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1. Introduction

In this paper, we study the transmission eigenvalue problem for an acoustic isotropic scatterer with
two conductive boundary conditions. Transmission eigenvalues have been a very active field of inves-
tigation in the area of inverse scattering. This is due to the fact that these eigenvalues can be recovered
from the far-field data, see for e.g. [1, 2], as well as can be used to determine defects in a material [3-7].
In general, one can prove that the transmission eigenvalues depend monotonically on the physical
parameters, which implies that they can be used as a target signature for non-destructive testing.
Non-destructive testing arises in many applications such as engineering and medical imaging, i.e. one
wishes to recover information about the interior structure given exterior measurements. Therefore, by
having information or knowledge of the transmission eigenvalues, one can retrieve information about
the material properties of the scattering object. Another reason one studies these eigenvalue prob-
lems, is their non-linear and non-self-adjoint nature. This makes them mathematically challenging
to study. We refer to [8] for a survey on the study of transmission eigenvalue problems.

Deriving accurate numerical algorithms to compute the transmission eigenvalues is an active field
of study, see for e.g. [9-16]. As mentioned, here we consider the scalar transmission eigenvalue prob-
lem with a two parameter conductive boundary condition denoted A and 7. This problem was first
introduced in [17]. The eigenvalue problem with one conductive boundary condition has been stud-
ied in [7, 18-20] for the case of acoustic scattering where as in [21, 22] for electromagnetic scatterers.
Due to the presence of the second parameter in the conductive boundary condition, the analysis used
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in the aforementioned manuscripts will not work for the problem at hand. Therefore, we will need to
use different analytical tools to study our transmission eigenvalue problem.

The rest of the paper is organized as follows. We will derive the transmission eigenvalue problem
under consideration from the direct scattering problem in Section 2. Next, in Section 3, we prove that
the transmission eigenvalues form a discrete set in the complex plane as well as provide an example via
separation of variables to prove that this is a non-self-adjoint eigenvalue problem. Then in Section 4,
we prove the existence of infinitely many real transmission eigenvalues as well as study the depen-
dance on the material parameters. Furthermore, in Section 5, we consider the limiting process as
A — 1 where we are able to prove that the transmission eigenpairs converge to the eigenpairs for one
conductive boundary parameter i.e. with A = 1. Numerical examples, using the separation of vari-
ables are given in Section 6 to validate the analysis presented in the earlier sections. Further, numerical
results are given using boundary integral equations.

2. Formulation of the problem

We now state the transmission eigenvalue problem under consideration by connecting it to the direct
scattering problem. To this end, we will formulate the direct scattering problem associated with the
transmission eigenvalues in RY where d = 2 or d = 3. Let D C R be a simply connected open set
with C? boundary 3D where v denotes the unit outward normal vector. We then assume that the
refractive index n € L°° (D) satisfies

0 < fpin < 1(x) < nmax < 00 fora.e.x € D.

We are particularly interested in the case where there are two (conductivity) boundary parameters A
and 7 as in [17]. These parameters occur e.g. when the scattered medium is enclosed by a thin layer
with high conductivity [23]. Therefore, we assume n € L*(dD) such that

Nmin < N(x) < Nmax fora.e.x € 9D

and fixed constant A # 1. The fact that the boundary parameters are real-valued implies that the
material covering the boundary is non-absorbing.

We let u = u* + u' denote the total field and u* is the scattered field created by the incident plane
wave ' := 7 with wave number k > 0 and j the incident direction. The direct scattering problem
for an isotropic homogeneous scatterer with a two parameter conductive boundary condition can be
formulated as: find u° € Hj, C(Rd) satisfying

AU+ Kn(0)u =k (1 —nx)u  inRNID (1)
ul —uy =0 and A9, (us_ + ui) = n(x) (ui + ui) + 0, (ufIr + ui) on dD (2)

where 9,¢ :== v - V¢ for any ¢. Here — and + corresponds to taking the trace from the interior or
exterior of D, respectively (see Figure 1). To close the system, we impose the Sommerfeld radiation
condition on the scattered field u*

asr — o0

1
S : S
oru’ — iku __O(—r(d 1)/2)

which holds uniformly with respect to the angular variable X = x/r where r = |x|. Here, | - | denotes
the Euclidean norm for a vector in RY.
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Figure 1. lllustration of the direct scattering problem in R2.

It has be shown that (1)-(2) is well-posed in [17]. Therefore, we have that the scattered field u* has
the asymptotic behavior (see for e.g. [24, 25])

. oiklx| o 1
W) =y ——5 14" &N+ 0| — as |x| — oo
9= o |69+ 0 (g )| e
and where the constant y is given by
ei7{/4

v = V8mk

Here u°(%,y) denotes the far-field pattern depending on the incident direction y and the obser-
vation direction %. The far-field pattern for all incident directions defines the far-field operator
F:L2(S% 1) — L[2(S%1) given by

1
inR? and y=4— in R?.
T

(F9)(®) == /S » u® (%, 9)g(3) ds@) forg e L2(S4).

Here, S~ ! denotes the unit disk/ sphere in R4, 1t is also well-known (see [17]) that F is injective with a
dense range if and only if there does not exist a nontrivial solution (w, v) € H'(D) x H'(D) solving:

Aw+kn(x)w=0 and Av+k*v=0 inD (3)
w=v and Ad,w=09,v+n(x)y ondD (4)

where v takes the form of a Herglotz function

ve(x) == e ds(), g e LAS.
Sd—l

Now, the values k € C for which (3)-(4) has non-trivial solutions are called transmission eigenvalues.
Due to the fact that, the Herglotz functions are dense in the set of solutions to Helmholtz equation we
will consider the transmission eigenvalue problem for any eigenfunction v € H!(D). Thus, the goal
of this paper is to study this eigenvalue problem as well as possible applications to the inverse spectral
problem. We first show that if a set of eigenvalues exists, then this will be a discrete set.
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3. Discreteness of eigenvalues

In this section, we study the discreteness of the transmission eigenvalues. In general, sampling meth-
ods such as the factorization method [17, 26] do not provide valid reconstructions of D if the wave
number k is a transmission eigenvalue. Here, we will assume that the conductivity parameters sat-
isfy either: A € (1,00) and max < 0 or A € (0,1) and nmin > 0. Note, that due to the presence of
the parameter A # 1 in (3)-(4), the discreteness for this problem must be handled differently from
the case when A = 1 which was proven in [18]. Here, we will use a different variational formula-
tion to study (3)-(4). To this end, we formulate the transmission eigenvalue problem as the problem
for the difference u := w — v € H} (D) and v € H'(D). By subtracting the equations and boundary
conditions for v and w, we have that the boundary value problem for v and u is given by

MAu+Knu) = (1 —MNAv+k*(1—in)v and Av+k’»=0 inD (5)
Adyu=(1—A)d,v+nv onadD. (6)

Now, in order to analyze (5)-(6), we will employ a variational technique. To do so, we use Green’s
First Theorem to obtain that

x/ w-va—kznuwx:/a—)\)Vv-va—kz(l—)\n)vadmrf nve ds (7)
D D oD

for all ¢ € H'(D). In addition, we also need to enforce that v is a solution to the Helmholtz equation
in D. Therefore, by again appealing to Green’s First Theorem, we can have that

/ VvV dx = / K*viy dx  forall v € Hy (D). (8)
D D
We now define the following sesquilinear forms b(-, -) : H'(D) x Hé (D) — C
b(v, ) = / Vv Vi dx
D

and a(-,-) : HY(D) x H'(D) — C

1 - 1 -

a(v,¢) = ——/(1 —MVv-Vodx — —/ nve ds.
rJp A Jap

It is clear that by appealing to the Cauchy-Schwarz inequality and the Trace Theorem that both
a(-,-) and b(-, -) are bounded. Defining these sesquilinear forms helps us to write (5)-(6) as a linear
eigenvalue problem for {(u,v), k} € Hé (D) x HY(D) x C\ {0} via the system

a(v, @) + b(¢, u) =/k2nu5dx—1/ K1 — rn)vé dx 9)
D A Jp

b(v, ¥) =/k2dex for all (, ) € Hy(D) x H' (D). (10)
D

In the analysis of the equivalent eigenvalue problem (9)-(10), we will consider the corresponding
source problem. Therefore, we will make the substitution k?v = g and k?u = f to define the saddle
point problem corresponding to (9)-(10) as

- 1
a(V, ¢) + b(¢’ Ll) = (f) n¢)L2(D) + X (g> ()\.7’[ - 1)¢)L2(D) (11)
b(v,¥) = (& ¥)12(p)- (12)
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It is clear that there exists constants C; > 0 for j = 1, 2 such that

1
(f, ﬂ¢)Lz(D) + 5 (g (An — 1)¢)L2(D) < C{If 2oy + Iglr2my } 181l )

and

(& V)i2py| < Callgllzzpy 19 llen o)

forallf € Hé (D) and g € H!(D) since we have assumed that n € L>(D).

Now, we consider the source problem stated above as: given (f,g) € Hé (D) x HY(D) find (u,v) €
Hé (D) x HY(D) solving (11)-(12). Notice, that in order to prove well-posedness it is sufficient to
prove that the sesquilinear form a(-, -) is coercive on H' (D) and that b(-, -) has the inf-sup condition.
Recall, that the inf-sup condition is defined as (see for e.g. [27])

. b(v, V)
inf sup =
veH D) vert(py 1V 1 @) IVIIE (D)

for some constant « > 0. In the following result, we prove that the sesquilinear forms defined above
satisfy the aforementioned properties.

Theorem 3.1: Assume that either A € (1,00) and Nmax < 0 0r A € (0, 1) and Nmin > 0. Then we have
that a(-, -) is coercive on H' (D). Moreover, we have that b(- , -) satisfies the inf-sup condition.

Proof: We first show that a(-, -) is coercive and we choose to present the case where we assume that
A € (1,00) and nmax < 0. From this, we can now estimate

ra(v,v) = —/(1 —X)|Vv|2dx—/ n|v|? ds
D aD

v

O — 1)/ |Vv|2dx—nmaxf |v|* ds
D oD

min{(k—l),|nmax|}</ |W|2dx+/ |v|2ds>.
D oD

v

Now, we can use the fact that

[l - ”?JI(D) is equivalent to / V. ? dx+f [ % ds,
D aD

(see for e.g. [28] Chapter 8) to obtain the estimate

la(v,v)| > C||v||12q1 for some C > 0.

D)

This proves the coercivity for the case when A € (1,00) and nmax < 0. The case when A € (0, 1) and
Nmin > 0 can be handled in a similar manner.

In order to show that the sesquilinear form b(:, -) satisfies the inf-sup condition, we will use an
equivalent definition. Recall, that the inf-sup condition is equivalent to showing that for any ¢ €
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Hé (D) there exists vy, € H 1(D) such that

b(vy, ¥) > .B”WH?—P(D)

where [|vy || (py < CllY |1 (py for some constant B > 0 that is independent of . To this end, we
define vy € H 1(D) to be the solution of the variational problem

va¢-v$dx+/ W,Ed5=/ Vi - Vo dx (13)
D aD D

forall ¢ € H'(D). By appealing to the norm equivalence stated above and the Lax-Milgram Lemma,
we have that the mapping ¥ —— vy solving (13) is a well-defined bounded linear operator from
Hé (D) to HY(D). Therefore, we have that letting ¢ = v in (13) gives

b(vl,,,xm=/Dw~de=fD|w|2dxzﬂ||w||ip(D)

by the Poincaré inequality. Note, that we have used the fact that ¥ has zero trace on the boundary
dD. Thus, we have that b(-, -) satisfies the inf-sup condition. [ |

From Theorem 3.1 and the analysis in [27] we have that (11)-(12) is well-posed. Therefore, we can
define the bounded linear operator

T : H)(D) x H (D) —> Hy(D) x H (D) such that T(f,g) = (,v).

By the well-posedness and the estimates on the L?(D) integrals on the right-hand side of (11)-(12),
we have that for some C> 0

1T e oy oy = 1oy < C{Iflzm) + 1gl2m) ) -

Now, we have the necessary requirements to prove that the solution operator T is compact using the
Rellich-Kondrachov Embedding Theorem.

Theorem 3.2: Assume that either A € (1,00) and Nmax < 0 or A € (0,1) and Nmin > 0. Then the
solution operator T : Hé (D) x H (D) — Hé (D) x HY(D) corresponding to (11)-(12) is compact.

Proof: To prove the claim, we show that for any sequence (f;, gj) weakly converging to zero in
H(D) x H'(D), then the image T(f;,gj) has a subsequence that converges strongly to zero in
Hé (D) x H'(D). Notice, that there exists a subsequence (still denoted with j) that satisfies

Ifilli2py + lgill2py = 0 asj— oo

by the compact embedding of H' (D) in L2(D) see [29]. From this, we have that

1T gl oyt oy < C{Ifill2o) + Igillzmy ) — 0 asj— oo

which proves the claim. |

Now, simple calculations show that the relationship between the eigenvalues of T and the trans-
mission eigenvalues k is that 1/k* € o (T), where o (T) is the spectrum of the operator T. Therefore,
we have related the transmission eigenvalues to the eigenvalues of a compact operator. We can use the
compactness of T to prove the following result for the set of transmission eigenvalues independent of
the sign of the contrast n—1.
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Figure % Contour plot of |dy (k)| on the set [0, 10] x [—1, 1]i in the complex plane where the parameters are A = 2, n = 4 and
= "700"

Theorem 3.3: Assume that either A € (1,00) and Nmax < 0 or A € (0,1) and Nmin > 0. Then the set
of transmission eigenvalues is discrete with no finite accumulation point.

Proof: This is a consequence of the fact that k is a transmission eigenvalue implies that 1/k?* € o (T).
Then we exploit that the set o (T) is a discrete set with zero its only possible accumulation point. W

An important question is whether or not the operator T is self-adjoint. If so, we would have exis-
tence of real transmission eigenvalues by appealing to the Hilbert-Schmidt Theorem. In a similar
way with other transmission eigenvalue problems, we have that the operator T is not self-adjoint
even when the material parameters are real-valued. To see this fact, we can consider the transmission
eigenvalue problem for the unit disk in R? with constant coefficients A, n and n.

Example 3.1: Using separation of variables, we have that k is a transmission eigenvalue provided that
dm(k) = 0 for any m € Z where

dm(k) — det( ]m(k\/z) _]m(k) )

M, (kymkyn = (K]}, (k) + nJu(k))

and J,,,(¢) are the Bessel functions of the first kind of order m (see Section 6 for details). Therefore, we
can plot |dy (k)| for complex-valued k and determine if there are any complex roots. This is done in
Figure 2 usingA = 2,n = 4,andn = —ﬁ. We see complex roots at the values k = 2.2032 =+ 0.2905i
as well as other points in the set [0, 10] x [—1, 1]i.

More precisely, we obtain 10 interior transmission eigenvalues within the given set for m = 0 with
MATLAB. They are given to high accuracy as 0.053410, 2.203160 £ 0.290468i, 3.456704, 5.338551 +
0.3055491, 6.606526, 8.477827 £ 0.3096991, and 9.750981.
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From this, we see that there are multiple complex transmission eigenvalues k for this set of param-
eters. As a result, for this simple example, T has complex eigenvalues since 1/k* € o (T) and cannot
be self-adjoint. Therefore, we can not rely on standard theory to prove the existence of the trans-
mission eigenvalues. The existence is proven in the next section where we use a similar analysis as
in [30]. These techniques are usually used for anisotropic materials. This analysis is utilized due to the
fact that the techniques in [18] fail to give a variational formulation for the eigenfunction u = w—v
exclusively.

4. Existence of transmission eigenvalues

In this section, we show the existence of the transmission eigenvalues with conductive boundary
parameters following a similar analysis as [30]. In our analysis, we will furthermore assume that A €
(1,00), Nmax < 0, and Anmax — 1 < 0, 0r A € (0, 1), Nmin > 0, and Anpmin — 1 > 0. The goal now is
to show the existence of real transmission eigenvalues. To this end, we work with the formulated
problem (5)-(6) and the variational formulation (7)

x/ w-va—kznuadx=/(1—)\)W.va—kz(1—)\n)v$dx+f nve ds
D D aD

for all ¢ € H (D). Following the analysis in [30], we consider (5)-(6) as a Robin boundary value
problem for v € H!(D). This means that for a given u € H} (D) we need to show that there exists a
v € HY(D) satisfying (7). We now define the bounded sesquilinear form and the bounded conjugate
linear functional from the variational formulation as

AW, ¢) =/ nv¢3ds+/(1—x)w-v(ﬁ—kz(l—xn)védx
oD D

and
0p) = x/ Vu- V¢ — kKnug dx.
D

Applying the Lax-Milgram Lemma to A(v, ¢) = £(¢) gives us that (5)-(6) is well posed, i.e. there
exists a unique solution v € H!(D) satisfying (5)-(6) for any given u € Hé (D). Notice, that the coer-
civity result for A(v, ¢) is proven in a similar manner as the coercivity result for a(-,-) in Section 3.
This says that the mapping we have u — v, from Hé (D) to H'(D) is a bounded linear operator.
Because the transmission eigenfunction v solves the Helmholtz equation in D, we make sure that v,
is also a solution of the Helmholtz equation in the variational sense. To this end, we use the Riesz
Representation Theorem to define Lyu by

(L, ¥) 1 (py = /DW” VY — v, ¥ dx Yy € Hy(D). (14)

Notice, that Lyu = 0 if and only if v, solves the Helmholtz equation.

We will analyze the null-space of the operator Ly : Hé (D) — Hé (D) and connect this to the set
of transmission eigenfunctions. To this end, we show that LL; having a non-trival null-space for a
given value of k is equivalent to the transmission eigenvalue problem (3)-(4).

Theorem 4.1: Assume that either A € (1,00), Nmax < 0, and Anmax — 1 < 0 or A € (0, 1), Nmin >
0, and Aimin — 1 > 0. If (v, w) € HY(D) x HY(D) are non-trivial solutions of (3)-(4), then the non-
trivial u = w — v € H) (D) satisfies that Liu = 0. Conversely, if for a given value of k we have that
Lyu = 0 for a non-trivialu € Hé (D), then v, € H' (D) solving (5)-(6) and w = u + v,, are non-trivial
solutions of (3)-(4).
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Proof: The first part of the theorem is given by our construction. Conversely, we assume Lz = 0 for
a given value of k provided that u # 0 and weletv=v, € H (D) be the unique solution to (5)-(6),
then define w = u + v € H'(D). From Equation (5) along with the fact that Lyu = 0 gives that

Av+kv=0 and Aw+k*nw=0 inD.

Similarly, from the boundary condition (6) given by 19,u = (1 — 1)d,v + nv on 9D and using the
identity w = u + v we can easily obtain that

Adyw = 0,v+nv onadD.

This proves the claim since u € Hé (D). |
We have shown that there exist transmission eigenvalues if and only if the null-space of L, is non-
trivial. Therefore, we turn our attention to studying this operator. Now, we are going to highlight some

properties of the operator Ly that will help us establish when Ly has a trivial null-space. From here
on, we denote v;, 1= v.

Theorem 4.2: Assume that either A € (1,00), Nmax < 0, and Aimax — 1 < 0 0or A € (0, 1), Nmin > 0,
and Amin — 1 > 0. Then, we have the following:

(1) the operator Ly : Hé (D) — Hé (D) is self-adjoint,
(2) the operator —LLg or Ly is coercive when A € (1,00) or A € (0, 1), respectively.
(3) and the operator Ly — Ly is compact.

Proof: (1) Now we show that the operator Ly is self-adjoint. To this end, it is enough to show that
the quantity

(Lxt, ) (py = / Vv Vi — kK vidx
D
is real-valued for all u (see for e.g. [31]). Recall, the variational formulation given by (7)
A/ Vu-Vé — kK*nug dx = f nv¢3ds+/(l —W)Vv- Vo — kKX (1 — an)vg dx
D aD D
for any ¢ € H'(D). Letting ¢ = u in (7) implies that
x/ IVu|> — Knjul> dx = / (1= M)Vv-Vi— K1 — in)vadx. (15)
D D
In a similar manner, letting ¢ = v in the variational formulation (7), we obtain
)\f Vu - Vv — kK*nuvdx =/ r}|v|2ds+/(1 —MDIVVE =K1 —am)v)Pdx.  (16)
D 9D D
By the definition of Ly, we have that
(Lku) U)HI(D) = / Vv.-Vu— kZVﬁdx
D
= /(1 —MVv- Vi — k(1 —in)vadx + )L/. Vv Vi — Knvii dx.
D D
Using (15) and (16) above, we obtain that

(Litt, w) 1y =,\/ |Vul|? —k2n|u|2dx+[ nlv|? ds
D aD
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+ / (1= |Vv)? = K1 — an)|v|* dx.
D
Thus, all the integrals on the right-hand side are evaluated to be real numbers and that gives us that
Ly is self-adjoint.
(2) Now, we show that £ is coercive and we first analyze —LLg. We assume that A € (1, 00) and
that nmax < 0. Letting w = v+ u in the definition of L gives
(Litt, w) g1y = / Vw- Vi — KEwidx — / IVul> — K*|ul? dx.
D D
From the variational formulation (7) with ¢ = w, we have the following equality
/ Vw- Vi — Kwidx = / (1= 2)|Vw|?> — (1 — an)|w|? dx + f n|w|? ds. (17)
D D aD

Now, using (17), we get

(Litt, w) 1y = /(1 — M)IVw)? = K1 — An)|w|? dx
D

+/ n|w|2ds—/ |Vul? — k2|u|? dx. (18)
aD D
Therefore, letting k = 0, we obtain
— (Lot )1 (p) = / (A — 1D)|Vw|?dx — / n|w|2ds+/ |Vu|? dx. (19)
D 9D D
By appealing to the assumptions A € (1,00) and nmax < 0, we see that
/(k —1)|Vw?dx>0 and —/ niw|?ds > 0.
D 9D
From this, we can estimate

— Lot w1 (p) =f(x—1)|vW|2dx—/ n|w|2ds+f |Vu|? dx
D aD D

2 9. 2
> /D IVul”dx = [ Vullpz p,
proving the coercivity of the —Lj operator in Hé (D).
Next, assume that A € (0, 1) and nmin > 0 and for this case, we consider the operator L. From
the definition of Ly, we have that
(]Lku; u)Hl(D) = / Vv.Vu — kzvﬁdx.
D
Letting k = 0 in the variational formulation (7) with ¢ = u gives
k/ |Vu|2dx=/(l—A)Vv-Vﬁdx. (20)
D D
In a similar way, using that k = 0 in the variational formulation (7) with ¢ = v gives us

X/ Vu~Vde=f(1—X)|Vv|2dx+/ n|v|? ds. (1)
D D aD

Now, consider ILy and using (20) and (21) provide independently, and so we get

(L()U,M)HI(D) = / Vv Vudx
D
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=A/ |Vu|2dx+/ n|v|2ds+/(1—,\)|W|2dx

D aD D

z/\/ |w|2dx+/ nmin|v|2ds+f<1—x>|w2dx
D oD D

where we have used the assumptions of A € (0, 1) and nmin > 0. Proving the coercivity in this case.
(3) Now, we turn our attention to proving the compactness of Ly — L. To do so, we assume that

we have a weakly convergent sequence &/ — 0 in H} (D). By the well-posedness, there exists v;( -0
and v{) — 0in H'(D), where these correspond to the solutions of our variational formulation (7). The

definition of ILj gives us that we can define (L — L)% in terms of v; and Vlo- Using the variational
formulation (7), we have that

f W";;ads—f-/(l—k)Vv;(.Vq_b—kz(]—)Ln)v;cadx:)L/ V”j~V$—k2nuf$dx
aD D b
and

f n%$ds+f<1—x>v%-v$dx=x/ Vil . VE dx

aD D D

for all ¢ € H!(D). Subtracting both equations gives us that
/ Nl — v))$ ds + / (1= WV, =) - Vdx = / k(1 — an)vg — kil dx.
aD D D
We now let ¢ = 'V;{ - v{, and we have the following
/ nlv, — vy ds+ / (1= WV, — V)P dx = / (1= v, — v)) — ank?id (v, — v))) dx.
aD D D
Notice, that on the left-hand side, we use the fact that

- IIIZLII(D) is equivalent to / [V - |2dx+f |2 ds.
D aD

By the compact embedding of H! (D) into L?(D), we have that vL and v/ converge strongly to zero in
the L?(D)-norm. Thus, we have that the right-hand side behaves as

W= ol = € (Wil + 1#ll20)) — 0

as j — oo. Notice that the C > 0 above is independent of the parameter j’s but does depend on the
material parameters. Note that we have used the assumptions on A and 1. Now, observe the following

(L — L), ¥) o ) = /DW,'c VY — K dx — /DW(') -V dx
- /DV(J,; — ) - VY — KV dx
and using the Cauchy-Schwartz inequality, we have
1@k = Lol = € (Wl + 1V = Vollin ) — 0.

Therefore, we have shown that (L; — Lo)#/ tends to zero as j tends to infinity, proving the claim. W
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We have shown three important properties that will help us establish when our operator L has a
trivial null-space. In addition, we want to make the observation that Ly depends continuously on k
by a similar argument as in Theorem 4.2. We continue by showing that the operator £y is positive
for a range of values which will give a lower bound on the transmission eigenvalues.

Theorem 4.3: Let u1(D) be the first Dirichlet eigenvalue of —A and let k* be a real transmission
eigenvalue. Then, we have the following:

(1) Ifr € (1,00), Nmax < 0, and Aoy — 1 < 0, then —1Ly is a positive operator for k* < p1(D).
(2) Ifx € (0,1), Nmin > 0, and Anmin — 1 > 0, then Ly is a positive operator for K< @

Nmax

Proof: (1) We first assume that A € (1, 00), Nmax < 0, and Animax — 1 < 0. Using the definition of Ly
and w = v+ u, we have that

— (Lt ) (py = — / (1= W) Vw]> — (1 — An)|w?| dx — / nlw?| ds
D oD
+/ [Vu|* — kK*|u? dx
D
> /(A — 1)V — Kkt — 1) dx nmax/ w2 ds
D oD
+/ [Vul> — K*|u)? dx
D
z/ IVul> — K*|ul? dx.
D
Observe, that u € Hé (D) implies that we have the estimate

2 1 2
”u”LZ(D) = m ”VMHLZ

where p1(D) is the first Dirichlet eigenvalue of —A. This gives that

oy (i.e. Poincaré inequality)

2
2
—(Lku, u)Hl(D) > (1 - /Ll(D)) ”vu”LZ(D)‘

Now if (1 — M"TZD)) > 0, we have that —(ILxu, u) 1 () > 0 for all u # 0 which gives us that all real

transmission eigenvalues must satisfy that k* > w1 (D).
(2) On the other hand, assume that A € (0, 1), §min > 0, and Anpin — 1 > 0. Using our variational
formulation (7) and let ¢ = u to obtain

(Lt )1 (py = A/ |Vul> — K*n|ul? dx + / (1= M)|Vv)? = K1 = rn)|v|* dx
D D

+/ n|v|? ds
oD

zk/ |Vu|2—k2nmax|u|2dx+/(l — MIVV? + K (AAmin — D|v)? dx
D D
+/ Nimin|V|* ds
oD

> A/ IVul|? — kK nimax 4] dx. (22)
D
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By again, appealing to the Poincaré inequality, we have that

k2
Lk, W (py = A <1 - nmaxm) ||Vu||iz(D)-

Now if (1 — nmaxl%) > 0, we conclude that (ILxu, ) g1 () > 0 for all u # 0 which implies that all

real transmission eigenvalues must satisfy that k> > ud) [
Nmax

Theorem 4.3 shows that the operator £Lj is positive for a range of k values. Next, we show one
last result to help us establish when the null-space of L is non-trivial. The property that we want to
show is that the operator 1Ly is non-positive for some k on a subset of H} (D).

Theorem 4.4: There exists T > 0 such that —L., orIL; for A € (1,00), lmax < 0, and Anmax — 1 < 0,
or A € (0,1), Nmin > 0, and Anmin — 1 > 0, respectively, is non-positive on N-dimensional subspaces
of Hy (D) forany N € N.

Proof: We begin with the case when A € (1,00), Nmax < 0, and Anmax — 1 < 0. We consider the
ball B¢ of radius € > 0 such that B. C D. Using separation of variables one can see that there exist
transmission eigenvalues for the system (See Section 6)

Aw; + rznmaxwl =0 and Avi+71*v =0 in B,
wy=v; and Ad,w; = 0,v; on dB.

Letting u; be the difference of the eigenfunctions with corresponding eigenvalue 7 gives us the
following using (22)

/ |Vu1|2—t2|u1|2dx+/ (A = DIV )? = 2 (Afimax — D|wy|> dx = 0.

e B

Therefore, since u; € Hé (Be) we can take the extension by zero of u; to the whole domain be denoted
by u; € Hé (D). Now, since A € (1,00), Nmax < 0, and Anpmax — 1 < 0, we can construct the non-
trivial v, € H'(D) that solves the variational formulation (7) with coefficients A, n, and 7 in the
domain D and we also let wy = v, 4 uy. Using the relationship between v, and u, and wy = v, + uy
just as in the proof of Theorem 4.2 we have that

/(A —1)Vw, -V — 22(an — Dwyrp dx — / nwap ds = —/ Vi, - Vo — t2urgp dx
D aD D

= —/ Vu, - Vo — 2u1d dx

€

= O—1)Vw, - Vo
B

- Tz(knmax - l)wladx' (23)

Letting ¢ = w; in (23) and using the Cauchy-Schwartz inequality because we have an inner product
on the right-hand side over the space H'(B,) gives us

/(k — DIV > — 2 (an — 1)|wZ|2dx—/ nlws|* ds
D oD

=[] O=1DVw - Vw; — t2(AMimax — D)wiwz dx
Be
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1
2
< U = DIVwi]? = T (Mimax — 1>|wl|2dx}
Be

1
3
x [ (A = DIVW2]? = 22 (i — Dwa|? dx] :
Be
As a consequence of the above inequality, we have that
f(x — DIVws|* — 7 (n — 1)|wZ|2dx—/ niws|* ds
D aD
< [ G~ DIV = 2ot = Dl .
B
Now, we use the definition of —L; in (22) with the functions u; and w; to conclude that
— (Leug, ) (py = —/ Vvy - Vi — t2vu7 dx
D
= / Vi |* — 22 Jus|* dx
D
+ f (4 = DIVwal* — 72(in — 1)|wa]* dx — / nlws|? ds
D aD

by the calculations in Theorem 4.3. Next, using the above inequality, we obtain

(Leuz, u2) i (py = f Vi | — o2y |* dx

€

+/<A—1>|VW2|2—r2(An—1)|wZ|2dx—/ nlws|* ds
D oD

sf IVur|* — 2l Pdx+ [ 0= DVwi]* — 2 (Mimax — D w1 ]? dx
B B

=0.

Thus, the operator is non-positive on this one dimensional subspace.

We now argue that, for some 7 > 0, we can construct an N-dimensional subspace of H} (D)
where the operator —LL; is non-positive for any N € N. To this end, let N be fixed and define
Bj = {B(xj,€) : xj € D,e > 0} C D for j=1,...,N where we assume B; N B; = ) for all i # j. We
make the assumption that A € (1, 00), Pmax < 0, and Anpmax — 1 < 0 and denoting 7 as the smallest
transmission eigenvalue for

Awj + rznmaij =0 and Av;j+ tzvj =0 inB;

wj=v; and Ad,w;=d,v; ondB,.

From this, we let uj € Hj(D) be the difference of the eigenfunctions w; and v; extended to D by
zero. Therefore, we have that for j = 1,..., N the supports of uj and u; are disjoint, i.e. u; and u;
are orthogonal to each other for j # i. Thus, the span{u;, us,. .., un} is a N-dimensional subspace
of H} (D). Now, because the support of the basis functions are disjoint and using the same arguments
as above, we can show that —LL, is non-positive for any u in the N-dimensional subspace of H} (D)
spanned by the u;’s. This proves that claim since N is arbitrary. The same result can be proven for i
exactly in a similar way for the case when A € (0, 1), nmin > 0, and Anpin — 1 > 0. |
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We have shown five important properties that will compile to imply the existence of transmis-
sion eigenvalues. This requires appealing to the following theorem first introduced in [30] to study
anisotropic transmission eigenvalue problems.

Theorem 4.5: Assume that we have 1Ly : Hé (D) — H& (D) that satisfies

(1) Ly is self-adjoint and it depends on k > 0 continuously

(2) =g is coercive

(3) Ly — Ly is compact

(4) There exists o > 0 such that L, is a positive operator

(5) There exists B > 0 such that Lg is non-positive on an m dimensional subspace

Then there exists m values k; € (a, B) such that ]ij has a non-trivial subspace.
Proof: The proof of this result can be found in [30] Theorem 2.6. |

By the above result as well as the analysis presented in this section we have the main result of the
paper. This gives that there exists infinitely many transmission eigenvalues.

Theorem 4.6: Assume either A € (1,00), Nmax < 0, and Amax — 1 < 0, or A € (0, 1), Nmin > 0 and
Afimin — 1 > 0 respectively, then there exists infinitely many real transmission eigenvalues k > 0.

Proof: The proof follows directly by applying Theorem 4.5 where we have proven that our operator
satisfies the assumptions in the previous results. [

We have shown the existence of real transmission eigenvalues and we now wish to study how they
depend on the parameters X, 1, and 1. We will show monotonicity results for the first transmission
eigenvalue with respect to the parameters n and 1. We have two different results with respect to n and
1. The first result shows that the first eigenvalue is an increasing function when A € (1, 00), imax < 0,
and Atimax — 1 < 0. Then we show that the first eigenvalue is a decreasing function when A € (0, 1),
Nmin > 0, and Anpin — 1 > 0.

Theorem 4.7: Assume that the parameters satisfy . € (1,00), lmax < 0, and Anmax — 1 < 0. There-
fore, we have that:

(1) Ifn < ny suchthat Anj — 1 < 0, then ki (n1) < k1(n).
(2) Ifm < ny such that n; < 0, then k1 (n1) < k1(12).

A

Here ky corresponds to the first transmission eigenvalue.

Proof: Here, we will prove part (1) for the theorem and part (2) can be handled in a similar manner.
To this end, notice that if n; < ny, then we have (1 — Any) < (1 — Anj). Assume that A € (1, 00),
Nmax < 0, and Any — 1 < 0, and that v, and w, are the transmission eigenfunctions corresponding
to the transmission eigenvalue k; = kj (12, A, 7). Therefore, from (22), we obtain that

f|Vu2|2—k§|u2|2dx+/(x—1)|sz|2+k§(1—xn2)|wz|2dx—/ nlwa|>ds =0
D D oD

where u, = wp, — v, € Hé (D).
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Now, we have the existence of v € H!(D) that solves the variational problem (7) with u = us,
n = ny, and k = k. Then, we can define w = v + u. By rearranging the variational form in (7) and
using the definition w = v + u, we have that

/(1 —MVw-Vé — K@ —Anl)wader/ nwe ds
D oD
=/ Vuy - Vé — Kurd dx
D
=/(1—A)VWZ~V5—I¢%(1 —Anz)wZaderf nwa¢ ds. (24)
D oD

Letting ¢ = w in (24) and using the Cauchy-Schwartz inequality as in the proof of Theorem 4.4, we
have that

/(,\— 1)|Vw|* — k3(Any — 1)|w|2dx—/ nlw|? ds
D oD
5/()\—1)|VW2|2_k%()L”2—1)|W2|2dx_/ nlwa|* ds.
D oD

We denote the operator —L; as the operator with n = n;. By appealing to the calculations in
Theorem 4.3 and the above inequality, we have that

— Ly u2, w2) g1 py = —/ Vv Vi — k3vit; dx
D

/ |Vu2|2—k§|u2|2dx+/()\— DIVw]? — k(g — 1)|w]* dx
D D

—f nlw|? ds
oD

5/ |w2|2—k§|uz|2dx+/<x—1)|VW2|2—k§(Anz—1>|wZ|2dx
D D

- / nlw,|* ds
D
=0.

Since —LLg, is non-positive on the subspace spanned by u; we can conclude that there is an eigenvalue
corresponding to n; in (0, ky (112)]. Therefore, the first transmission eigenvalue k; (;) must satisfy that
ki(n1) € (0, k1(n2)], proving the claim. |

Next, we have a similar monotonicity result with respect to the assumptions on the coefficients that
A € (0,1), nmin > 0,and Anpin, — 1 > 0. Since the proof is similar to what is presented in Theorem 4.7

we omit the proof to avoid repetition.

Theorem 4.8: Assume that the parameters satisfy . € (0, 1), Jmin > 0, and Anpmin — 1 > 0. Therefore,
we have that:

(1) Ifnm < ny suchthat Anj — 1 > 0, then ki(nz) < k1(n1),
(2) Ifm < ny such that n; > 0, then ki (1n2) < k1(n1).

Here ky corresponds to the first transmission eigenvalue.
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From Theorems 4.7 and 4.8 we can see that the first transmission eigenvalue depends monoton-
ically on some of the material parameters n and 7. Notice that we are unable to prove a similar
monotonicity result with respect to A due to showing up in the variational definition of Ly in dif-
ferent terms with different signs. We will present some numerics for the monotonicity with respect
to A in Section 6.

5. Convergence as the conductivity A goes to 1

In this section, we study the convergence of the transmission eigenvalues in the sense of whether or
not we have that k(A) — k(1) as A —> 1 where k(1) is the transmission eigenvalue corresponding
to A = 1. Throughout this section, we will assume that the transmission eigenvalues k(1) = k, € R4
form a bounded set as . — 1. From this, we have that the set will have a limit point as X tends to one.
For the eigenfunctions v; and w;, we may assume that they are normalized in H' (D) such that

1vallz iy + 1waliFp ) = 1

for any A € (0,1) U (1,00). As a result, we have that (k;,v;,w;) € Ry x H (D) x H (D) are
bounded, so there exists (k, V, W) € Ry x H(D) x H' (D) such that

kk—>K
as well as
wy—w and vy, — 7 inHY (D) asi — I.

Now, our task is to show that the limits # and ¥ satisfy the transmission eigenvalue problem when we
let A = 1 with eigenvalue «. To this end, we begin by showing that the difference of the eigenfunctions
u; = wy — vy, is bounded with respect to A in the H 2(D)-norm. To this end, by (3) we have that

Auy + kinux = —ki(n — 1w, inD.

Notice, the fact that u; € H*(D) N H} (D) is given by appealing to standard elliptic regularity results.
Observe that [|A - [|12(p) is equivalent to || - || z2(p) in H?>(D)N Hé (D) (see for e.g. [28]). Therefore,
we can bound the H?(D)-norm of u;, using the above equation such that

Il ll2py < CllAull2py < C{llurllizp) + il } -

Notice, we have used the fact that n € L°°(D) and that k; is bounded with respect to A. This implies
that, uy, is bounded in H2(D) N Hé (D) i.e.

w, =~ f=w—9 inH*D)NHy(D) asir— 1.

We want to determine which boundary value problem the functions i and ¥ satisfy. To this end, we
take ¢ € H!(D) and integrate over the region D to obtain

/(AuA + kinuk)adx = —ki / (n — 1)y dx.
D D

Notice, that since ki — k2 aswellas vy, — ¥in L>(D) and uy, — #1in H*(D) N Hé (D) as A — 1 we
have that
/ E[Aft +2ni+ k2 (n — l)f/] dx=0 forall¢ € H (D).
D
This implies that

Al + k*nii = —k*(n — 1)v in D.
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Using a similar argument, we have that
AV +x*H=0 inD.
Notice, that u, |3p = 0 and by the Trace Theorem, we have that
dvurlap € H/?@D), vilap € H/?@D), and  dyvilop € H™/*(@D)

are bounded. This implies that the above boundary values weakly converge to the corresponding
boundary values for the weak limits. Now, multiplying by ¢ € H'/?(dD) and integrating over 3D in
Equation (6) we have that

/ ¢ [Aoyuy, —nvi] ds= (1 — A)f @0,V ds.
aD aD

We can then estimate

/ ¢ [Aoyu; —nvp] ds| < |1 —klf |¢d,va|ds
oD oD

< 11 = Alldvvallg-12ap) |l 1172 3y
< CIL = Al {Ivillg oy + 1AVl2 ) } 19 1E1720)-
Notice, that the quantity

Ivallen oy + 1AVl 2Dy

is bounded due to the normalization and the fact that v, satisfies the Helmholtz equation in D. As we
let A — 1, we have that

/ ¢ [dvit—n?] ds=0 forall¢ € H/*(ID).
oD

We can conclude that
o, =nv onaD.

Which gives the boundary value problem for the limits.
Next, we show thatas A —> 1 we have that u;, —> #1in H*(D) N Hé (D). From the above analysis,
we have obtained that

Auy + kinuA = —ki(n — 1Dy, and Avy + kim =0 inD (25)
Adyuy, = (1 —A)dyvy +nv, onaD (26)
as well as
Al +k*nii= —k*>(n—1)p and AV+«29=0 inD (27)
i =nv ondD. (28)

Notice, that (27)-(28) is the transmission eigenvalue problem for A = 1 as studied in [18]. This anal-
ysis implies that provided that the weak limits are non-trivial as A — 1 we have that k; converges to
the transmission eigenvalue for A = 1. In order to prove that the weak limits # and ¥ are non-trivial
we need the following results.

Theorem 5.1: Assume that the coefficients satisfy the assumptions of Theorem 4.6 and k) € Ry forms
a bounded set as . —> 1. Then uy, —> & in H*(D) N Hé (D) as A —> 1.
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Proof: We subtract (25) from (27) to get the following
Ay, — ) = —kin(uy, — ) + ni(ks — k) + (1 — n) (k. (v, — 9 + (5 — ).

Recall, that u; and # € H*(D) N Hé (D). Therefore, by taking L?(D) norm on both sides we obtain
the estimate

1A, — D)2y < C{llun — dill2py + 1k — €1+ va = 2y } -

Where we have used the triangle inequality and that n and k7 are both bounded with respect to A.
Again, using the fact that || A - ||;2(p) is equivalent to || - || 2(p) in H>(D)N Hé (D) gives us

lwn, — dill g2y < C{llun — dill 2oy + 1K — €21+ va — P2y } -

The above inequality implies that uy, —> #in H*(D) N H}(D) as» —> 1by the compact embedding
of H(D) into L?(D). [ ]

We will now use the above convergence result to prove that # € H*(D) N Hé (D) is non-trivial
under some further assumptions.

Theorem 5.2: Assume that the coefficients satisfy the assumptions of Theorem 4.6 as wellasn — 1 # 0
a.e. in D and 8,v;,is bounded in L>(dD). Then @i is non-trivial.

Proof: For contradiction, assume # = 0. Now, recall that we have
Auy + kinuy, = —ki(n — Dv,
and by the convergence as A — 1 we have that
0=—k2(n—1)7 inD.

Now, as we have that k7 is bounded below as a consequence of Theorem 4.3 and n — 1 # 0, this
implies that # = 0. Thus, we have that v; — 0in H' (D) and by compact embedding v;, — 0in L?(D).
We now show that Vv, strongly converges to the zero vector. Recall, that the function v € H!(D)
satisfies Helmholtz equation, i.e. Avy + k3v;, = 0 in D. Using Green’s First Theorem gives

$0,v; ds = / dAvy + Vv, -Vodx for¢p € H(D).
aD D
Letting ¢ = v, in the above equality gives that

/ ﬁauvkds=/ﬁAv)\+|va|2dx=—/k§|vx|2dx+/ [Vvy|? dx.
oD D D D

Observe that
24, 20,12 —
/ Vv, |“dx = / kylval®dx + / V) 0,y ds.
D D D
Using the Cauchy-Schwarz inequality, we get that
IVVillT2 by < 13wvallz) lvallzap) + K 1val2z p)
which implies that

IVvallfapy < C[|m||Lz(aD> + |m||§2(D)}
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since we have assumed that [0,v;[l;2(5p) and k; are bounded. By the compact embedding of
H'Y2(3D) into L2(3D) we have that

vy — 0inHY?(3D) implies vy, — 0 in L?(dD).

Using the fact that v; — 0 in L>(D) we can conclude that v5 — 0 in H!(D) by the above inequality.
Therefore, we have that both u; and v, converge to zero in H 1(D). Now, because we have that u; =
w;, — v, we obtain that w, converges to zero in H 1(D). This contradicts the normalization

||Vx||f{1(D) + ||Wk||§{l(D) =1
proving the claim. "

Now, putting everything together, we are able to state the main result of this section. Here, we
have that as A — 1 the transmission eigenvalues will have a limit that corresponds to the standard
transmission eigenvalue problem when A = 1 under some assumptions.

Theorem 5.3: Assume that the coefficients satisfy the assumptions of Theorem 4.6 as wellasn — 1 # 0
a.e. in D and 9,vy, is bounded in L*>(3D). Then, we have that k — k(1) as A — 1 where k(1) is a
transmission eigenvalue corresponding to A = 1.

Proof: The proof is a simple consequence of the analysis presented in this section. [

We note that since k; and k(1) are chosen arbitrarily, the above result holds for all transmission
eigenvalues, without assuming their exact position in the real spectrum. This means that for the
ordered subsequence of real eigenvalues, we have k; j — k;(1) for all j = 1,2,..., where k; ; is the
first, k; 2 the second etc.

We have shown the monotonicity with respect to n and 1 where as now we have an understand-
ing of the limiting process as A — 1. In the case of inverse problems, it is very useful to understand
how the eigenvalues of a differential operator depend on the coefficients. From an application per-
spective, this implies that the transmission eigenvalues can be used as a target signature to determine
information about the scatterer since the eigenvalues can be recovered from the scattering data.

6. Numerical validation

In this section, we provide some numerical examples that validate the theoretical results from the
previous sections. First, we will give some numerical examples of the convergence k(1) —> k(1) as
A — 1in Theorem 5.3 for the unit ball with constant coefficients. Here we will consider the conver-
gence and estimate the rate of convergence for the case when A € (0,1) and A € (1, 00). Then, we will
provide some examples for the monotonicity of the eigenvalues with respect to the parameters n and
n given in Theorems 4.7 and 4.8. Lastly, we will also report the transmission eigenvalues for other
shapes using boundary integral equations.

6.1. Validation on the unit disk for the convergence of A

Here, we consider the convergence of the k) as A — 1%, For this we will assume that D = B(0,1) C

R? (i.e. the unit disk centered at the origin) and that coefficients 7, 1, and A are all constants. Under
these assumptions, we recall that the transmission eigenvalue problem is given by

Aw+knw=0 and Av+k*»=0 inB(0,1) (29)

w=v and Adw=09,v+nv onadB(0,1). (30)
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Figure 3. The plots of the determinant function dp, (k) for m = 0, 1, 2. Here the parameters are given by n = 1/6, > = 5, and
n=-1

Motivated by the separation of variables, we try to find eigenfunctions of the form
w(r,0) = wp(r)e™® and  v(r,0) = v, (r)e™

where m € Z. From this, we obtain that w,,(r) = o) (ky/nr) and v,,(r) = ByJm (kr) where both
oy, and B, are constants. Therefore, applying the boundary conditions at » = 1 gives that the
transmission eigenvalues are given by the roots of d,, (k), defined by

_ T /) (K
() := dlet (Mﬁn(kﬁ)k\/ﬁ (k7 (k) + nfmuc)))‘ (1)

Here we let ], (¢) denote the Bessel functions of the first kind of order m (Figure 3).
Letting k;, be the root(s) of d,, (k), we can see that the eigenfunctions are given by

wi(1,0) = Jm (ki) Jm (ks n/nr)e™  and  v;.(1,0) = Ju (ks /1) T (ksr)el™.

One can easily check that such forms satisfy the boundary conditions and also that if k; forms a
bounded set then

10-v4 (L, 0l 12027) 1is bounded with respect to A.

We note that the position of each eigenvalue on the spectrum, is not directly associated with the order
m of the determinant d,, (k), of which is a root. This means for e.g. that the lowest eigenvalue k; can
be the first root of d; (k) (or of other order) and not dy(k). As a result, in the examples following,
we calculate the roots and sort them in ascending order. We let k;j(1) denote the jth transmission
eigenvalue for boundary parameter .

Now, we wish to provide some numerical validation of Theorem 5.3. First, we give some exam-
ples when we let A approach 1 from below then we check the case when A approach 1 from above.
The examples are given by considering the first three transmission eigenvalues, as roots of d, (k),
for m =0,1,2,....Therefore, we have that the limiting value as A tends to 1 of the transmission
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Table 1. Convergence of the transmission eigenvaluesas A —> 1~ forn = 4andn = 1.

A k1) EOC ka(%) EOC k(%) EOC

1-1/2 3.0394 N/A 3.0561 N/A 3.2494 N/A

1-1/4 2.8388 2.0346 3.1970 13241 3.2942 1.8057
1-1/8 2.7990 13774 32509 1.2313 33048 1.2831
1-1/16 27853 1.1590 32723 1.1092 33088 11223
1-1/32 27794 1.0770 3.2819 1.0516 33106 1.0476
1—1/64 27767 1.0415 3.2864 1.0212 33114 10177
1—1/128 27754 1.0283 32886 1.0066 33118 0.9823
1—1/256 27747 1.0465 3.2897 0.9934 33120 0.9652
1—1/512 27744 1.0728 3.2902 0.9740 33121 0.9329
1—1/1024 27742 1.1575 3.2905 0.9494 33121 0.8745

Note: Here, the limiting values are k1 (1) = 2.7741, k(1) = 3.2908, and k3(1) = 3.3122.

Table 2. Convergence of the transmission eigenvalues as A — 17 forn = 1/3

and n=-—1

A ki (2) EOC ka (%) EOC k3 (%) EOC
1+1/2 7.1094 N/A 7.4849 N/A 7.6108 N/A
1+1/4 7.0395 1.2433 7.2250 1.1455 7.7774 0.9655
1+1/8 7.0121 1.1084 7.1108 1.0984 7.8660 1.0189
1+1/16 6.9998 1.0527  7.0590 1.0513 7.9097 1.0168
1+1/32 6.9940 1.0268 7.0344 1.0265 7.9311 1.0085
1+ /64 6.9912 1.0181 7.0224 1.0165 7.9417 1.0027

1+1/128 6.9898 1.0157 7.0165 1.0124 7.9470 0.9973
1+1/256 6.9891 1.0106 7.0136 1.0125 7.9496 0.9892
141/512 6.9887 1.0431 7.0121 1.0304 7.9509 0.9732
1+ 1/1024 6.9886 1.1375 7.0114 1.0521 7.9516 0.9582

Note: Here the limiting values are k(1) = 6.9883, k(1) = 7.0107 and k3(1) =
7.9523.

eigenvalues, are the corresponding roots for A = 1. When A =1, n = 1 and n = 4 we have that
ki(1) = 2.7741, ky(1) = 3.2908, and k3 (1) = 3.3122 are the first three limiting transmission eigen-
values, coming from d;(k), do(k), and d»(k) respectively. From this, we show that numerically
ki(A) —> kj(1) as A —> 1~ for j = 1, 2, 3 and the results are presented in Table 1. We also check the
estimated order of convergence (EOC) which is given by

EOC = log(e;tp/elpﬂ)/log&) where €xp = |kj(Ap) — kj(1)| forj=1,2,3

1
and A, =1—— forp=1,2,3...
p Y p

where our calculations suggest first-order convergence as . —> 17. Also, notice that in Table 1, the
eigenvalues seem to be monotone with respect to A. We see that k; (1) is descending k(1) and k3(})
are ascending with respect to A.

We now give a numerical example of the convergences when A € (1, 00). It is important to remem-
ber that for this case, we have that 7imay < 0 and Afipmax — 1 < 0as A —> 1. We again compute the
EOC with

1
)»p=1+§ forp=1,2,3...

to establish the convergence rate. For Table 2, we choose n = 1/3 and n = —1 following the assump-
tions on the coefficients given in Theorem 5.3. Again, we compute the lowest three roots of d,, (k)
for Ap. We have that the limiting transmission eigenvalues for n = 1/3 and n = —1 are given by
k1 (1) = 6.9883, ky(1) = 7.0107, and k3(1) = 7.9523, being the first roots of dy(k), da(k), and d; (k)
respectively.
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Table 3. Monotonicity with respect to n where A = 2 and n = —3 for

the unit disk.

n 1/6 1/5 1/4 1/3
k1 (n) 4.8387 4.9935 5.6504 6.5592
ka(n) 4.8893 5.6474 6.0112 7.3299

Note: Here, k; are the first two transmission eigenvalues.

Table 4. Monotonicity with respect to n where A = 1/2 and
n = 1 for the unit disk.

n 3 4 5 6 7

ki(n) 3.9850 3.0394 2.3699 2.0651 1.6559
ka(n) 4.2464 3.0561 2.5280 2.0706 1.8761

Note: Here, k; are the first two transmission eigenvalues.

Table 5. Monotonicity with respect to  where & = 5 and n = 1/6 for the unit disk.

n —4 -3 -2 —1 -1/2
ki (1) 47141 5.0753 5.4263 5.4283 5.4293
ka (1) 54220 5.4242 57292 5.9486 6.0176

Note: Here, k; are the first two transmission eigenvalues.

We again notice that, in Table 2, the eigenvalues seem to be monotone with respect to 1. We see
that k; (A) and k, (A) are increasing where as k3(}) is decreasing with respect to 1. Although we only
showed that there is convergence, we have these numerical examples that seem to suggest mono-
tonicity of the transmission eigenvalues with respect to the parameter A. Here, we conjecture the
monotonicity but due to the variational form studied in the previous section, we are unable to obtain
this result theoretically.

6.2. Monotonicity of n and n on the unit disk

Here, we will provide some numerics for the monotonicity with respect to  and n given in Theo-
rems 4.7 and 4.8. Just as in the previous section, we will assume that D is the unit disk with constant
coeficients. Therefore, we can again use the fact that k is a transmission eigenvalue provided that it
is a root for dy, (k) given by (31).

We first consider the monotonicity with respect to the parameter n. To this end, recall that
A€ (1,00), Nmax < 0, and Anpmax — 1 < 0. Therefore, we fix A =2 and n = —3 and report the
transmission eigenvalues k;j(n) for j = 1, 2 corresponding to the lowest two roots of dy,, (k), in Table 3.

In a similar fashion, we now provide numerical examples for the case when the parameters A €
(0,1), Nmin > 0, and Anmin — 1 > 0 corresponding to Theorem 4.8. Therefore, we again report the
first two roots of the functions dy, (k). In Table 4, we fix A = 1/2 and n = 1 for kj(n) forj = 1, 2.

Next, we turn our attention to the monotonicity with respect to 1. We first consider the case where
we have A € (1,00), max < 0, and Ay — 1 < 0. Recall, that from Theorem 4.7 we expect that the
transmission eigenvalues to be increasing with respect to 1. In Table 5, we fix A = 5and n = 1/6 to
compute k;(n) for j = 1, 2 and we can see the monotonicity from the reported values.

Now, we focus on case corresponding to Theorem 4.8 where the transmission eigenvalues are
decreasing with respect to the parameter 7. Therefore, we need the assumptions A € (0, 1), min > 0,
and Afiyin — 1 > 0 for the result to hold. In Table 6, we fix A = 1/2 and n = 3 for k;j(n), respectively,
forj=1,2.
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Table 6. Monotonicity with respect to n where » = 1/2 and
n = 3 for the unit disk.

n 1 2 3 4 5

ki(m) 3.9850 3.6700 3.5212 26262 1.6354
ka(m) 4.2464 4.0269 3.5409 3.1242 1.9005

Note: Here, k; are the first two transmission eigenvalues.

6.3. Numerics via boundary integral equations

The derivation of the boundary integral equation to solve the problem follows along the same lines
as in [7, Section 3] where one uses a single-layer ansatz for the functions w and v with unknown
densities ¢ and  (refer also to [32] for the original idea). Precisely, we use

w(x) = SLg /e (x) and v(x) =SLyy(x), x€D,

where we define the single-layer by

SLkg (x) = /8 . Or(x, )¢ (y) ds(y), x€D
where
Dy (x,y) = A—IIH(()D (k|x —y|) , whenx#y

is the fundamental solution of the Helmholtz equation in two dimensions. Here we let H(()l) denote
the zeroth order first kind Hankel function. On the boundary we have

w(x) =S mp(x) and  v(x) = Sy (%),

where the boundary operator Sy is given by

Sk¢p (x) = faD Or(x, )P (y) ds(y), x€dD.

Likewise, we obtain
) —(Liixr d 9 —(Lixr
Ww(x) = > + ke p(x) an w(x) = > + K ) ¥ (x),
where

K] ¢ (x) = /B g @y )6 (0) dsty), x < D

and I denotes the identity. Using the given boundary conditions and assuming that k and k/ are not
eigenvalues of —A in D yields

A l1+KT sl lH—KT SSt—pllw=0
> kv/n | Sk 2 k| 2k ntiw=4,

which is a non-linear eigenvalue problem of the form

M(k;n,n, A\)w = 0. (32)



APPLICABLE ANALYSIS (&) 25

Here, the parameters n, , and A are given. Note that we focus on the transpose of this equation since
the boundary integral operator

Ky (x) = /d )@ )60) ), x € 0D

can be numerically approximated avoiding the singularity (see [33, Section 4.3] for details and the
discretization of the boundary integral operators). Then, the non-linear eigenvalue problem is solved
with the Beyn’s algorithm (see [34] for a detailed description). This algorithm converts a large-scale
non-linear eigenvalue problem to a linear eigenvalue problem of smaller size by appealing to complex
analysis, i.e. contour integrals in the complex plane. The contour we will choose, will be the disk in
the complex plane centered at & € C for a fixed radius R. From this, Beyn’s algorithm will compute
the transmission eigenvalues that lie in the interior of the chosen contour.

First, we show that we are able to reproduce the values given in Example 3.1 on page 14 for the unit
disk using the material parameters A = 2, n = 4, n = —1/100 with the boundary element colloca-
tion method. We use 120 collocation nodes (40 pieces) within our algorithm for the discretization of
the boundary. For the Beyn algorithm we take the parameters tol = 1074, £ = 20, and N = 24 dis-
cretization points for the two contour integrals where the contour is a circle with center  and radius
R =1/2. Next, we pick u = 3.5 and obtain the interior transmission eigenvalue 3.4567 — 0.0000i
which agrees with the value reported in Example 3.1 to four digits accuracy. This eigenvalue has mul-
tiplicity one (it corresponds to m = 0). Using . = 2.2 yields the interior transmission eigenvalue
2.1516 — 0.0000i with multiplicity two which is in agreement with the value 2.151602 obtained from
the determinant for m = 4. Again, we observe that all reported digits are correct. The accuracy does
not depend on the multiplicity of the eigenvalue. Finally, we test our boundary element collocation
method for a complex-valued interior transmission eigenvalue. Using . = 2.2 + 0.6i yields the sim-
ple eigenvalue 2.2032 + 0.2905i (rounded) which is in agreement to five digits with the value reported
in Example 3.1 using the determinant with m = 0. In sum, this shows that we are able to compute both
real and complex-valued interior transmission eigenvalues to high accuracy. It gives us the flexibility
to now compute them also for other scatterers as well.

For an ellipse with semi-axis a = 1 and b = 1.2 (refer to Figure 4) i.e.

0D = (cos(t),1.2sin(t)) fort € [0,27)

using 0 = 1/2 as well as © = 3/2 and the same material parameters as before, we obtain the first nine
real-valued interior transmission eigenvalues

0.0420 0.6036 0.7165 1.0830 1.1136 1.5244 1.5311 1.9494 1.9507,

where we skipped reporting the imaginary eigenvalues. In comparison, the first nine real-valued
interior transmission eigenvalues for the unit disk are

0.0534 0.7208 0.7208 1.2131 1.2131 1.6864 1.6864 2.1516 2.1516.

Next, we compute the interior transmission eigenvalues for the kite-shaped domain (refer to Figure 4)
using the same parameters as before. Its boundary is given parametrically by

oD = (0.75 cos(t) + 0.3 cos(2t),sin(¢t)) for t € [0,27)

(referto [32]). Weuse u = 1/2, 4 = 3/2aswellas u = 5/2 to obtain the first nine real-valued interior
transmission eigenvalues

0.0523 0.6868 0.8514 1.3452 1.4398 1.6348 2.0181 2.1439 2.3494.

Now, we consider the ellipse with semi-axisa = 1and b = 1.2 and use the material parameters n = 1
and n = 4 and vary A such that it approaches one from below. We will validate again numerically
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Figure 4. Graphical representation for the elliptical and kite-shaped domains considered in this section.

Table 7. Convergence of the transmission eigenvalues for the ellipse,asA —> 1~ forn = 4and n = 1.

A k1) EOC ka(%) EOC k(%) EOC

1-1/2 2.5043 N/A 27413 N/A 2.8777 N/A

1—-1/4 24701 0.9689 27077 0.9693 2.8535 1.0165
1-1/8 24523 0.9867 26903 0.9864 2.8416 1.0089
1-1/16 24434 0.9940 26815 0.9937 2.8356 1.0026
1-1/32 24388 0.9972 26770 0.9970 2.8327 1.0078
1—1/64 24366 0.9987 26748 0.9984 2.8312 0.9847
1—1/128 24354 0.9993 26737 0.9988 2.8305 1.0107
1—1/256 24349 0.9998 26731 0.9994 2.8301 1.0436
1—1/512 24346 1.0021 26729 0.9997 2.8299 0.8813
1—1/1024 24344 1.0015 26727 0.9968 2.8298 1.0722

Note: Here the limiting values are k1 (1) = 2.4343, k(1) = 2.6726 and k3(1) = 2.8300.

Theorem 5.3 as it was done for the unit disk in Table 1. The results are reported in Table 7. Note that the
first three real-valued interior transmission eigenvalues for A = 1arek; (1) = 2.4343, k»(1) = 2.6726,
and k3(1) = 2.8300 which we obtained using . = 5/2 with 240 collocation nodes. As we can see,
we obtain the linear convergence for A —> 1~ for the given ellipse as expected. Interestingly, we
also obtain linear convergence for A, —> 1% for n = 1 and n = 4 although theoretically not justified.
Refer to Table 8. Again, we also observe a monotonicity of the interior transmission eigenvalues with
respect to A although we have not shown this fact from the theoretical point of view.

Finally, we show some monotonicity results for the kite-shaped domain. We first fix A = 2 as well as
n = —1 and vary the index of refraction n. Using 120 collocation nodes within the boundary element
collocation method and the same parameters as before for the Beyn method with u =5, 4 = 6, u =
7 as well as u = 8 and p = 8.5 yields the first three real-valued interior transmission eigenvalues
reported in Table 9.

As we can see, the first real-valued interior transmission eigenvalue is monotone with respect to
the parameter » as stated in Theorem 4.7 item 1. Interestingly, the same seems to be true for the
second and third real-valued interior transmission eigenvalue. In Table 10, we show the monotonicity
behavior for fixed material parameter A = 2 and n = 1/6 and varying n using A = 4.5, 1 = 5.5 as well
as A = 6.5.

We observe the expected monotonicity behavior for the first real-valued interior transmission
eigenvalue with respect to the parameter 7 as stated in Theorem 4.7 item 2. Strikingly, the other
interior transmission eigenvalues also show a monotonicity behavior.
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Table 8. Convergence of the transmission eigenvalues for the ellipse,as A — 17 forn = 4andn = 1.

A k1) EOC ka(%) EOC k(%) EOC

14172 23601 N/A 2.5995 N/A 2.7844 N/A

1+1/4 23974 1.0101 2.6364 1.0138 2.8067 0.9758
1+1/8 24160 1.0080 26546 1.0093 2.8181 0.9880
1+1/16 24252 1.0047 2.6636 1.0052 2.8239 0.9980
1+41/32 24297 1.0025 2.6681 1.0028 2.8268 0.9932
1+1/64 24320 1.0012 26703 1.0014 2.8283 0.9966
1+1/128 24331 1.0006 26715 1.0009 2.8290 1.0056
1+ 1/256 24337 1.0002 2.6720 1.0011 2.8294 0.9796
1+1/512 24340 0.9989 26723 1.0004 2.8296 0.9780
1+1/1024 24341 0.9982 26724 1.0094 2.8297 1.0376

Note: Here the limiting values are k1 (1) = 2.4343, ky(1) = 2.6726, and k3(1) = 2.8300.

Table 9. Values of k;(n)'s when nvaries using A = 2and n = —1.

n 1/7 1/6 1/5 1/4 1/3
kq(n) 5.6837 6.0582 6.5231 7.0820 8.1993
ka (n) 6.0870 6.2456 6.5370 7.1497 8.2397
ks (n) 6.6334 6.8110 7.1306 7.7996 8.9628

Note: The first real-valued transmission eigenvalue increases monotonically
with respect to the parameter n as stated in Theorem 4.7 item 1 for the
kite-shaped domain.

Table 10. Values of k;j(17)'s when n varies using A = 2and n = 1/6.

n -5 —4 -3 -2 -1

ki () 45272 54110 57363 5.9202 6.0582
ka () 53892 55606 5.7689 6.0044 6.2456
k3 () 5.9899 6.1585 6.3488 6.5702 6.8110

Note: The first real-valued transmission eigenvalue increases monotonically
with respect to the parameter 5 as stated in Theorem 4.7 item 2 for the
kite-shaped domain.

Table 11. Values of kj(n)’'s when nvariesusing A = 1/2and n = 1.

n 3 4 5 6 7

ki(n) 4.6102 3.4720 2.8104 24169 2.0606
ka(n) 4.6988 3.4863 2.8713 24513 2.2158
k3 (n) 5.1191 3.8013 3.0731 2.6823 24215

Note: The first real-valued transmission eigenvalue decreases monotonically
with respect to the parameter n as stated in Theorem 4.8 item 1 for the
kite-shaped domain.

Next, we show numerical results to validate Theorem 4.8. First, we pick the material parameter
A=1/2and n =1 and vary n. We use & = 5, . = 3.5, and u = 3 as well as u = 2 to obtain the
results reported in Table 11.

As we can see, we numerically obtain the decreasing behavior for the first real-valued interior
transmission eigenvalue as stated in Theorem 4.8 item 1. Interestingly, we also observe a monotonic
behavior for the next two interior transmission eigenvalues as well. Now, we show numerical results
for the material parameters A = 1/2and n = 3 for varying n. Using © = 5, u = 4.5, and u = 4 yields
the results that are reported in Table 12.

Again, we observe the proposed monotone decreasing behavior as stated in Theorem 4.8 item 2
for the first real-valued interior transmission eigenvalue for the kite-shaped domain. Strikingly, the
same seems to be true for the second and third eigenvalue as well.
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Table 12. Values of k;(n)’s when 5 varies using A = 1/2and n = 3.

n 12 1 2 3 4
ki () 47339 46102 43089 40502 3.8981
ko () 47572 46988 45914 43550 4.0804
k3 () 5.1747 5.1191 49526 46436 44735

Note: The first real-valued transmission eigenvalue decreases monotonically
with respect to the parameter 5 as stated in Theorem 4.8 item 2 for the
kite-shaped domain.

7. Summary and outlook

A transmission eigenvalue problem with two conductivity parameters is considered. Existence as well
as discreteness of corresponding real-valued interior transmission eigenvalues is proven. Further, it
is shown that the first real-valued interior transmission eigenvalue is monotone with respect to the
two parameters 17 and n under certain conditions. Additionally, the linear convergence for A against
one is shown theoretically. Next, the theory is validated by extensive numerical results for a unit disk
using Bessel functions. Further, numerical results are presented for more general scatterers using
boundary integral equations and its discretization via boundary element collocation method. Inter-
estingly, we can show numerically monotonicity results for cases that are not covered yet by the theory.
The existence of complex-valued interior transmission eigenvalues is still open, but it can be shown
numerically that they do exist. A worthwhile future project is to study the case when A is variable.
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