>A7,7‘SE[(X(§V)I€]AWS = Oa
r>s

from which the conclusion follows readily. O

By combining Lemma 5.1 and Corollary 5.3, we can apply Corollary 4.12 to
make crossings appear (the latter idea is already present in [41]). Recall that the
parameters w(X) and w(X, X’) were defined in Section 4.2.

Lemma 5.4. For any p € N, we have

d

i —E[tr(X))*]

< SrMaw (X (5 XN (- g (X)) YRl (X))

Proof. Recall that the random vectors Y, Z with Y;,.s = (DN),s and Z;,.s = (GN),s
were defined in section 5.1. Let Y', Z’ be independent copies of Y, Z, and define

X = XN (VY +VT=a 2} + VI- 2Ly +VT=a2'}).

Note that the random vector \/qY + /1 — ¢ Z has independent entries, SO its co-

variance matrix ¥ is diagonal with Var(,/g ers +V1—=qZis) = qors + =9 We
can therefore apply Corollary 4.12 to compute for 1 < k < 2p —3

BIOCS, ()22 — B BN 7) =
k—12p—3—k
Z Z ZZ (qém + >
=0 m=0 i r>s
1
l k—1—1 m Cah
0 E[((X‘;V) Ai”(Xév) ! ) ab ((qu\tr) Airs(Xé\t])zp ’ )cd] dt.
Combining this identity with Lemma 5.1 and Corollary 5.3 yields
iE[tr(XN)zp]
dq q
2p—2
=p Z Z Z < rls! — > [tI‘Ai/r/S/(Xév)kAi/T,s/(XéV)prgfk]
k=0 ' r'>s’
2p—2
R (500 - )“%'r’s'EKX )i B2
i r'>s!
2p—3k—12p—3—Fk ) l_q
Z Z Z / ZZ Z <q6T56 57"5’ — NéTS - e )
k=1 1=0 i, r>sr/>s!

[t]f Ai’r’s’ (Xév) Airs(XqN)k l_lAi’r’s’(Xé\t[)mAirs(Xﬁ)2p_3_k_m] dt,

where we used that the £k = 0 and k£ = 2p — 2 terms in the middle expression cancel.
We can now apply Lemma 4.5 with
2p —4 2p —4 2p —4 2p —4

p1 = I ) p2:k_1_la b3 = m p4:2p_3_k_m7
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to bound, for example,

q —1- m
ZZ Z Nérs E[trAi’r/s’(Xév)lAirs(Xév)k ! lAi/r’s’(Xé\t[) :

i, r>sr'>s!

Ars(Xg)?P727E7m)) < qw(XéVvaV)‘*E[tr(Xév)Zp"‘],

where we used that Var(Yi.s) = 0rs, Var(Zirs) = 7, and that XN and th are
equidistributed. The remaining three terms in the mtegral can be bounded analo-
gously. To conclude, it remains to note that 77 % k(2p—2—k) = () <4p’. O

Before we can complete the proof of Theorem 2.7, we must compute the matrix
parameters associated to X év .

Lemma 5.5. For every q, N, we have

oXN) =0(X), WX =u(X),  w(X) = v(X)y <
Proof. As E[(DY)?] = E[(GY)?] =1, we have E[(X}Y —EXN)?] =, A?® 1 and

thus o(XV)? = |[E[(X) —EXN)?]|| = o(X)2.

Next, note that X{V is a block-diagonal matrix with i.i.d. copies of X on the
diagonal. Therefore v(X{V)? = ||Cov(XY)|| = ||Cov(X)| = v(X)2. On the other
hand, X — E[X{"] is a symmetric block matrix whose blocks on and above the

diagonal are i.i.d. copies of the matrix N~z (X — E[X]). We can therefore compute
v(XY)? = [|Cov(X)|| = 2N Y| Cov(X)|| = 2N ~tu(X)2. O

We can now conclude the proof.

Proof of Theorem 2.7. Assume first that Ag,..., A, € My(C)s, are self-adjoint.
Applying Lemma 5.4, the chain rule, and Proposition 4.6 yields

d N a Ny2p
qu[tr(X qu[tr(Xq) ]

2 2 2_
)| = ];E[tr(XéV)z”}P '

8
< (X1 4w X+ (- (X))
3 - - ~
< 3pH{an(X1)" +0(Xg)?0(XT)* + (1 - 9)u(X)'},
where we used that E[tr(X¥)?~4] < E[tr(X;V)Zp]l_% by Hélder’s inequality. Thus
|Eftr X?7] % — E[tr(XNVp]ﬁ\ < [Eftr X[ — Bltr(XN)]5 |4
1 1
7E XNde4<%4%~XN2 ~XN2%
() da| < (3) PGB 8,
where we used # —y = (#* — y* + y*)i —y < (z* —yH)3 for z > y > 0 and (5.2).

But note that Lemma 5.5 implies (X) = #(X) and #(X}Y) = 21 N=15(X). We
may therefore let N — oo in the above inequality and use Corollary 4.4 to obtain

[Eltr X)% — (tr © 7)(X20,) %] < (§>4pia<x>.
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Finally, we extend the conclusion to non-self-adjoint Ag,..., A, € My(C) by ap-
plying the above inequality to the self-adjoint model X defined in Remark 2.6. As
E[tr X?] = E[tr|X|?] and (tr ® 7)(X72.) = (tr ® )(|Xfree\2p) by (4.3), and as
#(X) < 235(X), the conclusion follows readily (using (% )i < 2). O

Remark 5.6. When Ay, ..., A, € My(C)s, are self-adjoint, we may obtain a slightly
better bound in the proof of Theorem 2.7 by neglecting to apply Proposition 4.6
to w(X{). In this case, the parameter #(X) in the final bound is replaced by
supy w(X{). The analogous improvement is possible for most results of this paper.
However, as supy w(X1{V) is very difficult to compute in any concrete situation, we
have formulated our main results in terms of the computable quantity o(X).

5.3. Proof of Theorem 2.8. Once the basic method of proof has been understood,
it may be readily adapted to control spectral statistics other than the moments. We
presently adapt the method of the previous section to the matrix-valued Stieltjes
transform. Note that Theorem 2.8 assumes Ay, ..., A, € My(C)ga.

Lemma 5.7. For any Z € Mg(C), ImZ > 0 and M € M4(C) @ My (C), we have

diE[trM(Z - XM=

q
ZZ( - ) [tr Aips(Z — XDV Aips(Z — XY M(Z — X))

and
}:E:(ns )HAWEKZ XM NAuwE((Z - X)) M(Z - X)) =0,

where we defined Z = Z @1 € Mg(C) @ My (C).

Proof. The first identity follows from Lemma 4.11 with f(y) = tr M ( —XN(y)!
The second identity follows as E[(Z — X¥)~™'] = E[(id @tr)(Z XM et holds
by precisely the same proof as that of Lemma 5.2. ([

We can now proceed as in Lemma 5.4.

Lemma 5.8. For any Z € My(C), Im Z > 0 we have

H(iqu[(Z@l—XéV)_l] < 2H(ImZ)_5”{qw(va>4+w(Xév,va)4+(1—q)w(XéV)4}.

Proof. Define Xé\t’ as in the proof of Lemma 5.4, and denote R := (Z® 1 — Xév)’1
and Ry :=(Z®1— Xé\t[)’1 for simplicity. Corollary 4.12 and Lemma 5.7 yield

dd EtrM(Z®1-XN)""] =

_ 1—
/ ZZ Z (qérs(sws/ Nq(sr’s’ - %5'rs - ]\72(]) .

i, r>sr'>s’

{E tI‘ Al’r’s’ RA’L’I"SRA’L r/s/RtAirthMRt]
+ E[tr Ay g RA; s RAy r/s’RtMRtAirth] } dt.
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Now apply Lemma 4.5 with p; = ps = p3 = oo and py = 1 to the first expectation
in the integral, and with p; = ps = p4 = 0o and p3 = 1 to the second expectation.
This yields, in the same manner as in the proof of Lemma 5.4, that

d N\ —
d—qE[trM(Z@ 1- XN

< 2{qu(X{)* +w(Xg', X))+ (1= Quw(Xg) RIS Eltr [RMR]).
But as |[|[R|| < ||[(Im Z) 71| (see, e.g., [21, Lemma 3.1]), we obtain

d N\ —
ter—qE[(Z® 1-XxM)71

< 2[(Im 2)~°|{qw(X{)* +w(X5', X)* + (1 = Qw(Xg)*} tr | M].
The conclusion follows by taking the supremum over all M with tr |M]| < 1. ([
Integrating the above differential inequality yields the following.
Lemma 5.9. For any Z € My(C), Im Z > 0 we have
IB[(Z - X)) —Bld @ t)(Z &1 — XV)7]| < (14 N~3)25(X)") (Im 2) 5.
Proof. Integrating Lemma 5.8 and using Proposition 4.6 yields
IE[(Z 21~ X)) - E[(Z21- X)) < {0(X{)? + 0(Xg")?}? [ (Im 2) 2.

As XV = XN wehave E[(Z®1 - X)) =E[ldotr)(Z21-XV)"1®1as
in Lemma 5.2. Similarly, as XV is block-diagonal with i.i.d. copies of X on the
diagonal, we have E[(Z ® 1 — X{V)7!] = E[(Z — X)"!]® 1 as in Lemma 5.2. The
conclusion follows readily from these observations and Lemma 5.5. O

It remains to take the limit N — oo in Lemma 5.9. While Corollary 4.4 does
not apply directly here, its proof may be readily extended to the present setting.

Lemma 5.10. For any Z € M4(C), ImZ > 0 we have
Jim |IE[[d@tr)(Z@1 - XY)" - ((do7)(Z @1 — Xgeo) || = 0.
— 00

Proof. As we aim to establish convergence as N — oo in M4(C) with a fixed finite
dimension d, it suffices to show that

NliLnOO@, {(E[([dotr)(Z@1 - XM - ([de@7)(Z®1 - Xee) }v) =0
for all v € C? with |lv|| = 1. Moreover, if we define
XN i=(mZe1) VXN —ReZ®1}(ImZ @ 1)~ /2,
Xeree = (M Z ® 1) Y*{ Xee —Re Z @ 1}(Im Z @ 1)~ 1/2
where Re Z := 1(Z + Z*), it clearly suffices to show that
lim (v, {B[(id ® tr) (i1 = X) 7] = (id ® 7)(i1 = Kiree) '} v) =0

for all v € C? with ||v|| = 1. By the spectral theorem, there are probability measures
1N, i (which depend on the choice of v) so that

/ hduy = (0, Bl(id ® tr) (W(X V)] v), / hdp = (v, (id  7)(( Kiree)) v)
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for b : R — C. Theorem 4.3 yields [ 2 duy — [P dp for p € N as in the proof of
Corollary 4.4. As || Xfree|| < 00, the measure p has bounded support. Thus moment
convergence implies weak convergence [29, p. 116], concluding the proof. O

Proof of Theorem 2.8. The conclusion follows immediately by taking N — oo in
Lemma 5.9 and using Lemma 5.10. (I

5.4. Proof of Corollary 2.9. The deduction of Corollary 2.9 from Theorem 2.8
follows by applying general facts about Stieltjes transforms that may be found in
[21, §6]. For convenience, we formulate a general statement.

Lemma 5.11. Let pu,v be probability measures on R with Stieltjes transforms

sue)i= [ outde), ()= [ vt

K
|SH(Z) - SV(’Z)| < (Imz)?’

for some K >0, p €N, and all z € C with Imz > 0. Then

‘/hdu—/hdzx V2K m‘(u d)pﬂh(x)

D)
- pr 0
for every h € WPHLL(R).

Suppose that

dx

dz S K| hllwera(m)

Proof. Let h € C°(R). Following verbatim the proof of [21, Theorem 6.2] yields
1 3] d p+1
’/hdu—/hdu < flimsup/ ‘(1—&—@) h(x)

T ylo S
1 [ K _ (ﬂ)pHK
I < = —(V2t)Pe t2dt < T ——,
p1(2)] < p!/o (Imz—&—t)fl’(\[) e7'V2dt < p!

That the integral may be bounded up to a universal constant by the Sobolev norm
1
|2llwr+11 )y follows as (ptl)@ S 1foral 0<k<p+1. The conclusion

p
finally extends to general h € WPT11(R) by routine approximation arguments. [J

[Ipr1(z +iy)| do

with

We can now conclude the proof.

Proof of Corollary 2.9. Theorem 2.8 implies

_ _ (X))

|E[tr(21 — X) 7' = (tr @ 7)(21 — Xpree) '] < (Ifnz))5
for all z € C with Imz > 0. Applying Lemma 5.11 with p = 5 to the spectral
distributions of X and Xj.e. immediately yields the conclusion. O

6. CONCENTRATION OF THE SPECTRUM

The aim of this section is to prove our main results on the support of the spectrum
that were formulated in Section 2.1. The general scheme of proof is the same as in
the previous section, but some new ingredients are needed here.
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6.1. Moments of the resolvent. The proof of Theorem 2.1 is based on an analysis
of large moments of the resolvent E[tr |21 — X|~2P]. In the present section, we will
prove an analogue of Theorem 2.8 for these higher moments.

Theorem 6.1. Let Ag,..., A, € Mg(C)sa. Then we have

(p+2)° 5(X)*!

—op1L —2p\ 5
|E[t1‘ ‘Z]. _ X| p} 2p — (tI‘ X T)(|Zl - Xfree| p) 2p| S 3 (Imz)5

for everyp e N and z € C, Imz > 0.

The proof of Theorem 6.1 is similar to that of Theorems 2.7 and 2.8. Throughout
this section, we adopt without further comment the constructions and notation of
Section 5.1. In particular, X} is defined as in (5.1).

Lemma 6.2. For anyp € N and z € C, Imz > 0, we have

Bl - XN = Y (- )

i r>s

p
{ Z ReE[tr Ais (21 — X)) ¥ Ay (21 = X)) 7P 1R (21 — X V) 7]
k=0

p—1
+ ) ReE[tr dips (21— X)) 7PH(zL = XV) T A (1 - Xév)‘”k]}
k=0

and

OZPZZ(&S—;,)-

]
14
{ 3 Re tr A Bl(21 - X)) 1AL Bl - X) 7R EL - X)) )
k=0
p—1
37 Re tr A Bl(1 - X)L - X)) AL B ) >-P+’“J}_
k=0

Proof. The first identity follows by applying Lemma 4.11 to the function
fly) = tr]z1 = XV (y)| 72 = trf(21 - XV (y)) (21 - XV (y)) 7]

The second identity follows by applying Lemma 5.2. O

We can now proceed as in Lemma 5.4.

Lemma 6.3. For anyp € N and z € C, Imz > 0, we have
—E[tr |21 — XéVFQp]

4 : Cop
< gp(p+2)‘3{qw(XfV)4 +w(Xg, X7+ (1= Qw(Xg)}Eler |21 — X777,
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Proof. Define Xé\tf as in the proof of Lemma 5.4, and denote R := (21 — Xév)’1
and R; := (21 — Xé\t[)’l. Applying Corollary 4.12 and Lemma 6.2 yields

d N|—2
d—qE[tr|z1 - X, 7] =

1 L .
pRe/O N (qérs&/s/ + Tq(srs _ %5”/ B N2q> .

1,4 r>sr'>s’

p—1 p p—k-1
{ Z E[tr AiTSRH_lAi’r’s’Rp_l+1R*(k+1)AirsR:(m+1)Ai’r’s’R:(pikim)] +

k=0 =0 m=0

k=01=0 m=0
p—1 k p—k-1
Z Z E[tI‘ AiTst+1R*(l+l)Ai/rls/R*(k_l"—l)AirsR:(erl)Ailrlsl R:(;D*kfm)] +
k=01=0 m=0
p k p—k
Z Z Z E[tr Ai7'3Rl+1Ai/r’s’RkilJrlAiTstnJrlAi/y./s/Rf_k_m—i_lRZp] +
k=0 =0 m=0
p k p-1
Z E[tr AiT5R1+1Ai’r’s’ Rk_l+1AiTst+l7kR:(m+1)Ai/,r,s,R:(pim)] }dt

We can now apply Lemma 4.5 as in the proof of Lemma 5.4 to bound

d N|—2
’qu[tr|zl—Xq | 7]

2p+3 o
<p( p3 ){Qw(XfV)4+w(XéV,XfV)4+(1—q)w(XéV)4}E[tr|Zl_Xév 241,

The conclusion follows using (*;°) < 4(p +2)°. O
We can now complete the proof.

Proof of Theorem 6.1. Lemma 6.3, the chain rule, and Proposition 4.6 yield

3
< 20+2)

B -1 | < R ) PP (-0 ),

where we used that

N |—2p—4 Eltr|21 —X;V|72p+1] Eftr |21 _X(A;V|*2p]1—ﬁ
S A S (T 2

using [[|z21 — XN|7!|| < (Imz)~! and Hélder’s inequality. Integrating yields

1+4+2N"1)? 2)35(X)4
\E[tr|z1—X|‘2p}ﬁ —E[tr\zl—XN|—2P]ﬁ| < 1+ )? (p+2)°0(X)
3 (Im 2)®

using (5.2) and Lemma 5.5. It remains to let N — oo using Corollary 4.4. (]

6.2. Proof of Theorem 2.1. The basic observation behind the proof is the fol-

lowing. For any D C C and z € C, denote d(z, D) := inf,/cp |z — 2/|. Then
1

d(z,sp(X))’

and analogously for Xf.e.. The following device will enable us to deduce concentra-

tion of the spectrum from resolvent inequalities.

I(z1 = X)~| = (6.1)
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Lemma 6.4. Let K, L > 0, and let A, B be self-adjoint operators such that
K L
+
(Imz2)>  (Imz)?
for all z = X\ +ie with X € sp(A) and ¢ = (4K)% VAL. Then
sp(4) C sp(B) + 2Ce[—1,1].
Proof. By (6.1), the assumption states that
1 < ¢ + E + =
e Ve +d\sp(B))? € €

If d(X,sp(B)) > 2Ce, we would have § < & +L < 1 which entails a contradiction.

Thus we have shown that d(X,sp(B)) < 2Ce for all A € sp(4). O

I(z1 = A)~H < Cll(22 = B) ]| +

for all A € sp(A).

Our aim is now to show that the condition of Lemma 6.4 holds with high proba-
bility for A = X and B = Xge. To this end, we begin by showing that the relevant
condition holds with high probability for a given z € C.

Lemma 6.5. Fiz z € C with Imz > 0. Then

. o lomd 430 BT 0u(X) ] e
P21 X)) 2 Vel (21~ Koo 4 VE G g S Tt <

for allt > 0.
Proof. Using that tr |[M| > L[| M| for every M € My(C), Theorem 6.1 yields

(p+2)° 9(X)*

1
d"ZE|(z1 — X)7Y| < ||(21 = Xreo) "
TEN(1 = X071 < 1 = Xned) !+ 5

for every p € N. Choosing p = [logd] yields

o} 35 4
BJ[(+1 - X) 7| < vll(21 — Xiwee) | + e LB L3 0EX)

3 (Imz)5"
It remains to note that F(X) = [|(21 — X)~!|| satisfies
_ _ X-Y|
FX)—FW)| <21 = X)X -Y)(21-Y < X =Y 2
|IF(X) - FY)| < (= ) ( )(2 ) < (T 2)? (6.2)
for X,Y € M4(C)sa, so that the conclusion follows from Corollary 4.14. O

We must now show that || (21 — X)~!|| is small with high probability simultane-
ously for all z = X+ ie with A € sp(X). To create the requisite uniformity in z, we
first need a crude a priori bound on the spectrum of X.

Lemma 6.6. For any t > 0, we have
Plsp(X) C sp(Ay) + (X ){d + }[~1,1] > 1 — e~ 7
Proof. By Weyl’s inequality, we have |\;(X) — X\;(Ao)| < || X — Aol for every i,
where A;(X) denotes the ith largest eigenvalue of X. Thus
sp(X) C sp(Ao) + || X — Ao[[-1,1].

By Cauchy-Schwarz, we can crudely bound

n

Zgi@, Aw)

i=1

|X — Aol = sup

lvl=llwll=1

< o (X)gll-
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Thus we have shown
Psp(X) C sp(Ao) + 0. (X){d+ t}[-1,1]] > P]|lg|| < d +t].

But note that the argument in the proof of Lemma 4.7 shows that we may assume
n < d? without loss of generality. Thus E|g|| < \/n < d. It remains to note that

Pllgll = d+ 1] <P[llgll = Ellgll +t] < e
by Lemma 4.13. O
We are now ready to prove a uniform analogue of Lemma 6.5.
Lemma 6.7. Fize > 0. Then

P21 — )71 < Vel (21— Xigoe) ) + o L2BEF IS 20

(Im z)?

(\[—1—2)( ()) (4+/logd +t) for all z € sp(X) + i Zl—e_g

for allt > 0.

Proof. Define the (nonrandom) set

O :=sp(Ag) + 0. (X){d + t}[-1,1] C R.
As Ap has at most d distinct eigenvalues, €2; is the union of at most d intervals of
length 20, (X){d +t}. We can therefore find N; C Q; of cardinality |N;| < w

such that each A € Q; satisfies d(A\,N;) < 0. (X)t.
Now note that we can estimate as in (6.2)

1-X)7 Y -1 -X)7Y| €« —F—
1= 07 = 1= X) 7 < =g

|z = 2|

and similarly for Xge.. We therefore obtain
_ _ logd + 3)3 9(X)*
P (1 = X)) < VRl (X)) + vE 2L 2O

3 (Im z)?

«(X .
+(\/E+2)gnfz))2t for all z € QtJru—:} >

(logd + 3)® o(X)*
3 (Im 2)®

P [(zl X)) < Vel (1 Xiee) M + Ve
o4 (X)
(Im 2)2

where we used that Imz = Im 2’ = ¢ for 2,2’ € Q4 + ie in the first inequality, and
we used the union bound and Lemma 6.5 in the second inequality. In particular,

(logd + 3)3 o(X)*
(Im z)?

_|_

t for all z €M+i€] >1-— |/\/t|e*t7,

P [n(zl C X)) < Vel (21— Kinee) M+ Ve

(X ¢2
+ (Ve +2) (znfz))gt for all z € sp(X) Jrzs] >1— (M| +1)e =
t+a)? .
by Lemma 6.6. It remains to note that (JNpiq| + 1)e_< T < e~ if we choose
a = 4y/log d (recalling the standing assumption d > 2). O

The proof of Theorem 2.1 now follows readily.
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Proof of Theorem 2.1. Combining Lemmas 6.4 and 6.7 yields
P[sp(X) C sp(Xgree) + C{0(X)(log d)F + 0,.(X)(\/logd + t)}[-1, 1] >1- et

for all ¢ > 0, where C is a universal constant. It remains to note that we can
estimate o, (X)vIogd < 9(X)(logd) 7 as 0. (X) < 5(X). O

6.3. Proof of Corollary 2.2. The deduction of Corollary 2.2 from Theorem 2.1
is nearly immediate; we spell out the details for completeness.

Proof of Corollary 2.2. When Ay, ..., A, € My(C)s, are self-adjoint, the probabil-
ity bound follows immediately from Theorem 2.1. This bound extends directly to
general Ag, ..., A, € My(C) by Remark 2.6. The bound on the expectation is now
obtained by integrating the probability bound. More precisely, we have

E[(|X]| — | Xeel — Co(X)(logd) )]

- / P|X| > | Xeel + C3(X)(log d)? + 5] ds
0

< /Oo o5 /C%a(X)? gg — C'o.(X)
0

for a universal constant C’. It follows that
E||X| < || Xtee| + CH(X)(log d)F + C'o,(X).

It remains to note that as o.(X) < 9(X), the last term may be eliminated at the
expense of choosing a slightly larger universal constant C. O

7. STRONG ASYMPTOTIC FREENESS

The aim of this section is to prove our results on asymptotic freeness that were
formulated in Section 2.3. The proof of Theorem 2.10 is divided into two parts. In
Section 7.1 we will prove weak asymptotic freeness (part a). This part of the proof
is elementary and uses only the basic estimates of Section 4.2; when specialized to
Wigner matrices, it yields a self-contained proof of Voiculescu’s Theorem 4.3. In
Section 7.2, we will prove strong asymptotic freeness (part b) by combining The-
orem 2.1 with the linearization trick of [21] and concentration estimates. Finally,
Corollary 2.11 will be deduced from Theorem 2.10 in Section 7.3.

7.1. Weak asymptotic freeness. The aim of this section is to prove part a of
Theorem 2.10. By linearity of the trace, it evidently suffices to assume

p(Hi,...,Hy) = Hy, - Hy

is a monomial of degree g for some ¢ € Nand 1 < ky,...,k; < m. This assumption
will be made throughout the proof of part a of Theorem 2.10.

Throughout this section, we let H{Y, ..., HY be defined as in Theorem 2.10. We
begin with some preliminary observations. First, we note the following.

q

Lemma 7.1. We have supy ; Eltr |H} — E[H,iv]\q]é < oo for every q € N.

Proof. By assumption, o(H)? = |E(H} — E[H}])?|| = 1+ o(1). The conclusion
follows by the noncommutative Khintchine inequality, cf. [31, §9.8] or [43, §3.1]. O
Before we proceed to the main part of the proof, we perform a simple reduction:

we show that it suffices to assume E[H}Y] = 0. This elementary observation will
avoid unnecessary notational complications.
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Lemma 7.2. Denote HY := HY — E[H}]. Then we have
lim Etr|H - Hy —HY - HY|=0.
N—o0 a q

Proof. Note that
q
=1
Thus
_ _ _ 1 _
Bir|HY - HY — A A < qmax (B (Bt Y + [BLHY][}

by Holder’s inequality. As |E[HY]|| = o(1), it remains to note that Etr |H}|? is
uniformly bounded as N — co by Lemma 7.1. O

By Lemma 7.2, we can assume without loss of generality in the remainder of the
proof of part a of Theorem 2.10 that E[H}] = 0 for all k.

We now turn the the main part of the proof. The basic tool we will use is the
classical Wick formula for Gaussian moments [29, Theorem 22.3], which should be
compared with its free counterpart in Definition 4.2.

Lemma 7.3 (Wick formula). Let g1, ..., gy be i.i.d. standard Gaussians. Then

E[gkll..gk)q]: Z H 6k7ikj

neP2([q]) {i.j}em

for every g > 1 and k1,...,kq € [n].
From the Wick formula, we deduce the following.
Corollary 7.4. Suppose E[HY] =0 for all k € [m], and letk = (k1,...,kq). Then
Eftr By - HY|= > ElrHY - HY ] [ ks

qlm k
7€P2([q]) {r,s}enr
where Hf\|/7r,k’ cee Hé\(mk are jointly Gaussian random matrices defined as follows:
1. Hi\lfﬂ « has the same distribution as H,i\i

2. HJ\(TV,k = Hé\\’mk Zf {7‘,3} cm.

T

3. Hﬂ\l'ﬂ . and Hé\\’w « are independent if v # s, {r,s} € 7.

Proof. As E[H}] = 0, we may write

n
HY =" gii A,
i=1

where g; are i.i.d. standard Gaussians and Ag; € Mg(C)ga. Then
Efte B - Hio [ 0kk = D Ak Argiy [ Okkaii,
{r,s}en 11,..050q {r,s}en
by construction. On the other hand
Eftr Hy - Hpl= Y trAe, Ak, Y [ Okeradi,
11,050g w€P2([q]) {r,s}em

by Lemma 7.3, completing the proof. [
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The main idea that gives rise to weak asymptotic freeness is that the terms in
Corollary 7.4 that correspond to crossing pairings are asymptotically negligible.
This will follow readily from the following lemma.

Lemma 7.5. In the setting of Corollary 7.4, we have

[Bltr B,y Hyle ]| < maxw(HY, BY)" max Bltr [HY 7]

for any crossing pairing m € Pa([q])\NCa2([q]) such that k. = ks for all {r,s} € 7.

Proof. By assumption, the exist {ri, s1}, {r2, s2} € 7 such that r1 < ro < s1 < s9.
Computing the expectation with respect to these indices only yields

E[tr Hi]\"ﬂ',k U Hé\(ﬂ',k] =

N N N N N
E Eltr Huw,k - H Akrlz‘Hr1+1|7r,k T Hr2—1\ﬂ,kAkr2jHr2+1|7r,k T
,J

ri—1|m k

N N N N N
Hsl—l\mkAk?miHsl-i-l\mk e H52—1|7r,kAkr2jH52+1|7r,k e Hq\mk]’
where we used the notation in the proof of Corollary 7.4. Cyclically permuting the
trace, applying Lemma 4.5, and using Holder’s inequality yields
N N N N Nig—41727
|Eftr H1|7T,k T Hq\w,k“ < U)(H/crlekw)4 H Etr |Hkl |7 4] R
lefg]\{r1,r2,51,82}

The conclusion follows readily. (I
On the other hand, the assumption ||E[(H}Y)?] — 1| — 0 implies the following.

Lemma 7.6. In the setting of Corollary 7.4, we have
lim Eftr B} -~ HY ] =1

N —oc0 alm k
for any noncrossing pairing ™ € NCa([q]) such that k, = ks for all {r,s} € .
Proof. Any noncrossing pairing m € NCsy([¢]) must contain at least one adjacent

pair {r,r+1} € 7. By cyclic permutation of the trace, we may assume {¢—1, ¢} € 7.
Computing the expectation with respect to this pair yields

E[tr H{\lfﬂ‘,k T Hﬁw,k] = E[tr H:{\(ﬂ,k T Hé\l;Zlﬂ,kE[(Hé\j;)2]]'

In particular, we obtain using Holder’s inequality

[Bltr Hy, - HjloJ = Blte Hi - HY 5]

q|m.k q
q—2
o1
< |E[HY)?) = 1| [] Eler [HY |72 7=.
k=1

As m\{{q — 1,¢}} € NCx([g — 2]), we may iterate this procedure to obtain
|E[ter\|[7T K --Hé\llﬂ =1 < 4 hax |E[(H}N)?] — 1| max max Eftr |[H}|Y].
’ ’ 2k E I<q

The conclusion follows as ||E[(HY)?] — 1|| — 0 as N — oo by assumption, while
E[tr |HN '] is uniformly bounded for all [ < g and N > 1 by Lemma 7.1. |

The proof of weak asymptotic freeness is now readily completed.
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Proof of Theorem 2.10: part a. By Lemma 7.2, we may assume without loss of gen-
erality that E[H}N] = 0 for all ¥, N. By Lemma 7.6 and Definition 4.2, we have

li N o .
NoSeo Z E[trHllvr,k |7Tk H Okpky = T(Sky =~ Sky)

meNC2([q]) {r.sten

On the other hand, Lemma 7.5 and Proposition 4.6 yield

Z E[tI‘Hf\'fw’k‘ q\'n'k H 5k ks

©€P2([q])\NC2([q)) (rsten
< [P ()| mpx o (HYY o (Y )? max Bler | HY|7-1),

As o(H}) and E[tr |H}Y|~4] are uniformly bounded as N — oo by Lemma 7.1, the
assumption v(H}Y) = o(1) implies the right-hand side vanishes as N — oo. Thus

lim Eftr HY - HY] =7 (s, -~ sx,)
N—oo a 4

for all ¢ € N and 1 < ky,...,k; < m by Corollary 7.4. The conclusion extends
immediately to any noncommutative polynomial p(Hi,... HY) by linearity. ]

7.2. Strong asymptotic freeness. The main idea behind the proof of part b
of Theorem 2.10 is that the behavior of polynomials can be controlled by that
of associated random matrices of the form (2.1). We have already encountered a
very simple form of such a linearization argument in Lemma 3.13, where it was
used to obtain nonasymptotic bounds for sample covariance matrices. As we are
presently interested in asymptotics, we can directly invoke the abstract linearization
argument of Haagerup and Thorbjgrnsen [21, Lemma 1 and pp. 758-760].

Theorem 7.7 (Haagerup-Thorbjgrnsen). Suppose that for every e > 0, d’ € N,
and Ag, ..., Am € My (C)ga, the following holds almost surely:

sp(Ag @1+ > A @ HY) Csp(Ag @ 14 Y0 Ap ® si,) + [—¢, €]
eventually as N — oo. Then

limsup [p(HY ..., HY)| < [p(s1, s0)| - as.

N—o00

for every noncommutative polynomial p.

Let again H{V,..., HY be defined as in Theorem 2.10. Then we may write
ny
N N N pN
H}' = Bjo + nginiv
i=1

where ny € N, B € My(n)(C)sa, and (gli\g)ke[m],ie[nﬁ] are i.i.d. standard Gaussians
for each N (we need not specify the joint distribution for different N, but we assume

all random matrices have been placed on a single probability space). Let us fix in
the following any d’ € N and Ao, ..., A, € Mg (C)sa, and define

N
m My

=" —Ao®1+ZAk®Hk —A0®1+2Ak®3ko+zzAk®B;“)ng
k=1 k=1 k=11i=1
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and its free analogue

N
m Ny

N, = A0®1+2Ak®BkO+ZZAk®Bkz®3kza
= k=11:=1

where (Sgi)k,; is a free semlclrcular family. Then we have the following.

3

Lemma 7.8. If v(HY) = o((logd(N))"2) as N — oo for all k, then
sp(Ao ® 1+ 307, Ak @ HY) € sp(Efee) + [,

eventually as N — oo a.s. for every € > 0.

Proof. As HY¥,..., HY are independent, we have
Cov(E ZCOV A @ HY) :ZL )* @ Cov(HY),
k=1 k=1
where ¢ : My(C) — c® maps a matrix to its vector of entries. As Aq,...,A,, are

fixed, it follows that v(2N) = [|Cov(EN)||z = o((logd(N))~2). On the other hand,

ZA ® E[(HN)?]

)

so |E[(HY)?] — 1| = o(1) implies that a(:N) = O(1). Therefore
P[sp(E") C sp(Eh.e) +en[-1,1]] > 1 — ¢~ (os M)’

by Theorem 2.1 and d(N) > N, where

en = C{3(EN)(log d'd(N))T + 0. (EN)(log d(N))2} = o(1)

as 0. (EN) < v(EN). It remains to note that as Y, e~ (108 N)* < 50, the conclusion
follows from the Borel-Cantelli lemma. ]

On the other hand, |[E[(H}Y)?] — 1|| = o(1) ensures that the spectrum of Zf
concentrates around that of 4o ® 1 + Z;"Zl Aj ® si. This is the analogue in the
present setting of Lemma 7.6 in the previous section. We first prove a special case.

Lemma 7.9. In the special case that E[HY] =0 and E[(HY)?| =1 for all k,
Sp(Egee) = Sp(AO ®1+ Z;cn:lAk ® Sk)'
Proof. In the present setting, we may write
Elgyee = AO ®1+ ZA'IC ® Hlf:\ffrem

k=1
where

g
Hljc\,’free = ZBQ’{ @ Ski
satisfies (id ® 7)((Hj geo)?) = >;(Bfy)? = 1. By Definition 4.2, we may compute

(tr ® T)(Hlé\lf,free T Hli\;,free) = Z Z tr(BI]c\iil T Bljc\giq) H 5krk55iris'

7€NCy([g]) i1,-ig {(rsten

It follows exactly as in the proof of Lemma 7.6 that
(tI‘ Y T)(Hlfz\i,free e Hljc\,g,free) = T(Skl e Skq)
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forallg e N, 1 < ky,..., kg <m, and N > 1. In particular, it follows that
(tr @ 7)((Efee)?) = (tr @ 7)((Ao @ 1+ 371, Ay, © 51)7)

for all ¢ € N. As Egee is a bounded operator, the equality of all moments implies
that the spectral distributions of 2, and Ag®@1+)_," ; Ay®sy, coincide. Therefore,
as tr ® 7 is a faithful state, their spectra coincide as well. (Il

The general case now follows by a perturbation argument.
Lemma 7.10. When |E[H}]|| = o(1) and |E[(HY)?] — 1| = o(1) for all k,
sD(Ztee) € 5P(Ao @ 1+ 300 Ap @ s3,) + [¢, €]
eventually as N — oo for every € > 0.
Proof. Define
Efee = A0 @ L+ D Ak ® Hlpees

k=1
where

S BN @ s + (|E(HY)2]|1 - BI(HY)2)* @ 5
IEI(HN 2|3

Hl?fvfrcc =
and (S, 5k ),; is a free semicircular family. As by construction (id®7)(H,i\,’free) =0
and (id ® T)((Hﬁfree)z) =1, Lemma 7.9 implies that

Sp(égee) = Sp(AO ®1+ Z;cnzlAk ® Sk?)'
Next, we estimate
~ m ~
HEQICC - Egcc | S Z HA]C”{HE[HI?]]” + HHli\,ffrcc - Hli\,ffrcc”}’
k=1
where H ,i\,[free is defined in the proof of Lemma 7.9. Moreover, we have

o||[BI(HN)?]|1 - B[(HY)Y||?
IEL(HY)?])

||Hk[:\,]freeH+

~ 1
||HI£:\,[free_Hl£\,[free|| < 1_71
IE[(HY)?]2

using ||3x|| = 2. Now note that [|E[HY]|| = o(1) and |[E[(H})?] — 1| = o(1) imply
| HY treell = O(1) by Lemma 2.5. Thus the above expressions yield

]\;E)noo ||Egee - Egee” =0.

In particular, this implies by (6.2) that

=N \—1 AN y—1 €
H(Zl - “free) || < H(Zl - “free) || + W
for all z € C, Im z > 0 holds eventually as N — oo for every € > 0. The conclusion
now follows by invoking Lemma 6.4. (]

Before we can conclude the proof, we require a concentration argument.



MATRIX CONCENTRATION AND FREE PROBABILITY 47

Lemma 7.11. If v(HY) = o((log d(N))~2) as N — oo for all k, then
i (lp( L HY)| - Bllp(Y L HY)) =0 as.
A}i_r>noo |trp(HY ..., HN) = E[trp(HY,...,HM)]| =0 a.s.
for every noncommutative polynomial p.

Proof. Fix a noncommutative polynomial p of degree ¢q. Define a function f either as
flo) = llp(HY, ..., HY)| or f(g) = trp(H{,..., H}), where g = (9}) kefm)icinl]-
We may assume without loss of generality that nY < d(N)? as in the proof of
Lemma 4.7, so the random vector g has dimension at most md(N)2.

We begin by estimating as in the proofs of Lemma 7.2 and Corollary 4.14 that

1f(9) = F(@) < Llg—4d'l, L = C(p)A" max o, (Hy')

for all g,g" € Q, where
Q:={g:|HY| <4 forall k}

and C(p) is a constant that depends only on the polynomial p.
By Corollary 2.2 and a union bound, we can estimate

< S PHY| > 4] < me (o5 AN
k=1

eventually as N — oo, where we used that o, (H}) < v(HY) = o((log d(N))~2)
and || HY ool < IB[HY]|| 4 20(H}Y) = 24 o(1) by Lemma 2.5.

As f is L-Lipschitz on €2, the classical Lipschitz extension theorem of Kirszbraun
ensures the existence of a globally L-Lipschitz function f such that f (9) = f(g) for
g € Q. We can therefore estimate for sufficiently large N

E[f(9)] — E[f(9)]| = [E[(f(9) — f(9))Lac]]
= 1
< PO {(E|f(9)1")* + (Bl f(9)]*)7}-
1

< PIQT{(E|f(9)]*)? + [ £(0)| + Lv/md(N)},

where we used Cauchy-Schwarz and that 0 € Q for sufficiently large N. Now
1

note that (E|f(¢g)*)2 < 1+ maxy (E| H}Y||?9)2s by Hélder’s inequality, with a
universal constant depending on p only. It therefore follows from Corollary 2.2 that

(E|f(g)|?)2 is uniformly bounded as N — oo. As |f(0)] is clearly also uniformly
bounded, the estimate P[] < me~1°84(N)° implies that

[E[f(9)] - E[f(9)]] = o(1)
as N — oo. On the other hand, we can compute
P(lf(9) — E[f(9)]| = Llog N] < P[] + P[|f(g) — E[f(9)]| > Llog N]

—(log N) 700% N)

< me + 2e

by Lemma 4.13 and d(N) > N. Thus

|f(9) —E[f(9)]] < Llog N + o(1)

eventually as N — oo a.s. by the Borel-Cantelli lemma. But as o (H}Y) < v(H}Y) =
o((log N)~2), we have Llog N = o(1) as N — oo, and the proof is complete. [
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We can now complete the proof of Theorem 2.10.

Proof of Theorem 2.10: part b. Theorem 7.7 and Lemmas 7.8 and 7.10 yield

limsup [p(HY ..., HY)| < [p(s, . 50| as.

N—o00

for every noncommutative polynomial p. On the other hand, combining part a of
Theorem 2.10 with Lemma 7.11 yields that

lim trp(HY,...,HY) =7(p(s1,...,5m)) a.s.
N—o0

The latter implies

liminf |p(HY, ..., HY)| > liminf tr(|p(HY, ..., HN)[>" )2
N—o0 N—oo
1
= T(‘p(sh sty SM)‘QT)QT
a.s. for every r € N, where we used that [p(H",..., HY)|?>" is again a noncommu-

tative polynomial. Letting » — oo shows that
lim |p(Hy,.... Hy)l = [lp(s1, . sm)]| - as.
N—o00
It remains to note that
lim EHp(H{V, s ,Hﬁ)” = ||p(317 SRR Sm)”
N—o0
now follows from Lemma 7.11. |
7.3. Proof of Corollary 2.11. We finally deduce Corollary 2.11.
Proof of Corollary 2.11. Applying Theorem 2.10 to p(HY) = (HV)" yields
lim |[HY| = |s| and lim te[(HY)"] =7(s") as.
N—o0 N—co

for every r € N, where s is a semicircular variable. As

a7 = [ pntdn), (67) = [0 ),

and as s has bounded support, the first conclusion follows as moment convergence
implies weak convergence |29, p. 116]. The second conclusion follows as ||s|| = 2. O

8. DISCUSSION AND FURTHER QUESTIONS

The aim of this final section is to discuss a number of broader questions that
arise from our main results. We first discuss in some detail to what extent the
parameter v(X) that quantifies noncommutativity in our bounds is natural, and
whether one might hope to improve fundamentally on this parameter. We then
proceed to highlight a number of further questions that arise from our results.

8.1. A canonical parameter o,,(X) cannot exist.
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8.1.1. Is v(X) a natural parameter? In all the results of this paper, the presence of
noncommutativity and of “intrinsic freeness” was quantified by the parameter v(X).
The utility of this parameter is amply demonstrated by the various examples in
Section 3: for example, in the independent entry model, v(X) =< max;; b;; recovers
precisely the small parameter that controls the previously known behavior (1.4)
in this setting, while various models in Section 3.2 illustrate the significance and
near-optimality of our bounds in dependent situations.

Nonetheless, it is not difficult to find examples where both v(X), and the slightly
improved parameter sup y w(X1") discussed in Remark 5.6, fail to capture the cor-
rect behavior of Gaussian random matrices. A particularly disconcerting aspect of
these parameters is the following. Let X be any random matrix of the form (2.1);
then X ®1 is again a model of this form, where we tensor on any finite-dimensional
identity matrix. Tensoring on an identity clearly has no effect on the spectrum of
the matrix: in particular, sp(X ®1) = sp(X) and 0(X ®1) = ¢(X). This invariance
fails dramatically, however, for the parameters v(X) and w(X).

Lemma 8.1. Let 1y be the identity in My (C). Then for any self-adjoint d x d
random matriz X of the form (2.1), we have

v(X ®1y) = VNu(X) for N >1,
w(X ®@1y) =0(X) for N > d.

Proof. We have Cov(X ® A) = Cov(X)®¢t(A)(A)* for any deterministic matrix A,
where ¢ : My(C) — €% maps a matrix to its vector of entries. Thus (X ® A)? =
v(X)?||A||%s, and the first claim follows as [|[1x|ns = V/N.

To prove the second claim, let N > d, and define U € M4(C) @ My (C) by
Ule; ®ej) =ej @e; for i,j € [d] and U(e; ® e;) = 0 otherwise. Then ||U]| =1 and

(A )U4; @ WU(Ae)UMA;0 1)U =Y Al P(ZA?) P,
2 i i
where P : C? — CV denotes the canoncial embedding Pe; = e;. Thus w(X ® 1) >
o(X) by the last equation display in the proof of Lemma 4.5. On the other hand,
wX ®1)<o(X ®1)=o0(X) by [41, Proposition 3.2|. O

Lemma 8.1 shows that no matter how well our bounds capture the behavior of the
random matrix X, applying our results to X ® 14 can never yield any improvement
over the noncommutative Khintchine inequlity (1.2)—despite that tensoring an
identity has no effect on the spectrum of the matrix. This observation may lead one
to conjecture that the theory of this paper should admit a far-reaching improvement,
in which v(X) is replaced by a “natural” parameter that captures correctly the
behavior of the spectrum. For example, it was conjectured in [41, 43, 5] that there
exist bounds of the kind that are studied in this paper, where the parameter v(X)
is replaced by the “natural” parameter o, (X).

Somewhat surprisingly, such conjectures turn out to be ill-founded. We will
presently show that the kind of behavior that is captured by Lemma 8.1 is a fun-
damental feature of any bound of the form (1.5).

8.1.2. An impossibility theorem. Suppose we are given a matrix parameter o (X)
such that the inequality for d x d centered Gaussian random matrices

E||X|| < Co(X)+ Co.(X)(logd)? (8.1)
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is valid for universal constants C, 8 > 0. In view of the above discussion, we may aim
to find an inequality (8.1) that respects the simplest properties of the spectral norm:
the triangle inequlity || X + Y| < || X|| + ||Y||; unitary invariance [|[U*XU|| = || X|[;
and tensor invariance || X ® 1|| = || X||. Note that all three properties are satisfied
also by the parameter o(X). In order for (8.1) to respect these properties, one
would have to assume that the parameter o..(X) satisfies these properties up to a
universal constant. Let us formalize these requirements as follows:

(1> U**(Xl + X2) S CI{U**(XI) + U**(X2>}
(2) 0. (U*XU) < €', (X) for any non-random unitary matrix U.
(3) 0ux (X ®1n) < C'0ss(X) for any N € N.

Here C' always denotes a universal constant.

The noncommutative Khintchine inequality (1.2), which corresponds to the case
0.:(X) = o(X), satisfies all the above requirements but does not capture any
noncommutativity. We therefore introduce as a further assumption that the second
term of (8.1) becomes negligible at least in the simplest model of random matrix
theory, the standard Wigner matrices G of Definition 1.1.

(4) 04 (GN) = 0((log N)~#) as N — 0.

Remarkably, the above very natural properties prove to be mutually contradictory.

Proposition 8.2. Suppose that (8.1) is valid for some universal constants C, j3.
Then at least one of the properties (1)-(4) must fail for any choice of C".

Proof. Let GY¥,...,GXN be ii.d. standard Wigner matrices of dimension N, and
consider the N"-dimensional Gaussian random matrix

nN—E 1y ®- ®1N®Gk®1N® - ®1n.
ﬁ_/ —_————
n—k

We will show that if properties (1)—(4) hold for some universal constant C’ > 1,
this entails a contradiction. Indeed, properties (1)—(3) yield

1 & )
O'**(Xn)N) S Z(C/)k U**(lNk—l ®Gj]€v®1Nn—k)
k=1
(2) k+1
< Z o (GE @ Lyn)
k=1

n

(3)

while we may readily compute J(XmN) = /n. Thus we obtain
lim sup B[ X,, v || < Cv/n
N —o0

by (8.1) and property (4).
On the other hand, the tensor product structure of X, x implies that

HXn NH > )\mdx n, Z)\mdx GN
k=1
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pointwise, where A .x denotes the maximal eigenvalue. We therefore obtain

2n < limsup E|| X, || < Cv/n
N—oc0
by Corollary 2.11. As n is arbitrary, this yields the desired contradiction. O

A special case of Proposition 8.2 disproves the conjecture made in [41, 43, 5]:
the parameter o, (X) satisfies all four properties (1)—(4), and thus an inequality of
the form (8.1) with 0., (X) = 0.(X) cannot hold.

More generally, Proposition 8.2 shows that no parameter o,.(X) can be expected
to avoid the kind of “unnatural” behavior that was identified in Lemma 8.1. The
construction in the proof of Proposition 8.2 suggests a clear explanation of why this
must be the case. The summands in the definition of X, 5 behave as independent
variables in the classical (commutative) sense, as opposed to free independence.
However, if properties (1)—(4) hold, such models can give rise to a small parameter
04(X), so that (8.1) would imply that they behave as their free counterparts up
to a universal constant. These two phenomena stand in contradiction.

8.1.3. The dimension threshold. The second identity of Lemma 8.1 shows that our
results fail to capture any noncommutative behavior when we tensor a random
matrix X by an identity of the same dimension. On the other hand, for standard
Wigner matrices G, we have o(GV ® 1pvy) =1 and

D(N
’U(GN®]_D(N))X %<<U(GN®1D(N))

as soon as D(IN) < N. Thus the case where a random matrix is tensored by an
identity of proportional dimension appears as the threshold at which our ability to
capture “intrinsic freeness” breaks down.

This phenomenon has an unexpected connection to certain questions in the the-
ory of operator algebras. In the rest of this section, let GIV,... GN HN ... HYN
be independent GUE matrices (that is, self-adjoint N x N matrices with i.i.d. cen-
tered complex Gaussian variables of variance 7 on and above the diagonal). In the
recent work [22], it was shown that if strong convergence

lim ||p(GY @1n,...,GN @1y, 1n @ HY,...,1xn @ HY)| =
N—o0
lp(s1®1,...,8°, ®1L,1®51,...,1®58,)| as.

were to hold for all polynomials p,? this would settle a conjecture of Peterson and
Thom in the theory of Von Neumann algebras. Using the results of this paper,
a slightly weaker fact can be proved. As the following result is only tangentially
related to the rest of this paper, we will sketch its proof.

Proposition 8.3. We have
Jm (G @ Loy, Gl @ 1o, Iy @ HP™ L 1y @ HEV)| =
Ip(s1®1,...,8, ®1,1®s1,...,1 @ s,)|] as

for every noncommutative polynomial p, provided D(N) = o(ﬁ).

2Throughout this section ® always denotes the minimal tensor product of C*-algebras.
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While this does not suffice for the purpose of [22], which requires D(N) = N,
the result was previously known only for D(N) = o(N3) [13, Theorem 1.2].%

Sketch of proof of Proposition 8.3. Fix a dimension d’ € N and self-adjoint matrices
Aoy ..oy A, B1y ..., By € Mg (C)ga. Define the random matrix

XN =A@ 1y @1pw + Y Ak @GY @ 1payy + Y Br® 1y @ HY™.
k=1 k=1
The assumption on D(N) implies that v(}";"; Ax @ Gy @ 1pny) = o((log N)~%).
As (GY)k<m and (H,?(N))kgm are independent, we can apply Theorem 2.1 condi-
tionally on (H ,f) (N))kgm, Lemma 7.9, and the Borel-Cantelli lemma to show that

sp(XN) C sp(Ao@1®1 )+, Ak @8k @1 p+ 5 By @10 HY M)+ [—¢, €]

eventually as N — oo a.s. for every € > 0.

On the other hand, let A be the unital C*-algebra generated by {s1,...,sm}-
Then My (C) ® A is an exact C*-algebra, cf. [22, p. 27] and the references therein.
Therefore, [21, Theorem 9.1] and [14, Proposition 2.1] imply that

sp(Ag ® 1@ Lpn) + 371 Ak @ sp @ Ipvy + X By @ 1@ HY ™) €
sp(Ag@1@1+ 31 Ay @8, @1+ Y0 B @1 @ sg) + [—¢,¢]
eventually as N — oo a.s. for every € > 0. Linearization as in Theorem 7.7 yields

lijl\r/nsuPHp(G{V ®1D(N)""’G%®1D(N)a1N®H1D(N),...7]_N ®H£(N))||
— 00

<p(s1®1,...,8, L, 1R 81,...,1Qs,)| as.

for every noncommutative polynomial p. The reverse inequality follows from weak

asymptotic freeness of (G{ )x<m and (H,?(N))kgm and concentration of measure as
in the analogous part of the proof of Theorem 2.10. (]

8.2. Further questions. We conclude this paper by highlighting some basic ques-
tions that arise from our main results.

8.2.1. Sharp inequalities. As was explained in the previous section, there cannot
exist a canonical inequality of the form (1.5) that captures correctly the structure of
all Gaussian random matrices. However, even if we restrict attention to parameters
such as v(X), the main results of this paper fall slightly short of recovering the
previously known results for the independent entry model: the logarithmic term
(logd)? in (3.3) is slightly worse than the term v/Iogd in (3.2).

The power on the logarithm is relevant only for models that are right at the
threshold where “intrinsic freeness” breaks down, and is insignificant in most appli-
cations. It is nonetheless an interesting question whether the results of this paper
can be refined so that they recover previously known results such as (3.2) as a
special case. This would be the case, for example, if one could prove that

?
EHX” < ||Xfree|| +C'U(X)\/@

3After the initial version of this paper appeared, a complete solution of the Peterson-Thom
conjecture was proposed in [7] using methods specific to GUE matrices. We retain Proposition 8.3
to illustrate what may be achieved by the completely general methods of this paper.
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Corollary 2.2 falls short of such a bound in two ways: it has a suboptimal power
on the logarithm (logd)?, and it involves the parameter 9(X) rather than v(X).
(Replacing §(X) by supy w(X?V), as in Remark 5.6, would not suffice to recover
the behavior of the independent entry model, cf. [41, §3.8].)

Somewhat surprisingly, however, it turns out that many results of this paper
are already optimal even for the independent entry model. For example, if X is a
standard Wigner matrix of dimension d, then ¢(X) = 1 and v(X) = 21/2d~'/2, 50

that Theorem 2.8 shows that the matrix Stieltjes transforms satisfy
IG(Z) = Gree(Z)|] S d7H|(Im 2) 7.

However, it is shown in [35, Theorem 4.4] that the d~! rate is sharp in this example.
Thus the conclusion of Theorem 2.8 is essentially optimal in this sense, and in
particular it is impossible to replace 9(X) by v(X) in this result. In fact, this
optimality can be traced back to the most basic ingredient of the proofs in this
paper: one may readily verify that in the example of a standard Wigner matrix

1
Ztr[AiAinAj] = g,

ij

so that the bounds of Lemma 4.5 and Proposition 4.6 are already the best possible.
In view of these examples, it seems likely that the general methods of this paper
cannot be significantly improved by technical refinements alone: our methods show
that the entire spectrum of X behaves as that of Xpee, and do not enable us to
observe a quantitative distinction between the bulk and edges of the spectrum.

8.2.2. Universality. Throughout this paper we have been primarily concerned with
Gaussian random matrices, and our proofs make heavy use of Gaussian analysis. In
contrast, classical matrix concentration inequalities [39] apply to much more general
non-Gaussian models X = >""" | Z;, where Z; are arbitrary independent centered
random matrices. It has long been known, however, that such non-Gaussian in-
equalities can be deduced from the corresponding Gaussian inequalities [33, 40].
The idea behind this approach is that a routine symmetrization argument yields

n n
E| Y Z|| < V2rE| Y g2
i=1 i=1
where g1,..., g, are i.i.d. standard real Gaussian variables that are independent of
Z1,...,Zy. If one conditions on the matrices Z; on the right-hand side, one is left

with a Gaussian random matrix. This approach makes it possible to derive non-
Gaussian inequalities, such as the widely used matrix Bernstein inequality, from
the Gaussian noncommutative Khintchine inequality.

In a preprint version of this paper, we used the symmetrization approach to de-
rive a non-Gaussian inequality from our main results, which superficially resembles
the bound of Theorem 1.4. Unfortunately, however, this approach proves to be
unsatisfactory in the present setting for several reasons.

e The symmetrization method necessarily results in the loss of a universal constant.
It is therefore unable to capture the sharp nature of our main results.

e The symmetrization method can only be applied to convex functionals such as
the spectral norm. It therefore does not provide access to other spectral statistics,
such as the support of the spectrum or Stieltjes transforms.
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e In our context, symmetrization gives rise to a term of the form max; Tr[Zf]% that
captures the deviation from Gaussianity. In contrast, the analogous quantity that
arises in classical matrix concentration inequalities is max; || Z;||, which can be
much smaller. (This inefficiency arises from the quantity v(X) in our bounds,
whose definition involves Hilbert-Schmidt norms; cf. section 1.3.1.)

Even if one were only interested in the norms of random matrices up to a universal
constant, the last issue can be a severe limitation in applications.

The follow-up work [10] resolves these issues by establishing a universality prin-
ciple, which yields sharp nonasymptotic bounds on the deviation of the spectrum of
the non-Gaussian model X = >""" | Z; from that of the Gaussian random matrix G
whose entries have the same mean and covariance as those of X. This makes it pos-
sible to obtain direct analogues of the main results of this paper for the independent
sum model by applying the Gaussian bounds to G.

From a broader viewpoint, the results of the present paper and of [10] suggest
that the study of a broad class of random matrices can be separated into two
largely independent problems: a universality principle, which shows that a non-
Gaussian and Gaussian model behave alike; and the “intrinsic freeness” principle
of the present paper, which relates the spectral properties of the Gaussian model
to explicitly computable deterministic quantities in free probability theory. It is
an interesting question whether there are general non-Gaussian models of random
matrices, beyond the independent sum model, that admit analogous universality
principles. When combined with the results of this paper, such principles would
immediately give rise to new kinds of sharp matrix concentration inequalities.

8.2.3. Reverse bounds on the spectrum. The results of Section 2.2 yield two-sided
bounds on the spectral statistics of X in terms of Xg.c.. In contrast, Section 2.1 only
yields one-sided bounds on the support of the spectrum: we show that sp(X) C
Sp(Xtree) + [—¢, €] with high probability. When one is interested in asymptotics,
the latter is usually the difficult direction, while the reverse inclusion follows rather
easily from weak bounds on the spectral statistics. It is not clear, however, how to
obtain nonasymptotic bounds of the form sp(Xgee) C sp(X) + [—¢,¢].

To illustrate where the difficulty lies, let us derive a two-sided bound on the
spectral norm || X|| from Theorem 2.7. As X is a d x d matrix, we have

75X < (ir |X )7 < || X
pointwise. Thus Theorem 2.7 and Corollary 4.14 yield

E|X|=(1+0(1)) (tr®T)(\Xfm|2p)ﬁ when :;E))g <p-

[N

< (logd)~2.

However, while (tr ® T)(\Xfree|2p)ﬁ < || Xtree|| holds trivially, it is not clear how
one can reverse this bound for Xge.. Precisely the same issue arises in the proof
of Theorem 2.1: obtaining a reverse bound would require a lower bound on the
moments of the resolvent of Xf.ce (cf. Lemma 6.5).

Resolving this issue would require a quantitative understanding of the concen-
tration of the mass of the spectral distribution of Xg.e.. Under restrictive model
assumptions (“flatness”), the results of [1] provide a detailed study of the regularity
of the spectral distribution. However, sufficiently precise quantitative bounds that
are applicable to general random matrix models do not appear to be known to date.
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