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Abstract
We consider an inverse shape problem coming from electrical impedance
tomography with a Robin transmission condition. In general, a boundary con-
dition of Robin type models corrosion. In this paper, we study two methods for
recovering an interior corroded region from electrostatic data. We consider the
case where we have small volume and extended regions. For the case where the
region has small volume, we will derive an asymptotic expansion of the current
gap operator and prove that a MUSIC-type algorithm can be used to recover
the region. In the case where one has an extended region, we will show that the
regularized factorization method can be used to recover said region. Numerical
examples will be presented for both cases in two dimensions in the unit circle.

Keywords: electrical impedance tomography, MUSIC algorithm, factorization
method

(Some !gures may appear in colour only in the online journal)

1. Introduction

The problem we consider in this paper is motivated by electrical impedance tomography (EIT).
The goal in EIT is to reconstruct interior defects from the measured electrostatic data on the
surface of an object. This corresponds to an inverse shape problem where the knowledge of
the solution to a boundary value problem is used to recover unknown interior regions. Here we
are interested in reconstructing a subregion where a transmission condition is imposed. This
transmission condition is given by a Robin type boundary condition which models corrosion in
the case of EIT. The Robin condition we consider gives that the jump in the normal derivative
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across the corroded boundary is proportional to the electrostatic potential. In nondestructive
testing, one wishes to recover the location of all possible corroded regions in a given material.
The corrosion would correspond to defects in the material that one wishes to recover without
corrupting the integrity of a possibly healthy material. See [8, 9, 16, 23, 35] for more discussion
on the theory and applications of EIT.

In this paper, we will assume that voltage is applied to the known exterior boundary and the
induced current is measured also on the exterior boundary. Mathematically speaking, we are
interested in deriving an algorithm for recovering the unknown region given the Dirichlet-to-
Neumann mapping on the exterior boundary. In [24, 25] the authors have studied the inverse
parameter problem for the EIT problem with a Robin transmission condition. In the aforemen-
tioned papers, the authors studied the uniqueness, stability and numerical reconstruction for
the inverse parameter problem using the Neumann-to-Dirichlet mapping, whereas we study
the inverse shape problem, proving that the Dirichlet-to-Neumann mapping uniquely recovers
the region of interest. We also derive imaging functionals for reconstructing the region.

In order to solve the inverse shape problem, we will develop two qualitative reconstruction
methods. One of the main advantages of using qualitative methods is that they generally require
little a priori knowledge of the unknown region. Whereas one of the main disadvantages of
using iterative methods is that they require a ‘good’ initial estimate for the unknown region
and/or parameters to insure that the iterative process will converge to the unique solution of
the inverse problem. To avoid requiring any additional a priori knowledge of the region of
interest we will analyze two qualitative methods. These methods usually require little to no
a priori knowledge of the region of interest denoted D ⊂ Rd. This is done by connecting the
region of interest to the range of the measured Dirichlet-to-Neumann mapping. Therefore, we
can characterize the unknown region D by the spectral/singular-value decomposition of the
measured data operator. This makes the numerical implementation of these methods compu-
tationally simple since one only needs to compute the spectral/singular-value decomposition
of the discretized operator, which is more cost effective in contrast to the steps required to
derive an effective iterative method i.e. solving (multiple) adjoint problems at each step in the
iteration.

Here we will consider a MUltiple SIgnal Classi!cation (MUSIC)-type algorithm for recov-
ering small volume regions. This method has been used in many imaging modalities such as
acoustic [3, 11, 37], electromagnetic [13, 14, 36], and elastic [21, 38] inverse scattering. To
derive the MUSIC algorithm, we will need to exploit the fact that the regions of interest have
small volume. To this end, we will need to derive a suitable asymptotic expansion for the
Dirichlet-to-Neumann mapping associated with this problem. We will also consider the regu-
larized factorization method for solving the inverse problem with extended regions of interest.
This regularized variant of the factorization method was initially studied in [26] for a simi-
lar problem coming from diffuse optical tomography. This method is based on the analysis in
[5, 6, 20, 31]. The analysis we present here for the small volume and extended regions works in
both R2 or R3 making these methods robust in their applications. We will see that the MUSIC
algorithm can recover small volume regions with a !nite data set, whereas recovering extended
regions requires full knowledge of the DtN mapping.

The rest of the paper is organized as follows. In section 2 we will rigorously de!ne the
direct and inverse problem under consideration. Here we will !rst consider the well-posedness
of the direct problem and de!ne the current gap operator (Λ− Λ0) that will be used to derive our
imaging functionals. Then, we consider the asymptotic expansion of the current gap operator in
section 3. Using the asymptotic expansion we will derive the MUSIC algorithm for recovering
the components of the region D. We will then consider the case for an extended region in
section 4. To this end, we further analyze (Λ− Λ0) in order to derive a suitable factorization
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to apply the theory in [26] to derive an ef!cient imaging functional to reconstruct the shape
of D. In sections 3 and 4 numerical examples are presented in R2 to validate the analysis of
the studied imaging functionals. Lastly, in section 5 we will end the paper by summarizing the
results as well as giving an outlook on possible future projects in this direction.

2. The direct and inverse problem

We begin by considering the direct problem associated with the electrostatic imaging of a
defective region with a Robin transmission condition on its boundary. Assume that Ω ⊂ Rd

is a simply connected open set with Lipshitz boundary ∂Ω. Let D ⊂ Ω be a (possibly multi-
ple) connected open set with class C2 boundary ∂D. We assume that dist(∂Ω, D) > 0. For the
material with defective region(s), we de!ne u ∈ H1(Ω) as the solution to

−∆u = 0 in Ω\∂D with u|∂Ω = f and [[∂νu]]|∂D = γu|∂D (1)

where

[[∂νu]]|∂D := (∂νu+ − ∂νu−)
∣∣
∂D

for a given f ∈ H1/2(∂Ω). For the rest of the paper, we let ν denote the unit outward normal
on the boundaries ∂D and ∂Ω.

Here, the function u is the electrostatic potential for the defective material. The ‘+’ notation
represents the trace taken from Ω\D and the ‘−’ notation represents the trace taken from D.
This Robin transmission condition in (1) models the corrosion of ∂D and states that the jump
in current across this boundary is proportional to the electrostatic potential u. Furthermore,
since we assume that u ∈ H1(Ω), it is known that [[u]]|∂D = 0. This comes from the fact that
any function in H1(Ω) has equal interior trace ‘−’ and exterior trace ‘+’ on any subdomain of
Ω. The analysis in the following sections holds for dimensions d = 2 and d = 3.

We assume that the transmission parameter γ ∈ L∞(∂D). For analytical purposes of well-
posedness of the direct problem and the upcoming analysis of the inverse problem, we assume
for the rest of the paper that there are constants γmax and γmin such that

0 < γmin ! γ(x) ! γmax for a.e. x ∈ ∂D.

We now begin by showing that the boundary value problem (1) is well-posed for any given
f ∈ H1/2(∂Ω). To this end, we consider Green’s 1st theorem on the region Ω\D

∫

Ω\D
∇u · ∇ϕ dx =

∫

∂Ω
ϕ∂νu ds −

∫

D
ϕ∂νu+ ds

as well as Green’s 1st theorem on the region D
∫

D
∇u · ∇ϕ dx =

∫

∂D
ϕ∂νu− ds

for any test function ϕ ∈ H1(Ω). The variational formulation for (1) is given by adding these
two equations

∫

Ω
∇u · ∇ϕ dx =

∫

∂Ω
ϕ∂νu ds −

∫

∂D
ϕγu ds (2)
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where we have used the Robin transmission condition on ∂D. Before proceeding, we let u0 ∈
H1(Ω) be the harmonic lifting of the Dirichlet data such that

−∆u0 = 0 in Ω with u0|∂Ω = f . (3)

We make the ansatz that the solution can be written as u = v + u0 with the function v ∈ H1
0(Ω)

where we de!ne the space as

H1
0(Ω) = {ϕ ∈ H1(Ω) : ϕ|∂Ω = 0}

with the same norm as H1(Ω). Thus, the variational formulation of (1) with respect to v is given
by

A(v,ϕ) = −A(u0,ϕ) for all ϕ ∈ H1
0(Ω) (4)

where the sesquilinear form A(·, ·) : H1
0(Ω) × H1

0(Ω) (→ C is given by

A(v,ϕ) =

∫

Ω
∇v · ∇ϕ dx +

∫

∂D
γ v ϕ ds.

It is clear that the sesqulinear form is bounded whereas the coercivity on H1
0(Ω) can be shown

by the assumptions on γ as well as the Poincaré inequality. We also have that A(u0,ϕ) is a
conjugate linear and bounded functional acting on H1

0(Ω) and using the trace theorem we have
that

|A(u0,ϕ)| ! C‖ f ‖H1/2(∂Ω)‖ϕ‖H1(Ω).

By the Lax–Milgram lemma, there is a unique solution v to (4) satisfying

‖v‖H1(Ω) ! C‖ f ‖H1/2(∂Ω).

Using the sesquilinear form A(·, ·), we can show that the solution u for equation (1) is unique
just as in [27], which implies that equation (1) is well-posed. The above analysis gives the
following result.

Theorem 2.1. The solution operator corresponding to the boundary value problem (1)
f (→ u is a bounded linear mapping from H1/2(∂Ω) to H1(Ω).

We now assume that the voltage f is applied to the outer boundary ∂Ω and the measured
data is given by the current ∂νu. From the knowledge of the measured currents, we wish to
derive two different types of qualitative sampling algorithms to determine the defective region
D without the knowledge of the transmission parameter γ and with little to no prior knowledge
on the number of regions. To this end, we de!ne the data operator that will be studied in
the following sections to derive our algorithms. Note that the function u0 is the electrostatic
potential for the healthy material and is known since the outer boundary is known. By the
linearity of the partial differential equation and boundary conditions on ∂Ω and ∂D, we have
that the voltage to electrostatic potential mappings

f (−→ u and f (−→ u0

are bounded linear operators from H1/2(∂Ω) to H1(Ω). We now de!ne the Dirichlet-to-
Neumann (DtN) mappings as

Λ and Λ0 : H1/2(∂Ω) −→ H−1/2(∂Ω)
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where

Λ f = ∂νu|∂Ω and Λ0 f = ∂νu0|∂Ω.

By appealing to theorem 2.1 and the well-posedness of (3), we have that the DtN mappings are
bounded linear operators by trace theorems. Our main goal is to solve the inverse shape problem
of recovering the boundary∂D from the knowledge of the difference of the DtN mappings. This
difference on the outer boundary ∂Ω is the current gap imposed on the system by the presence
of the defective region D. By analyzing the data operator (Λ− Λ0), we wish to solve the inverse
shape problem by deriving computationally simple algorithms to detect the defective region(s)
via qualitative methods.

3. Recovering regions of small volume

In this section, we will develop the MUSIC algorithm for solving the inverse problem under
consideration. The goal is to !rst, derive an asymptotic expansion of the current gap operator
(Λ− Λ0). Then, being motivated by analysis in [30, 33], we will derive an analog of the multi-
static response matrix derived from the current gap operator for this inverse shape problem.
The asymptotic analysis here is different from the typical techniques used in [2, 22, 33]. See
for e.g. [4, 12] for application to inversion from the asymptotic analysis. In the aforementioned
papers, the authors use asymptotic results for the inverse associated with the double-layer
potential operator. Here our analysis is based on a representation of the current gap operator
using boundary integrals.

3.1. MUSIC algorithm

We now begin our analysis of the asymptotic expansion of the current gap operator (Λ− Λ0)
applied to the known voltage f ∈ H1/2(∂Ω). The operatorΛ is known from measurements and
Λ0 is given from direct calculations. The asymptotic analysis will allow us to reconstruct the
unknown region in the case when |D| = O(εd), where d = 2 or 3 is the dimension, i.e. when
the region has small volume. We let

D =
J⋃

j=1

D j with D j = (x j + εB j) such that dist(xi, x j) " c0 > 0 (5)

for i += j where the parameter 0 < ε , 1 and Bj is a domain with C2 boundary centered at
the origin such that |B j| = O(1). We also assume that the regions D j are disjoint. Now, we
de!ne the Dirichlet Green’s function for the negative Laplacian for the known domain Ω as
G(·, z) ∈ H1

loc(Ω\{z}), which is the unique solution to the boundary value problem

−∆G(·, z) = δ(· − z) in Ω and G(·, z)|∂Ω = 0.

For any !xed z ∈ Ω, we use Green’s 2nd theorem similarly as in section 2 to obtain the
representation

−(u − u0)(z) =

∫

Ω
(u − u0)(x)∆G(x, z) dx =

∫

∂D
G(x, z)[[∂νu(x)]] ds(x)

=

∫

∂D
G(x, z)γ(x)u(x) ds(x)

5
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where we used the Robin transmission condition on the interior boundary ∂D. By taking the
normal derivative, we have that for all z ∈ ∂Ω

(Λ− Λ0) f (z) = −
∫

∂D
γ(x)u(x)∂ν(z)G(x, z) ds(x)

= −
∫

∂D
γ(x)u0(x)∂ν(z)G(x, z) ds(x)

−
∫

∂D
γ(x)(u − u0)(x)∂ν(z)G(x, z) ds(x) (6)

where the integrands are continuous with respect to z ∈ ∂Ω and ∂ν(z) denotes the normal deriva-
tive with respect to z. We claim that (6) is dominated by the !rst integral. In other words, the
current gap for f at any z ∈ ∂Ω can be approximated by using the harmonic lifting u0 restricted
to the inner boundary instead of the unknown electrostatic potential u.

The following estimates will help us in our asymptotic analysis of (6). We will use the
following trace theorem (see for e.g. theorem 1.6.6 in [7])

‖ϕ‖2
L2(∂D) ! C‖ϕ‖L2(D)‖ϕ‖H1(D) (7)

for all ϕ ∈ H1(Ω) and all D ⊂ Ω. A simple change of variables shows that the constant in (7) is
independent of the parameter ε. We also use the estimate derived in theorem 3.1 of [10], which
states that for all ϕ ∈ H1(Ω) with D ⊂ Ω such that |D| = O(εd), we have that

‖ϕ‖L2(D) ! C ε
d
2

(
1− 2

p

)

‖ϕ‖H1(Ω) (8)

where p " 2 in d = 2 and 2 ! p ! 6 in d = 3. This estimate is proven by using the Sobolev
embedding of H1(Ω) into Lp(Ω) (see for e.g. chapter 5 of [1]). Using (7) and (8), we prove that
u0 approximates u when D has small volume.

Lemma 3.1. For all f ∈ H1/2(∂Ω), let u and u0 be the solutions to (1) and (3), respectively.
Then, we have that

‖u − u0‖H1(Ω) ! C ε
d
2

(
1− 2

p

)

‖ f ‖H1/2(∂Ω)

provided that |D| = O(εd) where p " 2 in d = 2 and 2 ! p ! 6 in d = 3.

Proof. Notice that, u − u0 ∈ H1
0(Ω) so we have that ‖u − u0‖H1(Ω) ! C‖∇(u − u0)‖L2(Ω) by

the Poincaré inequality. Therefore, appealing to Green’s 1st theorem as in the previous section
to obtain (2) we have that

∫

Ω
|∇(u − u0)|2 dx = −

∫

∂D
γu(u − u0) ds ! γmax‖u‖L2(∂D)‖u − u0‖L2(∂D).

Now, by using the estimates in (7) and (8), we have that

‖u‖L2(∂D)‖u − u0‖L2(∂D) ! C‖u‖1/2
L2(D)‖u‖1/2

H1(D)‖u − u0‖1/2
L2(D)‖u − u0‖1/2

H1(D)

! Cε
d
2

(
1− 2

p

)

‖u‖H1(Ω)‖u − u0‖H1(Ω).

This proves the claim by appealing to the well-posedness of (1). #

6
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From the above lemma, we have shown that u can be approximated by u0 in norm when |D|
is small. Under the same assumption, we will use the previous lemma along with (7) and (8)
to compare the magnitudes of the two integrals from equation (6). We begin by analyzing the
second integral and provide the following results.

Lemma 3.2. For z ∈ ∂Ω and |D| = O(εd), we have that
∫

∂D
γ(x)(u − u0)(x)∂ν(z)G(x, z) ds(x) = O

(
εd) as ε→ 0.

Proof. In order to prove the claim, we must estimate
∣∣∣∣
∫

∂D
γ(x)(u − u0)(x)∂ν(z)G(x, z) ds(x)

∣∣∣∣

! C‖u − u0‖1/2
L2(D)

‖u − u0‖1/2
H1(D)

‖∂ν(z)G(·, z)‖L2(∂D)

! Cε
d
4

(
1− 2

p

)

‖u − u0‖H1(Ω)‖∂ν(z)G(·, z)‖L2(∂D)

! Cε
3d
4

(
1− 2

p

)

‖ f ‖H1/2(∂Ω)‖∂ν(z)G(·, z)‖L2(∂D)

where we have used (7) and (8), and lemma 3.1 in order. We also have that

‖∂ν(z)G(·, z)‖L2(∂D) ! C‖∂ν(z)G(·, z)‖H1(D)

! C
√

εd‖G(·, z)‖2
C1(D)

+ εd‖G(·, z)‖2
C2(D)

! Cεd/2‖G(·, z)‖C2(Ω∗)

where we have used (7) for ∂ν(z)G(·, z) on ∂D. The region Ω∗ satis!es that D ⊂ Ω∗ ⊂ Ω for all
0 < ε , 1 with dist(∂Ω, Ω∗) > 0. Thus, we have that for all z ∈ ∂Ω

∣∣∣∣
∫

∂D
γ(x)(u − u0)(x)∂ν(z)G(x, z) ds(x)

∣∣∣∣ ! Cε
d
2

(
5
2−

3
p

)

‖ f ‖H1/2(∂Ω). (9)

For d = 2, we recall that p " 2. In order to prove the claim, we impose the condition that

2 =
5
2
− 3

p
making the exponent of ε equal to d = 2 in (9),

which yields that p = 6. From the above inequality we get that
∫

∂D
γ(x)(u − u0)(x)∂ν(z)G(x, z) ds(x) ! Cε2‖ f ‖H1/2(∂Ω).

Similarly, for d = 3, we recall that 2 ! p ! 6. Again, to prove the claim we impose that

3 =
3
2

(
5
2
− 3

p

)
again making the exponent of ε equal to d = 3 in (9),

which yields that p = 6. Thus, we have that
∫

∂D
γ(x)(u − u0)(x)∂ν(z)G(x, z) ds(x) ! Cε3‖ f ‖H1/2(∂Ω).

7
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Therefore, for both d = 2 and d = 3 taking p = 6, we have that
∫

∂D
γ(x)(u − u0)(x)∂ν(z)G(x, z) ds(x) = O

(
εd) as ε→ 0

which proves the claim. #
Next, we show that the !rst integral in (6) is order O(εd−1). From this, equation (6) will imply

that the !rst integral is the leading order term, rendering the second integral as negligible. The
following lemma is key in deriving the asymptotic expansion.

Lemma 3.3. For all z ∈ ∂Ω where D is given by (5) we have that as ε→ 0

∫

∂D
γ(x)u0(x)∂ν(z)G(x, z) ds(x) = εd−1

J∑

j=1

|∂B j|Avg(γ j)u0(x j)∂ν(z)G(x j, z) + O(εd)

where Avg(γ j) is the average value of γ on ∂Dj.

Proof. By equation (5), we have that x ∈ ∂Dj if and only if x = x j + εy for some y ∈ ∂B j.
Now, recall that both u0 and ∂ν(z)G(·, z) are smooth in the interior of Ω since z ∈ ∂Ω. Therefore,
we have that for all x ∈ ∂Dj as ε→ 0

u0(x)∂ν(z)G(x, z) = u0(x j + εy)∂ν(z)G(x j + εy, z) = u0(x j)∂ν(z)G(x j, z) + O(ε)

by appealing to Taylor’s theorem. From this, we obtain that

∫

∂D
γ(x)u0(x)∂ν(z)G(x, z) ds(x) =

J∑

j=1

∫

∂D j

γ(x)u0(x j + εy)∂ν(z)G(x j + εy, z) ds(x)

=
J∑

j=1

(
u0(x j)∂ν(z)G(x j, z) + O(ε)

)∫

∂D j

γ(x) ds(x).

Therefore, we have that

∫

∂D
γ(x)u0(x)∂ν(z)G(x, z) ds(x) = εd−1

J∑

j=1

|∂B j|Avg(γ j)u0(x j)∂ν(z)G(x j, z) + O(εd)

as ε→ 0 where Avg(γ j) denotes the average value of γ on ∂Dj as well as using the fact that
|∂D j| = εd−1|∂B j|. #

Using lemmas 3.2 and 3.3, it is clear that for a speci!ed z ∈ ∂Ω, the current gap is dominated
by the !rst integral from equation (6). Therefore, we have proven an asymptotic expansion for
the current gap operator. Similar results have been proven in [2, 22] using boundary integral
operators.

Theorem 3.1. For any z ∈ ∂Ω we have that

(Λ− Λ0) f (z) = −εd−1
J∑

j=1

|∂B j|Avg(γ j)u0(x j)∂ν(z)G(x j, z) + O(εd) as ε→ 0

provided that D is given by (5).

8
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We use this approximation to develop an algorithm that detects the centers of the defective
regions. Consequently, this will allow us to recover the region D.

We now, study the MUSIC algorithm which can be considered as a discrete analogue of
the factorization method (see for e.g. [15, 31, 32]). In particular, we connect the centers of the
defective regions given by {x j : j = 1, . . . , J} to a matrix denoted by F that is de!ned using
physical measurements on ∂Ω. We assume that Ω is the unit ball for d = 2 and that we have a
!nite number of data N + 1 on ∂Ω where J < N + 1. In order to proceed we must !rst de!ne
the sesquilinear dual-product

〈ϕ,ψ〉∂Ω =

∫

∂Ω
ϕψ ds for all ϕ ∈ H1/2(∂Ω) and ψ ∈ H−1/2(∂Ω) (10)

between the Hilbert Space H1/2(∂Ω) and its dual space H−1/2(∂Ω) where L2(∂Ω) is the Hilbert
pivot space. Recall, that we have the following

H1/2(∂Ω) ⊂ L2(∂Ω) ⊂ H−1/2(∂Ω)

with dense inclusions. Physically, this dual-product relates the voltage and the induced current
on ∂Ω and is used to construct the matrix F. The dual-product will also be used in the upcoming
sections. Using theorem 3.1, for any g, f ∈ H1/2(∂Ω) we have that

〈
g, (Λ− Λ0) f

〉
∂Ω

=

〈
g,−εd−1

J∑

j=1

|∂B j|Avg(γ j)u0(x j, f )∂ν(z)G(x j, z) + O(εd)

〉

∂Ω

= −εd−1
J∑

j=1

|∂B j|Avg(γ j)u0(x j, f )〈g, ∂ν(z)G(x j, z)〉∂Ω + O(εd)

where u0(·, f ) is the solution to (3) with boundary condition f . Since z ∈ ∂Ω, we have that

〈g, ∂ν(z)G(x j, z)〉∂Ω =

∫

∂Ω
u0(z, g)∂ν(z)G(x j, z) ds(z) = −u0(x j, g)

where u0(·, g) is the solution to (3) with boundary condition g (see for e.g. chapter 2 of [19]).
Therefore, we have that as ε→ 0

〈
g, (Λ− Λ0) f

〉
∂Ω

= εd−1
J∑

j=1

|∂B j|Avg(γ j)u0(x j, g)u0(x j, f ) + O(εd). (11)

We now let g = eimθ and f = einθ for m, n = 0, . . . , N where θ is the angle formed by a points
on ∂Ω when converted to polar coordinates. Using only the leading order term of (11), we
de!ne the matrix

Fn,m = εd−1
J∑

j=1

|∂B j|Avg(γ j)u0(x j, fm)u0(x j, fn).

We factorize F by de!ning matrices U ∈ C(N+1)×J and T ∈ CJ×J , where the matrices U and T
are given by

Um, j = u0(x j, fm) and T = diag
(
εd−1|∂B j|Avg(γ j)

)
.

9
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From the de!nition of the matrices, we have that F = UTU/. Notice, that all the diagonal
entries in T are non-zero. We now de!ne the vector φx ∈ CN+1 for any point x ∈ Rd by

φx = (u0(x, f 0), . . . , u0(x, fN))/. (12)

The ultimate goal of this section is to prove that φx is in the range of FF∗ if and only if
x ∈ {x j : j = 1, . . . , J}. This is a discrete reformulation of the result of the factorization method
presented in [15, 32]. We are interested in reconstructing regions D j, so it is suf!cient to prove
the result only for values x ∈ Ω. We now state a result that can be proven by using standard
arguments from linear algebra (see for e.g. [21]).

Lemma 3.4. Let the matrix F have the following factorization F = UTU/ where
U ∈ C(N+1)×J and T ∈ CJ×J with N + 1 > J. Assume that the matrix U has full rank J and
the matrix T is invertible. Then range(U) = Range(FF∗).

We now construct an indicator function derived from the previous lemma to determine the
location of the defective regions. For each sampling point x ∈ Ω we will show that φx is in
the range of FF∗ if and only if x ∈ {x j : j = 1, . . . , J}. We introduce an auxiliary result that
connects the location of the unknown regions to the range of the matrix U.

Theorem 3.2. Assume that N + 1 > J. Then, we have that the matrix U has full rank and
φx ∈ Range(U) if and only if x ∈ {x j : j = 1, . . . , J} where φx is de!ned as in (12).

Proof. It is clear that φx j
is in the range of U since φx j

is the jth column of U. Conversely,
suppose x /∈ {x j : j = 1, . . . , J} and by way of contradiction assume that φx ∈ Range(U). This
would imply that there exists α ∈ CJ such that

zn −
J∑

j=1

α jzn
j = 0 for all n = 0, 1, . . . , N

where zn = u0(x, fn) = |x|neinθ. Since we have assumed that N + 1 > J, this would imply that
the square Vandermonde matrix denoted by V(z, z1, . . . , zJ) satis!es that the non-zero vector
(1,−α)/ is in its null space. This is a contradiction due to the fact that Det(V(z, z1, . . . , zJ)) += 0
since z += z j and zi += z j for all i += j. Moreover, the fact that U has full rank is a consequence
of the above argument. #

Combining the two previous results, we have a MUSIC algorithm to recover the centers of
the defective regions {x j : j = 1, . . . , J} from the physical measurements.

Theorem 3.3. Assume that N + 1 > J. Then for all x ∈ Ω

φx ∈ Range(FF∗) if and only if x ∈ {x j : j = 1, . . . , J}

where φx is de!ned as in (12).

Notice, that the matrix F can be approximated by the known current gap operator
(Λ− Λ0). This implies that theorem 3.3 can be used to recover the centers of the defective
regions {x j : j = 1, . . . , J}. To this end, we must verify whether φx ∈ Range(FF∗). This is
equivalent to Pφx = 0 where P is the orthogonal projection onto the Null(FF∗).

3.2. Numerical validation for the MUSIC algorithm

We now provide some numerical examples of recovering locations {x j : j = 1, . . . , J} using
theorem 3.3. All of our numerical experiments are done with the software MATLAB 2020a. We

10
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will let Ω be given by the unit ball in R2 and we need to compute the current gap operator
(Λ− Λ0) applied to f = einθ. Lemmas 3.2 and 3.3 imply that

(Λ− Λ0) f (z) ≈ −
∫

∂D
γ(x)u0(x, f )∂ν(z)G(x, z) ds(x).

This can be seen as an analog to the Born approximation used in scattering theory (see for e.g.
[32]). Therefore, we can compute (Λ− Λ0) f using the ‘integral’ command in MATLAB.

Since f = einθ it is clear that the harmonic lifting is given by u0(x, f ) = |x|neinθ. It is also
well known that the normal derivative of G(x, z) is given by

∂ν(z)G(x, z)|∂Ω =
1

2π

[
1 − |x|2

|x|2 + 1 − 2|x| cos(θ − θz)

]

for z ∈ ∂Ω. We can then easily compute (Λ− Λ0)einθ for n = 0, . . . , 20. Here we evaluate
current gap for 64 equally spaced points on the unit circle. By appealing to the asymptotic
result in (11), we have that

Fn,m ≈
〈

eimθ, (Λ− Λ0)einθ
〉

∂Ω
such that F ∈ C21×21

which is approximated via a Riemann sum using the ‘dot’ command in MATLAB.
Once F has been approximated we can use theorem 3.3 to recover the locations of the com-

ponents of D. We only need to check if the vector φx is in the range of FF∗. Therefore, we
compute the norm

‖Pφx‖2
2 =

21∑

+=r+1

∣∣(φx , u+

)∣∣2

where the vectors u+ are the orthonormal eigenvectors for the matrix FF∗ and r = Rank(FF∗).
Recall, that the vector

φx =
(
1, |x|eiθ, . . . , |x|20e20iθ)/

by equation (12) where θ is the polar angle for the sampling point x ∈ Ω. Here P denotes the
orthogonal projection onto the Null(FF∗). The imaging functional is given by

WMUSIC(x) =

[
21∑

+=r+1

∣∣(φx , u+

)∣∣2
]−1

for any x ∈ Ω

which satis!es that WMUSIC(x) 1 1 for x = x j and WMUSIC(x) = O(1) for x += x j.
In !gures 1–3 we use the imaging functional WMUSIC(x) given above to recover the locations

of the two components of the region D. In these experiments, the region

D = (x1 + εB(0, 1))
⋃

(x2 + εB(0, 1))

with B(0, 1) being the unit ball centered at the origin. The points x1 and x2 are points contained
in the region Ω. We will take the transmission parameter to be given by γ = constant on the
boundary of both components of D. Here, we take ε = 0.01 as well as adding random noise
level δ to the computed current gap to simulate error in measured data.

11
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Figure 1. Reconstruction of the locations x1 = (−0.25,−0.25) and x2 = (0.25, 0.25)
via the MUSIC algorithm. Contour plot on the left and surface plot on the right for
WMUSIC(x).

Figure 2. Reconstruction of the locations x1 = (−0.25, 0.25) and x2 = (−0.25,−0.25)
via the MUSIC algorithm. Contour plot on the left and surface plot on the right for
WMUSIC(x).

Example 1. In our !rst example presented here we let

x1 = (−0.25,−0.25) and x2 = (0.25, 0.25)

for the reconstruction in !gure 1. Presented is a contour and surface plot of the imaging func-
tional WMUSIC(x). As we can see from the data tips, the imaging functional has spikes at the
points

x̃1 = (−0.2323,−0.2323) and x̃2 = (0.2323, 0.2323).

Here we see that the locations x̃1 and x̃2 given by the MUSIC algorithm provide an approx-
imation for the actual locations of the components of the region D. Here we let δ = 1% and
γ = 1 on both boundaries.

12
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Figure 3. Reconstruction of the locations x1 = (0, 0.75) and x2 = (0.5,−0.25) via the
MUSIC algorithm. Contour plot on the left and surface plot on the right for WMUSIC(x).

Example 2. Now, in this example presented here we let

x1 = (−0.25, 0.25) and x2 = (−0.25,−0.25)

for the reconstruction in !gure 2. Presented is a contour and surface plot of the imaging func-
tional WMUSIC(x). As we can see from the data tips, the imaging functional has spikes at the
points

x̃1 = (−0.2929, 0.2525) and x̃2 = (−0.2929,−0.2727).

Again, in this example we see that the locations x̃1 and x̃2 provide an approximation for
the locations of the components of the region D. We again let δ = 1% and γ = 1 on both
boundaries.

Example 3. For our last example we let

x1 = (0, 0.75) and x2 = (0.5,−0.25)

for the reconstruction in !gure 3. Presented is a contour and surface plot of the imaging func-
tional WMUSIC(x). As we can see from the data tips, the imaging functional has spikes at the
points

x̃1 = (0.0101, 0.7576) and x̃2 = (0.4949,−0.2525).

Again, in this example we see that the locations x̃1 and x̃2 provide an approximation for the
locations of the components of the region D. For this example, we let δ = 5% where γ = 1/4
on the boundary centered at x1 and γ = 2 on the boundary centered at x2. Notice that this
example suggests that the MUSIC algorithm gives sharper reconstructions when the regions
are well separated.

4. Recovering extended regions

In this section, we focus on the case of an extended region D. Therefore, the asymptotics
developed in the previous section is invalid and we must employ a different technique for

13
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recovering the region of interest. The theory used here was developed in [26] and will allow
us to derive a different imaging functional for extended regions. The analysis is based on the
factorization of the current gap operator (Λ− Λ0). The goal is to again derive an imaging
functional using the spectral decomposition (or singular value decomposition) of the known
current gap operator.

4.1. Regularized factorization method

In this section, we employ the regularized factorization method developed in [26] and provide a
different approach to solve the inverse shape problem via another sampling method. In general,
sampling algorithms connect the support of the unknown region to an indicator function deriv-
ing from an ill-posed equation involving the measurements operator and a singular solution to
the background problem. We again, focus on creating an algorithm for recovering the unknown
region D from the measurements operator given by the current gap operator (Λ− Λ0). To this
end, we will focus on recovering extended defective region(s).

Inspired by the current gap operator (Λ− Λ0), we note that u − u0 ∈ H1
0(Ω) solves

−∆(u − u0) = 0 in Ω\∂D with [[∂ν(u − u0)]]|∂D = γu|∂D.

So, we de!ne w ∈ H1
0(Ω) to be the unique solution of

−∆w = 0 in Ω\∂D with [[∂νw]]|∂D = γh (13)

for any given h ∈ L2(∂D). One can show that (13) is well-posed by appealing to a variational
formulation argument as in section 2. Therefore, we can de!ne the bounded linear source-to-
Neumann operator

G : L2(∂D) → H−1/2(∂Ω) given by Gh = ∂νw|∂Ω

where w is the unique solution of (13). The following observation allows us to further under-
stand the connection between operators G and (Λ− Λ0). By well-posedness of (13), we have
that

∂νw|∂Ω = (Λ− Λ0) f provided that h = u|∂D.

From this, we de!ne the solution operator for (1) as

S : H1/2(∂Ω)→ L2(∂D) given by S f = u
∣∣
∂D

Thus, we see that (Λ− Λ0) f = GS f for any f ∈ H1/2(∂Ω). In order to gain more information,
we need to factorize (Λ− Λ0) further by decomposing G. This requires analyzing the adjoint
of the operator S. The following result de!nes the adjoint of S.

Theorem 4.1. The adjoint operator S∗ : L2(∂D) → H−1/2(∂Ω) is given by S∗g = ∂νv|∂Ω
where v ∈ H1

0(Ω) satis!es

−∆v = 0 in Ω\∂D with [[∂νv]]|∂D = γv|∂D + g (14)

Moreover, the operator S is compact and injective.

14
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Proof. Notice, that by using a variational argument we can establish that the solution
v ∈ H1

0(Ω) exists, is unique, and continuously depends on g ∈ L2(∂D). Using a similar tech-
nique used to derive (2) and Green’s 2nd theorem, we have that

0 =

∫

∂Ω
v ∂νu − f ∂νv ds +

∫

∂D
v(∂νu− − ∂νu+) ds +

∫

∂D
u(∂νv+ − ∂νv

−) ds.

By the boundary condition on ∂D for u, this reduces to
∫

∂Ω
f ∂νv ds =

∫

∂D
([[∂νv]] − γv)u ds.

Using boundary condition on ∂D for v, we have that
∫

∂D
([[∂νv]] − γv)u ds =

∫

∂D
ug ds.

Thus, we have that

(S f , g)L2(∂D) =

∫

∂D
ug ds =

∫

∂Ω
f ∂νv ds = 〈 f , S∗g〉∂Ω

for all f ∈ H1/2(∂Ω) and g ∈ L2(∂D) which implies that S∗g = ∂νv|∂D.
To prove injectivity, we let S f = 0 which implies that u = 0 in D̄. Using Holmgren’s

theorem (see for e.g. [29]), we have that u = 0 in Ω. Then by the trace theorem, we have that
f = 0 on ∂Ω, proving that S is injective. Furthermore, the compact embedding of H1/2(∂D)
into L2(∂D) implies that S is compact. #

In order to complete the factorization of the current gap operator, we need to de!ne a middle
operator T. Recall, that w is the unique solution to equation (13), which implies that w is
harmonic in Ω\D and

[[∂νw]]|∂D = γw|∂D + γ
[
h − w|∂D

]

by appealing to the Robin transmission condition. Therefore, we have that

∂νw|∂Ω = Gh as well as ∂νw|∂Ω = S∗γ
[
h − w|∂D

]

by the well-posedness of (14) and theorem 4.1. Motivated by this, we de!ne the operator

T : L2(∂D) → L2(∂D) given by Th = γ
[
h − w|∂D

]
.

By the well-posedness of (13), T is a bounded linear operator. Recall, that we had already
established that (Λ− Λ0) = GS and observe that we have factorized the operator G as G = S∗T.
This gives the following result.

Theorem 4.2. The difference of the DtN mappings (Λ− Λ0) : H1/2(∂Ω) → H−1/2(∂Ω) has
the symmetric factorization (Λ− Λ0) = S∗TS.

In order to apply theorem 2.3 from [26] to solve the inverse problem of recovering D from
the current gap operator (Λ− Λ0), we need to prove that T is coercive and also characterize the
region D by the range of S∗. Satisfying these remaining conditions would allow us to recon-
struct D from the measure data Λ f and computable Neumann data Λ0 f on the known exterior

15



Inverse Problems 38 (2022) 105009 G Granados and I Harris

boundary. The following two results will allow us to prove some useful properties of the cur-
rent gap operator using the symmetric factorization from the previous theorem. We now prove
the coercivity of the operator T.

Theorem 4.3. The operator T : L2(∂D) → L2(∂D) given by Th = γ
[
h − w|∂D

]
is coercive

on L2(∂D), where h ∈ L2(∂D) and w ∈ H1
0(Ω) satis!es (13).

Proof. Using the Robin transmission condition on ∂D in equation (13), we have that

(Th, h)L2(∂D) =

∫

∂D
γ(h − w)h ds =

∫

∂D
γ|h|2 ds −

∫

∂D
w [[∂νw]] ds.

Following a similar technique used to derive (2), we have that
∫

Ω\D
|∇w|2 dx = −

∫

∂D
w∂νw

+ ds and
∫

D
|∇w|2 dx =

∫

∂D
w∂νw

− ds.

Adding both equations above and using the boundary condition on ∂D yields
∫

Ω
|∇w|2 dx = −

∫

∂D
w[[∂νw]] ds.

Therefore, we have that

(Th, h)L2(∂D) =

∫

∂D
γ|h|2 ds +

∫

Ω
|∇w|2 dx " γmin

∫

∂D
|h|2 ds

which proves the claim. #

These follow two results allow us to prove the main theorem of this section which charac-
terizes the analytical properties of the current gap operator.

Theorem 4.4. The difference of the DtN mappings (Λ− Λ0) : H1/2(∂Ω) → H−1/2(∂Ω) is
compact, injective, and has dense range.

Proof. The compactness is a consequence of theorems 4.1 and 4.2, since S is compact.
We prove that the current gap operator (Λ− Λ0) is injective with a dense range, using the
same argument. More speci!cally, we show that the set of annihilators for Range(Λ− Λ0) and
Null(Λ− Λ0) are trivial. To this end, note that for all f , g ∈ H1/2(∂Ω)

〈g, (Λ− Λ0) f 〉∂Ω =

∫

∂Ω
g ∂νu(·, f ) − g ∂νu0(·, f ) ds

=

∫

∂Ω
u(·, g) ∂νu(·, f ) − u0(·, g)∂νu0(·, f ) ds

where the pairs (u(·, f ), u(·, g)) and (u0(·, f ), u0(·, g)) are solutions to (1) and (3) using boundary
conditions f and g, respectively. Appealing to Green’s 1st theorem we obtain

〈g, (Λ− Λ0) f 〉∂Ω =

∫

Ω
∇u(·, g) · ∇u(·, f ) dx −

∫

Ω
∇u0(·, g) · ∇u0(·, f ) dx

+

∫

∂D
γ u(·, g) u(·, f ) ds
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by using equations (1) and (3). Now suppose f ∈ H1/2(Ω) is an annihilator for Range(Λ− Λ0)
or f ∈ Null(Λ− Λ0). In either case, we have that

0 = 〈 f , (Λ− Λ0) f 〉∂Ω

=

∫

Ω
|∇u(·, f )|2 dx −

∫

Ω
|∇u0(·, f )|2 dx +

∫

∂D
γ|u(·, f )|2 dx

"
∫

∂D
γ|u(·, f )|2 dx

where we have used that u0(·, f ) satisfying equation (3) minimizes the Dirichlet energy. By
theorem 4.1, S is injective which implies that f = 0, proving both claims. #

All of the theorems of this section imply that the current gap operator (Λ− Λ0) satis!es all
of the conditions of theorem 2.3 of [26]. That is,

+ ∈ Range(S∗) if and only if lim inf
α→0

〈 fα, (Λ− Λ0) fα〉∂Ω < ∞

where fα is the regularized solution to (Λ− Λ0) f = +. Since (Λ− Λ0) is compact and injective
with a dense range, we can apply any regularization scheme such as Tikhonov or spectral cut-
off. However, we must still connect the domain D to the range of the operator S∗. To this end, we
once again use the Dirichlet Green’s function for the negative Laplacian for the known domain
Ω, G(·, z) ∈ H1

loc(Ω\{z}) for any !xed z ∈ Ω. The idea of the following result is to show that
due to the singularity at z, the normal derivative of the Green’s function is not contained in the
range of S∗ unless the singularity is contained within the region of interest D.

Theorem 4.5. The operator S∗ is such that for any z ∈ Ω

∂νG(·, z)|∂D ∈ Range(S∗) if and only if z ∈ D.

Proof. To prove the claim, assume z ∈ ΩnD Suppose by contradiction that there exists
gz ∈ L2(∂D) such that S∗gz = ∂νG(·, z)|∂Ω. This implies that ∃ vz ∈ H1(Ω) such that

−∆vz = 0 in Ω\∂D with vz|∂Ω = 0 and [[∂νvz]]|∂D = γvz|∂D + gz.

Furthermore, ∂νvz|∂Ω = ∂νG(·, z)|∂Ω and we have that vz satis!es

−∆vz = 0 in Ω\D with vz|∂Ω = 0 and ∂νvz|∂Ω = ∂νG(·, z)
∣∣
∂Ω

.

So we de!ne Wz = vz − G(·, z) and note that

−∆Wz = 0 in Ω\(D ∪ {z}) with Wz
∣∣
∂Ω

= 0 and ∂νWz
∣∣
∂Ω

= 0.

By Holmgen’s theorem [29], we conclude that Wz = 0 in Ω\(D ∪ {z}). That is, vz = G(·, z)
in Ω\(D ∪ {z}). By interior elliptic regularity, vz is continuous at z ∈ Ω\D, but G(·, z) has a
singularity at z. This proves the claim by contradiction, due to the fact that

|vz(x)| < ∞ whereas |G(x, z)|→∞ as x → z.

Conversely, we will now assume that z ∈ D. We let µ ∈ H1(D) be the solution to the fol-
lowing Dirichlet problem in D
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−∆µ = 0 in D with µ|−∂D = G(·, z)
∣∣+
∂D

Now, de!ne vz such that

vz =

{G(·, z) in Ω\D

µ in D

and we will show vz satis!es all of the conditions imposed by theorem 4.1. By de!nition, we
see that vz is harmonic in Ω\∂D and that vz ∈ H1

0(Ω) since there is no jump in the trace across
∂D. By construction, we have that ∂νvz|∂Ω = ∂νG(·, z)|∂Ω. Now, we need to prove that

gz = [[∂νvz]]|∂D − γvz|∂D

is in L2(∂D). To this end, notice that

[[∂νvz]]|∂D = ∂νG(·, z)|+∂D − ∂νµ|−∂D.

Since z ∈ D we have that G(·, z) ∈ H2(Ω\D). Therefore, we have that

G(·, z)|+∂D ∈ H3/2(∂D) which implies that µ ∈ H2(D)

by appealing to elliptic regularity (see for e.g. [19]). By the Neumann trace theorem we obtain
that

[[∂νvz]]|∂D ∈ H1/2(∂D) ⊂ L2(∂D).

Also, it is clear that γvz|∂D ∈ L2(∂D). We can conclude that gz ∈ L2(∂D) and by appealing to
theorem 4.1 we have S∗gz = ∂νG(·, z)|∂Ω, proving the claim. #

Using theorem 4.5, we have the following regularized variant of the factorization method
for recovering an unknown region D from the knowledge of the difference of the DtN mappings
(Λ− Λ0).

Theorem 4.6. The difference of the DtN mappings (Λ− Λ0) : H1/2(∂Ω) → H−1/2(∂Ω)
uniquely determines D such that for any z ∈ Ω

z ∈ D if and only if lim inf
α→0

〈 f z
α, (Λ− Λ0) f z

α〉∂Ω

where f z
α is the regularized solution to (Λ− Λ0) f z = ∂νG(·, z)|∂Ω.

This concludes the shape reconstruction problem for an extended region (possibly multiple)
via another qualitative method.

4.2. Numerical validation for the regularized factorization method

In this section, we present numerical examples for the regularized factorization method devel-
oped in section 4.1 for solving the inverse shape problem. Just as in the previous section,
our numerical experiments are done in MATLAB 2020a. For simplicity, we will consider the
problem in R2 where Ω is the unit disk. Therefore, we again have that the normal derivative of
Green’s function for the unit disk is given by
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∂ν(z)G(·, z)|∂Ω = − 1
2π

[
1 − |z|2

|z|2 + 1 − 2|z| cos(· − θz)

]

where θz is the polar angle of the sampling point z ∈ Ω in polar coordinates.
Now, let A ∈ CN×N for N ∈ N represent the discretized operator (Λ− Λ0) and the vector

bz =
[
∂rG

(
θ j, z

)]N
j=1. We add random noise to the discretized operator A such that

Aδ =
[
Ai, j

(
1 + δEi, j

)]N
i, j=1 where ‖E‖2 = 1.

Furthermore, the matrix E is taken to have random entries. Here δ is the relative noise level
added to the data in the sense that ‖Aδ − A‖2 ! δ‖A‖2. To compute the indicator associated
with theorem 4.6, we follow [26] where it is shown that

(
fz, Aδfz

)
=

N∑

j=1

φ2(σ j;α)
σ j

|(u j, bz)|2.

Here σ j and u j denotes the singular values and left singular vectors of the matrix Aδ , respec-
tively. Also, φ(t; α) denotes the !lter function de!ned by the regularization scheme used to
solve Aδfz = bz. The !lter functions we will use in our examples are given by

φ(t;α) =
t2

t2 + α
, φ(t;α) = 1 −

(
1 − βt2)1/α

and φ(t;α) =






1, t2 " α,

0, t2 < α

(15)

which corresponds to Tikhonov regularization, Landweber iteration (with α = 1/m for some
m ∈ N and constant β < 1/σ2

1) and the spectral cutoff, respectively. Using the above expres-
sions, we can recover the unknown region by constructing

Wreg(z) =
(
fz, Aδfz

)−1
where we plot W(z) =

Wreg(z)
‖Wreg(z)‖∞

.

Theorem 4.6 implies that W(z) ≈ 1 provided that z ∈ D as well as W(z) ≈ 0 provided that
z /∈ D. In the following examples we use the function W(z) to visualize the defective region.
We will provided examples for the different regularization !lters given in (15).

Numerical reconstruction of a circular region: we assume ∂D is given by
ρ(cos(θ), sin(θ)) for some constant ρ ∈ (0, 1). Since Ω is assumed to be the unit disk in R2, we
make the ansatz that the electrostatic potential u(r, θ) has the following series representation

u(r, θ) = a0 + b0 ln r +
∞∑

|n|=1

[
anr|n| + bnr−|n|

]
einθ in Ω\D (16)

which is harmonic in the annular region and also

u(r, θ) = c0 +
∞∑

|n|=1

cnr|n|einθ in D

which is harmonic in the circular region.
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For simplicity, we assume that the transmission parameter γ > 0 is constant. Thus, we are
able to determine the Fourier coef!cients an and bn by using the boundary conditions at r = 1
and r = ρ given by

u(1, θ) = f (θ), u+(ρ, θ) = u−(ρ, θ), and ∂ru+(ρ, θ) − ∂ru−(ρ, θ) = γu(ρ, θ).

We let fn for n ∈ Z denote the Fourier coef!cients for the voltage f . Note, that the boundary
condition at r = 1 above gives that

a0 = f 0 and an + bn = fn for all n += 0.

The !rst boundary conditions at r = ρ give that

b0 =
γρ

1 − γρ ln ρ
f 0 and bn = ρ2|n|(cn − an).

Using the Robin transmission condition, and after some calculations we get that

an =

(
2|n| + γρ

2|n| + γρ(1 − ρ2|n|)

)
fn and bn =

(
−γρ2|n|+1

2|n| + γρ(1 − ρ2|n|)

)
fn for all n += 0.

Plugging the sequences into (16) gives that the corresponding current on the boundary of the
unit disk is given by

∂ru(1, θ) = σ0 f 0 +
∞∑

|n|=1

|n|σn fneinθ (17)

where

σ0 =
γρ

1 − γ ln ρ
and σn =

2|n| + γρ(1 + ρ(1 + ρ2|n|))
2|n| + γρ(1 − ρ(1 + ρ2|n|))

for all n += 0.

It is clear that the electrostatic potential and subsequent current for the material without a
defective region is given by

u0(r, θ) = f 0 +
∞∑

|n|=1

fnr|n|einθ and ∂ru0(1, θ) =
∞∑

|n|=1

|n| fneinθ. (18)

Subtracting equation (18) from (17) gives a series representation of the current gap operator.
By interchanging summation with integration we obtain

(Λ− Λ0) f =
1

2π

∫ 2π

0
K(θ,φ) f (φ) dφ where K(θ,φ) = σ0 +

∞∑

|n|=1

|n|(σn − 1)ein(θ−φ).

We now introduce a theorem regarding the convergence of the truncated series approxima-
tion for the above integral operator.

Theorem 4.7. Let (Λ− Λ0)N : H1/2(0, 2π) → H−1/2(0, 2π) be the truncated series approx-
imation of (Λ− Λ0). Then we have that in the operator norm
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‖(Λ− Λ0) − (Λ− Λ0)N‖ ! Cρ2(N+1)
√

N + 1

where C > 0 is independent of N.

Proof. To prove the claim, consider

[(Λ− Λ0) − (Λ− Λ0)N] f =
∞∑

|n|=N+1

|n| fn(σn − 1)einθ.

We now use the Cauchy–Schwarz inequality in +2

|[(Λ− Λ0) − (Λ− Λ0)N] f |2 !




∞∑

|n|=N+1

(σn − 1)2|n||einθ|2







∞∑

|n|=N+1

|n|| fn|2




! ‖ f ‖2
H1/2(0,2π)




∞∑

|n|=N+1

(σn − 1)2|n|



.

After some calculations we have that (σn − 1)2|n| ! γ2ρ2(2|n|+1)

|n| , which gives that

‖[(Λ− Λ0) − (Λ− Λ0)N] f ‖∞ ! Cγ,ρ‖ f ‖H1/2(0,2π)
ρ2(N+1)
√

N + 1
.

From this, we obtain our result by using the fact that the H−1/2(0, 2π)-norm is bounded by the
L∞(0, 2π)-norm. #

Theorem 4.7 demonstrates that the convergence for the approximation is slightly better than
geometric. Thus, we do not need many terms to approximate the kernel function and obtain
desirable results.

Example 1: recovering a circular region
We approximate the kernel function K(θ,φ) given above by truncating the series for

|n| = 1, . . . , 10. With this, we then discretize the truncated integral operator by a 64 equally
spaced grid on [0, 2π) using a collocation method.

In !gure 4, we take ρ = 0.5 and δ = 0.05 which corresponds to 5% relative random noise
added to the data. Here the regularization scheme is taken to be the spectral cut-off where the
regularization parameter α = 10−7. The dotted lines are the boundaries of ∂Ω and ∂D with the
solid line being the approximation via the level curve.

In !gure 5, we take ρ = 0.25 and δ = 0.02 which corresponds to 2% relative random noise
added to the data. Here the regularization scheme is taken to be the Tikhonov regularization
where the regularization parameter α = 10−7. The dotted lines are the boundaries of ∂Ω and
∂D with the solid line being the approximation via the level curve.

Numerical reconstruction of a general region: we will now provide some examples
for recovering a region D provided that the boundary of ∂D has the representation in polar
coordinates given by
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Figure 4. Reconstruction of a circular region with ρ = 0.5 via the regularized factoriza-
tion method. Contour plot of W(z) on the left and level curve when W(z) = 0.1 on the
right.

Figure 5. Reconstruction of a circular region with ρ = 0.25 via the regularized factor-
ization method. Contour plot of W(z) on the left and level curve when W(z) = 0.2 on the
right.

∂D = {ρ(θ)(cos θ, sin θ) where 0 ! θ < 2π}.

In our examples, we take 0 < ρ(θ) < 1 to be a 2π-periodic smooth function. To apply our main
result, we need to compute the current gap operator (Λ− Λ0). To this end, we compute the map-
ping f (−→ (Λ− Λ0) f where the data f = einθ where |n| = 0, . . . , 30. We pick these functions
since they form a basis for H1/2(∂Ω) = H1/2

per [0, 2π]. Recall, that for any f ∈ H1/2(∂Ω) we have
that u − u0 ∈ H1

0(Ω) satis!es

−∆(u − u0) = 0 in Ω\∂D with [[∂ν(u − u0)]]|∂D = γ(u − u0)|∂D + γu0
∣∣
∂D (19)

where u0(x, f ) = |x|neinθ. For all the preceding examples we will take the transmission param-
eter to be given by
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Figure 6. Reconstruction of an acorn shaped region via the regularized factorization
method. Contour plot of W(z) on the left and level curve when W(z) = 0.1 on the right.

Figure 7. Reconstruction of an acorn shaped region via the regularized factorization
method. Contour plot of W(z) with the Tikhonov !lter on the left and the contour plot of
W(z) with the Landweber !lter on the right.

γ(x(θ)) =
1

4 + exp(cos(θ))
.

In order to solve (19) for u − u0 we use the variational formulation with the spectral method
presented in [28]. Once we have a numerical approximation of u − u0 given by the basis
function of the spectral method we have that (Λ− Λ0) f = ∂r(u − u0)(1, θ).

Example 2: recovering an acorn shaped region
In !gure 6, we take ρ(θ) = 0.25(1 + 0.15 cos(3θ)) and δ = 0.02 which corresponds to 2%

relative random noise added to the data. Here the regularization scheme is taken to be the
Tikhonov regularization where the regularization parameter α = 10−5. The dotted lines are
the boundaries of ∂Ω and ∂D with the solid line is the approximation via the level curve.

In !gure 7, we again take ρ(θ) = 0.25(1 + 0.15 cos(3θ)) and δ = 0.02 which corresponds
to 2% relative random noise added to the data. Here, we compare the reconstructions using
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Figure 8. Reconstruction of a star shaped region via the regularized factorization
method. Contour plot of W(z) on the left and level curve when W(z) = 0.1 on the right.

Figure 9. Reconstruction of a star shaped region via the regularized factorization
method. Contour plot of W(z) with the Tikhonov !lter on the left and the contour plot of
W(z) with the Landweber !lter on the right.

the Tikhonov !lter function and Landweber !lter function given in (15) with α = 10−5. The
dotted lines are the boundaries of ∂Ω and ∂D.

Example 3: recovering a star shaped region
In !gure 8, we take ρ(θ) = 0.25(2 + 0.3 cos(5θ)) and δ = 0.08 which corresponds to 8%

relative random noise added to the data. Here the regularization scheme is taken to be the
Tikhonov regularization where the regularization parameter α = 10−5. The dotted lines are
the boundaries of ∂Ω and ∂D with the solid line is the approximation via the level curve.

In !gure 9, we again take ρ(θ) = 0.25(2 + 0.3 cos(5θ)) and δ = 0.08 which corresponds
to 8% relative random noise added to the data. Here, we compare the reconstructions using
the Tikhonov !lter function and Landweber !lter function given in (15) with α = 10−5. The
dotted lines are the boundaries of ∂Ω and ∂D.
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Notice that by the examples provided here, it does not seem that the reconstruction is sensi-
tive to the regularization scheme. In the !gures 4–9, we see that there is little to no difference
in the reconstruction when different !lter functions are used. For the examples, where the
Landweber !lter was used we took β = 1/2σ2

1 in the reconstruction. Also, we have picked the
regularization parameter ad hoc in our examples. In practice, a discrepancy principle would
we be used to pick an optimal regularization parameter. The theory suggests that one could
also recover convex regions with corners with similar results but non-convex regions are not
covered by the theory provided.

5. Conclusions

In this paper, we have studied two qualitative methods for the inverse shape problem in EIT
with a Robin transmission condition. We have analyzed the MUSIC algorithm of small volume
regions and the regularized factorization method for extended regions. In both cases, we have
derived imaging functionals to recover the region of interest D using current gap operator.
This allows for fast and accurate reconstruction with little to no a priori knowledge of D. A
future direction for this project can be to study the inverse parameter problem and derive a
non-iterative method for recovering γ. One could also consider, studying the direct sampling
method (see for e.g. [17, 18, 34]) for this problem. Also, the analysis of this inverse problem
for a generalized Robin condition is still open.
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