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ABSTRACT
In this paper, we provide an analytical study of the transmission eigen-
value problem with two conductivity parameters. We will assume that the
underlying physical model is given by the scattering of a plane wave for an
isotropic scatterer. In previous studies, this eigenvalue problem was ana-
lyzed with one conductive boundary parameter whereas we will consider
the case of two parameters. We prove the existence and discreteness of the
transmission eigenvalues as well as study the dependence on the physi-
cal parameters. We are able to prove monotonicity of the first transmission
eigenvalue with respect to the parameters and consider the limiting pro-
cedure as the second boundary parameter vanishes. Lastly, we provide
extensive numerical experiments to validate the theoretical work.
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1. Introduction

In this paper, we study the transmission eigenvalue problem for an acoustic isotropic scatterer with
two conductive boundary conditions. Transmission eigenvalues have been a very active !eld of inves-
tigation in the area of inverse scattering. This is due to the fact that these eigenvalues can be recovered
from the far-!eld data, see for e.g. [1, 2], as well as can be used to determine defects in amaterial [3–7].
In general, one can prove that the transmission eigenvalues depend monotonically on the physical
parameters, which implies that they can be used as a target signature for non-destructive testing.
Non-destructive testing arises inmany applications such as engineering andmedical imaging, i.e. one
wishes to recover information about the interior structure given exteriormeasurements. Therefore, by
having information or knowledge of the transmission eigenvalues, one can retrieve information about
the material properties of the scattering object. Another reason one studies these eigenvalue prob-
lems, is their non-linear and non-self-adjoint nature. This makes them mathematically challenging
to study. We refer to [8] for a survey on the study of transmission eigenvalue problems.

Deriving accurate numerical algorithms to compute the transmission eigenvalues is an active !eld
of study, see for e.g. [9–16]. As mentioned, here we consider the scalar transmission eigenvalue prob-
lem with a two parameter conductive boundary condition denoted λ and η. This problem was !rst
introduced in [17]. The eigenvalue problem with one conductive boundary condition has been stud-
ied in [7, 18–20] for the case of acoustic scattering where as in [21, 22] for electromagnetic scatterers.
Due to the presence of the second parameter in the conductive boundary condition, the analysis used

CONTACT Isaac Harris harri814@purdue.edu

© 2023 Informa UK Limited, trading as Taylor & Francis Group



2 R. CEJA AYALA ET AL.

in the aforementioned manuscripts will not work for the problem at hand. Therefore, we will need to
use di"erent analytical tools to study our transmission eigenvalue problem.

The rest of the paper is organized as follows. We will derive the transmission eigenvalue problem
under consideration from the direct scattering problem in Section 2. Next, in Section 3, we prove that
the transmission eigenvalues form a discrete set in the complex plane as well as provide an example via
separation of variables to prove that this is a non-self-adjoint eigenvalue problem. Then in Section 4,
we prove the existence of in!nitely many real transmission eigenvalues as well as study the depen-
dance on the material parameters. Furthermore, in Section 5, we consider the limiting process as
λ → 1 where we are able to prove that the transmission eigenpairs converge to the eigenpairs for one
conductive boundary parameter i.e. with λ = 1. Numerical examples, using the separation of vari-
ables are given in Section 6 to validate the analysis presented in the earlier sections. Further, numerical
results are given using boundary integral equations.

2. Formulation of the problem

We now state the transmission eigenvalue problem under consideration by connecting it to the direct
scattering problem. To this end, we will formulate the direct scattering problem associated with the
transmission eigenvalues in Rd where d = 2 or d = 3. Let D ⊂ Rd be a simply connected open set
with C2 boundary ∂D where ν denotes the unit outward normal vector. We then assume that the
refractive index n ∈ L∞(D) satis!es

0 < nmin ≤ n(x) ≤ nmax < ∞ for a.e. x ∈ D.

We are particularly interested in the case where there are two (conductivity) boundary parameters λ
and η as in [17]. These parameters occur e.g. when the scattered medium is enclosed by a thin layer
with high conductivity [23]. Therefore, we assume η ∈ L∞(∂D) such that

ηmin ≤ η(x) ≤ ηmax for a.e. x ∈ ∂D

and !xed constant λ &= 1. The fact that the boundary parameters are real-valued implies that the
material covering the boundary is non-absorbing.

We let u = us + ui denote the total !eld and us is the scattered !eld created by the incident plane
wave ui := eikx·ŷ with wave number k> 0 and ŷ the incident direction. The direct scattering problem
for an isotropic homogeneous scatterer with a two parameter conductive boundary condition can be
formulated as: !nd us ∈ H1

loc(R
d) satisfying

%us + k2n(x)us = k2 (1 − n(x)) ui in Rd\∂D (1)

us− − us+ = 0 and λ∂ν
(
us− + ui

)
= η(x)

(
us+ + ui

)
+ ∂ν

(
us+ + ui

)
on ∂D (2)

where ∂νφ := ν · ∇φ for any φ. Here − and + corresponds to taking the trace from the interior or
exterior of D, respectively (see Figure 1). To close the system, we impose the Sommerfeld radiation
condition on the scattered !eld us

∂rus − ikus = O
(

1
r(d+1)/2

)
as r → ∞

which holds uniformly with respect to the angular variable x̂ = x/r where r = |x|. Here, | · | denotes
the Euclidean norm for a vector in Rd.
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Figure 1. Illustration of the direct scattering problem in R2.

It has be shown that (1)–(2) is well-posed in [17]. Therefore, we have that the scattered !eld us has
the asymptotic behavior (see for e.g. [24, 25])

us(x, ŷ) = γ
eik|x|

|x|(d−1)/2

{
u∞(x̂, ŷ) + O

(
1
|x|

)}
as |x| −→ ∞

and where the constant γ is given by

γ = eiπ/4
√
8πk

in R2 and γ = 1
4π

in R3.

Here u∞(x̂, ŷ) denotes the far-!eld pattern depending on the incident direction ŷ and the obser-
vation direction x̂. The far-!eld pattern for all incident directions de!nes the far-!eld operator
F : L2(Sd−1) −→ L2(Sd−1) given by

(Fg)(x̂) :=
∫

Sd−1
u∞(x̂, ŷ)g(ŷ) ds(ŷ) for g ∈ L2(Sd−1).

Here, Sd−1 denotes the unit disk/sphere inRd. It is also well-known (see [17]) that F is injective with a
dense range if and only if there does not exist a nontrivial solution (w, v) ∈ H1(D) × H1(D) solving:

%w + k2n(x)w = 0 and %v + k2v = 0 in D (3)

w = v and λ∂νw = ∂νv + η(x)v on ∂D (4)

where v takes the form of a Herglotz function

vg(x) :=
∫

Sd−1
eikx·ŷg(ŷ) ds(ŷ), g ∈ L2(Sd−1).

Now, the values k ∈ C for which (3)–(4) has non-trivial solutions are called transmission eigenvalues.
Due to the fact that, the Herglotz functions are dense in the set of solutions to Helmholtz equation we
will consider the transmission eigenvalue problem for any eigenfunction v ∈ H1(D). Thus, the goal
of this paper is to study this eigenvalue problem as well as possible applications to the inverse spectral
problem. We !rst show that if a set of eigenvalues exists, then this will be a discrete set.
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3. Discreteness of eigenvalues

In this section, we study the discreteness of the transmission eigenvalues. In general, sampling meth-
ods such as the factorization method [17, 26] do not provide valid reconstructions of D if the wave
number k is a transmission eigenvalue. Here, we will assume that the conductivity parameters sat-
isfy either: λ ∈ (1,∞) and ηmax < 0 or λ ∈ (0, 1) and ηmin > 0. Note, that due to the presence of
the parameter λ &= 1 in (3)–(4), the discreteness for this problem must be handled di"erently from
the case when λ = 1 which was proven in [18]. Here, we will use a di"erent variational formula-
tion to study (3)–(4). To this end, we formulate the transmission eigenvalue problem as the problem
for the di"erence u := w − v ∈ H1

0(D) and v ∈ H1(D). By subtracting the equations and boundary
conditions for v and w, we have that the boundary value problem for v and u is given by

λ(%u + k2nu) = (1 − λ)%v + k2(1 − λn)v and %v + k2v = 0 in D (5)

λ∂νu = (1 − λ)∂νv + ηv on ∂D. (6)

Now, in order to analyze (5)–(6), we will employ a variational technique. To do so, we use Green’s
First Theorem to obtain that

λ

∫

D
∇u · ∇φ − k2nuφ dx =

∫

D
(1 − λ)∇v · ∇φ − k2(1 − λn)vφ dx +

∫

∂D
ηvφ ds (7)

for all φ ∈ H1(D). In addition, we also need to enforce that v is a solution to the Helmholtz equation
in D. Therefore, by again appealing to Green’s First Theorem, we can have that

∫

D
∇v · ∇ψ dx =

∫

D
k2vψ dx for all ψ ∈ H1

0(D). (8)

We now de!ne the following sesquilinear forms b(·, ·) : H1(D) × H1
0(D) −→ C

b(v,ψ) =
∫

D
∇v · ∇ψ dx

and a(·, ·) : H1(D) × H1(D) −→ C

a(v,φ) = − 1
λ

∫

D
(1 − λ)∇v · ∇φ̄ dx − 1

λ

∫

∂D
ηvφ̄ ds.

It is clear that by appealing to the Cauchy–Schwarz inequality and the Trace Theorem that both
a(·, ·) and b(·, ·) are bounded. De!ning these sesquilinear forms helps us to write (5)–(6) as a linear
eigenvalue problem for {(u, v), k} ∈ H1

0(D) × H1(D) × C \ {0} via the system

a(v,φ) + b(φ, u) =
∫

D
k2nuφ dx − 1

λ

∫

D
k2(1 − λn)vφ dx (9)

b(v,ψ) =
∫

D
k2vψ dx for all (ψ ,φ) ∈ H1

0(D) × H1(D). (10)

In the analysis of the equivalent eigenvalue problem (9)–(10), we will consider the corresponding
source problem. Therefore, we will make the substitution k2v = g and k2u = f to de!ne the saddle
point problem corresponding to (9)–(10) as

a(v,φ) + b(φ, u) =
(
f , nφ

)
L2(D)

+ 1
λ

(
g, (λn − 1)φ

)
L2(D)

(11)

b(v,ψ) = (g,ψ)L2(D). (12)
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It is clear that there exists constants Cj > 0 for j = 1, 2 such that

∣∣∣∣
(
f , nφ

)
L2(D)

+ 1
λ

(
g, (λn − 1)φ

)
L2(D)

∣∣∣∣ ≤ C1
{
‖f ‖L2(D) + ‖g‖L2(D)

}
‖φ‖H1(D)

and
∣∣(g,ψ)L2(D)

∣∣ ≤ C2‖g‖L2(D)‖ψ‖H1(D)

for all f ∈ H1
0(D) and g ∈ H1(D) since we have assumed that n ∈ L∞(D).

Now, we consider the source problem stated above as: given (f , g) ∈ H1
0(D) × H1(D) !nd (u, v) ∈

H1
0(D) × H1(D) solving (11)–(12). Notice, that in order to prove well-posedness it is su#cient to

prove that the sesquilinear form a(·, ·) is coercive onH1(D) and that b(·, ·) has the inf–sup condition.
Recall, that the inf–sup condition is de!ned as (see for e.g. [27])

inf
ψ∈H1

0(D)
sup

v∈H1(D)

b(v,ψ)

‖ψ‖H1(D)‖v‖H1(D)

≥ α

for some constant α > 0. In the following result, we prove that the sesquilinear forms de!ned above
satisfy the aforementioned properties.

Theorem 3.1: Assume that either λ ∈ (1,∞) and ηmax < 0 or λ ∈ (0, 1) and ηmin > 0. Then we have
that a(·, ·) is coercive on H1(D). Moreover, we have that b(· , ·) satis!es the inf–sup condition.

Proof: We !rst show that a(·, ·) is coercive and we choose to present the case where we assume that
λ ∈ (1,∞) and ηmax < 0. From this, we can now estimate

λa(v, v) = −
∫

D
(1 − λ)|∇v|2 dx −

∫

∂D
η|v|2 ds

≥ (λ− 1)
∫

D
|∇v|2 dx − ηmax

∫

∂D
|v|2 ds

≥ min {(λ− 1), |ηmax|}
(∫

D
|∇v|2 dx +

∫

∂D
|v|2 ds

)
.

Now, we can use the fact that

‖ · ‖2H1(D)
is equivalent to

∫

D
|∇ · |2 dx +

∫

∂D
| · |2 ds,

(see for e.g. [28] Chapter 8) to obtain the estimate

|a(v, v)| ≥ C‖v‖2H1(D)
for some C > 0.

This proves the coercivity for the case when λ ∈ (1,∞) and ηmax < 0. The case when λ ∈ (0, 1) and
ηmin > 0 can be handled in a similar manner.

In order to show that the sesquilinear form b(·, ·) satis!es the inf–sup condition, we will use an
equivalent de!nition. Recall, that the inf–sup condition is equivalent to showing that for any ψ ∈
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H1
0(D) there exists vψ ∈ H1(D) such that

b(vψ ,ψ) ≥ β‖ψ‖2H1(D)

where ‖vψ‖H1(D) ≤ C‖ψ‖H1(D) for some constant β > 0 that is independent of ψ . To this end, we
de!ne vψ ∈ H1(D) to be the solution of the variational problem

∫

D
∇vψ · ∇φ dx +

∫

∂D
vψφ ds =

∫

D
∇ψ · ∇φ dx (13)

for all φ ∈ H1(D). By appealing to the norm equivalence stated above and the Lax–Milgram Lemma,
we have that the mapping ψ -−→ vψ solving (13) is a well-de!ned bounded linear operator from
H1
0(D) to H1(D). Therefore, we have that letting φ = ψ in (13) gives

b(vψ ,ψ) =
∫

D
∇vψ · ∇ψ dx =

∫

D
|∇ψ |2 dx ≥ β‖ψ‖2H1(D)

by the Poincaré inequality. Note, that we have used the fact that ψ has zero trace on the boundary
∂D. Thus, we have that b(·, ·) satis!es the inf–sup condition. !

FromTheorem 3.1 and the analysis in [27] we have that (11)–(12) is well-posed. Therefore, we can
de!ne the bounded linear operator

T : H1
0(D) × H1(D) −→ H1

0(D) × H1(D) such that T(f , g) = (u, v).

By the well-posedness and the estimates on the L2(D) integrals on the right-hand side of (11)–(12),
we have that for some C> 0

‖T(f , g)‖H1(D)×H1(D) = ‖(u, v)‖H1(D)×H1(D) ≤ C
{
‖f ‖L2(D) + ‖g‖L2(D)

}
.

Now, we have the necessary requirements to prove that the solution operator T is compact using the
Rellich–Kondrachov Embedding Theorem.

Theorem 3.2: Assume that either λ ∈ (1,∞) and ηmax < 0 or λ ∈ (0, 1) and ηmin > 0. Then the
solution operator T : H1

0(D) × H1(D) −→ H1
0(D) × H1(D) corresponding to (11)–(12) is compact.

Proof: To prove the claim, we show that for any sequence (fj, gj) weakly converging to zero in
H1
0(D) × H1(D), then the image T(fj, gj) has a subsequence that converges strongly to zero in

H1
0(D) × H1(D). Notice, that there exists a subsequence (still denoted with j) that satis!es

‖fj‖L2(D) + ‖gj‖L2(D) → 0 as j → ∞

by the compact embedding of H1(D) in L2(D) see [29]. From this, we have that

‖T(fj, gj)‖H1(D)×H1(D) ≤ C
{
‖fj‖L2(D) + ‖gj‖L2(D)

}
→ 0 as j → ∞

which proves the claim. !

Now, simple calculations show that the relationship between the eigenvalues of T and the trans-
mission eigenvalues k is that 1/k2 ∈ σ (T), where σ (T) is the spectrum of the operator T. Therefore,
we have related the transmission eigenvalues to the eigenvalues of a compact operator.We can use the
compactness of T to prove the following result for the set of transmission eigenvalues independent of
the sign of the contrast n−1.
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Figure 2. Contour plot of |d0(k)| on the set [0, 10] × [−1, 1]i in the complex plane where the parameters are λ = 2, n = 4 and
η = − 1

100 .

Theorem 3.3: Assume that either λ ∈ (1,∞) and ηmax < 0 or λ ∈ (0, 1) and ηmin > 0. Then the set
of transmission eigenvalues is discrete with no !nite accumulation point.

Proof: This is a consequence of the fact that k is a transmission eigenvalue implies that 1/k2 ∈ σ (T).
Then we exploit that the set σ (T) is a discrete set with zero its only possible accumulation point. !

An important question is whether or not the operator T is self-adjoint. If so, we would have exis-
tence of real transmission eigenvalues by appealing to the Hilbert–Schmidt Theorem. In a similar
way with other transmission eigenvalue problems, we have that the operator T is not self-adjoint
even when the material parameters are real-valued. To see this fact, we can consider the transmission
eigenvalue problem for the unit disk in R2 with constant coe#cients λ, η and n.

Example 3.1: Using separation of variables, we have that k is a transmission eigenvalue provided that
dm(k) = 0 for anym ∈ Z where

dm(k) := det
(

Jm(k
√
n) −Jm(k)

λJ′m(k
√
n)k

√
n −

(
kJ′m(k) + ηJm(k)

)
)

and Jm(t) are the Bessel functions of the !rst kind of orderm (see Section 6 for details). Therefore, we
can plot |d0(k)| for complex-valued k and determine if there are any complex roots. This is done in
Figure 2 using λ = 2, n = 4, and η = − 1

100 .We see complex roots at the values k = 2.2032 ± 0.2905i
as well as other points in the set [0, 10] × [−1, 1]i.

More precisely, we obtain 10 interior transmission eigenvalues within the given set form = 0 with
MATLAB. They are given to high accuracy as 0.053410, 2.203160 ± 0.290468i, 3.456704, 5.338551 ±
0.305549i, 6.606526, 8.477827 ± 0.309699i, and 9.750981.
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From this, we see that there are multiple complex transmission eigenvalues k for this set of param-
eters. As a result, for this simple example, T has complex eigenvalues since 1/k2 ∈ σ (T) and cannot
be self-adjoint. Therefore, we can not rely on standard theory to prove the existence of the trans-
mission eigenvalues. The existence is proven in the next section where we use a similar analysis as
in [30]. These techniques are usually used for anisotropicmaterials. This analysis is utilized due to the
fact that the techniques in [18] fail to give a variational formulation for the eigenfunction u = w−v
exclusively.

4. Existence of transmission eigenvalues

In this section, we show the existence of the transmission eigenvalues with conductive boundary
parameters following a similar analysis as [30]. In our analysis, we will furthermore assume that λ ∈
(1,∞), ηmax < 0, and λnmax − 1 < 0, or λ ∈ (0, 1), ηmin > 0, and λnmin − 1 > 0. The goal now is
to show the existence of real transmission eigenvalues. To this end, we work with the formulated
problem (5)–(6) and the variational formulation (7)

λ

∫

D
∇u · ∇φ − k2nuφ dx =

∫

D
(1 − λ)∇v · ∇φ − k2(1 − λn)vφ dx +

∫

∂D
ηvφ ds

for all φ ∈ H1(D). Following the analysis in [30], we consider (5)–(6) as a Robin boundary value
problem for v ∈ H1(D). This means that for a given u ∈ H1

0(D) we need to show that there exists a
v ∈ H1(D) satisfying (7). We now de!ne the bounded sesquilinear form and the bounded conjugate
linear functional from the variational formulation as

A(v,φ) =
∫

∂D
ηvφ̄ ds +

∫

D
(1 − λ)∇v · ∇φ̄ − k2(1 − λn)vφ̄ dx

and

-(φ) = λ

∫

D
∇u · ∇φ̄ − k2nuφ̄ dx.

Applying the Lax–Milgram Lemma to A(v,φ) = -(φ) gives us that (5)–(6) is well posed, i.e. there
exists a unique solution v ∈ H1(D) satisfying (5)–(6) for any given u ∈ H1

0(D). Notice, that the coer-
civity result for A(v,φ) is proven in a similar manner as the coercivity result for a(·, ·) in Section 3.
This says that the mapping we have u -−→ vu from H1

0(D) to H1(D) is a bounded linear operator.
Because the transmission eigenfunction v solves the Helmholtz equation in D, we make sure that vu
is also a solution of the Helmholtz equation in the variational sense. To this end, we use the Riesz
Representation Theorem to de!ne Lku by

(Lku,ψ)H1(D) =
∫

D
∇vu · ∇ψ − k2vuψ dx ∀ψ ∈ H1

0(D). (14)

Notice, that Lku = 0 if and only if vu solves the Helmholtz equation.
We will analyze the null-space of the operator Lk : H1

0(D) −→ H1
0(D) and connect this to the set

of transmission eigenfunctions. To this end, we show that Lk having a non-trival null-space for a
given value of k is equivalent to the transmission eigenvalue problem (3)–(4).

Theorem 4.1: Assume that either λ ∈ (1,∞), ηmax < 0, and λnmax − 1 < 0 or λ ∈ (0, 1), ηmin >

0, and λnmin − 1 > 0. If (v,w) ∈ H1(D) × H1(D) are non-trivial solutions of (3)–(4), then the non-
trivial u = w − v ∈ H1

0(D) satis!es that Lku = 0. Conversely, if for a given value of k we have that
Lku = 0 for a non-trivial u ∈ H1

0(D), then vu ∈ H1(D) solving (5)–(6) and w = u + vu are non-trivial
solutions of (3)–(4).
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Proof: The !rst part of the theorem is given by our construction. Conversely, we assumeLku = 0 for
a given value of k provided that u &= 0 and we let v = vu ∈ H1(D) be the unique solution to (5)–(6),
then de!ne w = u + v ∈ H1(D). From Equation (5) along with the fact that Lku = 0 gives that

%v + k2v = 0 and %w + k2nw = 0 in D.

Similarly, from the boundary condition (6) given by λ∂νu = (1 − λ)∂νv + ηv on ∂D and using the
identity w = u+ v we can easily obtain that

λ∂νw = ∂νv + ηv on ∂D.

This proves the claim since u ∈ H1
0(D). !

We have shown that there exist transmission eigenvalues if and only if the null-space ofLk is non-
trivial. Therefore, we turn our attention to studying this operator. Now, we are going to highlight some
properties of the operator Lk that will help us establish when Lk has a trivial null-space. From here
on, we denote vu := v.

Theorem 4.2: Assume that either λ ∈ (1,∞), ηmax < 0, and λnmax − 1 < 0 or λ ∈ (0, 1), ηmin > 0,
and λnmin − 1 > 0. Then, we have the following:

(1) the operator Lk : H1
0(D) −→ H1

0(D) is self-adjoint,
(2) the operator −L0 or L0 is coercive when λ ∈ (1,∞) or λ ∈ (0, 1), respectively.
(3) and the operator Lk − L0 is compact.

Proof: (1) Now we show that the operator Lk is self-adjoint. To this end, it is enough to show that
the quantity

(Lku, u)H1(D) =
∫

D
∇v · ∇u − k2vu dx

is real-valued for all u (see for e.g. [31]). Recall, the variational formulation given by (7)

λ

∫

D
∇u · ∇φ̄ − k2nuφ̄ dx =

∫

∂D
ηvφ̄ ds +

∫

D
(1 − λ)∇v · ∇φ̄ − k2(1 − λn)vφ̄ dx

for any φ ∈ H1(D). Letting φ = u in (7) implies that

λ

∫

D
|∇u|2 − k2n|u|2 dx =

∫

D
(1 − λ)∇v · ∇ū − k2(1 − λn)vu dx. (15)

In a similar manner, letting φ = v in the variational formulation (7), we obtain

λ

∫

D
∇u · ∇v − k2nuv dx =

∫

∂D
η|v|2 ds +

∫

D
(1 − λ)|∇v|2 − k2(1 − λn)|v|2 dx. (16)

By the de!nition of Lk, we have that

(Lku, u)H1(D) =
∫

D
∇v · ∇u − k2vu dx

=
∫

D
(1 − λ)∇v · ∇u − k2(1 − λn)vu dx + λ

∫

D
∇v · ∇u − k2nvu dx.

Using (15) and (16) above, we obtain that

(Lku, u)H1(D) = λ

∫

D
|∇u|2 − k2n|u|2 dx +

∫

∂D
η|v|2 ds
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+
∫

D
(1 − λ)|∇v|2 − k2(1 − λn)|v|2 dx.

Thus, all the integrals on the right-hand side are evaluated to be real numbers and that gives us that
Lk is self-adjoint.

(2) Now, we show that ±L0 is coercive and we !rst analyze −L0. We assume that λ ∈ (1,∞) and
that ηmax < 0. Letting w = v+ u in the de!nition of Lk gives

(Lku, u)H1(D) =
∫

D
∇w · ∇u − k2wu dx −

∫

D
|∇u|2 − k2|u|2 dx.

From the variational formulation (7) with φ = w, we have the following equality
∫

D
∇w · ∇u − k2wu dx =

∫

D
(1 − λ)|∇w|2 − k2(1 − λn)|w|2 dx +

∫

∂D
η|w|2 ds. (17)

Now, using (17), we get

(Lku, u)H1(D) =
∫

D
(1 − λ)|∇w|2 − k2(1 − λn)|w|2 dx

+
∫

∂D
η|w|2 ds −

∫

D
|∇u|2 − k2|u|2 dx. (18)

Therefore, letting k = 0, we obtain

− (L0u, u)H1(D) =
∫

D
(λ− 1)|∇w|2 dx −

∫

∂D
η|w|2 ds +

∫

D
|∇u|2 dx. (19)

By appealing to the assumptions λ ∈ (1,∞) and ηmax < 0, we see that
∫

D
(λ− 1)|∇w|2 dx ≥ 0 and −

∫

∂D
η|w|2 ds ≥ 0.

From this, we can estimate

−(L0u, u)H1(D) =
∫

D
(λ− 1)|∇w|2 dx −

∫

∂D
η|w|2ds +

∫

D
|∇u|2 dx

≥
∫

D
|∇u|2 dx = ‖∇u‖2L2(D)

proving the coercivity of the −Lk operator in H1
0(D).

Next, assume that λ ∈ (0, 1) and ηmin > 0 and for this case, we consider the operator L0. From
the de!nition of Lk, we have that

(Lku, u)H1(D) =
∫

D
∇v · ∇u − k2vu dx.

Letting k = 0 in the variational formulation (7) with φ = u gives

λ

∫

D
|∇u|2 dx =

∫

D
(1 − λ)∇v · ∇u dx. (20)

In a similar way, using that k = 0 in the variational formulation (7) with φ = v gives us

λ

∫

D
∇u · ∇v dx =

∫

D
(1 − λ)|∇v|2 dx +

∫

∂D
η|v|2 ds. (21)

Now, consider L0 and using (20) and (21) provide independently, and so we get

(L0u, u)H1(D) =
∫

D
∇v · ∇u dx
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= λ

∫

D
|∇u|2dx +

∫

∂D
η|v|2ds +

∫

D
(1 − λ)|∇v|2 dx

≥ λ

∫

D
|∇u|2dx +

∫

∂D
ηmin|v|2ds +

∫

D
(1 − λ)|∇v|2 dx

≥ λ‖∇u‖2L2(D)

where we have used the assumptions of λ ∈ (0, 1) and ηmin > 0. Proving the coercivity in this case.
(3) Now, we turn our attention to proving the compactness of Lk − L0. To do so, we assume that

we have a weakly convergent sequence uj ⇀ 0 in H1
0(D). By the well-posedness, there exists vjk ⇀ 0

and vj0 ⇀ 0 inH1(D), where these correspond to the solutions of our variational formulation (7). The
de!nition of Lk gives us that we can de!ne (Lk − L0)uj in terms of vjk and vj0. Using the variational
formulation (7), we have that

∫

∂D
ηvjkφ ds +

∫

D
(1 − λ)∇vjk · ∇φ − k2(1 − λn)vjkφ dx = λ

∫

D
∇uj · ∇φ − k2nujφ dx

and ∫

∂D
ηvj0φ ds +

∫

D
(1 − λ)∇vj0 · ∇φ dx = λ

∫

D
∇uj · ∇φ dx

for all φ ∈ H1(D). Subtracting both equations gives us that
∫

∂D
η(vjk − vj0)φ ds +

∫

D
(1 − λ)∇(vjk − vj0) · ∇φ dx =

∫

D
k2(1 − λn)vjkφ − λnk2ujφ dx.

We now let φ = vjk − vj0 and we have the following
∫

∂D
η|vjk − vj0|

2 ds +
∫

D
(1 − λ)|∇(vjk − vj0)|

2 dx =
∫

D
k2(1 − λn)vjk(v

j
k − vj0) − λnk2uj(vjk − vj0) dx.

Notice, that on the left-hand side, we use the fact that

‖ · ‖2H1(D)
is equivalent to

∫

D
|∇ · |2 dx +

∫

∂D
| · |2 ds.

By the compact embedding of H1(D) into L2(D), we have that vjk and uj converge strongly to zero in
the L2(D)–norm. Thus, we have that the right-hand side behaves as

‖vjk − vj0‖H1(D) ≤ C
(
‖vjk‖L2(D) + ‖uj‖L2(D)

)
−→ 0

as j → ∞. Notice that the C> 0 above is independent of the parameter j’s but does depend on the
material parameters. Note that we have used the assumptions on λ and η. Now, observe the following

(
(Lk − L0)uj,ψ

)
H1(D)

=
∫

D
∇vjk · ∇ψ − k2vjkψ dx −

∫

D
∇vj0 · ∇ψ dx

=
∫

D
∇(vjk − vj0) · ∇ψ − k2vjkψ dx

and using the Cauchy–Schwartz inequality, we have

‖(Lk − L0)uj‖H1(D) ≤ C
(
‖vjk‖L2(D) + ‖vjk − vj0‖H1(D)

)
−→ 0.

Therefore, we have shown that (Lk − L0)uj tends to zero as j tends to in!nity, proving the claim. !
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We have shown three important properties that will help us establish when our operator Lk has a
trivial null-space. In addition, we want to make the observation that Lk depends continuously on k
by a similar argument as in Theorem 4.2. We continue by showing that the operator ±Lk is positive
for a range of values which will give a lower bound on the transmission eigenvalues.

Theorem 4.3: Let µ1(D) be the !rst Dirichlet eigenvalue of −% and let k2 be a real transmission
eigenvalue. Then, we have the following:

(1) If λ ∈ (1,∞), ηmax < 0, and λnmax − 1 < 0, then −Lk is a positive operator for k2 < µ1(D).
(2) If λ ∈ (0, 1), ηmin > 0, and λnmin − 1 > 0, then Lk is a positive operator for k2 < µ1(D)

nmax
.

Proof: (1) We !rst assume that λ ∈ (1,∞), ηmax < 0, and λnmax − 1 < 0. Using the de!nition of Lk
and w = v+ u, we have that

−(Lku, u)H1(D) = −
∫

D
(1 − λ)|∇w|2 − k2(1 − λn)|w2| dx −

∫

∂D
η|w2| ds

+
∫

D
|∇u|2 − k2|u|2 dx

≥
∫

D
(λ− 1)|∇w|2 − k2(λnmax − 1)|w2| dx − ηmax

∫

∂D
|w2| ds

+
∫

D
|∇u|2 − k2|u|2 dx

≥
∫

D
|∇u|2 − k2|u|2 dx.

Observe, that u ∈ H1
0(D) implies that we have the estimate

‖u‖2L2(D)
≤ 1

µ1(D)
‖∇u‖2L2(D)

(i.e. Poincaré inequality)

where µ1(D) is the !rst Dirichlet eigenvalue of −%. This gives that

−(Lku, u)H1(D) ≥
(
1 − k2

µ1(D)

)
‖∇u‖2L2(D)

.

Now if (1 − k2
µ1(D) ) > 0, we have that −(Lku, u)H1(D) > 0 for all u &= 0 which gives us that all real

transmission eigenvalues must satisfy that k2 ≥ µ1(D).
(2) On the other hand, assume that λ ∈ (0, 1), ηmin > 0, and λnmin − 1 > 0. Using our variational

formulation (7) and let φ = u to obtain

(Lku, u)H1(D) = λ

∫

D
|∇u|2 − k2n|u|2 dx +

∫

D
(1 − λ)|∇v|2 − k2(1 − λn)|v|2 dx

+
∫

∂D
η|v|2 ds

≥ λ

∫

D
|∇u|2 − k2nmax|u|2 dx +

∫

D
(1 − λ)|∇v|2 + k2(λnmin − 1)|v|2 dx

+
∫

∂D
ηmin|v|2 ds

≥ λ

∫

D
|∇u|2 − k2nmax|u|2 dx. (22)
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By again, appealing to the Poincaré inequality, we have that

(Lku, u)H1(D) ≥ λ

(
1 − nmax

k2

µ1(D)

)
‖∇u‖2L2(D)

.

Now if (1 − nmax
k2

µ1(D) ) > 0, we conclude that (Lku, u)H1(D) > 0 for all u &= 0 which implies that all
real transmission eigenvalues must satisfy that k2 ≥ µ1(D)

nmax
. !

Theorem 4.3 shows that the operator ±Lk is positive for a range of k values. Next, we show one
last result to help us establish when the null-space of Lk is non-trivial. The property that we want to
show is that the operator ±Lk is non-positive for some k on a subset of H1

0(D).

Theorem 4.4: There exists τ > 0 such that−Lτ , orLτ for λ ∈ (1,∞), ηmax < 0, and λnmax − 1 < 0,
or λ ∈ (0, 1), ηmin > 0, and λnmin − 1 > 0, respectively, is non-positive on N–dimensional subspaces
of H1

0(D) for any N ∈ N.

Proof: We begin with the case when λ ∈ (1,∞), ηmax < 0, and λnmax − 1 < 0. We consider the
ball Bε of radius ε > 0 such that Bε ⊂ D. Using separation of variables one can see that there exist
transmission eigenvalues for the system (See Section 6)

%w1 + τ 2nmaxw1 = 0 and %v1 + τ 2v1 = 0 in Bε
w1 = v1 and λ∂νw1 = ∂νv1 on ∂Bε .

Letting u1 be the di"erence of the eigenfunctions with corresponding eigenvalue τ gives us the
following using (22)

∫

Bε
|∇u1|2 − τ 2|u1|2 dx +

∫

Bε
(λ− 1)|∇w1|2 − τ 2(λnmax − 1)|w1|2 dx = 0.

Therefore, since u1 ∈ H1
0(Bε)we can take the extension by zero of u1 to the whole domain be denoted

by u2 ∈ H1
0(D). Now, since λ ∈ (1,∞), ηmax < 0, and λnmax − 1 < 0, we can construct the non-

trivial v2 ∈ H1(D) that solves the variational formulation (7) with coe#cients λ, n, and η in the
domainD and we also let w2 = v2 + u2. Using the relationship between v2 and u2 and w2 = v2 + u2
just as in the proof of Theorem 4.2 we have that

∫

D
(λ− 1)∇w2 · ∇φ − τ 2(λn − 1)w2φ dx −

∫

∂D
ηw2φ ds = −

∫

D
∇u2 · ∇φ − τ 2u2φ dx

= −
∫

Bε
∇u1 · ∇φ − τ 2u1φ dx

=
∫

Bε
(λ− 1)∇w1 · ∇φ

− τ 2(λnmax − 1)w1φ dx. (23)

Letting φ = w2 in (23) and using the Cauchy–Schwartz inequality because we have an inner product
on the right-hand side over the space H1(Bε) gives us

∫

D
(λ− 1)|∇w2|2 − τ 2(λn − 1)|w2|2 dx −

∫

∂D
η|w2|2 ds

=
∫

Bε
(λ− 1)∇w1 · ∇w2 − τ 2(λnmax − 1)w1w2 dx
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≤
[∫

Bε
(λ− 1)|∇w1|2 − τ 2(λnmax − 1)|w1|2 dx

] 1
2

×
[∫

Bε
(λ− 1)|∇w2|2 − τ 2(λnmax − 1)|w2|2 dx

] 1
2
.

As a consequence of the above inequality, we have that
∫

D
(λ− 1)|∇w2|2 − τ 2(λn − 1)|w2|2 dx −

∫

∂D
η|w2|2 ds

≤
∫

Bε
(λ− 1)|∇w1|2 − τ 2(λnmax − 1)|w1|2 dx.

Now, we use the de!nition of −Lτ in (22) with the functions u2 and w2 to conclude that

− (Lτu2, u2)H1(D) = −
∫

D
∇v2 · ∇u2 − τ 2v2u2 dx

=
∫

D
|∇u2|2 − τ 2|u2|2 dx

+
∫

D
(λ− 1)|∇w2|2 − τ 2(λn − 1)|w2|2 dx −

∫

∂D
η|w2|2 ds

by the calculations in Theorem 4.3. Next, using the above inequality, we obtain

(Lτu2, u2)H1(D) =
∫

Bε
|∇u1|2 − τ 2|u1|2 dx

+
∫

D
(λ− 1)|∇w2|2 − τ 2(λn − 1)|w2|2 dx −

∫

∂D
η|w2|2 ds

≤
∫

Bε
|∇u1|2 − τ 2|u1|2 dx +

∫

Bε
(λ− 1)|∇w1|2 − τ 2(λnmax − 1)|w1|2 dx

= 0.

Thus, the operator is non-positive on this one dimensional subspace.
We now argue that, for some τ > 0, we can construct an N–dimensional subspace of H1

0(D)

where the operator −Lτ is non-positive for any N ∈ N. To this end, let N be !xed and de!ne
Bj = {B(xj, ε) : xj ∈ D, ε > 0} ⊂ D for j = 1, . . . ,N where we assume Bj ∩ Bi = ∅ for all i &= j. We
make the assumption that λ ∈ (1,∞), ηmax < 0, and λnmax − 1 < 0 and denoting τ as the smallest
transmission eigenvalue for

%wj + τ 2nmaxwj = 0 and %vj + τ 2vj = 0 in Bj
wj = vj and λ∂νwj = ∂νvj on ∂Bj.

From this, we let uj ∈ H1
0(D) be the di"erence of the eigenfunctions wj and vj extended to D by

zero. Therefore, we have that for j = 1, . . . ,N the supports of uj and ui are disjoint, i.e. uj and ui
are orthogonal to each other for j &= i. Thus, the span{u1, u2, . . . , uN} is a N–dimensional subspace
ofH1

0(D). Now, because the support of the basis functions are disjoint and using the same arguments
as above, we can show that −Lτ is non-positive for any u in the N–dimensional subspace of H1

0(D)

spanned by the uj’s. This proves that claim since N is arbitrary. The same result can be proven for Lk
exactly in a similar way for the case when λ ∈ (0, 1), ηmin > 0, and λnmin − 1 > 0. !
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We have shown !ve important properties that will compile to imply the existence of transmis-
sion eigenvalues. This requires appealing to the following theorem !rst introduced in [30] to study
anisotropic transmission eigenvalue problems.

Theorem 4.5: Assume that we have Lk : H1
0(D) −→ H1

0(D) that satis!es

(1) Lk is self-adjoint and it depends on k> 0 continuously
(2) ±L0 is coercive
(3) Lk − L0 is compact
(4) There exists α > 0 such that Lα is a positive operator
(5) There exists β > 0 such that Lβ is non-positive on an m dimensional subspace

Then there exists m values kj ∈ (α,β) such that Lkj has a non-trivial subspace.

Proof: The proof of this result can be found in [30] Theorem 2.6. !

By the above result as well as the analysis presented in this section we have the main result of the
paper. This gives that there exists in!nitely many transmission eigenvalues.

Theorem 4.6: Assume either λ ∈ (1,∞), ηmax < 0, and λnmax − 1 < 0, or λ ∈ (0, 1), ηmin > 0 and
λnmin − 1 > 0 respectively, then there exists in!nitely many real transmission eigenvalues k> 0.

Proof: The proof follows directly by applying Theorem 4.5 where we have proven that our operator
satis!es the assumptions in the previous results. !

We have shown the existence of real transmission eigenvalues and we now wish to study how they
depend on the parameters λ, n, and η. We will show monotonicity results for the !rst transmission
eigenvalue with respect to the parameters n and η. We have two di"erent results with respect to n and
η. The !rst result shows that the !rst eigenvalue is an increasing function when λ ∈ (1,∞), ηmax < 0,
and λnmax − 1 < 0. Then we show that the !rst eigenvalue is a decreasing function when λ ∈ (0, 1),
ηmin > 0, and λnmin − 1 > 0.

Theorem 4.7: Assume that the parameters satisfy λ ∈ (1,∞), ηmax < 0, and λnmax − 1 < 0. There-
fore, we have that:

(1) If n1 ≤ n2 such that λnj − 1 < 0, then k1(n1) ≤ k1(n2).
(2) If η1 ≤ η2 such that ηj < 0, then k1(η1) ≤ k1(η2).

Here k1 corresponds to the !rst transmission eigenvalue.

Proof: Here, we will prove part (1) for the theorem and part (2) can be handled in a similar manner.
To this end, notice that if n1 ≤ n2, then we have (1 − λn2) ≤ (1 − λn1). Assume that λ ∈ (1,∞),
ηmax < 0, and λn2 − 1 < 0, and that v2 and w2 are the transmission eigenfunctions corresponding
to the transmission eigenvalue k2 = k1(n2, λ, η). Therefore, from (22), we obtain that

∫

D
|∇u2|2 − k22|u2|2 dx +

∫

D
(λ− 1)|∇w2|2 + k22(1 − λn2)|w2|2 dx −

∫

∂D
η|w2|2 ds = 0

where u2 = w2 − v2 ∈ H1
0(D).
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Now, we have the existence of v ∈ H1(D) that solves the variational problem (7) with u = u2,
n = n1, and k = k2. Then, we can de!ne w = v + u2. By rearranging the variational form in (7) and
using the de!nition w = v + u2 we have that

∫

D
(1 − λ)∇w · ∇φ − k22(1 − λn1)wφ dx +

∫

∂D
ηwφ ds

=
∫

D
∇u2 · ∇φ − k22u2φ dx

=
∫

D
(1 − λ)∇w2 · ∇φ − k22(1 − λn2)w2φ dx +

∫

∂D
ηw2φ ds. (24)

Letting φ = w in (24) and using the Cauchy–Schwartz inequality as in the proof of Theorem 4.4, we
have that

∫

D
(λ− 1)|∇w|2 − k22(λn1 − 1)|w|2 dx −

∫

∂D
η|w|2 ds

≤
∫

D
(λ− 1)|∇w2|2 − k22(λn2 − 1)|w2|2 dx −

∫

∂D
η|w2|2 ds.

We denote the operator −Lτ as the operator with n = n1. By appealing to the calculations in
Theorem 4.3 and the above inequality, we have that

−(Lk2u2, u2)H1(D) = −
∫

D
∇v · ∇u2 − k22vu2 dx

=
∫

D
|∇u2|2 − k22|u2|2 dx +

∫

D
(λ− 1)|∇w|2 − k22(λn1 − 1)|w|2 dx

−
∫

∂D
η|w|2 ds

≤
∫

D
|∇u2|2 − k22|u2|2 dx +

∫

D
(λ− 1)|∇w2|2 − k22(λn2 − 1)|w2|2 dx

−
∫

∂D
η|w2|2 ds

= 0.

Since−Lk2 is non-positive on the subspace spanned by u2 we can conclude that there is an eigenvalue
corresponding ton1 in (0, k1(n2)]. Therefore, the!rst transmission eigenvalue k1(n1)must satisfy that
k1(n1) ∈ (0, k1(n2)], proving the claim. !

Next, we have a similarmonotonicity result with respect to the assumptions on the coe#cients that
λ ∈ (0, 1),ηmin > 0, andλnmin − 1 > 0. Since the proof is similar towhat is presented inTheorem4.7
we omit the proof to avoid repetition.

Theorem 4.8: Assume that the parameters satisfy λ ∈ (0, 1), ηmin > 0, and λnmin − 1 > 0. Therefore,
we have that:

(1) If n1 ≤ n2 such that λnj − 1 > 0, then k1(n2) ≤ k1(n1),
(2) If η1 ≤ η2 such that ηj > 0, then k1(η2) ≤ k1(η1).

Here k1 corresponds to the !rst transmission eigenvalue.
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From Theorems 4.7 and 4.8 we can see that the !rst transmission eigenvalue depends monoton-
ically on some of the material parameters n and η. Notice that we are unable to prove a similar
monotonicity result with respect to λ due to showing up in the variational de!nition of Lk in dif-
ferent terms with di"erent signs. We will present some numerics for the monotonicity with respect
to λ in Section 6.

5. Convergence as the conductivity λ goes to 1

In this section, we study the convergence of the transmission eigenvalues in the sense of whether or
not we have that k(λ) −→ k(1) as λ −→ 1 where k(1) is the transmission eigenvalue corresponding
to λ = 1. Throughout this section, we will assume that the transmission eigenvalues k(λ) = kλ ∈ R+
form a bounded set as λ → 1. From this, we have that the set will have a limit point as λ tends to one.
For the eigenfunctions vλ and wλ, we may assume that they are normalized inH1(D) such that

‖vλ‖2H1(D)
+ ‖wλ‖2H1(D)

= 1

for any λ ∈ (0, 1) ∪ (1,∞). As a result, we have that (kλ, vλ,wλ) ∈ R+ × H1(D) × H1(D) are
bounded, so there exists (κ , v̂, ŵ) ∈ R+ × H1(D) × H1(D) such that

kλ −→ κ

as well as

wλ ⇀ ŵ and vλ ⇀ v̂ in H1(D) as λ −→ 1.

Now, our task is to show that the limits ŵ and v̂ satisfy the transmission eigenvalue problem when we
let λ = 1 with eigenvalue κ . To this end, we begin by showing that the di"erence of the eigenfunctions
uλ = wλ − vλ is bounded with respect to λ in the H2(D)–norm. To this end, by (3) we have that

%uλ + k2λnuλ = −k2λ(n − 1)vλ in D.

Notice, the fact that uλ ∈ H2(D) ∩ H1
0(D) is given by appealing to standard elliptic regularity results.

Observe that ‖% · ‖L2(D) is equivalent to ‖ · ‖H2(D) in H2(D) ∩ H1
0(D) (see for e.g. [28]). Therefore,

we can bound the H2(D)–norm of uλ using the above equation such that

‖uλ‖H2(D) ≤ C‖%uλ‖L2(D) ≤ C
{
‖uλ‖L2(D) + ‖vλ‖L2(D)

}
.

Notice, we have used the fact that n ∈ L∞(D) and that kλ is bounded with respect to λ. This implies
that, uλ is bounded in H2(D) ∩ H1

0(D) i.e.

uλ ⇀ û = ŵ − v̂ in H2(D) ∩ H1
0(D) as λ → 1.

We want to determine which boundary value problem the functions û and v̂ satisfy. To this end, we
take φ ∈ H1(D) and integrate over the region D to obtain

∫

D
(%uλ + k2λnuλ)φ dx = −k2λ

∫

D
(n − 1)vλφ dx.

Notice, that since k2λ → κ2 as well as vλ → v̂ in L2(D) and uλ ⇀ û in H2(D) ∩ H1
0(D) as λ → 1 we

have that ∫

D
φ

[
%û + κ2nû + κ2(n − 1)v̂

]
dx = 0 for all φ ∈ H1(D).

This implies that

%û + κ2nû = −κ2(n − 1)v̂ in D.
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Using a similar argument, we have that

%v̂ + κ2v̂ = 0 in D.

Notice, that uλ|∂D = 0 and by the Trace Theorem, we have that

∂νuλ|∂D ∈ H1/2(∂D), vλ|∂D ∈ H1/2(∂D), and ∂νvλ|∂D ∈ H−1/2(∂D)

are bounded. This implies that the above boundary values weakly converge to the corresponding
boundary values for the weak limits. Now, multiplying by φ ∈ H1/2(∂D) and integrating over ∂D in
Equation (6) we have that

∫

∂D
φ [λ∂νuλ − ηvλ] ds = (1 − λ)

∫

∂D
φ∂νvλ ds.

We can then estimate
∣∣∣∣

∫

∂D
φ [λ∂νuλ − ηvλ] ds

∣∣∣∣ ≤ |1 − λ|
∫

∂D
|φ∂νvλ| ds

≤ |1 − λ|‖∂νvλ‖H−1/2(∂D)‖φ‖H1/2(∂D)

≤ C|1 − λ|
{
‖vλ‖H1(D) + ‖%vλ‖L2(D)

}
‖φ‖H1/2(∂D).

Notice, that the quantity

‖vλ‖H1(D) + ‖%vλ‖L2(D)

is bounded due to the normalization and the fact that vλ satis!es the Helmholtz equation inD. As we
let λ → 1, we have that

∫

∂D
φ

[
∂ν û − ηv̂

]
ds = 0 for all φ ∈ H1/2(∂D).

We can conclude that

∂ν û = ηv̂ on ∂D.

Which gives the boundary value problem for the limits.
Next, we show that as λ −→ 1 we have that uλ −→ û inH2(D) ∩ H1

0(D). From the above analysis,
we have obtained that

%uλ + k2λnuλ = −k2λ(n − 1)vλ and %vλ + k2λvλ = 0 in D (25)

λ∂νuλ = (1 − λ)∂νvλ + ηvλ on ∂D (26)

as well as

%û + κ2nû = −κ2(n − 1)v̂ and %v̂ + κ2v̂ = 0 in D (27)

∂ν û = ηv̂ on ∂D. (28)

Notice, that (27)–(28) is the transmission eigenvalue problem for λ = 1 as studied in [18]. This anal-
ysis implies that provided that the weak limits are non-trivial as λ → 1 we have that kλ converges to
the transmission eigenvalue for λ = 1. In order to prove that the weak limits û and v̂ are non-trivial
we need the following results.

Theorem 5.1: Assume that the coe"cients satisfy the assumptions of Theorem 4.6 and kλ ∈ R+ forms
a bounded set as λ −→ 1. Then uλ −→ û in H2(D) ∩ H1

0(D) as λ −→ 1.
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Proof: We subtract (25) from (27) to get the following

%(uλ − û) = −k2λn(uλ − û) + nû(k2λ − κ2) + (1 − n)
(
k2λ(vλ − v̂) + v̂(k2λ − κ2)

)
.

Recall, that uλ and û ∈ H2(D) ∩ H1
0(D). Therefore, by taking L2(D) norm on both sides we obtain

the estimate

‖%(uλ − û)‖L2(D) ≤ C
{
‖uλ − û‖L2(D) + |k2λ − κ2| + ‖vλ − v̂‖L2(D)

}
.

Where we have used the triangle inequality and that n and k2λ are both bounded with respect to λ.
Again, using the fact that ‖% · ‖L2(D) is equivalent to ‖ · ‖H2(D) in H2(D) ∩ H1

0(D) gives us

‖uλ − û‖H2(D) ≤ C
{
‖uλ − û‖L2(D) + |k2λ − κ2| + ‖vλ − v̂‖L2(D)

}
.

The above inequality implies thatuλ −→ û inH2(D) ∩ H1
0(D) asλ −→ 1 by the compact embedding

of H1(D) into L2(D). !

We will now use the above convergence result to prove that û ∈ H2(D) ∩ H1
0(D) is non-trivial

under some further assumptions.

Theorem 5.2: Assume that the coe"cients satisfy the assumptions of Theorem 4.6 as well as n − 1 &= 0
a.e. in D and ∂νvλ is bounded in L2(∂D). Then û is non-trivial.

Proof: For contradiction, assume û = 0. Now, recall that we have

%uλ + k2λnuλ = −k2λ(n − 1)vλ

and by the convergence as λ → 1 we have that

0 = −κ2(n − 1)v̂ in D.

Now, as we have that k2λ is bounded below as a consequence of Theorem 4.3 and n − 1 &= 0, this
implies that v̂ = 0. Thus, we have that vλ ⇀ 0 inH1(D) and by compact embedding vλ → 0 in L2(D).
We now show that ∇vλ strongly converges to the zero vector. Recall, that the function vλ ∈ H1(D)

satis!es Helmholtz equation, i.e.%vλ + k2λvλ = 0 in D. Using Green’s First Theorem gives
∫

∂D
φ∂νvλ ds =

∫

D
φ%vλ + ∇vλ · ∇φ dx for φ ∈ H1(D).

Letting φ = vλ in the above equality gives that
∫

∂D
vλ∂νvλ ds =

∫

D
vλ%vλ + |∇vλ|2 dx = −

∫

D
k2λ|vλ|2 dx +

∫

D
|∇vλ|2 dx.

Observe that ∫

D
|∇vλ|2 dx =

∫

D
k2λ|vλ|2 dx +

∫

∂D
vλ∂νvλ ds.

Using the Cauchy–Schwarz inequality, we get that

‖∇vλ‖2L2(D)
≤ ‖∂νvλ‖L2(∂D)‖vλ‖L2(∂D) + k2λ‖vλ‖2L2(D)

which implies that

‖∇vλ‖2L2(D)
≤ C

{
‖vλ‖L2(∂D) + ‖vλ‖2L2(D)

}
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since we have assumed that ‖∂νvλ‖L2(∂D) and kλ are bounded. By the compact embedding of
H1/2(∂D) into L2(∂D) we have that

vλ ⇀ 0 inH1/2(∂D) implies vλ → 0 in L2(∂D).

Using the fact that vλ → 0 in L2(D) we can conclude that vλ → 0 in H1(D) by the above inequality.
Therefore, we have that both uλ and vλ converge to zero in H1(D). Now, because we have that uλ =
wλ − vλ we obtain that wλ converges to zero in H1(D). This contradicts the normalization

‖vλ‖2H1(D)
+ ‖wλ‖2H1(D)

= 1

proving the claim. !

Now, putting everything together, we are able to state the main result of this section. Here, we
have that as λ → 1 the transmission eigenvalues will have a limit that corresponds to the standard
transmission eigenvalue problem when λ = 1 under some assumptions.

Theorem 5.3: Assume that the coe"cients satisfy the assumptions of Theorem 4.6 as well as n − 1 &= 0
a.e. in D and ∂νvλ is bounded in L2(∂D). Then, we have that kλ → k(1) as λ → 1 where k(1) is a
transmission eigenvalue corresponding to λ = 1.

Proof: The proof is a simple consequence of the analysis presented in this section. !

We note that since kλ and k(1) are chosen arbitrarily, the above result holds for all transmission
eigenvalues, without assuming their exact position in the real spectrum. This means that for the
ordered subsequence of real eigenvalues, we have kλ,j → kj(1) for all j = 1, 2, . . . , where kλ,1 is the
!rst, kλ,2 the second etc.

We have shown the monotonicity with respect to n and η where as now we have an understand-
ing of the limiting process as λ → 1. In the case of inverse problems, it is very useful to understand
how the eigenvalues of a di"erential operator depend on the coe#cients. From an application per-
spective, this implies that the transmission eigenvalues can be used as a target signature to determine
information about the scatterer since the eigenvalues can be recovered from the scattering data.

6. Numerical validation

In this section, we provide some numerical examples that validate the theoretical results from the
previous sections. First, we will give some numerical examples of the convergence k(λ) −→ k(1) as
λ → 1 in Theorem 5.3 for the unit ball with constant coe#cients. Here we will consider the conver-
gence and estimate the rate of convergence for the case when λ ∈ (0, 1) and λ ∈ (1,∞). Then, we will
provide some examples for the monotonicity of the eigenvalues with respect to the parameters n and
η given in Theorems 4.7 and 4.8. Lastly, we will also report the transmission eigenvalues for other
shapes using boundary integral equations.

6.1. Validation on the unit disk for the convergence of λ

Here, we consider the convergence of the kλ as λ → 1±. For this we will assume that D = B(0, 1) ⊂
R2 (i.e. the unit disk centered at the origin) and that coe#cients n, η, and λ are all constants. Under
these assumptions, we recall that the transmission eigenvalue problem is given by

%w + k2nw = 0 and %v + k2v = 0 in B(0, 1) (29)

w = v and λ∂rw = ∂rv + ηv on ∂B(0, 1). (30)
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Figure 3. The plots of the determinant function dm(k) for m = 0, 1, 2. Here the parameters are given by n = 1/6, λ = 5, and
η = −1.

Motivated by the separation of variables, we try to !nd eigenfunctions of the form

w(r, θ) = wm(r)eimθ and v(r, θ) = vm(r)eimθ

where m ∈ Z. From this, we obtain that wm(r) = αmJm(k
√
nr) and vm(r) = βmJm(kr) where both

αm and βm are constants. Therefore, applying the boundary conditions at r = 1 gives that the
transmission eigenvalues are given by the roots of dm(k), de!ned by

dm(k) := det
(

Jm(k
√
n) −Jm(k)

λJ′m(k
√
n)k

√
n −

(
kJ′m(k) + ηJm(k)

)
)
. (31)

Here we let Jm(t) denote the Bessel functions of the !rst kind of orderm (Figure 3).
Letting kλ be the root(s) of dm(k), we can see that the eigenfunctions are given by

wλ(r, θ) = Jm(kλ)Jm(kλ
√
nr)eimθ and vλ(r, θ) = Jm(kλ

√
n)Jm(kλr)eimθ .

One can easily check that such forms satisfy the boundary conditions and also that if kλ forms a
bounded set then

‖∂rvλ(1, θ)‖L2(0,2π) is bounded with respect to λ.

We note that the position of each eigenvalue on the spectrum, is not directly associated with the order
m of the determinant dm(k), of which is a root. This means for e.g. that the lowest eigenvalue k1 can
be the !rst root of d1(k) (or of other order) and not d0(k). As a result, in the examples following,
we calculate the roots and sort them in ascending order. We let kj(λ) denote the jth transmission
eigenvalue for boundary parameter λ.

Now, we wish to provide some numerical validation of Theorem 5.3. First, we give some exam-
ples when we let λ approach 1 from below then we check the case when λ approach 1 from above.
The examples are given by considering the !rst three transmission eigenvalues, as roots of dm(k),
for m = 0, 1, 2, . . ..Therefore, we have that the limiting value as λ tends to 1 of the transmission
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Table 1. Convergence of the transmission eigenvalues as λ −→ 1− for n = 4 and η = 1.

λ k1(λ) EOC k2(λ) EOC k3(λ) EOC

1 − 1/2 3.0394 N/A 3.0561 N/A 3.2494 N/A
1 − 1/4 2.8388 2.0346 3.1970 1.3241 3.2942 1.8057
1 − 1/8 2.7990 1.3774 3.2509 1.2313 3.3048 1.2831
1 − 1/16 2.7853 1.1590 3.2723 1.1092 3.3088 1.1223
1 − 1/32 2.7794 1.0770 3.2819 1.0516 3.3106 1.0476
1 − 1/64 2.7767 1.0415 3.2864 1.0212 3.3114 1.0177
1 − 1/128 2.7754 1.0283 3.2886 1.0066 3.3118 0.9823
1 − 1/256 2.7747 1.0465 3.2897 0.9934 3.3120 0.9652
1 − 1/512 2.7744 1.0728 3.2902 0.9740 3.3121 0.9329
1 − 1/1024 2.7742 1.1575 3.2905 0.9494 3.3121 0.8745

Note: Here, the limiting values are k1(1) = 2.7741, k2(1) = 3.2908, and k3(1) = 3.3122.

Table 2. Convergence of the transmission eigenvalues as λ −→ 1+ for n = 1/3
and η = −1.

λ k1(λ) EOC k2(λ) EOC k3(λ) EOC

1 + 1/2 7.1094 N/A 7.4849 N/A 7.6108 N/A
1 + 1/4 7.0395 1.2433 7.2250 1.1455 7.7774 0.9655
1 + 1/8 7.0121 1.1084 7.1108 1.0984 7.8660 1.0189
1 + 1/16 6.9998 1.0527 7.0590 1.0513 7.9097 1.0168
1 + 1/32 6.9940 1.0268 7.0344 1.0265 7.9311 1.0085
1 + /64 6.9912 1.0181 7.0224 1.0165 7.9417 1.0027
1 + 1/128 6.9898 1.0157 7.0165 1.0124 7.9470 0.9973
1 + 1/256 6.9891 1.0106 7.0136 1.0125 7.9496 0.9892
1 + 1/512 6.9887 1.0431 7.0121 1.0304 7.9509 0.9732
1 + 1/1024 6.9886 1.1375 7.0114 1.0521 7.9516 0.9582

Note: Here the limiting values are k1(1) = 6.9883, k2(1) = 7.0107 and k3(1) =
7.9523.

eigenvalues, are the corresponding roots for λ = 1. When λ = 1, η = 1 and n = 4 we have that
k1(1) = 2.7741, k2(1) = 3.2908, and k3(1) = 3.3122 are the !rst three limiting transmission eigen-
values, coming from d1(k), d0(k), and d2(k) respectively. From this, we show that numerically
kj(λ) −→ kj(1) as λ −→ 1− for j = 1, 2, 3 and the results are presented in Table 1.We also check the
estimated order of convergence (EOC) which is given by

EOC = log(ελp/ελp+1)/ log(2) where ελp = |kj(λp) − kj(1)| for j = 1, 2, 3

and λp = 1 − 1
2p

for p = 1, 2, 3 . . .

where our calculations suggest !rst-order convergence as λ −→ 1−. Also, notice that in Table 1, the
eigenvalues seem to be monotone with respect to λ. We see that k1(λ) is descending k2(λ) and k3(λ)
are ascending with respect to λ.

We now give a numerical example of the convergences when λ ∈ (1,∞). It is important to remem-
ber that for this case, we have that ηmax < 0 and λnmax − 1 < 0 as λ −→ 1+. We again compute the
EOC with

λp = 1 + 1
2p

for p = 1, 2, 3 . . .

to establish the convergence rate. For Table 2, we choose n = 1/3 and η = −1 following the assump-
tions on the coe#cients given in Theorem 5.3. Again, we compute the lowest three roots of dm(k)
for λp. We have that the limiting transmission eigenvalues for n = 1/3 and η = −1 are given by
k1(1) = 6.9883, k2(1) = 7.0107, and k3(1) = 7.9523, being the !rst roots of d0(k), d2(k), and d1(k)
respectively.
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Table 3. Monotonicity with respect to n where λ = 2 and η = −3 for
the unit disk.

n 1/6 1/5 1/4 1/3

k1(n) 4.8387 4.9935 5.6504 6.5592
k2(n) 4.8893 5.6474 6.0112 7.3299

Note: Here, kj are the first two transmission eigenvalues.

Table 4. Monotonicity with respect to n where λ = 1/2 and
η = 1 for the unit disk.

n 3 4 5 6 7

k1(n) 3.9850 3.0394 2.3699 2.0651 1.6559
k2(n) 4.2464 3.0561 2.5280 2.0706 1.8761

Note: Here, kj are the first two transmission eigenvalues.

Table 5. Monotonicity with respect to η where λ = 5 and n = 1/6 for the unit disk.

η −4 −3 −2 −1 −1/2

k1(η) 4.7141 5.0753 5.4263 5.4283 5.4293
k2(η) 5.4220 5.4242 5.7292 5.9486 6.0176

Note: Here, kj are the first two transmission eigenvalues.

We again notice that, in Table 2, the eigenvalues seem to be monotone with respect to λ. We see
that k1(λ) and k2(λ) are increasing where as k3(λ) is decreasing with respect to λ. Although we only
showed that there is convergence, we have these numerical examples that seem to suggest mono-
tonicity of the transmission eigenvalues with respect to the parameter λ. Here, we conjecture the
monotonicity but due to the variational form studied in the previous section, we are unable to obtain
this result theoretically.

6.2. Monotonicity of η and n on the unit disk

Here, we will provide some numerics for the monotonicity with respect to η and n given in Theo-
rems 4.7 and 4.8. Just as in the previous section, we will assume that D is the unit disk with constant
coe#cients. Therefore, we can again use the fact that k is a transmission eigenvalue provided that it
is a root for dm(k) given by (31).

We !rst consider the monotonicity with respect to the parameter n. To this end, recall that
λ ∈ (1,∞), ηmax < 0, and λnmax − 1 < 0. Therefore, we !x λ = 2 and η = −3 and report the
transmission eigenvalues kj(n) for j = 1, 2 corresponding to the lowest two roots of dm(k), in Table 3.

In a similar fashion, we now provide numerical examples for the case when the parameters λ ∈
(0, 1), ηmin > 0, and λnmin − 1 > 0 corresponding to Theorem 4.8. Therefore, we again report the
!rst two roots of the functions dm(k). In Table 4, we !x λ = 1/2 and η = 1 for kj(n) for j = 1, 2.

Next, we turn our attention to the monotonicity with respect to η. We !rst consider the case where
we have λ ∈ (1,∞), ηmax < 0, and λnmax − 1 < 0. Recall, that from Theorem 4.7 we expect that the
transmission eigenvalues to be increasing with respect to η. In Table 5, we !x λ = 5 and n = 1/6 to
compute kj(η) for j = 1, 2 and we can see the monotonicity from the reported values.

Now, we focus on case corresponding to Theorem 4.8 where the transmission eigenvalues are
decreasing with respect to the parameter η. Therefore, we need the assumptions λ ∈ (0, 1), ηmin > 0,
and λnmin − 1 > 0 for the result to hold. In Table 6, we !x λ = 1/2 and n = 3 for kj(n), respectively,
for j = 1, 2.
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Table 6. Monotonicity with respect to η where λ = 1/2 and
n = 3 for the unit disk.

η 1 2 3 4 5

k1(η) 3.9850 3.6700 3.5212 2.6262 1.6354
k2(η) 4.2464 4.0269 3.5409 3.1242 1.9005

Note: Here, kj are the first two transmission eigenvalues.

6.3. Numerics via boundary integral equations

The derivation of the boundary integral equation to solve the problem follows along the same lines
as in [7, Section 3] where one uses a single-layer ansatz for the functions w and v with unknown
densities ϕ and ψ (refer also to [32] for the original idea). Precisely, we use

w(x) = SLk√nϕ(x) and v(x) = SLkψ(x), x ∈ D ,

where we de!ne the single-layer by

SLkφ(x) =
∫

∂D
4k(x, y)φ(y) ds(y), x ∈ D

where

4k(x, y) = i
4
H(1)
0

(
k|x − y|

)
, when x &= y

is the fundamental solution of the Helmholtz equation in two dimensions. Here we let H(1)
0 denote

the zeroth order !rst kind Hankel function. On the boundary we have

w(x) = Sk√nϕ(x) and v(x) = Skψ(x),

where the boundary operator Sk is given by

Skφ(x) =
∫

∂D
4k(x, y)φ(y) ds(y), x ∈ ∂D .

Likewise, we obtain

∂νw(x) =
(
1
2
I + K3

k
√
n

)
ϕ(x) and ∂νv(x) =

(
1
2
I + K3

k

)
ψ(x),

where

K3
k φ(x) =

∫

∂D
∂ν(x)4k(x, y)φ(y) ds(y), x ∈ ∂D

and I denotes the identity. Using the given boundary conditions and assuming that k and k
√
n are not

eigenvalues of −% in D yields
[
λ

(
1
2
I + K3

k
√
n

)
S−1
k
√
n −

(
1
2
I + K3

k

)
S−1
k − ηI

]
w = 0,

which is a non-linear eigenvalue problem of the form

M(k; n, η, λ)w = 0. (32)
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Here, the parameters n, η, and λ are given. Note that we focus on the transpose of this equation since
the boundary integral operator

Kkφ(x) =
∫

∂D
∂ν(y)4k(x, y)φ(y) ds(y), x ∈ ∂D

can be numerically approximated avoiding the singularity (see [33, Section 4.3] for details and the
discretization of the boundary integral operators). Then, the non-linear eigenvalue problem is solved
with the Beyn’s algorithm (see [34] for a detailed description). This algorithm converts a large-scale
non-linear eigenvalue problem to a linear eigenvalue problem of smaller size by appealing to complex
analysis, i.e. contour integrals in the complex plane. The contour we will choose, will be the disk in
the complex plane centered at µ ∈ C for a !xed radius R. From this, Beyn’s algorithm will compute
the transmission eigenvalues that lie in the interior of the chosen contour.

First, we show that we are able to reproduce the values given in Example 3.1 on page 14 for the unit
disk using the material parameters λ = 2, n = 4, η = −1/100 with the boundary element colloca-
tion method. We use 120 collocation nodes (40 pieces) within our algorithm for the discretization of
the boundary. For the Beyn algorithm we take the parameters tol = 10−4, - = 20, and N = 24 dis-
cretization points for the two contour integrals where the contour is a circle with center µ and radius
R = 1/2. Next, we pick µ = 3.5 and obtain the interior transmission eigenvalue 3.4567 − 0.0000i
which agrees with the value reported in Example 3.1 to four digits accuracy. This eigenvalue has mul-
tiplicity one (it corresponds to m = 0). Using µ = 2.2 yields the interior transmission eigenvalue
2.1516 − 0.0000i with multiplicity two which is in agreement with the value 2.151602 obtained from
the determinant form = 4. Again, we observe that all reported digits are correct. The accuracy does
not depend on the multiplicity of the eigenvalue. Finally, we test our boundary element collocation
method for a complex-valued interior transmission eigenvalue. Using µ = 2.2 + 0.6i yields the sim-
ple eigenvalue 2.2032 + 0.2905i (rounded) which is in agreement to !ve digits with the value reported
in Example 3.1 using the determinantwithm = 0. In sum, this shows thatwe are able to compute both
real and complex-valued interior transmission eigenvalues to high accuracy. It gives us the $exibility
to now compute them also for other scatterers as well.

For an ellipse with semi-axis a = 1 and b = 1.2 (refer to Figure 4) i.e.

∂D = (cos(t), 1.2 sin(t)) for t ∈ [0, 2π)

usingµ = 1/2 as well asµ = 3/2 and the samematerial parameters as before, we obtain the !rst nine
real-valued interior transmission eigenvalues

0.0420 0.6036 0.7165 1.0830 1.1136 1.5244 1.5311 1.9494 1.9507,

where we skipped reporting the imaginary eigenvalues. In comparison, the !rst nine real-valued
interior transmission eigenvalues for the unit disk are

0.0534 0.7208 0.7208 1.2131 1.2131 1.6864 1.6864 2.1516 2.1516.

Next, we compute the interior transmission eigenvalues for the kite-shaped domain (refer to Figure 4)
using the same parameters as before. Its boundary is given parametrically by

∂D = (0.75 cos(t) + 0.3 cos(2t), sin(t)) for t ∈ [0, 2π)

(refer to [32]).Weuseµ = 1/2,µ = 3/2 aswell asµ = 5/2 to obtain the!rst nine real-valued interior
transmission eigenvalues

0.0523 0.6868 0.8514 1.3452 1.4398 1.6348 2.0181 2.1439 2.3494.

Now, we consider the ellipse with semi-axis a = 1 and b = 1.2 and use thematerial parameters η = 1
and n = 4 and vary λ such that it approaches one from below. We will validate again numerically
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Figure 4. Graphical representation for the elliptical and kite-shaped domains considered in this section.

Table 7. Convergence of the transmission eigenvalues for the ellipse, as λ −→ 1− for n = 4 and η = 1.

λ k1(λ) EOC k2(λ) EOC k3(λ) EOC

1 − 1/2 2.5043 N/A 2.7413 N/A 2.8777 N/A
1 − 1/4 2.4701 0.9689 2.7077 0.9693 2.8535 1.0165
1 − 1/8 2.4523 0.9867 2.6903 0.9864 2.8416 1.0089
1 − 1/16 2.4434 0.9940 2.6815 0.9937 2.8356 1.0026
1 − 1/32 2.4388 0.9972 2.6770 0.9970 2.8327 1.0078
1 − 1/64 2.4366 0.9987 2.6748 0.9984 2.8312 0.9847
1 − 1/128 2.4354 0.9993 2.6737 0.9988 2.8305 1.0107
1 − 1/256 2.4349 0.9998 2.6731 0.9994 2.8301 1.0436
1 − 1/512 2.4346 1.0021 2.6729 0.9997 2.8299 0.8813
1 − 1/1024 2.4344 1.0015 2.6727 0.9968 2.8298 1.0722

Note: Here the limiting values are k1(1) = 2.4343, k2(1) = 2.6726 and k3(1) = 2.8300.

Theorem5.3 as it was done for the unit disk inTable 1. The results are reported inTable 7.Note that the
!rst three real-valued interior transmission eigenvalues forλ = 1 are k1(1) = 2.4343, k2(1) = 2.6726,
and k3(1) = 2.8300 which we obtained using µ = 5/2 with 240 collocation nodes. As we can see,
we obtain the linear convergence for λ −→ 1− for the given ellipse as expected. Interestingly, we
also obtain linear convergence for λ −→ 1+ for η = 1 and n = 4 although theoretically not justi!ed.
Refer to Table 8. Again, we also observe a monotonicity of the interior transmission eigenvalues with
respect to λ although we have not shown this fact from the theoretical point of view.

Finally, we show somemonotonicity results for the kite-shaped domain.We!rst!xλ = 2 aswell as
η = −1 and vary the index of refraction n. Using 120 collocation nodes within the boundary element
collocation method and the same parameters as before for the Beyn method withµ = 5,µ = 6,µ =
7 as well as µ = 8 and µ = 8.5 yields the !rst three real-valued interior transmission eigenvalues
reported in Table 9.

As we can see, the !rst real-valued interior transmission eigenvalue is monotone with respect to
the parameter n as stated in Theorem 4.7 item 1. Interestingly, the same seems to be true for the
second and third real-valued interior transmission eigenvalue. In Table 10, we show themonotonicity
behavior for !xedmaterial parameter λ = 2 and n = 1/6 and varying η using λ = 4.5, λ = 5.5 as well
as λ = 6.5.

We observe the expected monotonicity behavior for the !rst real-valued interior transmission
eigenvalue with respect to the parameter η as stated in Theorem 4.7 item 2. Strikingly, the other
interior transmission eigenvalues also show a monotonicity behavior.
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Table 8. Convergence of the transmission eigenvalues for the ellipse, as λ −→ 1+ for n = 4 and η = 1.

λ k1(λ) EOC k2(λ) EOC k3(λ) EOC

1 + 1/2 2.3601 N/A 2.5995 N/A 2.7844 N/A
1 + 1/4 2.3974 1.0101 2.6364 1.0138 2.8067 0.9758
1 + 1/8 2.4160 1.0080 2.6546 1.0093 2.8181 0.9880
1 + 1/16 2.4252 1.0047 2.6636 1.0052 2.8239 0.9980
1 + 1/32 2.4297 1.0025 2.6681 1.0028 2.8268 0.9932
1 + 1/64 2.4320 1.0012 2.6703 1.0014 2.8283 0.9966
1 + 1/128 2.4331 1.0006 2.6715 1.0009 2.8290 1.0056
1 + 1/256 2.4337 1.0002 2.6720 1.0011 2.8294 0.9796
1 + 1/512 2.4340 0.9989 2.6723 1.0004 2.8296 0.9780
1 + 1/1024 2.4341 0.9982 2.6724 1.0094 2.8297 1.0376

Note: Here the limiting values are k1(1) = 2.4343, k2(1) = 2.6726, and k3(1) = 2.8300.

Table 9. Values of kj(n)’s when n varies using λ = 2 and η = −1.

n 1/7 1/6 1/5 1/4 1/3

k1(n) 5.6837 6.0582 6.5231 7.0820 8.1993
k2(n) 6.0870 6.2456 6.5370 7.1497 8.2397
k3(n) 6.6334 6.8110 7.1306 7.7996 8.9628

Note: The first real-valued transmission eigenvalue increases monotonically
with respect to the parameter n as stated in Theorem 4.7 item 1 for the
kite-shaped domain.

Table 10. Values of kj(η)’s when η varies using λ = 2 and n = 1/6.

η −5 −4 −3 −2 −1

k1(η) 4.5272 5.4110 5.7363 5.9202 6.0582
k2(η) 5.3892 5.5606 5.7689 6.0044 6.2456
k3(η) 5.9899 6.1585 6.3488 6.5702 6.8110

Note: The first real-valued transmission eigenvalue increases monotonically
with respect to the parameter η as stated in Theorem 4.7 item 2 for the
kite-shaped domain.

Table 11. Values of kj(n)’s when n varies using λ = 1/2 and η = 1.

n 3 4 5 6 7

k1(n) 4.6102 3.4720 2.8104 2.4169 2.0606
k2(n) 4.6988 3.4863 2.8713 2.4513 2.2158
k3(n) 5.1191 3.8013 3.0731 2.6823 2.4215

Note: The first real-valued transmission eigenvalue decreases monotonically
with respect to the parameter n as stated in Theorem 4.8 item 1 for the
kite-shaped domain.

Next, we show numerical results to validate Theorem 4.8. First, we pick the material parameter
λ = 1/2 and η = 1 and vary n. We use µ = 5, µ = 3.5, and µ = 3 as well as µ = 2 to obtain the
results reported in Table 11.

As we can see, we numerically obtain the decreasing behavior for the !rst real-valued interior
transmission eigenvalue as stated in Theorem 4.8 item 1. Interestingly, we also observe a monotonic
behavior for the next two interior transmission eigenvalues as well. Now, we show numerical results
for thematerial parameters λ = 1/2 and n = 3 for varying η. Usingµ = 5,µ = 4.5, andµ = 4 yields
the results that are reported in Table 12.

Again, we observe the proposed monotone decreasing behavior as stated in Theorem 4.8 item 2
for the !rst real-valued interior transmission eigenvalue for the kite-shaped domain. Strikingly, the
same seems to be true for the second and third eigenvalue as well.
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Table 12. Values of kj(η)’s when η varies using λ = 1/2 and n = 3.

η 1/2 1 2 3 4

k1(η) 4.7339 4.6102 4.3089 4.0502 3.8981
k2(η) 4.7572 4.6988 4.5914 4.3550 4.0804
k3(η) 5.1747 5.1191 4.9526 4.6436 4.4735

Note: The first real-valued transmission eigenvalue decreases monotonically
with respect to the parameter η as stated in Theorem 4.8 item 2 for the
kite-shaped domain.

7. Summary and outlook

A transmission eigenvalue problemwith two conductivity parameters is considered. Existence as well
as discreteness of corresponding real-valued interior transmission eigenvalues is proven. Further, it
is shown that the !rst real-valued interior transmission eigenvalue is monotone with respect to the
two parameters η and n under certain conditions. Additionally, the linear convergence for λ against
one is shown theoretically. Next, the theory is validated by extensive numerical results for a unit disk
using Bessel functions. Further, numerical results are presented for more general scatterers using
boundary integral equations and its discretization via boundary element collocation method. Inter-
estingly, we can shownumericallymonotonicity results for cases that are not covered yet by the theory.
The existence of complex-valued interior transmission eigenvalues is still open, but it can be shown
numerically that they do exist. A worthwhile future project is to study the case when λ is variable.
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