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Abstract. We study the elliptic zastava spaces, their versions (twisted,
Coulomb, Mirković local spaces, reduced) and relations with monowalls
moduli spaces and Feigin-Odesskii moduli spaces of G-bundles with parabolic
structure on an elliptic curve.
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1. Introduction

1.1. Zastava spaces: general overview. Let G be an almost simple simply
connected algebraic group over C. Let us also fix a pair of opposite Borel sub-
groups B, B− whose intersection is a maximal torus T . To a smooth projective
complex curve C, one can associate the zastava moduli space Z(C) (the definition
goes back to V. Drinfeld, see e.g. [BFGM]). It is the moduli space of G-bundles
on C equipped with a generalized B-structure and a generically transversal U−-
structure (here U− stands for the unipotent radical of B−). It is actually a
scheme with infinitely many connected components numbered by the degrees of
B-bundles. It has numerous applications in geometric representation theory and
especially in the geometric Langlands program (see e.g. [Gai, BF]).

The zastava space Z(C) is equipped with a morphism π to the colored con-
figuration space ConfG(C) of C (it keeps track of the points of C where the B-
and U−-structures fail to be transversal), and one of the key features of Z(C) is
its factorization structure over the configurations (locality over C). It allows to
define Z(C) for arbitrary smooth complex curve; not necessarily projective: Z(C)
is defined as the preimage π−1 ConfG(C) ⊂ Z(C) for a smooth compactification
C ⊃ C.

A special role is played by three smooth curves carrying the structure of 1-
dimensional complex algebraic groups: the additive group Ga, the multiplicative
group Gm, and an elliptic curve E. The open zastava

◦
Z(C) ⊂ Z(C) (given by the

open condition that a B-structure is genuine as opposed to generalized) for these
three curves play a prominent role in physics as various versions of the monopole
moduli spaces.
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More precisely, the additive (or rational) open zastava are isomorphic to the
euclidean monopoles’ moduli spaces [J1, J2], while the multiplicative (or trigono-
metric) open zastava are expected to be related to the periodic monopoles’ moduli
spaces [CK], and elliptic open zastava are expected to be related to the doubly
periodic monopoles’ (or monowalls’) moduli spaces [CW]. Yet more precisely, the
open zastava spaces are equipped with a natural T -action and a map to CrkG

playing the role of the moment map. These allow to define a sort of (quasi)-

Hamiltonian reduction
◦
Z(C). The reduced zastava in additive case is isomorphic

to the moduli space of centered euclidean monopoles; in multiplicative (resp. el-
liptic) case, the reduced zastava is expected to be isomorphic to the moduli space
of periodic monopoles (resp. monowalls). The monopole moduli spaces come
equipped with a natural hyperkähler structure, and the zastava spaces carry the
corresponding holomorphic symplectic structure that can be defined in modular
terms and explicitly computed in appropriate coordinates.

Furthermore, the euclidean monopole moduli spaces are known to be isomor-
phic to the Coulomb branches of 3-dimensional N = 4-supersymmetric quiver
gauge theories (for the Dynkin quiver of G; with symmetrizers if G is not simply
laced). See [BFN2] for a mathematically rigorous identification of the Coulomb

branch with
◦
Z(Ga). Similarly, the K-theoretic Coulomb branch can be identi-

fied with
◦
Z(Gm), see [FT]. One of the main topics of the present paper is an

identification of
◦
Z(E) with an appropriate version of elliptic Coulomb branch

(whose rigorous mathematical definition is not formulated yet). From this point
of view, the above holomorphic symplectic structures on open zastava arise from
the natural quantizations of the Coulomb branches. These quantizations are, re-
spectively the truncated shifted Yangians [BFN2], the truncated shifted quantum
affine algebras [FT], and supposedly related to the elliptic quantum groups.

Actually, the reduced elliptic open zastava
◦
Z(E) appeared in mathematics long

ago in another disguise in the works of B. Feigin and A. Odesskii. Namely, let
us modify the definition of

◦
Z(E), replacing a U−-structure by a UK

−-structure,
where UK

− is a unipotent group scheme over E obtained from U− via twisting by

a regular T -torsor KT . Then the resulting reduced zastava
◦
ZK(E) is isomorphic

to the Feigin-Odesskii moduli space of complete flags in the G-bundle IndGT KT

with a fixed isomorphism class of the associated graded bundle. B. Feigin and
A. Odesskii constructed a natural symplectic structure on their moduli spaces
(along with its quantization), and it turns out that this symplectic structure
coincides with the one of the previous paragraph.

In the remaining sections of Introduction we provide a more detailed overview
of the above topics along with some other aspects of our work, like Mirković local
spaces needed for identification of various types of elliptic zastava.
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1.2. Rational zastava and euclidean monopoles. We denote by B the flag
variety of G. Let Λ denote the cocharacter lattice of T ; since G is assumed to be
simply connected, this is also the coroot lattice of G. We denote by Λpos ⊂ Λ the
sub-semigroup spanned by positive coroots.

It is well-known that H2(B,Z) = Λ and that an element α ∈ H2(B,Z) is
representable by an effective algebraic curve if and only if α ∈ Λpos. The (open)

zastava
◦
Zα is the moduli space of maps C = P1 → B of degree α sending∞ ∈ P1

to B− ∈ B. It is known [FKMM] that this is a smooth symplectic affine algebraic
variety, which can be identified with the hyperkähler moduli space of framed G-
monopoles on R3 with maximal symmetry breaking at infinity of charge α [J1, J2].

Let us mention one more equivalent definition of
◦
Zα: it is the moduli space of

G-bundles on P1 equipped with a B-structure of degree α and a U−-structure
transversal to the B-structure at ∞ ∈ P1.

The zastava space is equipped with a factorization morphism πα :
◦
Zα → Aα

with a simple geometric meaning: for a based map ϕ ∈
◦
Zα the colored divisor

πα(ϕ) is just the pullback of the colored Schubert divisor D ⊂ B equal to the

complement of the open B-orbit in B. The morphism πα :
◦
Zα → Aα is the Atiyah-

Hitchin integrable system (with respect to the above symplectic structure): all
the fibers of πα are Lagrangian.

A system of étale birational coordinates on
◦
Zα was introduced in [FKMM]. Let

us recall the definition for G = SL(2). In this case α is a times the simple coroot,

and
◦
Za :=

◦
Zα consists of all maps P1 → P1 of degree a which send ∞ to 0. We

can represent such a map by a rational function R
Q

where Q is a monic polynomial

of degree a and R is a polynomial of degree < a. Let w1, . . . , wa be the zeros of
Q. Set yr = R(wr). Then the functions (y1, . . . , ya, w1, . . . , wa) form a system of

étale birational coordinates on
◦
Za, and the above mentioned symplectic form in

these coordinates reads Ωrat =
∑a

r=1
dyr∧dwr

yr
.

For general G the definition of the above coordinates is quite similar. In this
case given a point in

◦
Zα we can define polynomials Ri, Qi where i runs through

the set I of vertices of the Dynkin diagram of G, α =
∑
aiαi, and

(1) Qi is a monic polynomial of degree ai,
(2) Ri is a polynomial of degree < ai.
Hence, we can define (étale, birational) coordinates (yi,r, wi,r) where i ∈ I

and r = 1, . . . , ai. Namely, wi,r are the roots of Qi, and yi,r = Ri(wi,r). The
Poisson brackets of these coordinates with respect to the above symplectic form
are as follows: {wi,r, wj,s}rat = 0, {wi,r, yj,s}rat = d∨iδijδrsyj,s, {yi,r, yj,s}rat =
(α∨i , α

∨
j)

yi,ryj,s
wi,r−wj,s for i 6= j, and finally {yi,r, yi,s}rat = 0. Here α∨i is a simple root,

(, ) is the invariant scalar product on (LieT )∗ such that the square length of a
short root is 2, and d∨i = (α∨i , α

∨
i)/2.
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Finally, let us mention that the zastava space
◦
Zα is isomorphic to the Coulomb

branch of a 3d N = 4 supersymmetric quiver gauge theory (for a Dynkin quiver
of G, with no framing; with symmetrizers for a non simply laced G), see [BFN2,
NW].

1.3. Trigonometric zastava and periodic monopoles. We have an open sub-
set Gα

m ⊂ Aα (colored divisors not meeting 0 ∈ A1), and the trigonometric zastava

is defined as the open subvariety †
◦
Zα := (πα)−1(Gα

m) ⊂
◦
Zα. It can be identified

with a solution of a certain moduli problem on the irreducible nodal curve of
arithmetic genus 1 obtained by gluing the points 0,∞ ∈ P1, see [FKR]. From
this point of view it acquires a natural symplectic structure with the correspond-
ing bracket {, }trig. Note that {, }trig is not the restriction of {, }rat from

◦
Zα, but

rather its trigonometric version.
For example, when G = SL(2) and α is a times the simple coroot, the Atiyah-

Hitchin integrable system πa :
◦
Za → A(a) is nothing but the classical Toda lattice

for GL(a), while its trigonometric version πa : †
◦
Za → G(a)

m can be identified with
the relativistic Toda lattice for GL(a), see [FT, §2].

An explicit formula for {, }trig in w, y-coordinates is obtained in [FKR].

The composed morphism

†◦Zα πα−→ Gα
m

∏
−→ GI

m
∼= T

(recall that I is the set of simple coroots of G) is the group valued moment map of

the Hamiltonian action of T on †
◦
Zα. The quotient of a level of this moment map by

the action of T is the reduced trigonometric zastava †
◦
Zα: the (quasi-)Hamiltonian

reduction of †
◦
Zα.

It is likely that the reduced trigonometric zastava is isomorphic to the mod-
uli space of periodic monopoles (see e.g. [CK]) in one of its complex structures
(it has a natural hyperkähler structure, and among the S2-worth of the under-
lying complex structures we need a generic one, in which this moduli space is
an affine variety). The corresponding holomorphic symplectic structure on the
moduli space of periodic monopoles matches the reduction of {, }trig. Note an
important difference with the rational case: the usual zastava was isomorphic
to the euclidean monopoles’ moduli space, and its Hamiltonian reduction with
respect to the T -action was isomorphic to the centered monopole moduli space.
In the periodic case the monopoles come centered by definition.

Finally, the trigonometric zastava †◦Zα is isomorphic to the K-theoretic
Coulomb branch of a 3d N = 4 supersymmetric quiver gauge theory (for a
Dynkin quiver of G, with no framing; with symmetrizers for a non simply laced
G), see [FT] for the simply laced case. The reduced trigonometric zastava †

◦
Zα

is isomorphic to the K-theoretic Coulomb branch where the gauge group must
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be taken as the product of SL(Vi) (as opposed to the product of GL(Vi) for the
trigonometric zastava).

1.4. Elliptic zastava. The explicit formulas for {, }rat and {, }trig look like ratio-
nal and trigonometric degenerations of the Feigin-Odesskii bracket [FO] on the
moduli space of G-bundles with a parabolic structure on an elliptic curve. The
goal of the present paper is to give a precise meaning to this observation.1

For a T -bundle KT on an elliptic curve E we consider the moduli space
◦
Zα

K of
the following data:

(a) a G-bundle FG on E,
(b) a B-structure ϕ+ on FG such that the induced T -bundle LT = IndTBϕ+ has

degree −α,
(c) a UK

−-structure ϕ− on FG generically transversal to ϕ+. Here UK
− is a sheaf

of unipotent groups locally isomorphic to U−, obtained from the trivial sheaf by
twisting with T -bundle KT (we view T as a subgroup of AutU− via the adjoint
action).

The open elliptic zastava
◦
Zα

K is a smooth connected variety of dimension 2|α|
equipped with an affine factorization morphism πα :

◦
Zα

K → Eα to a configuration
space of E. It has a relative compactification (compactified elliptic zastava)

◦
Zα

K ⊂ Zα
K

πα−→ Eα

where we allow both a B-structure and a UK
−-structure to be generalized in the

sense of Drinfeld. There is also an intermediate version
◦
Zα

K ⊂ Zα
K ⊂ Zα

K (elliptic
zastava) where only a B-structure is allowed to be generalized.

For example, when G = SL(2), KT is trivial, and α is a times the simple
coroot, there is an isomorphism Za

Ktriv
' TE(a) with the total space of the tangent

bundle of the a-th symmetric power of E. Unfortunately, neither TE(a) nor its
open subvariety

◦
Za

Ktriv
carry any natural Poisson structure.

1.5. Coulomb elliptic zastava. Similarly to the rational and trigonometric
cases, one can consider the elliptic Coulomb branch of a 3d N = 4 supersymmetric
quiver gauge theory for a Dynkin quiver of G with no framing. We restrict our-
selves to the case of simply laced G.2 The elliptic Coulomb branch is the (relative)
spectrum of the equivariant Borel-Moore elliptic homology of a certain variety of
triples. The theory of equivariant Borel-Moore elliptic homology is not devel-
oped yet; it is to appear in a forthcoming work of I. Perunov and A. Prikhodko.
We sketch some results in §4. The resulting elliptic Coulomb branch is denoted

1This goal is achieved in Theorem 6.4.1 where we establish a symplectomorphism of the
Feigin-Odesskii moduli space with a reduced elliptic zastava space. Compare the formula at
the end of §1.7 with the one at the end of §1.2.

2In the non simply laced case one should use the approach of [NW] with symmetrizers.
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C
◦
Zα

Ktriv
. It is equipped with a natural Poisson (in fact, symplectic) structure due

to the existence of quantized elliptic Coulomb branch.
For example, when G = SL(2), there is an isomorphism C

◦
Za

Ktriv
' Hilbatr(E ×

Gm) with the transversal Hilbert scheme of the surface E×Gm (an open subvariety
of the Hilbert scheme of points on E × Gm classifying those subschemes whose
projection to E is a closed embedding). Note that we have an open embedding
Hilbatr(E×Gm) ⊂ T ∗E(a) into the total space of the cotangent bundle of the a-th
symmetric power of E. Contrary to the rational and trigonometric cases, there
is no isomorphism C

◦
Za

Ktriv
6'
◦
Za

Ktriv
of the open elliptic zastava with the elliptic

Coulomb branch.
Still, the elliptic Coulomb branch is not so much different from the elliptic

zastava. Namely, they can be both obtained by the Mirković construction of local
spaces over (the configuration spaces of) E, see e.g. [MYZ, §2]. This construction
depends on a choice of a local line bundle; one choice gives rise to the elliptic
zastava; another gives rise to the elliptic Coulomb branch, see §3. Moreover, this
way we can define the Coulomb elliptic zastava C

◦
Zα

K depending on an arbitrary
T -bundle KT , not necessarily trivial.

1.6. Feigin-Odesskii moduli space. Another closely related moduli space
M(FG,LT ) depending on a choice of a G-bundle FG and a T -bundle LT on E

classifies the B-structures ϕ on FG equipped with an isomorphism IndTBϕ
∼−→LT .

It can be equipped with a natural structure of a derived stack with a (0-shifted)
symplectic form, see §6. B. Feigin and A. Odesskii construct in [FO] a Poisson
structure on the moduli space BunP of P -bundles on E (where P is a parabolic
subgroup of G). The above moduli spaces M(FG,LT ) coincide with certain
symplectic leaves of BunB. For instance, if G = SL(2), then M(FG,LT ) is the
moduli space of extensions of a line bundle L−1 by L with a fixed isomorphism
class of the resulting rank 2 bundle VF. If VF is assumed to be stable, then
M(FG,LT ) is a symplectic leaf of the Feigin-Odesskii bracket on BunB.

If we fix a regular T -bundle KT (this means that all the line bundles associated
to the roots of G are nontrivial), take FG = IndGTKT and degLT = −α, then

M(FG,LT ) can be identified with a certain “quasi-Hamiltonian” reduction D

◦
Zα

K

of
◦
Zα

K. Namely, the reduction is defined as the quotient with respect to the
natural T -action of a fiber over D ∈ EI of the composed morphism

◦
Zα

K

πα−→ Eα
∑
−→ EI

(recall that I is the set of simple coroots of G).

By the very construction, the Coulomb elliptic zastava C
◦
Zα

K is also equipped

with the factorization morphism πα : C
◦
Zα

K → Eα, and so we can define the reduced

Coulomb elliptic zastava C
D

◦
Zα

K in a similar way. The important difference with the
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usual elliptic zastava is that the Coulomb elliptic zastava C
◦
Zα

K carries a symplec-
tic form, and the above reduction is really a (quasi-)Hamiltonian reduction. In

particular, the reduced Coulomb elliptic zastava C
D

◦
Zα

K inherits a symplectic form.
The two main results of the present paper are as follows:
A. The reduced elliptic zastava and reduced Coulomb elliptic zastava are iso-

morphic: D

◦
Zα

K ' C
D

◦
Zα

K′ for an appropriate choice of a T -bundle K′T depending on
KT and on the level D of the “moment map” (Theorem 5.2.1).

B. If KT is regular, the composed isomorphism M(IndGTKT ,LT ) ' D

◦
Zα

K ' C
D

◦
Zα

K′

is a symplectomorphism (Theorem 6.4.1).

It is also likely that the reduced elliptic zastava D

◦
Zα

K is isomorphic to the moduli
space of monowalls (doubly periodic monopoles) [CW]. The situation is similar
to the case of periodic monopoles: the monowalls come centered by definition.
In the corresponding elliptic Coulomb branch of a quiver gauge theory the gauge
group must be taken as the product of SL(Vi) (as opposed to the product of
GL(Vi) for the nonreduced Coulomb elliptic zastava).

1.7. An explicit formula for the Feigin-Odesskii Poisson bracket. We are
finally in a position to address the problem of explicit computation of the Feigin-
Odesskii Poisson bracket. The Coulomb elliptic zastava C

◦
Zα

K comes equipped with
étale rational coordinates that are “trigonometric Darboux” for its symplectic
form by the very construction. The usual elliptic zastava also carry étale rational
coordinates (yi,r, wi,r)

1≤r≤ai
i∈I similar to the ones in §1.2 (but now wi,r is a point of

E). The reduced elliptic zastava (alias the Feigin-Odesskii moduli space in the
regular case) inherits these coordinates with the following caveats:

(a) The w-coordinates are constrained: for each i ∈ I the sum
∑ai

r=1 wi,r ∈ E
is fixed;

(b) The y-coordinates are homogeneous: only the ratios
yi,r
yi,r′

are well defined

for i ∈ I, 1 ≤ r, r′ ≤ ai.
Then the only nontrivial Poisson brackets arising from the Feigin-Odesskii sym-

plectic form are as follows:

{ yi,r
yi,r′

, wi,r

}
FO

=
yi,r
yi,r′

,
{ yi,r
yi,r′

, wi,r′
}
FO

= − yi,r
yi,r′

,
{yi,r′
yi,p′

,
yj,r
yj,p

}
FO

=

yi,r′

yi,p′
· yj,r
yj,p

(
ζ(wi,r′ − wj,r)− ζ(wi,r′ − wj,p)− ζ(wi,p′ − wj,r) + ζ(wi,p′ − wj,p)

)
in case i 6= j are joined by an edge in the Dynkin diagram of G, and zero otherwise
(recall that we assume G simply laced). Here ζ(w) is the Weierstraß zeta function.
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2. Elliptic zastava

2.1. A group G. Let G be an almost simple simply connected algebraic group
over C. We fix a pair of opposite Borel subgroups B, B− whose intersection is a
maximal torus T . The unipotent radical of B (resp. B−) is denoted U (resp. U−).
Let Λ (resp. Λ∨) denote the cocharacter (resp. character) lattice of T ; since G is
assumed to be simply connected, this is also the coroot lattice of G. We denote
by Λpos ⊂ Λ the sub-semigroup spanned by positive coroots. We say that α ≥ β
(for α, β ∈ Λ) if α − β ∈ Λpos. The simple coroots are {αi}i∈I ; the simple roots
are {α∨i}i∈I ; the fundamental weights are {ω∨i}i∈I . An irreducible G-module with
a dominant highest weight λ∨ ∈ Λ∨+ is denoted Vλ∨ ; we fix its highest vector vλ∨ .
For a weight µ∨ ∈ Λ∨ the µ∨-weight subspace of a G-module V is denoted V (µ∨).

2.2. Elliptic zastava. We recall some results of [Gai] about various versions of
zastava on a curve. From now on we always consider an elliptic curve E. We fix
a degree zero T -torsor KT on E. It gives rise to a collection of line bundles Kµ∨

on E associated to characters µ∨ : T → C×.

Definition 2.2.1. (1) Given α ∈ Λpos, we define the compactified elliptic zastava
Zα

K as the moduli space of the following data:
(a) a G-bundle FG on E;
(b) a T -bundle LT of degree −α on E;
(c) for any dominant weight λ∨ ∈ Λ∨+, a nonzero morphism from the associated

vector bundle ξλ
∨

: Vλ
∨

F → Kλ∨ ;
(d) for any λ∨ ∈ Λ∨+, a sheaf embedding ηλ

∨
: Lλ∨ ↪→ Vλ

∨

F ,

subject to the following conditions:

(i) the collection of sheaf embeddings Lλ∨ ↪→ Vλ
∨

F satisfy the Plücker relations,
i.e. define a degree α generalized B-structure in FG;

(ii) the collection of morphisms Vλ
∨

F → Kλ∨ satisfy the Plücker relations, i.e.
define a generalized K-twisted U−-structure in FG;
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(iii) the composition Lλ∨ ↪→ Vλ
∨

F � Kλ∨ is not zero for any λ∨, i.e. the above
generalized B- and U−-structures are generically transversal.

(2) The elliptic zastava Zα
K ⊂ Zα

K is an open subspace given by the extra con-
dition that the morphisms ξλ

∨
: Vλ

∨

F → Kλ∨ are surjective, i.e. the corresponding
twisted U−-structure is genuine, not generalized.

(3) The open elliptic zastava
◦
Zα

K ⊂ Zα
K is given by the extra condition that

the embeddings ηλ
∨

: Lλ∨ ↪→ Vλ
∨

F are embeddings of vector bundles, i.e. Lλ∨ is
a line subbundle in Vλ

∨

F for any λ∨ ∈ Λ∨+. In other words, the corresponding
B-structure is genuine, not generalized.

(4) The factorization morphism πα : Zα
K → Eα associates to the data of zastava

the I-colored divisor D ∈ Eα such that for any λ∨ ∈ Λ∨+, the zero divisor of the
composition Lλ∨ → Vλ

∨

F → Kλ∨ equals 〈D,λ∨〉.
(5) The Cartan torus T acts on Zα

K by rescaling the morphisms in (c) above:
for t ∈ T we set t(ξλ

∨
) := λ∨(t) · ξλ∨ . This action factors through the adjoint

quotient T ad.

Remark 2.2.2. The moduli stack Zα
K is actually a finite type scheme, irreducible

of dimension 2|α|, see e.g. [Gai, §4, §7.2]. The open subscheme
◦
Zα

K ⊂ Zα
K is

smooth. The scheme Zα
K can be nonreduced in general, cf. [FeMa, Example 2.13]

for G = SL(5). This example features a formal arc scheme, but according to the
Grinberg-Kazhdan theorem and [D, §4.4] it implies that an appropriate (rational)
zastava space Zα for G = SL(5) is nonreduced as well. Finally, the rational
zastava Zα and the elliptic zastava Zα

K are isomorphic locally in the étale topology.
In §3 we will consider the variety (Zα

K)red equipped with the reduced scheme
structure.

Remark 2.2.3. In §6 we will need elliptic zastava for a reductive group G. It is
defined similarly to Definition 2.2.1 making use of the trick [Sch, §7] with the help

of a central extension 1→ Z→ Ĝ→ G→ 1 such that Z is a (connected) central

torus in Ĝ, and the derived subgroup [Ĝ, Ĝ] ⊂ Ĝ is simply connected. Namely, we

apply Definition 2.2.1 to Ĝ instead of G itself. The result is independent of the

choice of Ĝ and gets rid of some undesirable irreducible components that appear
if we naively apply Definition 2.2.1 to G itself.

The following definition is motivated by the notion of centered euclidean
monopoles.

Definition 2.2.4. We have the Abel-Jacobi morphisms E(ai) → Picai E and their
product AJ: Eα →

∏
i∈I Picai E. We denote the composed morphism by

AJZ :
◦
Zα

K

πα−→ Eα AJ−→
∏
i∈I

Picai E.
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Given a collection D = (Di)i∈I ∈ Picai E, we define the reduced open elliptic

zastava D

◦
Zα

K as AJ−1
Z (D)/T (stack quotient).

The reduced open elliptic zastava D

◦
Zα

K is an irreducible stack.3 Let α =∑
i∈I aiαi. If ai = 0 for some i ∈ I, then all the zastava spaces Zα

K, Z
α
K,

◦
Zα

K, D

◦
Zα

K

coincide with the corresponding zastava spaces for the derived group of the cor-
responding Levi factor of G. If ai > 0 for all i ∈ I, then the action of T ad on the
open elliptic zastava

◦
Zα

K is effective, and the dimension of D

◦
Zα

K is 2|α| − 2 rkG.

Remark 2.2.5. Throughout the paper we will use a trivialization of the canonical
line bundle ωE. We fix this trivialization once and for all.

2.3. Example of G = SL(2) and Hilbert schemes. We denote by ω∨ the
fundamental weight of G = SL(2), and we denote by α∨ = 2ω∨ the simple root of
G. We denote by α the simple coroot of G. We denote the total space of the line
bundle K−α

∨
over E by SK−α∨ , and we denote the complement to the zero section

by
◦
SK−α∨ . These are algebraic surfaces equipped with a projection to E. For

a ∈ N, we denote Zaα
K simply by Za

K. We denote by Hilba(SK−α∨ ) ⊃ Hilba(
◦
SK−α∨ )

the degree a Hilbert schemes of points on the surfaces SK−α∨ ⊃
◦
SK−α∨ . We denote

by Hilbatr(SK−α∨ ) ⊂ Hilba(SK−α∨ ) (resp. Hilbatr(
◦
SK−α∨ ) ⊂ Hilba(

◦
SK−α∨ )) the open

transversal Hilbert subscheme classifying all quotients of OS
K−α∨

(resp. of O◦
S
K−α∨

)

whose direct images to E are also cyclic, i.e. are quotients of OE.
Thus we have projections Hilbatr(

◦
SK−α∨ ) → Hilba(E) = E(a) ← Hilbatr(SK−α∨ ).

The transversal Hilbert scheme Hilbatr(SK−α∨ ) is canonically isomorphic to the
total space of the following vector bundle UK on E(a). Let q : E ×E(a−1) → E(a)

be the addition morphism (aka the universal family over Hilba(E) = E(a)). Then
UK := q∗pr∗EK

−α∨ . We will also need another closely related vector bundle on
E(a). Namely, let ∆1,a−1 ⊂ E×E(a−1) be the incidence divisor (note that the line
bundle O(∆1,a−1) on E×E(a−1) is isomorphic to the normal bundle to the closed
embedding E×E(a−1) ↪→ E×E(a), (x,D′) 7→ (x, x+D′), see e.g. [P, Proposition
19.1]). We set TK := q∗(pr∗EK

−α∨⊗O(∆1,a−1)). Note that in case K is trivial, the
corresponding vector bundle T is nothing but the tangent bundle of E(a), and the
corresponding vector bundle U is dual to T, i.e. U ' T∗ is the cotangent bundle
of E(a).

Furthermore, we have the Abel-Jacobi morphism E(a) → Pica(E). For
an arbitrary line bundle K′ on E, we denote the composed morphism by
AJ: Hilbatr(

◦
SK′) → E(a) → Pica(E). For a line bundle D of degree a on

E, the fiberwise dilation action of C× on
◦
SK′ induces an action of C× on

3Indeed, a general fiber of πα is isomorphic to G|α|
m , hence irreducible. Any fiber of AJ is

irreducible as well. Finally, all the fibers of AJZ are smooth equidimensional by a computation
of the differential of AJZ . Hence any fiber of AJZ is irreducible.
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AJ−1(D) ⊂ Hilbatr(
◦
SK′), and we define the reduced transversal Hilbert scheme

DHilbatr(
◦
SK′) as AJ−1(D)/C× (stack quotient).

Proposition 2.3.1. (a) There are natural isomorphisms
◦
Z1

K
∼=
◦
SK−α∨ , Z

1
K
∼= SK−α∨ , Z

1
K
∼= P(K−α

∨ ⊕ OE).

(b) For a ∈ N, the zastava space Za
K is naturally isomorphic to the total space

of the vector bundle TK on E(a).
(c) For a ∈ N, D ∈ Pica(E), the reduced open zastava D

◦
Za

K is naturally isomor-

phic to the reduced transversal Hilbert scheme DHilbatr(
◦
SK′) for K′ = K−α

∨ ⊗D.

Proof. By definition, Za
K is the moduli space of the data Lω∨ → Vω

∨

F → Kω∨ such
that the composition Lω∨ → Kω∨ is not zero. Here Vω

∨

F is a vector bundle on E
of rank 2 with trivialized determinant, and Lω∨ is a line bundle of degree −a.
Hence the composition Lω∨ ↪→ Kω∨ identifies Lω∨ with Kω∨(−D) for an effective
divisor D on E of degree a. The trivialization of detVω

∨

F makes Vω
∨

F canonically
selfdual, so the dual of our data is K−ω

∨ → Vω
∨

F → L−ω
∨
. In particular, we obtain

the sheaf embeddings

K−ω
∨ ⊕Kω∨(−D) = K−ω

∨ ⊕ Lω∨ ↪→ Vω
∨

F ↪→ L−ω
∨ ⊕Kω∨ = K−ω

∨
(D)⊕Kω∨ .

In other words, Vω
∨

F is a degree a upper modification of K−ω
∨ ⊕ Kω∨(−D) at

D. The open subvariety Za
K ⊂ Za

K is given by the open condition that the

projection of Vω
∨

F to Kω∨ is surjective, and the open subvariety
◦
Za

K ⊂ Za is given
by the extra open condition that the projection of Vω

∨

F to K−ω
∨
(D) is surjective.

Yet in other words, Za
K is the moduli space of a-dimensional OE-submodules

V ⊂ (K−ω
∨
(D)/K−ω

∨
)⊕ (Kω∨/Kω∨(−D)), the open subvariety Za

K ⊂ Za
K is given

by the open condition that V is transversal to K−ω
∨
(D)/K−ω

∨
, and the open

subvariety
◦
Za

K ⊂ Za
K is given by the extra open condition that V is transversal to

Kω∨/Kω∨(−D).
If a = 1, then D is a single point x ∈ E, and the fiber of Z1

K over x ∈
E is a projective line P

(
(K−ω

∨
(x)/K−ω

∨
) ⊕ (Kω∨/Kω∨(−x))

)
. Hence Z1

K is the

projectivization of the rank 2 vector bundle K−ω
∨ ⊗ TE ⊕ Kω∨ over E. The

trivialization of the canonical line bundle ωE in Remark 2.2.5 gives rise to a
trivialization of the tangent line bundle TE, and we obtain an isomorphism Z1

K
∼=

P(K−ω
∨ ⊕Kω∨) = P(K−α

∨ ⊕ OE). Furthermore, a point of Z1
K over x ∈ E can be

viewed as the graph of a homomorphism from Kω∨
x to K−ω

∨
x , so Z1

K gets identified
with the total space of the line bundle Hom(Kω∨ ,K−ω

∨
) = K−α

∨
. Finally, a point

of
◦
Z1

K over x ∈ E can be viewed as the graph of an isomorphism from Kω∨
x to

K−ω
∨

x . This completes our proof of (a).

Recall that the fiber of Hilbatr(SK−α∨ ) (respectively, of Hilbatr(
◦
SK−α∨ )) over D ∈

E(a) is canonically isomorphic to HomOE(OD,K
−α∨/K−α

∨
(−D)) (respectively,
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to IsomOE(OD,K
−α∨/K−α

∨
(−D))), where OD = OE/OE(−D). On the other

hand, an a-dimensional OE-submodule V ⊂ (K−ω
∨
(D)/K−ω

∨
)⊕ (Kω∨/Kω∨(−D))

transversal to K−ω
∨
(D)/K−ω

∨
is the graph of a homomorphism

hV ∈ HomOE(Kω∨/Kω∨(−D),K−ω
∨
(D)/K−ω

∨
) = HomOE(OD,K

−α∨(D)/K−α
∨
).

Furthermore, V is also transversal to Kω∨/Kω∨(−D) iff hV is invertible.
Since OD is a cyclic OE-module with generator 1, a homomorphism

hV ∈ HomOE(OD,K
−α∨(D)/K−α

∨
) is uniquely determined by hV (1), so that

HomOE(OD,K
−α∨(D)/K−α

∨
) = K−α

∨
(D)/K−α

∨
, and the latter space is nothing

but the fiber of the vector bundle TK at D ∈ E(a). This completes the proof
of (b).

We have just seen that the fiber of
◦
Za

K over D ∈ E(a) is canonically iso-
morphic to IsomOE(OD,K

−α∨(D)/K−α
∨
). If D runs over the fiber of the Abel-

Jacobi map over D = Kω∨ ⊗ L−ω
∨
, then K−α

∨
(D)/K−α

∨ ' (K−α
∨ ⊗ D)|D,

and the isomorphism is well defined up to a multiplicative constant. Hence
IsomOE(OD,K

−α∨(D)/K−α
∨
) ' IsomOE(OD, (K

−α∨⊗D)|D), and the isomorphism
is well defined up to a multiplicative constant. The latter space is the fiber of
Hilbatr(

◦
SK−α∨⊗D) over D. Finally, taking quotient by the action of C× removes

the ambiguity in the choice of the above isomorphism, and produces the desired
canonical isomorphism.

The above argument generalizes straightforwardly to the case of families over a
base B. For example, the isomorphism IsomOE×B(OD×B,K

−α∨(D × B)/K−α
∨
) '

IsomOE×B(OD×B, (K
−α∨ ⊗D)|D×B) is well defined up to O×B.

This completes the proof of (c). �

3. Mirković construction

From now on we assume that G is simply laced. We choose an orientation of
the Dynkin diagram of G. We obtain a quiver Q with the set of vertices Q0 = I,
and the set of arrows Q1. For an arrow h = (i→ j) we use the standard notation
j = i(h), i = o(h).

3.1. Compactified zastava. For a T -torsor KT on E and i ∈ I, we define a
line bundle Ki on E associated to the simple root character α∨i : T → C×. Given
a collection of line bundles Ki, i ∈ I, and β =

∑
biαi ∈ Λpos, we define a line

bundle Kβ := �i∈IK
(bi)
i on Eβ =

∏
i∈I E

(bi). Here K
(bi)
i is the descent of K�bii

from Ebi to E(bi) obtained by passing to Sbi-invariant sections on U (bi), where
U ⊂ E is an affine open subset. Given β, γ ∈ Λpos with β + γ = α, we consider
the diagram

Eβ p←− Eβ × Eγ q−→ Eα,

where p is the projection, and q is the addition of colored effective divisors. For
i, j ∈ I we define ∆β,γ

ij ⊂ Eβ ×Eγ as the incidence divisor where a point of color
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i in Eβ meets a point of color j in Eγ (the case j = i is allowed). We also define

∆β
ij ⊂ Eβ as the divisor formed by configurations where a point of color i meets

a point of color j. We define the factorizable vector bundle Vα
K on Eα as4

(3.1.1) Vα
K :=

⊕
β+γ=α

q∗

(
p∗
(
Kβ
(∑
i∈I

∆β
ii −

∑
h∈Q1

∆β
o(h) i(h)

))(∑
i∈I

∆β,γ
ii

))
.

It contains two codimension 1 subbundles: Vα
K,low and Vα,up

K , where in the above
direct sum we omit summands corresponding to β = 0 (resp. γ = 0).

The factorization structure is a canonical isomorphism for any decomposition
α = α′ + α′′, between the pullbacks of Vα

K and Vα′

K � Vα′′

K to (Eα′ × Eα′′)disj (an
open subset of Eα′ × Eα′′ formed by all the pairs of configurations where all the
points of the first configuration are distinct from all the points of the second one).
In particular, the rank of Vα

K equals 2|α|, and the pullback of Vα
K to (

∏
i∈I E

ai)disj

is canonically isomorphic to �i∈I((Ki⊕OE)�ai)|(∏i∈I E
ai )disj (here α =

∑
i∈I aiαi).

Let pα : (
∏

i∈I E
ai)disj → Eα

disj stand for the unramified Galois cover with Galois
group Sα =

∏
i∈I Sai (the product of symmetric groups). Then the vector bundle

�i∈I((Ki ⊕ OE)�ai)|(∏i∈I E
ai )disj carries a natural Sα-equivariant structure, and

Vα
K|Eαdisj =

(
pα∗ �i∈I ((Ki ⊕ OE)�ai)|(∏i∈I E

ai )disj

)Sα
.

Thus the projectivization P
(
�i∈I ((Ki⊕OE)�ai)

)
|(∏i∈I E

ai )disj contains the prod-

uct of the ruled surfaces (P1-bundles over E)
∏

i∈I P(Ki⊕OE)ai |(∏i∈I E
ai )disj (Segre

embedding). Hence PVα
K|Eαdisj contains

(∏
i∈I P(Ki ⊕ OE)ai |(∏i∈I E

ai )disj

)
/Sα.

Definition 3.1.1 (I. Mirković). (a) Mirković compactified zastava MirZα
K is de-

fined as the closure of
(∏

i∈I P(Ki ⊕ OE)ai |(∏i∈I E
ai )disj

)
/Sα in PVα

K (with the
reduced closed subscheme structure).

(b) The upper (resp. lower) boundary ∂up
MirZα

K (resp. ∂low
MirZα

K) is defined as
the intersection MirZα

K ∩ PVα,up
K (resp. MirZα

K ∩ PVα
K,low).

(c) Mirković zastava MirZα
K is defined as the open subscheme in MirZα

K obtained
by removing the upper boundary ∂up

MirZα
K.

(d) Mirković open zastava Mir
◦
Zα

K is defined as the open subscheme in MirZα
K

obtained by further removing the lower boundary ∂low
MirZα

K.

Returning to the usual compactified zastava (Definition 2.2.1), we set

(3.1.2) Ki := K−α
∨
i .

Then the factorization property of zastava along with Proposition 2.3.1(a) gives
rise to a canonical isomorphism Zα

K|Eαdisj ∼=
(∏

i∈I P(Ki ⊕ OE)ai |(∏i∈I E
ai )disj

)
/Sα.

Thus we obtain a birational isomorphism Θ◦ : MirZα
K

∼
99K Zα

K.

4Our definition looks different from [MYZ, §§2.4.1,2.4.2]. This is due to dualization,
cf. Lemma 3.4.2 below.
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Theorem 3.1.2 (I. Mirković). [MYZ, 2.4.6] The birational isomorphism Θ◦ ex-

tends to a regular isomorphism Θ: MirZα
K
∼−→(Zα

K)red with the compactified zastava
equipped with the reduced scheme structure. Moreover, Θ restricts to the same
named isomorphisms MirZα

K
∼−→ (Zα

K)red and also Mir
◦
Zα

K
∼−→

◦
Zα

K.

Proof. For the readers’ convenience we sketch a proof. We consider a twisted
version GrBD,K of the Beilinson-Drinfeld Grassmannian: the moduli space of
|α|-tuples of points in E, and G-bundles FG on E equipped with a rational iso-

morphism σ : FG
∼
99K IndGTKT regular away from the above |α|-tuple. The prod-

uct of symmetric groups Sα ⊂ S|α| acts on GrBD,K, and we denote by GrαBD,K
the categorical quotient (partially symmetrized twisted Beilinson-Drinfeld Grass-
mannian). The generically transversal generalized B- and twisted U−-structures

in the data of zastava define a generic isomorphism FG
∼
99K IndGTKT ; this way we

obtain a closed embedding Zα
K ↪→ GrαBD,K.

We consider the corresponding closed embedding of the T -fixed point sub-
schemes (Zα

K)T ↪→ (GrαBD,K)T . One can construct an isomorphism (Zα
K)T '⊔

β+γ=αE
β × Eγ. Furthermore, one can identify the restriction of the ample de-

terminant line bundle L on GrαBD,K to the connected component Eβ×Eγ ⊂ (Zα
K)T

with the line bundle p∗
(
K−β

(
−
∑

i∈I ∆β
ii +

∑
h∈Q1

∆β
o(h) i(h)

))
, cf. [MYZ, Propo-

sition 2.4.1].

Now consider the restrictions q∗L → q∗

(
L|Zα

K

)
→ q∗

(
L|(Zα

K
)T

)
,

where q : GrαBD,K → Eα is the natural projection. The composition

q∗L → q∗

(
L|(Zα

K
)T

)
is surjective since it equals another composition of

q∗L→ q∗

(
L|(GrαBD,K)T

)
→ q∗

(
L|(Zα

K
)T

)
that is surjective e.g. by [Z]. Hence the

restriction r0 : q∗

(
L|Zα

K

)
→ q∗

(
L|(Zα

K
)T

)
is surjective as well.

The restriction of q to Zα
K is the factorization morphism πα. By factorization,

a general fiber of πα is isomorphic to a product of projective lines, and the restric-
tion of L to a general fiber is isomorphic to the exterior product of line bundles
OP1(1). Hence the restriction r0 to the T -fixed points is an isomorphism over the

generic point of Eα. If the coherent sheaf q∗

(
L|Zα

K

)
were torsion free, r0 would be

injective, and hence an isomorphism. However, the direct image q∗

(
L|Zα

K

)
does

have torsion (essentially due to the nonreducedness of the compactified zastava,
cf. Remark 2.2.2).

We denote by T0 ⊂ q∗

(
L|Zα

K

)
the torsion subsheaf. We impose the rela-

tions T0 on the image of the projective embedding of Zα
K into P(q∗L). The

resulting closed subscheme of Zα
K is denoted (1)Zα

K. The fixed point subschemes
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((1)Zα
K)T and (Zα

K)T coincide since the latter one is reduced. Hence the restriction

r1 : q∗

(
L|(1)Zα

K

)
→ q∗

(
L|(Zα

K
)T

)
is surjective. We denote by T1 ⊂ q∗

(
L|(1)Zα

K

)
the torsion subsheaf. We impose the relations T1 on the image of the projec-
tive embedding of (1)Zα

K into P(q∗L). The resulting closed subscheme of (1)Zα
K is

denoted (2)Zα
K.

Continuing like this we obtain a chain of closed subschemes

Zα
K ⊃ (1)Zα

K ⊃ (2)Zα
K ⊃ . . .

By the noetherian property of Zα
K this chain stabilizes with certain closed sub-

scheme to be denoted (∞)Zα
K ⊂ Zα

K. If this subscheme is not reduced, we apply

the above procedure to (1)Z
α
K :=

(
(∞)Zα

K

)
red

to obtain its closed subscheme
(∞)
(1) Z

α
K.

Continuing like this we obtain a chain of closed subschemes

(∞)Zα
K ⊃

(∞)
(1) Z

α
K ⊃

(∞)
(2) Z

α
K ⊃ . . .

By the noetherian property of (∞)Zα
K this chain stabilizes with certain reduced

closed subscheme to be denoted
(∞)
(∞)Z

α
K ⊂ Zα

K. Since
(∞)
(∞)Z

α
K and Zα

K coincide

over the generic point of Eα, the subscheme
(∞)
(∞)Z

α
K must coincide with (Zα

K)red.

The restriction morphism r∞ : q∗

(
L|(∞)

(∞)
Zα

K

)
→ q∗

(
L|(Zα

K
)T

)
is surjective. By

construction, q∗

(
L|(∞)

(∞)
Zα

K

)
is torsion free, so r∞ is an isomorphism. Thus

(∞)
(∞)Z

α
K

is embedded into PVα
K, and must coincide there with the closure of its generic

fiber, i.e. with MirZα
K. �

3.2. Example of type A1 for trivial K à la Mirković. Recall the setup
and notation of §2.3. We assume K is trivial and denote Za

K by Za for short.
The argument in the proof of Proposition 2.3.1(a) defines an embedding of Za

into the symmetrized version GrSL(2),E(a) of Beilinson-Drinfeld Grassmannian of
G = SL(2) of degree a, cf. [Gai, §4, §7.2]. We consider the determinant (relatively
very ample) line bundle L on GrSL(2),E(a) and its restriction to Za. The projection

Za → E(a) is denoted by πa. We claim that there is a natural isomorphism

(πa∗L)∨ '
⊕
b+c=a

q∗

(
p∗
(
OE(b)(∆b)

)
(∆b,c)

)
(notation of §3.1). Indeed, let (Za)T be the fixed point subscheme of Za. Then
(Za)T =

⊔
b+c=aE

(b) × E(c): to Db ∈ E(b), Dc ∈ E(c) we associate the a-
dimensional vector subspace

VDb,Dc := OE(Db)/OE⊕OE(−Db)/OE(−Db−Dc) ⊂ (OE(D)/OE)⊕(OE/OE(−D))
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(notation of the proof of Proposition 2.3.1(a)) and denote the corresponding
rank 2 vector bundle on E by Vω

∨

F . The restriction to fixed points induces

an isomorphism πa∗L
∼−→ πa∗(L|(Za)T ), see e.g. [MYZ, §2.4]. The fiber LVω

∨
F

is

det−1RΓ(E,Vω
∨

F ) by definition, so that the fiber LVDb,Dc equals

det−1H0
(
E,OE(Db)/OE

)
⊗ det−1H0

(
E,OE(−Db)/OE(−Db −Dc)

)
⊗ detH0

(
E,OE/OE(−Db −Dc)

)
= det2H0

(
E,OE/OE(−Db)

)
(we are making use of the trivialization of ωE in Remark 2.2.5 and of the Serre
duality to identify det−1H0(D,OD(D)) with detH0(D,OD)). The latter line is
canonically isomorphic to the fiber of ω2

E(b) at Db ∈ E(b). We conclude that
πa∗L =

⊕
b+c=a q∗(p

∗ω2
E(b)). Furthermore, the dual vector bundle of q∗(p

∗ω2
E(b))

is q∗
(
p∗ω−2

E(b)(∆
b,c)
)

by the relative Grothendieck-Serre duality for q since ∆b,c is

the ramification divisor of q. Finally, ω−2
E(b) = OE(b)(∆b).

3.3. Example of type A2 for trivial K à la Mirković. In this section I consists
of two vertices i, j connected by a single arrow i→ j, and α = αi+αj. We assume
K is trivial and denote Zα

K by Zα for short. We consider the embedding of Zα into
the Beilinson-Drinfeld Grassmannian GrSL(3),E2 of degree 2, cf. [Gai, §4, §7.2]. We
consider the determinant (relatively very ample) line bundle L on GrSL(3),E2 and

its restriction to Zα. The projection Zα → E × E is denoted by πα. We have

(πα∗L)∨ = O⊕3
E×E ⊕ OE×E(−∆ij).

Indeed, let (Zα)T be the fixed point subscheme of Zα. Then (Zα)T is isomorphic
to the disjoint union of 4 copies of E×E. Namely, let v1, v2, v3 denote the standard
basis in the tautological representation of SL(3) (so that T acts diagonally). Let
us think of points of Zα ⊂ GrSL(3),E2 as of vector bundles V on E identified with
OEv1 ⊕ OEv2 ⊕ OEv3 away from points xi, xj ∈ E. Then:
the first copy of E × E consists of V = OEv1 ⊕ OEv2 ⊕ OEv3;
the second copy of E × E consists of V = OE(xi)v1 ⊕ OE(−xi)v2 ⊕ OEv3;
the third copy of E × E consists of V = OEv1 ⊕ OE(xj)v2 ⊕ OE(−xj)v3;
the fourth copy of E ×E consists of V = OE(xi)v1⊕OE(xj − xi)v2⊕OE(−xj)v3.

The restriction to fixed points induces an isomorphism πα∗L
∼−→ πα∗ (L|(Zα)T ),

see e.g. [MYZ, §2.4]. The fiber LV is det−1RΓ(E,V) by definition. The restriction
of L to the first three copies of E × E is trivial, while the restriction of L to the
fourth copy of E × E is OE×E(∆ij).

3.4. Example of type A1 for regular K. We consider the situation complemen-
tary to the one of §3.2: we assume that K2 is nontrivial. The open elliptic zastava
of degree a is the moduli space

◦
Za

K of line subbundles L ⊂ K ⊕ K−1 of degree

−a. In other words,
◦
Za

K is the moduli space of triples (L, s ∈ H0(E,L−1K), t ∈
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H0(E,L−1K−1)) such that s and t have no common zeros, viewed up to common

rescaling. The factorization morphism πa :
◦
Za

K → E(a) associates to (L, s, t) the
zero divisor D of s. We set t′ := t/s ∈ H0(E,K−2(D)), a regular section that does

not vanish on D. We can also view
◦
Za

K as the moduli space of triples (L, D, t′).
We have an embedding

Υt′ =

(
1 t′

0 1

)
: K−1 ⊕K(−D)→ K−1 ⊕K.

We consider the determinant line bundle L on
◦
Za

K whose fiber at (L, D, t′) is
det−1H0(E,Coker(Υt′)). Consider the dual map Υ∨t′ : K

−1 ⊕K ↪→ K−1(D)⊕K.
Then H0(E,Coker(Υt′)) gets identified with an a-dimensional subspace in HD :=

H0
(
E, (K−1(D)/K−1) ⊕ (K/K(−D))

)
. This defines an embedding of

◦
Za

K into a

relative Grassmannian over E(a). The closure of
◦
Za

K in this relative Grassmannian
is nothing but the compactified zastava Za

K. The determinant line bundle L

extends to the same named line bundle on Za
K. The fixed point subscheme

(
Za

K

)T
(with respect to the Cartan torus T ⊂ SL(2)) is finite over E(a), and the restriction
morphism

(3.4.1) πa∗L→ πa∗(L|(ZaK)
T )

is an isomorphism.

We set Va
K−2 =

⊕
b+c=a q∗

(
p∗
(

(K−2)(b)
(
∆b
))(

∆b,c
))

(notation of §3.2). We

also consider a line bundle M on E(a) with the fiber det−1H0(D,K|D) over D ∈
E(a). We will need the following well known result.

Lemma 3.4.1. For any b > 0, there is an isomorphism ω−2
E(b) ' OE(b)(∆b).

Proof. We were unable to locate a reference, so we give a proof. Let p : Eb → E(b)

be the natural symmetrization morphism. We have a natural map ω−1
Eb
→ p∗ω−1

E(b)

vanishing on the union of diagonals in Eb. Thus, if v is a global nonvanishing
differential on E, then s = p∗1∧. . .∧p∗bv can be viewed as a global section of p∗ω−1

E(b)

(here pr : Eb → E is the projection to the r-th factor). A local computation
shows that s2 comes from a global section of ω−2

E(b) vanishing on ∆b. This gives
the required isomorphism. �

Now we are in a position to identify the direct image of the determinant line
bundle.

Lemma 3.4.2. We have an isomorphism πa∗(L|(ZaK)
T ) 'M⊗

(
Va

K−2

)∨
.

Proof. For every splitting D = Db+Dc into the sum of effective divisors of degrees
b, c, we have a T -fixed point in Za

K corresponding to the subspace

H0
(
E, (K−1(Db)/K

−1)⊕ (K(−Db)/K(−D))
)
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⊂ H0
(
E, (K−1(D)/K−1)⊕ (K/K(−D))

)
= HD.

This gives rise to an isomorphism q̃ :
⊔
b+c=aE

(b)×E(c) ∼−→
(
Za

K

)T
, where πaq̃ = q.

In order to calculate q̃∗L, note that by the Serre duality on Db we have

H0(E,K−1(Db)/K
−1) = H0(Db,K

−1(Db)|Db) ' H0(Db,ωDb ⊗K(−Db)|Db)∨.

Furthermore, by adjunction we have ωDb ' ωE(Db)|Db ' OE(Db)|Db . Thus we
get a natural isomorphism det−1H0(E,K−1(Db)/K

−1) ' detH0(Db,K|Db). The
exact sequence

0→ K(−Db)/K(−D)→ K/K(−D)→ K/K(−Db)→ 0

gives rise to an isomorphism

det−1H0(E,K(−Db)/K(−D)) ' det−1H0(D,K|D)⊗ detH0(Db,K|Db).

Hence we deduce an isomorphism

q̃∗L|(Db,Dc) ' det−1H0(D,K|D)⊗ det2H0(Db,K|Db).

In other words,

q̃∗L ' p∗ det2$E(b)∗$
∗
EK⊗ q∗M,

where $E(b) : Db → E(b) is the universal divisor, and $E : Db → E is the natural
projection, while M = det−1$E(a)∗$

∗
EK.

From the natural isomorphisms

det$E(b)∗$
∗
EK ' NmDb/E(b)($∗EK)⊗ det$E(b)∗ODb ' K(b) ⊗ ωE(b)

we deduce an isomorphism q̃∗L ' q∗M⊗ p∗
(
(K2)(b) ⊗ ω2

E(b)

)
. Summing up over

all decompositions b+ c = a we get an isomorphism

πa∗(L|(ZaK)
T ) 'M⊗

⊕
b+c=a

q∗p
∗((K2)(b) ⊗ ω2

E(b)

)
.

Using relative Serre duality for q and an isomorphism of the relative dualizing
sheaf for q with OE(b)×E(c)(∆b,c) we get an isomorphism(

q∗p
∗((K2)(b) ⊗ ω2

E(b)

))∨
' q∗p

∗((K−2)(b) ⊗ ω−2
E(b)

)(
∆b,c

)
.

Finally, using the isomorphism ω−2
E(b) ' OE(b)(∆b) of Lemma 3.4.1, we identify the

RHS with the corresponding summand in Va
K−2 .

The lemma is proved. �
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3.4.1. Identification of Za
K with Mirković zastava. From Lemma 3.4.2 we obtain

an embedding of Za
K into P

(
M∨ ⊗ Va

K−2

)
' P

(
Va

K−2

)
. We want to calculate this

morphism explicitly away from the diagonals.
First, we find an explicit inverse of the isomorphism (3.4.1) over an étale open

in E(a). In particular, we will work away from the diagonals. Also, we consider the
pullback of the corresponding schemes and vector bundles to Ea (but we will keep
the same notations for the base change from E(a) to Ea). Let D = w1 + . . .+wa
with all the points distinct. For every subset ℵ ⊂ {1, . . . , a} we set

Dℵ :=
∑
r∈ℵ

wr, Hℵ := H0
(
E, (K−1(Dℵ)/K

−1)⊕ (K(−Dℵ)/K(−D))
)
⊂ HD.

To Hℵ we associate a section θℵ of the determinant line bundle on the Grass-
mannian Gr(a,HD) vanishing precisely over the set of subspaces that are not
transversal to Hℵ. Namely, for a subspace S ⊂ HD, the value of θℵ at S is the
determinant of the composition of natural maps S → HD → HD/Hℵ. Thus θℵ
is a section of the line bundle with fibers det(HD/Hℵ) ⊗ det−1(S). Note that
det(HD) is canonically trivialized due to Serre duality between H0(D,K−1(D)|D)
and H0(D,K|D), so we can view θℵ as a global section of L⊗$∗

E(a) det−1(Hℵ) on

Za
K.
Note that Hℵ and Hג are transversal iff ג = {1, . . . , a} r ℵ. Thus θℵ(Hג) =

0 for ג 6= {1, . . . , a} r ℵ. On the other hand, θℵ(H{1,...,a}rℵ) ∈ L|H{1,...,a}rℵ ⊗
det−1(Hℵ) is the determinant of the isomorphism H{1,...,a}rℵ

∼−→HD/Hℵ. Hence
the composition⊕

ℵ⊂{1,...,a}

det(Hℵ)
(θℵ)−−→ $E(a)∗

(
L|Za

K

)
→

⊕
ℵ⊂{1,...,a}

det−1(Hℵ)

is an isomorphism that is a direct sum of the isomorphisms

θℵ(H{1,...,a}rℵ) : det(Hℵ)→ det−1(Hℵ).

It follows that the canonical embedding of Za
K into the projectivization of(

$E(a)∗
(
L|Za

K

))∨
'
⊕
ℵ⊂{1,...,a} det(Hℵ) is the morphism

Za
K

(θℵ)−−→ P

 ⊕
ℵ⊂{1,...,a}

det−1(Hℵ)

 (
θ−1
{1,...,a}rℵ(Hℵ)

)
−−−−−−−−−−→ P

 ⊕
ℵ⊂{1,...,a}

det(Hℵ)


(where we use the duality θ∗ℵ(H{1,...,a}rℵ) = θ{1,...,a}rℵ(Hℵ)).

3.4.2. Explicit form of the identification of Lemma 3.4.2. Now we are in a position
to calculate the isomorphism of Lemma 3.4.2 over a point (w1, . . . , wa) ∈ Ea. This
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isomorphism takes form

(3.4.2)
⊕

ℵ⊂{1,...,a}

det−1(Hℵ) '

(
a⊗
r=1

K−1|wr

)
⊗

⊕
ℵ⊂{1,...,a}

(⊗
r∈ℵ

K2|wr

)
.

Note that Hℵ =
⊕

r∈ℵK
−1(wr)|wr ⊕

⊕
r′ 6∈ℵK|wr′ , so

(3.4.3) det−1(Hℵ) '

(⊗
r∈ℵ

K(−wr)|wr

)
⊗

(⊗
r′ 6∈ℵ

K−1|wr′

)

'

(
a⊗
r=1

K−1|wr

)
⊗

(⊗
r∈ℵ

K2(−wr)|wr

)
.

One can check that the isomorphism (3.4.2) is obtained from (3.4.3) by taking
the direct sum over ℵ ⊂ {1, . . . , a} and making use of the trivializations of ωwr '
ωE(wr)|wr ' OE(wr)|wr . Hence the dual isomorphism to (3.4.2) is induced by the
natural isomorphisms

det(Hℵ) '

(⊗
r∈ℵ

K−1|wr

)
⊗

(⊗
r′ 6∈ℵ

K|wr′

)
'

(
a⊗
r=1

K|wr

)
⊗

(⊗
r∈ℵ

K−2|wr

)
.

Thus the image of a point ϕ = (L, s, t) ∈
◦
Za

K in P
(⊕

ℵ⊂{1,...,a}
⊗

r∈ℵK
−2|wr

)
is

obtained by first taking the point
(
θ{1,...,a}rℵ(ϕ)

)
∈ P

(⊕
ℵ⊂{1,...,a} det−1(H{1,...,a}rℵ)

)
and then applying the natural isomorphisms det−1(H{1,...,a}rℵ)

∼−→ det(Hℵ) to
each component.

Finally, let us calculate the values of θ{1,...,a}rℵ at a point ϕ = (L, s, t) ∈
◦
Za

K. By
definition, the corresponding point of the Grassmannian Gr(a,HD) is the image
of the map

H0(D,K|D)
(t′,1)−−−→ H0(D,K−1(D)|D ⊕K|D) = HD.

Thus the value of θ{1,...,a}rℵ is given by the determinant of the composition

H0(D,K|D)
(t′,1)−−−→ HD → HD/H{1,...,a}rℵ '

⊕
r∈ℵ

K−1|wr ⊕
⊕
r′ 6∈ℵ

K|wr′ ,

that is equal to

θ{1,...,a}rℵ(t
′) =

∏
r∈ℵ

Reswr(t
′) ∈

⊗
r∈ℵ

K−2|wr ' det−1H0(D,K|D)⊗det−1(H{1,...,a}rℵ).

Therefore, the corresponding point in the projectivization of
⊕
ℵ⊂{1,...,a}

⊗
r∈ℵK

−2|wr
(i.e. in Mir

◦
Za

K|E(a)r∆) is the point with the homogeneous coordinates
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r∈ℵReswr(t

′)
)
ℵ⊂{1,...,a}. It is easy to see that this is nothing but the image

under Segre embedding of the point

(3.4.4)
(
1 : Resw1(t

′)
)
, . . . ,

(
1 : Reswa(t

′)
)
.

3.5. Coulomb zastava. In this section we modify the construction of §3.1.
In Theorem 4.2.1 below we will show that the resulting zastava space is iso-
morphic to the elliptic Coulomb branch of a quiver gauge theory (for the Dynkin
quiver Q of G) when all the line bundles Ki are trivial.

We define the factorizable vector bundle Uα
K on Eα as

(3.5.1) Uα
K :=

⊕
β+γ=α

q∗

(
p∗Kβ ⊗ OEβ×Eγ

( ∑
h∈Q1

∆β,γ
o(h) i(h)

))
.

It contains two codimension 1 subbundles: Uα
K,low and Uα,up

K , where in the above
direct sum we omit summands corresponding to β = 0 (resp. γ = 0).

As in §3.1, PUα
K|Eαdisj contains

(∏
i∈I P(Ki ⊕ OE)ai |(∏i∈I E

ai )disj

)
/Sα.

Definition 3.5.1. (a) Coulomb compactified zastava CZα
K is defined as the closure

of
(∏

i∈I P(Ki⊕OE)ai |(∏i∈I E
ai )disj

)
/Sα in PUα

K (with the reduced closed subscheme
structure).

(b) The upper (resp. lower) boundary ∂up
CZα

K (resp. ∂low
CZα

K) is defined as the
intersection CZα

K ∩ PUα,up
K (resp. CZα

K ∩ PUα
K,low).

(c) Coulomb zastava CZα
K is defined as the open subscheme in CZα

K obtained by
removing the upper boundary ∂up

CZα
K.

(d) Coulomb open zastava C
◦
Zα

K is defined as the open subscheme in CZα
K ob-

tained by further removing the lower boundary ∂low
CZα

K.

3.6. Example of type A1 à la Coulomb. Inside the symmetrized version
GrGL(2),E(a) of Beilinson-Drinfeld Grassmannian of G = GL(2) of degree a, we
consider the moduli space Ma of locally free rank 2 subsheaves W ⊂ OEv1⊕OEv2

such that length
(
(OEv1 ⊕ OEv2)/W

)
= a. We consider the determinant (rela-

tively very ample) line bundle L on GrGL(2),E(a) and its restriction to Ma. The

projection Ma → E(a) is denoted by πa. We have

(πa∗L)∨ = ω−1
E(a) ⊗

⊕
b+c=a

q∗OE(b)×E(c)

(notation of §3.1). Indeed, let T ⊂ GL(2) be the diagonal Cartan torus in the
basis v1, v2 of C2, and let (Ma)T be the fixed point subscheme of Ma. Then
(Ma)T =

⊔
b+c=aE

(b) × E(c): to Db ∈ E(b), Dc ∈ E(c) we associate

WDb,Dc := OE(−Db)v1 ⊕ OE(−Dc)v2 ⊂ OEv1 ⊕ OEv2.
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The restriction to fixed points induces an isomorphism πa∗L
∼−→ πa∗(L|(Ma)T ).

The fiber LW is det−1RΓ(E,W) by definition, so that the fiber
LWDb,Dc

= det(OE/OE(−Db)) ⊗ det(OE/OE(−Dc)). The latter line is

canonically isomorphic to the fiber of ωE(b) � ωE(c) at (Db, Dc) ∈ E(b) × E(c).
We conclude that πa∗L =

⊕
b+c=a q∗(ωE(b)×E(c)). Furthermore, the dual vector

bundle of q∗(ωE(b)×E(c)) is q∗
(
ω−1
E(b)×E(c)(∆

b,c)
)

by the relative Grothendieck-

Serre duality for q since ∆b,c is the ramification divisor of q. Finally,
ω−1
E(b)×E(c)(∆

b,c) = q∗ω−1
E(a) , and we are done by the projection formula.

Generalizing the above example, for a line bundle K on E of degree 0, we
consider the moduli space Ma

K of locally free rank 2 subsheaves W ⊂ K ⊕ K−1

such that length
(
(K⊕K−1)/W

)
= a. The same argument as above provides an

isomorphism CZa
K ' Ma

K. Here the Dynkin graph consists of the unique vertex
i, and in the definition of CZa

K we set Ki = K−α
∨

= K−2. Furthermore, let
◦
Ma

K ⊂ Ma
K be the open subspace formed by all W ⊂ K ⊕ K−1 transversal to

both K and K−1. Then the isomorphism CZa
K 'Ma

K restricts to an isomorphism
C
◦
Za

K '
◦
Ma

K. Finally, the argument in the proof of Proposition 2.3.1(b) establishes
an isomorphism

(3.6.1) C ◦Za
K '

◦
Ma

K ' Hilbatr(
◦
SK−2).

3.7. Example of type A2 à la Coulomb. In this section I consists of two
vertices i, j connected by a single arrow i→ j, and α = αi + αj. Then

Uα
K = OE � OE ⊕ (Ki � OE)(∆ij)⊕ OE �Kj ⊕Ki �Kj,

a 4-dimensional vector bundle on E × E. The Coulomb compactified zastava
CZα

K ⊂ PUα
K is the zero locus of the section s of

Sym2(Uα
K)∨ ⊗

(
(Ki �Kj)(∆ij)

)
defined as follows. First, we set

′Uα
K := OE � OE ⊕Ki � OE ⊕ OE �Kj ⊕Ki �Kj = (OE ⊕Ki)� (OE ⊕Kj).

Then Sym2(′Uα
K)∨ ⊗ (Ki �Kj) has a canonical section σ defined as follows. Let

wi, wj be local nonvanishing sections of OE, and let ui, uj be local nonvanishing
sections of K−1

i ,K−1
j . Then

σ =
(
(wi � wj) · (ui � uj)− (wi � uj) · (ui � wj)

)
⊗ (w−1

i u−1
i � w

−1
j u−1

j ).

We have a tautological embedding

Sym2(′Uα
K)∨ ⊗ (Ki �Kj) ↪→ Sym2(Uα

K)∨ ⊗
(
(Ki �Kj)(∆ij)

)
(arising from OE×E ↪→ OE×E(∆ij)), and s is defined as the image of σ under this
embedding.
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Thus the family CZα
K ⊂ PUα

K → E × E has fibers P1 × P1 ⊂ P3 (smooth
quadrics) away from the diagonal ∆ij ⊂ E×E that degenerate to P2∪P1 P2 ⊂ P3

(singular reducible quadrics) over the diagonal ∆ij.
We choose an analytic neighbourhood W of a point e ∈ E with coordinate w,

and trivialize the line bundles(
(K−1

i � OW )(−∆ij)
)
|W×W ,

(
OW �K−1

j

)
|W×W ,

(
K−1
i ⊗K−1

j

)
|W×W

compatibly. We denote the coordinates along fibers of these trivialized line bun-
dles by yi, yj, yij respectively. Then C

◦
Zα

K|W×W ⊂ W ×W × A3 is cut out by a
single equation yiyj − yij(w1 − w2) = 0 and an open condition yij 6= 0.

4. Elliptic Coulomb branch of a quiver gauge theory

In this section we discuss the elliptic analogue of the construction [BFN1] of
the Coulomb branch of a gauge theory. This construction made use of equivariant
Borel-Moore homology of a certain variety of triples, and we replace the Borel-
Moore homology with its elliptic version. The results of this section are not
used in the rest of the paper, and serve as a motivation only. We consider a
quiver Q = (Q0, Q1) with the set of vertices Q0 and the set of arrows Q1. We
use the following notation for the Laurent series field and the Taylor series ring:
F = C((t)) ⊃ C[[t]] = O.

4.1. Basics. Let V = ⊕i∈Q0Vi, W = ⊕i∈Q0Wi be finite dimensional Q0-graded
complex vector spaces. The group G = GL(V ) =

∏
i∈Q0

GL(Vi) acts naturally on

N =
⊕

i∈Q0
Hom(Wi, Vi) ⊕

⊕
(i→j)∈Q1

Hom(Vi, Vj). The construction of [BFN1,

§2(i)] associates to this representation of G the variety of triples R contained in
an infinite rank vector bundle T over GrG. We consider the equivariant elliptic
Borel-Moore homology ring HGO

e`` (R).
A few words about the latter notion are in order. A theory of G-equivariant

elliptic cohomology with values in quasicoherent sheaves of algebras over the mod-
uli space of semistable G-bundles over E was proposed in [Gro, GKV]. After the
proposal of [Gro, GKV], quite a few foundational papers appeared establishing
the basic properties of equivariant elliptic cohomology. We will use [Gan] as a ref-
erence. For one thing, we restrict ourselves to a product of general linear groups G
since the centralizers of commuting pairs in G are connected, and the base change
in equivariant elliptic cohomology holds true [Gan, Theorem 4.6, Corollary 4.10].

Now the equivariant elliptic Borel-Moore homology HGO
e`` (X) is defined as W -

invariants in the Cartan torus equivariant elliptic Borel-Moore homology, and
these in turn are defined by descent from the usual equivariant Borel-Moore
homology or the equivariant homological K-theory as in [Gan, §3.3]. The de-
tails of the construction are to appear in a forthcoming work of I. Perunov and
A. Prikhodko.
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We set ai = dimVi, so that α =
∑

i∈Q0
aiαi ∈ Λpos is a positive coroot com-

bination of the Kac-Moody Lie algebra g with Dynkin diagram Q. Then the
equivariant elliptic cohomology He``

GO
(pt) = OEα , where Eα =

∏
i∈I E

(ai). The

equivariant elliptic Borel-Moore homology HGO
e`` (R) is a quasicoherent sheaf of

commutative OEα-algebras by construction of [BFN1, §3]. Its relative spectrum
is denoted Me``

C = Me``
C (G,N): the elliptic Coulomb branch. By construction,

Me``
C is equipped with an affine morphism Π : Me``

C → Eα.

4.2. Compactified elliptic Coulomb branch. From now on we assume that
Q is an oriented Dynkin diagram of an almost simple simply connected simply
laced complex algebraic group G. We also assume that W = 0. We will denote
Q0 by I to match the notation of Sections 2,3.

As in [BFN2, §3(ii)], we consider the subalgebra HGO
e`` (R+) ⊂ HGO

e`` (R) (homol-
ogy supported over the positive part of the affine Grassmannian Gr+

G ⊂ GrG),

and its relative spectrum M
e``,+
C

Π−→ Eα. By construction, we have an open

embedding MC ⊂M
e``,+
C of varieties over Eα.

As in [BFN2, Remark 3.7], we define a certain support multifiltration

F•H
GO
e`` (R+) numbered by the monoid Λ∨pos of nonnegative integral combinations

of positive roots of G. The (multi)projective spectrum of its Rees algebra is
denoted Me``

C : the compactified elliptic Coulomb branch. By construction, it is
equipped with a projective morphism Π : Me``

C → Eα. Also we have an open

embedding M
e``,+
C ⊂Me``

C of varieties over Eα.
By definition,

F∑
i∈I α

∨
i
HGO
e`` (R+) =

⊕
Λpos3β=

∑
biαi≤α

HGO
e``

(
R+∑

i∈I $i,bi

)
(elliptic homology of the preimage in R+ of all the fundamental GO-orbits in
Gr+

G ; here $i,n stands for the n-th fundamental coweight of GL(Vi); in particular,
$i,0 = 0 and $i,ai = (1, . . . , 1)). All the fundamental GO-orbits in Gr+

G are
closed; more precisely, Gr

$i,n
GL(Vi)

∼= Gr(n, ai) (the Grassmannian of n-dimensional

subspaces in Vi). We have

He``
GL(Vi,O)

(
Gr(bi, ai)

)
= q∗(OE(bi)×E(ai−bi))

(the sheaf of elliptic cohomology on E(ai), notation of §3.1), and dually,

H
GL(Vi,O)
e``

(
Gr(bi, ai)

)
=
(
q∗(OE(bi)×E(ai−bi))

)∨
(elliptic homology). It follows that for β ≤ α and γ := α− β we have

HGO
e`` (R+∑

i∈I $i,bi
) =

(
q∗

(
OEβ×Eγ

( ∑
h∈Q1

∆β,γ
o(h) i(h)

)))∨
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(notation of §3.1; note that the divisor ∆β,γ
ij in Eβ × Eγ is the pullback of the

corresponding divisor in Eα, so that the twisting and pushforward commute by
the projection formula). The twisting arises from the elliptic analogue of [BFN1,
Theorem 4.1] and localization in elliptic homology, reducing the calculation to
the toric case.

All in all, we obtain a canonical isomorphism F∑
i∈I α

∨
i
HGO
e`` (R+) = (Uα)∨ (nota-

tion of §3.5, where we set Uα := Uα
K for trivial line bundles Ki = OE). It induces

a morphism Θ : Me``
C → PUα.

Theorem 4.2.1. (a) Θ is a closed embedding, and its image is CZα (where we
set CZα := CZα

K for trivial line bundles Ki = OE).

(b) The isomorphism Θ : Me``
C

∼−→CZα restricts to the same named isomorphism

of the open subvarieties M
e``,+
C

∼−→ CZα.

(c) The isomorphism Θ : Me``
C

∼−→CZα restricts to the same named isomorphism

of the open subvarieties Me``
C

∼−→ C
◦
Zα.

Proof. We consider the usual equivariant Borel-Moore homology ring HGO
∗ (R+).

The argument in the proof of [BFN1, Proposition 6.8] demonstrates that this ring
is generated by

⊕
Λpos3β=

∑
biαi≤αH

GO
∗
(
R+∑

i∈I $i,bi

)
. It follows that the correspond-

ing Rees algebra is generated by F∑
i∈I α

∨
i
HGO
∗ (R+). Since the elliptic cohomology

coincides with the usual cohomology locally in the analytic topology of Eα, it fol-
lows that the Rees algebra of HGO

e`` (R+) is generated by F∑
i∈I α

∨
i
HGO
e`` (R+). Hence

Θ is a closed embedding. The image of Θ over the complement to diagonals in
Eα is readily identified with

(∏
i∈I(E × P1)ai |(∏i∈I E

ai )disj

)
/Sα. We conclude that

the image of the closed embedding Θ coincides with CZα. This completes the
proof of (a), and (b,c) follow immediately. �

5. Reduced elliptic zastava

5.1. Poisson structure. According to §3.5, CZα
K contains an open smooth sub-

variety Uα :=
(∏

i∈I P(Ki ⊕ OE)ai |(∏i∈I E
ai )disj

)
/Sα. It has a covering Ũα :=∏

i∈I P(Ki ⊕ OE)ai |(∏i∈I E
ai )disj , an open subvariety of the product of the ruled

surfaces Uα :=
∏

i∈I P(Ki ⊕ OE)ai . Each ruled surface P(Ki ⊕ OE) contains an

open subvariety
◦
SKi (notation of §2.3). The canonical class of

◦
SKi is trivial,

and the trivialization is defined uniquely by our choice of trivialization of the
canonical bundle ωE, see Remark 2.2.5. In other words,

◦
SKi carries a canonical

symplectic form ωKi . More explicitly, we can trivialize Ki étale locally and choose
a function w on E such that dw is the trivialization of ωE (Remark 2.2.5). Let

(w, y) be the corresponding étale local coordinates on
◦
SKi such that y is invert-

ible. We define the Poisson bracket setting {y, x}Ki = y. For this bracket we
have {f(w)y, w}Ki = f(w)y. It follows that the brackets on the intersections of
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coordinate patches are all compatible, so they give rise to a global bracket arising
from a symplectic form ΩKi .

Note that ΩKi is invariant with respect to the action of C× by fiberwise di-

lations. Note also that the symplectic structure on
◦
SKi extends as a Poisson

structure to P(Ki⊕OE) (vanishing along the zero and infinite sections). Finally,
the product Poisson structure on Uα is clearly Sα-invariant, so by descent we
obtain a Poisson structure on Uα, to be denoted {, }αK.

It is likely that the Poisson structure {, }αK on Uα extends as a Poisson structure
to the Coulomb compactified zastava CZα

K. However, the proof would require the
normality property of CZα

K that we do not know at the moment. Instead we
restrict to an open subset U◦α ⊂ Uα removing the 0 and ∞ sections of the surface
P(Ki ⊕ OE).

Proposition 5.1.1. The Poisson structure {, }αK on U◦α extends to a Poisson

structure {, }K on Coulomb open zastava C
◦
Zα

K ⊂ CZα
K. Moreover the latter Pois-

son structure is symplectic.

Proof. The construction of Coulomb zastava being local, we can restrict our con-
sideration to CZα

K|Wα where W is an analytic open subset of E with a global
coordinate w whose differential dw coincides with the trivialization of ωE (Re-
mark 2.2.5); thus we fix an open analytic embedding W ↪→ A1. We can also
trivialize all the line bundles Ki|W . Combining Theorem 4.2.1 with [BFN2, The-

orem 3.1] we obtain an isomorphism between C
◦
Zα

K|Wα and
◦
Zα|Wα . Here

◦
Zα → Aα

is the usual open zastava studied in [BFN2]. In particular, the smoothness of
◦
Zα

implies the smoothness of C
◦
Zα

K.
In order to check that the rational Poisson structure {, }αK is symplectic on the

Coulomb open zastava, it suffices to do this over the generic points of diagonals in
Eα (equivalently, over the generic points of diagonals in Wα). The factorization
isomorphism

C ◦Zα
K|(Eβ×Eγ)disj ' (C

◦
Zβ

K ×
C ◦Zγ

K)|(Eβ×Eγ)disj

is Poisson by construction. Hence it suffices to check the symplectic property
of the Poisson structure over the generic points of diagonals in Eβ (equivalently,
over the generic points of diagonals in W β) for |β| = 2.

There are 3 cases to consider. If β = αi + αj, and i, j are not connected by
an arrow, there is nothing to check. If β = αi + αj, and i, j are connected by an
arrow i→ j, then the Coulomb open zastava over W β with its Poisson structure is
nothing but the restriction of the rational open zastava

◦
Zβ (for the group SL(3))

with its Poisson structure to W β. The latter one is symplectic e.g. by [FKMM].
More precisely, comparing (the last line of) §3.7 with e.g. [BFN2, Remark 2.2]

we get an explicit identification between the Coulomb open zastava C
◦
Zβ

K|Wα and

the rational open zastava
◦
Zβ|Wα sending {, }βK to the standard Poisson structure

on
◦
Zβ|Wα . If β = 2αi, the identification of §3.6 and §2.3 between C

◦
Zβ

K and the
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corresponding Hilbert scheme sends {, }βK to the standard Poisson (symplectic)
structure on the Hilbert scheme.

This completes the proof of the proposition. �

5.2. Hamiltonian reduction. We assume that ai > 0 for any i ∈ I. Let T ad

act on Ki via the homomorphism α∨i : T ad → C× and the fiberwise dilation action
of C× on Ki. Clearly, this action extends to a fiberwise action on P(Ki ⊕ OE).
Furthermore, for any decomposition α = β + γ (where β =

∑
i∈I biαi), the fiber-

wise action of T ad on Ki induces its action on Kβ and hence on the vector bundle

q∗

(
p∗Kβ ⊗ OEβ×Eγ

(∑
h∈Q1

∆β,γ
o(h) i(h)

))
. Clearly, the resulting actions of T ad on

Uα (see §5.1) and on PUα
K|Eαdisj are compatible. This way C

◦
Zα

K acquires an effective

hamiltonian action of T ad.
We have the Abel-Jacobi morphisms E(ai) → Picai E and their product

AJ: Eα →
∏

i∈I Picai E. We denote the composed morphism by

AJZ : C
◦
Zα

K → Eα →
∏
i∈I

Picai E.

Given a collection D = (Di)i∈I ∈ Picai E, we define the reduced Coulomb open

zastava C
D

◦
Zα

K as AJ−1
Z (D)/T (stack quotient, cf. Definition 2.2.4). It inherits a

Poisson structure from C
◦
Zα

K, symplectic on the smooth locus of CD
◦
Zα

K.

Theorem 5.2.1. For D = (Di)i∈I ∈ Picai E, the reduced open zastava D

◦
Zα

K is

naturally isomorphic to the reduced Coulomb open zastava C
D

◦
Zα

K′, where K′i :=
K−α

∨
i ⊗Di ⊗

⊗
h∈Q1:i=o(h) D

−1
i(h).

The proof will be given in §5.4 after some preparation. Throughout the proof
we will make use of the identification Mir

◦
Zα

K
∼=
◦
Zα

K of Theorem 3.1.2. Thus we
will compare two types of reduced zastava constructed from the Dynkin quiver
Q (as opposed to the group G). Roughly speaking the idea of the proof is as
follows. Before the reduction, both types of zastava spaces are closures of the
images of certain Segre embeddings into projective bundles over the configuration
space. The key idea is to check that after restricting to the Abel-Jacobi fibers
the two projective bundles become isomorphic up to a twist and the Segre images
correspond to each other. This identification is based on certain calculations with
line bundles over the Abel-Jacobi fibers performed in Lemmas 5.2.3 and 5.2.4
below.

Note that AJ−1(D) is isomorphic to the product of projective spaces
∏

i∈I Pai−1.
Hence for a sequence of integers ν = (ni)i∈I we have a line bundle O(ν) =
�i∈IOPai−1(ni) on AJ−1(D).

Proposition 5.2.2. For any β =
∑

i∈I biαi ≤ α we set b′i := bi −
∑

j→i bj, and

β′ :=
∑

i∈I b
′
iαi. Then we have an isomorphism
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q∗

(
p∗
(
Kβ
(∑
i∈I

∆β
ii −

∑
h∈Q1

∆β
o(h) i(h)

))(∑
i∈I

∆β,γ
ii

)) ∣∣∣
AJ−1(D)

' q∗

(
p∗K′β ⊗ OEβ×Eγ

( ∑
h∈Q1

∆β,γ
o(h) i(h)

)) ∣∣∣
AJ−1(D)

⊗ O(β′).

The proposition follows from the projection formula and Lemmas 5.2.3
and 5.2.4 below. We denote by Xβ,γ the preimage q−1(AJ−1(D)). Its projection
to Eβ (resp. to AJ−1(D)) will be denoted by p (resp. by q). We will also need
some partial desymmetrizations of Xβ,γ. Namely, we have Eβ = E|β|/Sβ, and

we will identify E|β| with
∏

i∈I
∏bi

r=1Ei,r, where Ei,r is a copy of E. We denote

by X |β|,γ
ρ−→ Xβ,γ the cartesian product Xβ,γ ×Eβ×Eγ (E|β| × Eγ). For any

i ∈ I, r ≤ bi, the composite morphism X |β|,γ → E|β|×Eγ → Ei,r×Eα−αi factors
through ρi,r : X |β|,γ → Xαi,α−αi ⊂ Ei,r × Eα−αi . Finally, recall the line bundle

Dβ := �i∈ID
(bi)
i on Eβ =

∏
i∈I E

(bi). Here D
(bi)
i is the descent of D�bii from Ebi

to E(bi).

Lemma 5.2.3. (a) We have an isomorphism of line bundles on Xβ,γ:

φβ,γ : p∗(Dβ)⊗ q∗O(β) ∼−→ p∗

(
OEβ

(∑
i∈I

∆β
ii

))
⊗ OXβ,γ

(∑
i∈I

∆β,γ
ii

)
.

(b) We can choose a collection of isomorphisms φβ,γ in (a) satisfying the following
factorization property:

ρ∗φβ,γ =

1≤r≤bi⊗
i∈I

ρ∗i,rφαi,α−αi

away from the preimage of all the diagonals in Eα.

Proof. (a) It suffices to construct the desired isomorphism when I consists of a
single element. So we will write E(b), E(c), E(a) in place of Eβ, Eγ, Eα. We denote

by E
pE←− E ×X pX−→ X := X(b),(c) the projections. We consider the projections

of the universal divisors E
$E←− Db

$
E(b)−→ E(b) and E

$E←− Dc

$
E(c)−→ E(c). We keep

the notations Db ⊂ E ×X ⊃ Dc for the pullbacks to X of the universal divisors
over E(b) and E(c). We fix a point e ∈ E. It defines divisors Yb ⊂ E(b), Yc ⊂
E(c), Ya ⊂ E(a) formed by all the configurations of points on E meeting e.

We have an isomorphism of line bundles on E ×X:

(5.2.1) OE×X(Db + Dc) ' p∗ED⊗ p∗Xq∗O(1).

More precisely, we have a canonical isomorphism

(5.2.2) τb : OE×X(Db + Dc)
∼−→ p∗ED⊗ p∗Xq∗OE(a)(Ya).
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Indeed, for any x ∈ X the restrictions of both sides to E × {x} are isomorphic.
Thus, there exists a line bundle LX on X such that OE×X(Db + Dc) = p∗ED ⊗
p∗XLX . To determine LX we consider the restrictions to e × X and use the
canonical isomorphisms

OE×X(Db)|e×X ∼= $∗E(b)OE(b)(Yb), OE×X(Dc)|e×X ∼= $∗E(c)OE(c)(Yc),

q∗OE(a)(Ya) ∼= OE(b)(Yb)� OE(c)(Yc).

Since $E(b) : Db → E(b) is finite flat, we have the norm morphism

NmDb/E(b) : Pic(Db)→ Pic(E(b)).

For any line bundle K on E we have an isomorphism

(5.2.3) K(b) ' NmDb/E(b)($∗EK).

Indeed, we can cover E with open affine charts Ui such that U
(b)
i cover E(b), and

K|Ui is trivial. Then we claim that both sides are given by the same transition
functions. In effect, this follows from the fact that for a regular function u on a
smooth affine curve C = Spec(A), one has

NmDC/C(b)($∗Cu) = u⊗n ∈ Symn(A),

where C
$C←− DC → C(b) is the universal divisor. The latter claim easily reduces

to the case when u is the coordinate on the affine line.
We denote by $ : Db → X the natural projection. We have an isomorphism

(5.2.4) OX(∆(b),(c)) ' det$∗ODb ⊗ det−1$∗
(
OE×X(−Dc)|Db

)
.

Indeed, one can identify ∆(b),(c) with the locus where the morphism of vector
bundles on X, $∗

(
OE×X(−Dc)|Db

)
→ $∗ODb fails to be an isomorphism. Passing

to determinants we get (5.2.4).
Recall that for any finite flat morphism f : Y → Z and a line bundle L on Y

we have an isomorphism

(5.2.5) detf∗L ' NmY/Z(L)⊗ detf∗OY .

We have to construct an isomorphism

(5.2.6) φb,c : p∗(D(b))⊗ q∗O(b) ∼−→ p∗ω−2
E(b)(∆

(b),(c)).

Recall that p∗Ω1
E(b) ' $∗ODb , and hence p∗ωD(b) ' det$∗ODb . The trivializa-

tion of ωE (see Remark 2.2.5) induces an isomorphism of OE×X(Db)|Db and the
relative canonical line bundle for $ : Db → X. Hence, using (5.2.1) along with
the relative Grothendieck-Serre duality for $, we get an isomorphism on E ×X:

$∗
(
O(−Dc)|Db

)
' $∗

(
(OE×X(Db)⊗ p∗ED−1 ⊗M−1)|Db

)
' $∗

(
(p∗ED⊗M)|Db

)∨
,

where M = p∗Xq∗O(1). Since M|Db ' $∗q∗O(1), we get an isomorphism

det−1$∗
(
OE×X(−Dc)|Db

)
' det

(
$∗(p

∗
ED|Db)⊗q∗O(1)

)
' det$∗(p

∗
ED|Db)⊗q∗O(b).
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Using (5.2.5), we can rewrite this as

det−1$∗
(
O(−Dc)|Db

)
' NmDb/X(p∗ED)⊗ det$∗ODb ⊗ q∗O(b).

Plugging this into (5.2.4) we get

O(∆(b),(c)) ' NmDb/X(p∗ED)⊗det2$∗ODb⊗q∗O(b) ' NmDb/X(p∗ED)⊗p∗ω2
E(b)⊗q∗O(b),

which gives rise to the desired isomorphism (5.2.6) by the virtue of (5.2.3).
This completes the proof of (a).

(b) The isomorphism (5.2.2) can be viewed as a way to choose a section sD,D′
of D vanishing on D + D′ for (D,D′) ∈ X. Away from the diagonals, writing
D = w1 + . . .+wb, we have a collection of restrictions (sD,D′ |wr)1≤r≤b defining an

isomorphism H0(D,OE(D)|D) ∼=
⊕b

r=1 D|wr . Hence, the tensor product of these

restrictions defines an isomorphism detH0(D,OE(D)|D) ∼=
⊗b

r=1 D|wr . More
precisely, away from all the diagonals, the isomorphism τb of (5.2.2) gives rise to
an isomorphism

σb : det$∗OE×X(Db)|Db ∼−→ det$∗(p
∗
ED|Db)⊗ q∗OE(a)(bYa).

Then over Xb,(c) (notation introduced right before Lemma 5.2.3) we have an
equality

(5.2.7) ρ∗σb =
b⊗

r=1

ρ∗rσ1.

Indeed, let us consider the pullback of τb under IdE ×ρ : E×Xb,(c) → E×X. Away

from the diagonals we have D̃b := (IdE ×ρ)−1(Db) =
⊔b
r=1 D̃b(r), where D̃b(r) :=

(IdE ×ρr)−1(D1). Note that the projection D̃b(r) → Xb,(c) is an isomorphism.
Hence,

(IdE ×ρ)∗OE×X(Db)|D̃b(r)
∼= (IdE ×ρr)∗OE×X(D1)|D̃b(r).

But for any r = 1, . . . , b we have

(IdE ×ρ)∗τb|D̃b(r) = (IdE ×ρr)∗τ1

(note that we can ignore Dc since we are working away from diagonals). In effect,
both sides have the same restrictions to e ∈ E.

Now ρ∗$∗OE×X(Db)|Db decomposes into a direct sum of the line bundles

(IdE ×ρ)∗OE×X(Db)|D̃b(r) on D̃b(r) ' Xb,(c), so taking the determinant of

ρ∗$∗τb|Db corresponds to taking the product of restrictions to D̃b(r) over
r = 1, . . . , b.
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It follows that the isomorphisms (5.2.6) can be chosen in a factorizable fashion
away from all the diagonals, that is satisfying

ρ∗φb,c =
b⊗

r=1

ρ∗rφ1,a−1.

Indeed, we replace O(1) on AJ−1(D) ∼= Pa−1 ⊂ E(a) by the isomorphic line bun-
dle OE(a)(Ya)|AJ−1(D) and use the canonical isomorphism (5.2.2). Going through
the construction of isomorphisms (5.2.6) restricted to the complement of all the
diagonals, we see that each step is factorizable, the first step being dealt with
in (5.2.7). The key point in the other steps is that the base change of the relative
divisor Db over X with respect to Xb,(c) → X becomes a disjoint union of b points.
So the determinant of the push-forward decomposes as tensor product, as well as
the norm of a line bundle, etc. Note finally that the isomorphism (5.2.4) reduces
to the identity away from the diagonals.

This completes the proof of (b). �

In the next lemma it will be convenient to use the notation pi : E
β×Eγ → E(bi)

and qi : E
β ×Eγ → E(ai) for the compositions of p,q with the projections to the

respective i-th factors.

Lemma 5.2.4. (a) We have an isomorphism of line bundles on Xβ,γ:

ψβ,γ :
⊗
i∈I

p∗i

( ⊗
h∈Q1:o(h)=i

(
D−1

i(h)

)(bi)
)
⊗
⊗
h∈Q1

q∗i(h)

(
OPai(h)−1(−bo(h))

)
∼−→ OXβ,γ

(
−
∑
h∈Q1

∆β
o(h) i(h) −

∑
h∈Q1

∆β,γ
o(h) i(h)

)
.

(b) We can choose a collection of isomorphisms ψβ,γ in (a) satisfying the following
factorization property:

ρ∗ψβ,γ =

1≤r≤bo(h)⊗
h∈Q1

ρ∗o(h),rψαo(h),α−αo(h)

away from the preimage of all the diagonals in Eα.

Proof. (a) It suffices to construct the desired isomorhism when I consists
of two vertices connected by an arrow as follows: i → j. We denote by
Dbi ,Dbj ,Dci ,Dcj ⊂ E × X the relative divisors pulled back from the universal

divisors over the corresponding symmetric powers of E (here X = Xβ,γ). We
denote by $ : Dbi → X the natural projection which is a finite flat morphism of
degree bi. Similarly to (5.2.4), we have isomorphisms

OX(−∆β
ij) ' det−1$∗ODbi

⊗det$∗
(
OE×X(−Dbj)|Dbi

)
' NmDbi/X

(
OE×X(−Dbj)|Dbi

)
,
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OX(−∆β,γ
ij ) ' det−1$∗ODbi

⊗det$∗
(
OE×X(−Dcj)|Dbi

)
' NmDbi/X

(
OE×X(−Dcj)|Dbi

)
.

Thus, we have an isomorphism

OX(−∆β
ij −∆β,γ

ij ) ' NmDbi/X

(
OE×X(−Dbj −Dcj)|Dbi

)
.

Using the isomorphism (recall the projections E
pE←− E ×X pX−→ X)

OE×X(Dbj + Dcj) ' p∗EDj ⊗ p∗Xq∗O(0, 1)

together with (5.2.3), we get an isomorphism

NmDbi/X

(
OE×X(−Dbj −Dcj)|Dbi

)
' NmDbi/X

(p∗ED
−1
j )⊗ q∗O(0,−bi)

' p∗
(
(D−1

j )(bi) � OE(ci)

)
⊗ q∗O(0,−bi),

and (a) follows.

The proof of (b) is similar to the one of Lemma 5.2.3(b). It is still enough to
consider the case when I consists of two vertices connected by an arrow i→ j. We
construct a factorizable collection of ψβ,γ in stages. At the first step we note that
there is an evident morphism % : Xβ,γ → Xbiαi,ciαi+(bj+cj)αj (addition of j-colored
divisors), and we choose ψβ,γ as %∗ψbiαi,ciαi+(bj+cj)αj . So it suffices to construct a
factorizable collection of ψβ,γ for the particular case when β is a multiple of αi.

Next, we have a cartesian diagram

Xαi,γ
′ ρi,r←−−− X |biαi|,γ −−−→ Ebi × Eγ

ρ

y y
Xbiαi,γ −−−→ E(bi) × Eγ,

where γ′ = γ + (bi − 1)αi. We have to choose our isomorphisms ψ so that

ρ∗ψbiαi,γ =
⊗bi

r=1 ρ
∗
i,rψαi,γ′ . To this end note that Xαi,γ

′ ' E(c′i) × PΓ(E,Dj),
and we can take ψαi,γ′ to be the pullback of the universal section in the space
Γ
(
E × PΓ(E,Dj),Dj � O(1)

)
under the projection E(c′i) → E sending D ∈ E(c′i)

to the unique x ∈ E such that D + x ∼ Di.
The lemma is proved. �

5.3. Segre embeddings involved in the definition of zastava spaces. Re-
call that both the zastava spaces we are interested in (Coulomb and Mirković)
are defined as closures of certain Serge embeddings in projective bundles over
the configuration spaces. In this subsection we write down the equations of the
images of these Segre embeddings.

We redenote
Eβ p←− Eβ × Eγ q−→ Eα

by

Eβ pβ←− Eβ × Eγ qβ−→ Eα
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since β will vary. The ruled surface P(Ki ⊕ OE) → E will be denoted Pi → E.
We have the Segre embedding

(5.3.1)
(∏
i∈I

P ai
i

)
/Sα ↪→ P

(
�i∈I ((Ki ⊕ OE)�ai)

)
/Sα.

For any vector bundle W over E we have an isomorphism P(W�a)/Sa ' P(W(a)),
where W(a) is the subsheaf of Sa-invariants in the pushforward of W�a from Ea

to E(a). Thus, the RHS of (5.3.1) is equal to P
(
�i∈I (Ki⊕OE)(ai)

)
. Furthermore,

we have a decomposition

�i∈I(Ki ⊕ OE)(ai) =
⊕
β+γ=α

qβ∗p
∗
βK

β

(recall that Kβ := �i∈IK
(bi)
i ). Thus we can rewrite the Segre map as

(5.3.2)
(∏
i∈I

P ai
i

)
/Sα ↪→ P

( ⊕
β+γ=α

qβ∗p
∗
βK

β
)
.

Let (wi,r)
1≤r≤ai
i∈I be a collection of distinct points of E. Then the fiber of the RHS

of (5.3.2) at the corresponding point of Eα is the projectivization of

1≤r≤ai⊗
i∈I

(Ki ⊕ OE)|wi,r =
⊕
ℵ

⊗
(i,r)∈ℵ

Ki|wi,r ,

where the summation runs over all the subsets ℵ of the set of pairs (i, r)1≤r≤ai
i∈I .

For si,r ∈ Ki|wi,r the Segre embedding is given by

(
(si,r, 1)1≤r≤ai

i∈I
)
7→

1≤r≤ai⊗
i∈I

(si,r, 1) =
( ⊗

(i,r)∈ℵ

si,r
)
ℵ.

The equations cutting out the image of Segre embedding can be formulated as a
certain factorization property of the sections’ collection (sℵ). More precisely, let
us consider a morphism

qℵ : Eℵ × Eγ → Eα,
(
(wi,r)(i,r)∈ℵ, D

)
7→

∑
(i,r)∈ℵ

wi,r +D,

where β :=
∑

(i,r)∈ℵ αi, and γ := α − β. Let also pℵ : Eℵ × Eγ → Eℵ denote the

projection. Also, for any (i, r) ∈ ℵ we consider a morphism

ρi,r : Eℵ × Eγ → Eαi × Eα−αi ,
(
(wi,r)(i,r)∈ℵ, D

)
7→ (wi,r,

∑
(j,s)∈ℵr{(i,r)}

wj,s +D).

Note that qαi ◦ ρi,r = qℵ. Then we have natural morphisms of vector bundles

κℵ : qβ∗p
∗
βK

β ↪→ qℵ∗p
∗
ℵ �(i,r)∈ℵ Ki = qℵ∗

( ⊗
(i,r)∈ℵ

ρ∗i,rp
∗
αi
Ki

)
,
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κℵ :
⊗

(i,r)∈ℵ

(qαi∗ p∗αiKi) ↪→
⊗

(i,r)∈ℵ

(qαi∗ ρi,r∗ρ
∗
i,rp

∗
αi
Ki)

=
⊗

(i,r)∈ℵ

(qℵ∗ρ
∗
i,rp

∗
αi
Ki)→ qℵ∗

( ⊗
(i,r)∈ℵ

ρ∗i,rp
∗
αi
Ki

)
.

We are finally able to state the Segre equations on the sections’ collection (sℵ).
We assume that the section s∅ corresponding to the empty subset ℵ = ∅ is
identically equal to 1 (this assumption is harmless since we are working in the
projectivization.) Then the equations read

(5.3.3) κℵ(sℵ) = κℵ(
⊗

(i,r)∈ℵ

si,r).

5.4. Proof of Theorem 5.2.1. According to Proposition 5.2.2, the summands in
Vα

K|AJ−1(D) are isomorphic to the corresponding summands in Uα
K′ |AJ−1(D) twisted

by O(β′) where β′ depends linearly on β numbering the summand. The isomor-
phism is given by the tensor product of isomorphisms φβ,γ (Lemma 5.2.3(a))
and ψβ,γ (Lemma 5.2.4(a)). Comparing with the definition of T ad-action in
the first paragraph of §5.2, we see that the quotients

(
PVα

K|AJ−1(D)

)
/T ad and(

PUα
K′|AJ−1(D)

)
/T ad coincide.

It remains to check that the closures of the images of Segre embeddings corre-
spond to each other under the above identification. Let X◦ stand for the open
subset of AJ−1(D) defined as the complement to all the diagonals in Eα. The
factorization properties of Lemma 5.2.3(b) and Lemma 5.2.4(b) compared with
the Segre equations (5.3.3) show that the isomorphism of the previous paragraph
restricted to X◦ respects the Segre embeddings.

The theorem is proved.

6. Feigin-Odesskii moduli space

6.1. A symplectic moduli stack. We fix a G-bundle FG on E and a T -bundle
LT of degree −α on E. We denote by M(FG,LT ) the moduli stack of B-

structures ϕ on FG equipped with an isomorphism IndTBϕ
∼−→ LT . It can be

upgraded to a derived stack equipped with a (0-shifted) symplectic structure.
Indeed, recall [PTVV] that both BunG and BunT (moduli stacks of G- and
T -bundles on E) carry the canonical 1-shifted symplectic structures. Further-
more, [Saf, Example 4.11] equips the correspondence BunB → BunG × BunT
with a canonical Lagrangian structure. Finally, the embeddings of stacky points
[FG] = pt/Aut(FG)→ BunG and [LT ] = pt/Aut(LT )→ BunT are equipped with
the natural Lagrangian structures similarly to [HP, Theorem 3.18]. We consider
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the homotopy fibre product

(6.1.1)

Mder(FG,LT ) −−−→ BunBy y
[FG]× [LT ] −−−→ BunG × BunT .

The truncation of Mder(FG,LT ) coincides with M(FG,LT ).
Now Mder(FG,LT ) is a derived Lagrangian intersection and hence acquires a

0-shifted symplectic structure by [PTVV], cf. a similar construction [Spa] for the
base curve of genus 0.

6.2. Tangent spaces. For a point ϕ in Mder(FG,LT ), we denote by
tϕ � bϕ ↪→ gϕ the vector bundles on E associated with the adjoint
representations of B (clearly, tϕ is trivial). The tangent complex at the
corresponding point FG of BunG is RΓ(E, gϕ[1]), and the tangent complex
at the corresponding point LT of BunT is RΓ(E, tϕ[1]), while the tangent
complexes at the corresponding stacky points [FG] and [LT ] are the truncations
τ<0RΓ(E, gϕ[1]) and τ<0RΓ(E, tϕ[1]) respectively. From (6.1.1) we deduce the
homotopy fibre square

(6.2.1)

TϕM
der(FG,LT ) −−−→ RΓ(E, bϕ[1])y y

τ<0RΓ(E, gϕ[1]⊕ tϕ[1]) −−−→ RΓ(E, gϕ[1]⊕ tϕ[1]).

Hence the tangent space TϕM
der(FG,LT ) is canonically isomorphic to the total

complex

(6.2.2) TϕM
der(FG,LT ) ∼=

[
RΓ(E, bϕ[1])→ τ≥0RΓ(E, gϕ[1]⊕ tϕ[1])

]
.

Furthermore, we have an exact sequence of B-modules 0→ b→ g⊕t→ b∨ → 0
and the corresponding exact sequence of associated vector bundles

(6.2.3) 0→ bϕ → gϕ ⊕ tϕ → b∨ϕ → 0.

Replacing the right column of (6.2.1) by its cone RΓ(E, b∨ϕ[1]), we can rewrite

(6.2.4) TϕM
der(FG,LT ) ∼=

[
τ≤0RΓ(E, gϕ ⊕ tϕ)→ RΓ(E, b∨ϕ)

]
.

On the other hand, the exact sequence (6.2.3) is clearly selfdual, and the Serre
duality on E gives rise to a perfect pairing between the RHS of (6.2.2) and (6.2.4).
This perfect pairing on TϕM

der(FG,LT ) is nothing but the symplectic structure
of §6.1.

Equivalently, at a smooth point ϕ in Mder(FG,LT ), the Poisson bivector is de-
fined using the differential d2 of the second page of the hypercohomology spectral
sequence for the complex nϕ → gϕ → gϕ/bϕ of vector bundles on E.
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Remark 6.2.1. The original definition of Feigin-Odesskii in [FO] is that of the
Poisson bivector on the (smooth points of) moduli stack of B-bundles (or more
generally P -bundles where P is a parabolic subgroup), which is constructed simi-
larly to our definition above. As we have discussed in §6.1, this Poisson bivector is
a classical shadow of the 0-shifted Poisson structure on BunB associated with the
natural Lagrangian structure on BunB → BunG×BunT . So the truncation of the
smooth part of Mder(FG,LT ) is a symplectic leaf of the original Feigin-Odesskii
Poisson structure.

6.3. Regular induced case. We consider a special case when a G-bundle FG is
induced from a degree zero T -bundle KT : FG = IndGTKT . Moreover, we assume
that KT is regular, that is, for any root α∨ ∈ R∨, the associated line bundle
Kα∨ is nontrivial. Then for any dominant weight λ∨ ∈ Λ∨+ the corresponding
vector bundle Vλ

∨

F (associated to the irreducible G-module V λ∨) canonically splits
into direct sum of its weight components. In particular, we have a projection
ξλ
∨

: Vλ
∨

F � Kλ∨ onto the lowest weight component line bundle (associated to
the character w0λ

∨ : T → C×). The collection of ξλ
∨
, λ∨ ∈ Λ∨+, is subject to

Plücker relations. If we act on our data by an automorphism of KT given by an
element t ∈ T , the projection ξλ

∨
will change to λ∨(t) · ξλ∨ , cf. Definition 2.2.1(5).

Since Aut(IndGTKT ) = T by regularity of KT (see e.g. [FMW, Proposition 3.10]
and [FrMo, Theorem 4.1(i)]), the collection of projections ξλ

∨
: Vλ

∨

F � Kλ∨ subject
to Plücker relations is well defined up to the action of T .

Another piece of data in the definition of the Feigin-Odesskii moduli space
M(FG,LT ) is the T -bundle LT . For a fundamental weight ω∨i we consider the
associated line bundle Lω∨i , and we set Di := L−ω

∨
i ⊗Kω∨i . We have Di ∈ Picai E,

where α =
∑
aiαi (recall that −α is the degree of LT ). We set D = (Di)i∈I .

We consider an open substack
◦
Mder(IndGTKT ,LT ) ⊂ Mder(IndGTKT ,LT )

given by the condition that the compositions Lλ∨ ↪→ Vλ
∨

F

ξλ
∨

� Kλ∨ never
vanish identically. Ignoring the derived structure we obtain an open substack
◦
M(IndGTKT ,LT ) ⊂M(IndGTKT ,LT ).

Proposition 6.3.1. For a regular T -bundle KT , we have a natural isomorphism

D

◦
Zα

K
∼=
◦
M(IndGTKT ,LT ).

Proof. Comparing with Definitions 2.2.1,2.2.4, we see that the collection
of projections ξλ

∨
: Vλ

∨

F � Kλ∨ along with the collection of embeddings

Lλ∨ ↪→ Vλ
∨

F defines a point of reduced zastava D

◦
Zα

K. Thus we obtain a morphism

Υ:
◦
M(IndGTKT ,LT ) → D

◦
Zα

K. We have to check that Υ is an isomorphism. To
this end note that a twisted U−-structure on a G-bundle F defines a filtration
on the associated vector bundle Vλ

∨

F for any dominant weight λ∨. The successive
quotients of this filtration are of the form Kµ∨ ⊗ V λ∨(w0µ

∨) for the weights µ∨
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of the irreducible G-module V λ∨ . The regularity condition on KT ensures that
this filtration splits canonically, i.e. Vλ

∨

F
∼=
⊕

µ∨ K
µ∨ ⊗ V λ∨(w0µ

∨). This collection
of splittings defines a reduction of F to T ⊂ G, that is a canonical isomorphism
F ∼= IndGTKT . This construction provides a morphism D

◦
Zα

K →
◦
M(IndGTKT ,LT )

inverse to Υ. �

Remark 6.3.2. The conclusion of Proposition 6.3.1 breaks down if KT is not
regular. For example, if KT is trivial, and hence FG is a trivial G-bundle for
G = SL(2), the LHS D

◦
Zα

Ktriv
contains a point corresponding to a line subbundle

L ⊂ V in a rank 2 vector bundle V on E that is a nontrivial extension of OE with
OE. But the RHS

◦
M(IndGTKT ,LT ) does not contain such a point.

6.4. Comparison of symplectic structures. The reduced zastava space D

◦
Zα

K

carries a symplectic structure by Theorem 5.2.1 and Proposition 5.1.1, while
the Feigin-Odesskii moduli space

◦
M(IndGTKT ,LT ) carries a symplectic struc-

ture by §6.1. The rest of this Section is devoted to an identification of these
two symplectic structures. Namely, let {, }K′ denote the Poisson bracket on

D

◦
Zα

K ' C
D

◦
Zα

K′ defined as the Hamiltonian reduction of the bracket of Proposi-

tion 5.1.1. Let {, }FO denote the Poisson bracket on
◦
Mder(IndGTKT ,LT ) defined

in §6.1. It restricts to the same named Poisson bracket on the smooth open locus
of

◦
Mder(IndGTKT ,LT ) where the derived structure is trivial.

Theorem 6.4.1. The isomorphism of Proposition 6.3.1 restricted to the smooth
open loci of D

◦
Zα

K and
◦
M(IndGTKT ,LT ) takes the Poisson structure {, }K′ to {, }FO.

Remark 6.4.2. The stack D

◦
Zα

K can be upgraded to a derived stack (D
◦
Zα

K)der by

its very definition (since the Abel-Jacobi morphism AJZ :
◦
Zα

K →
∏

i∈I Picai E is
not smooth in general for rkG > 1, its level set acquires a natural derived struc-
ture). Similarly, the stack of reduced Coulomb zastava C

D

◦
Zα

K can be upgraded to

a derived stack (CD
◦
Zα

K)der. The isomorphism of Proposition 6.3.1 can be upgraded

to an isomorphism of derived stacks (D
◦
Zα

K)der ∼=
◦
Mder(IndGTKT ,LT ). We also ex-

pect but cannot prove that the isomorphism of Theorem 5.2.1 can be upgraded
to an isomorphism of derived stacks (D

◦
Zα

K)der ∼= (CD
◦
Zα

K)der. Thus we expect a

symplectomorphism of derived symplectic stacks (CD
◦
Zα

K)der ∼=
◦
Mder(IndGTKT ,LT ).

6.5. Compatibility of reduced zastava with Levi factors. Given a sub-
set J ⊂ I, we denote by G ⊃ LJ ⊃ T the corresponding Levi factor. For
α =

∑
i∈I aiαi, we define αJ :=

∑
i∈J aiαi. The factorization of zastava for a

decomposition α = αJ + αIrJ is a birational isomorphism
◦
Zα

K

∼
99K

◦
ZαJ

K ×
◦
Z
αIrJ
K .

Composing with the projection onto
◦
ZαJ

K we get a rational dominant morphism
◦
Zα

K 99K
◦
ZαJ

K .
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Note that the derived subgroup L′J = [LJ , LJ ] is also simply connected, and we

can consider its zastava space
◦
ZαJ

KJ
(L′J), cf. Remark 2.2.3. Here KJ := (Ki)i∈J (re-

call that Ki = K−α
∨
i ). The natural morphism

◦
ZαJ

KJ
(L′J)→

◦
ZαJ

K is an isomorphism,
and we will use it to identify these moduli spaces.

The rational dominant morphism
◦
Zα

K 99K
◦
ZαJ

KJ
(L′J) induces a rational dominant

morphism of reduced zastava

ΠZ
J : D

◦
Zα

K 99K DJ

◦
ZαJ

KJ
(L′J).

Here DJ stands for (Di)i∈J .
Furthermore, the factorization property of Coulomb zastava similarly gives rise

to a rational dominant morphism C
◦
Zα

K 99K
C
◦
ZαJ

KJ
(L′J) that in turn gives rise to a

rational dominant morphism of reduced Coulomb zastava

ΠC
J : CD

◦
Zα

K 99K
C

DJ

◦
ZαJ

KJ
(L′J).

Both morphisms ΠZ
J , Π

C
J are Poisson by construction.

6.6. Compatibility of Feigin-Odesskii moduli spaces with Levi factors.
For a degree zero regular T -bundle KT and J ⊂ I we consider the Feigin-Odesskii
moduli stack

◦
Mder

J (IndLJT KT ,LT ) for the Levi factor LJ . We have a rational
dominant morphism

ΠM
J :

◦
Mder(IndGTKT ,LT ) 99K

◦
Mder

J (IndLJT KT ,LT )

constructed as follows.
Let PJ ⊃ B denote the corresponding parabolic subgroup, and let UJ denote

the unipotent radical of PJ . Then the coinvariants V λ∨
UJ

carry a natural action
of LJ and form an irreducible LJ -module with lowest weight w0λ

∨ (and with
highest weight wJw0λ

∨). The natural projection V λ∨ → V λ∨
UJ

gives rise to the

projection ξλ
∨
J : Vλ

∨

F → Vλ
∨

F,UJ
. Composing with the embedding Lλ∨ ↪→ Vλ

∨

F we

obtain a morphism Lλ∨ → Vλ
∨

F,UJ
. However, this morphism is not necessarily an

embedding of a line subbundle; in general it is only an embedding of an invertible
subsheaf. Hence in general it gives rise to a generalized B-structure in the LJ -
bundle IndLJT KT . Thus we obtain a morphism

ΠM
J :

◦
Mder(IndGTKT ,LT )→Mder

J (IndLJT KT ,LT )

to the Drinfeld closure of
◦
Mder

J (IndLJT KT ,LT ). The latter closure is defined as

the open substack in the homotopy fibre product of [IndLJT KT ]× [LT ] and BunBJ
over BunLJ × BunT (cf. (6.1.1)) given by the condition that the generalized BJ -

structure is generically transversal to the tautological UJ−-structure in IndLJT KT .
It remains to check that ΠM

J is dominant, i.e. gives rise to the desired ra-

tional morphism from
◦
Mder(IndGTKT ,LT ) to

◦
Mder

J (IndLJT KT ,LT ). This follows
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from Lemma 6.6.1(b) below, i.e. compatibility of ΠM
J with ΠZ

J , along with the
dominance property of ΠZ

J .
Comparing with construction of Poisson structure {, }FO in §6.1,6.2 we see

that ΠM
J is a Poisson morphism. Indeed, we have to check that for a smooth

point ϕ ∈
◦
M(IndGTKT ,LT ) such that ΠM

J is regular at ϕ, the Poisson bivector

PJ : T ∗
ΠM
J ϕ

◦
MJ(IndLJT KT ,LT ) → TΠM

J ϕ

◦
MJ(IndLJT KT ,LT ) equals the composition

dΠM
J ◦PI ◦ (dΠM

J )∗. To this end note that we have a natural projection of vector
bundles on E:

Ξ : gϕ � (lJ)ϕ,

and the condition that ΠM
J is regular at ϕ guarantees that Ξ(bϕ) = (bLJ )ΠM

J ϕ and

Ξ(nϕ) = (nLJ )ΠM
J ϕ. Moreover, under the identification (6.2.2), the differential

dΠM
J : Tϕ

◦
M(IndGTKT ,LT )→ TΠM

J ϕ

◦
MJ(IndLJT KT ,LT )

is induced by Ξ. Furthermore, under the identification (6.2.4), dΠM
J is also in-

duced by Ξ, provided we identify b∨ϕ with gϕ/nϕ. The Poisson property of ΠM
J

follows.

Lemma 6.6.1. The following diagrams commute:

(a)

D

◦
Zα

K −−−→
ΠZ
J

DJ

◦
ZαJ

KJ
(L′J)yo o
y

C
D

◦
Zα

K′
ΠC
J−−−→ C

DJ

◦
ZαJ

K′J
(L′J),

(b)

D

◦
Zα

K −−−→
ΠZ
J

DJ

◦
ZαJ

KJ
(L′J)yo o
y

◦
M(IndGTKT ,LT )

ΠM
J−−−→

◦
MJ(IndLJT KT ,LT ).

Proof. (a) follows from the fact that the isomorphism of Theorem 5.2.1 is com-
patible with factorization.

(b) follows from the definition of factorization isomorphism, cf. the proof
of [BDF, Proposition 3.2]. �

6.7. Proof of Theorem 6.4.1 for G = SL(2). The only vertex of the Dynkin
diagram is denoted by i. The corresponding simple root and fundamental weight
are denoted simply by α∨ and ω∨. A regular T -bundle is a line bundle K = Kω∨

such that Ki = K−2 = K−α
∨

is nontrivial. We fix a line bundle L of degree −a,
and we set D = L−1K. A point ϕ of D

◦
Za

K
∼=
◦
M(K⊕K−1,L) is represented by a

short exact sequence

0→ L
(s,t)−−→ K⊕K−1 (−t,s)−−−→ L−1 → 0.
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The associated adjoint vector bundle has a 2-step filtration 0 ⊂ nϕ ⊂ bϕ ⊂ gϕ
with associated graded quotients nϕ ' L2, bϕ/nϕ ' End(L) ' OE, gϕ/bϕ ' L−2.
It gives rise to the connecting homomorphisms

δ : H0(E,L−2)→ H1(E,End(L)), H0(E,End(L))→ H1(E,L2).

If ϕ is a smooth point of
◦
M(K⊕K−1,L), then the tangent space is

Tϕ
◦
M(K⊕K−1,L) = Ker

(
H0(E,L−2)→ H1(E,End(L))

)
/Cs ◦ t,

and dually the cotangent space is

T ∗ϕ
◦
M(K⊕K−1,L) =

(
(Cs ◦ t)⊥ ⊂ H1(E,L2)

)
/H0(E,End(L)).

Also, we have a splitting

(6.7.1) H0(E,L−1K)/Cs⊕H0(E,L−1K−1)/Ct ∼−→ Tϕ
◦
M(K⊕K−1,L),

($, %) 7→ s ◦ %− t ◦$.

Explicitly, given $ ∈ Hom(L,K) and % ∈ Hom(L,K−1), we construct an infini-
tesimal deformation (sε, tε) of (s, t) : L→ K⊕K−1 over C[ε]/(ε2) as

sε = s+$ε : L→ K, tε = t+ %ε : L→ K−1.

6.7.1. Coordinates. Let D be the zero divisor of s ∈ HomE(L,K); we assume
that D is multiplicity free and we choose a numbering w1, . . . , wa of its points.
The functions w1, . . . , wa−1 :

◦
M(K ⊕K−1,L) → E are defined étale locally (and

wa is determined by w1, . . . , wa−1 since the sum
∑a

r=1wr ∈ E is fixed).
We also fix a section u of L−1K−1 with zeros disjoint from D and define the

homogeneous functions yr := t
u
|wr :

◦
M(K ⊕ K−1,L) → C×. Since the reduced

zastava is a quotient by the Gm-action, only the ratios of y-coordinates are well
defined (étale locally). Alternatively, we can normalize t in such a way that∑a

r=1
t
u
|wr = 1, and consider the resulting functions y1, . . . , ya−1 together with

w1, . . . , wa−1 as étale local coordinates on
◦
M(K ⊕ K−1,L). The above normal-

ization of t is possible (the sum does not vanish identically) since L−1K−1 is not
isomorphic to L−1K, hence the restriction map H0(E,L−1K−1) → Ca, t 7→ t|D,
is an isomorphism.

The tangent space to E(a) at D can be identified with H0(D,OE(D)|D) =
H1(E,OE → OE(D)) (the complex OE → OE(D) lives in degrees 0, 1). The
tangent vector corresponding to the infinitesimal deformation Dε equal to the zero
divisor of the section sε (considered right after (6.7.1)) is given by the 1-cocycle
(0, $

s
). In other words, the corresponding element of H0(D,OE(D)|D) is the polar

part of −$
s

. Note that this is the same as the polar part of (s◦%−t◦$)
st

. Thus the

tangent map to the factorization morphism
◦
M(K⊕K−1,L)→ E(a), (s, t) 7→ D,

sends s ◦ % − t ◦ $ to (s◦%−t◦$)|D
s′t|D

, where s′ is the nowhere vanishing section of
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L−1K(−D) corresponding to s. It means that the image of the tangent vector
∂/∂wr under the composition

Tϕ
◦
M(K⊕K−1,L)→ H0(E,L−1K)/Cs→ H0(D,L−1K|D)

1/s′|D−−−→ H0(D,OE(D)|D)

is the principal part of the unique (up to an additive constant) rational function
on E that has a simple pole with residue 1 at wr and a simple pole with residue
−1 at wa and no other poles (we use the trivialization of ωE, see Remark 2.2.5).

Dually, dwr is the image of (1|wr − 1|wa) under the composition

H0(D,OE|D)
1/s′|D−−−→ H0(D,LK−1(D)|D)

1/t|D−−−→ H0(D,L2(D)|D)/H0(E,OE)

→ H1(E,L2)/H0(E,OE),

where the last arrow is the connecting homomorphism for the short exact sequence

0→ L2 → L2(D)→ L2(D)|D → 0.

The image of the tangent vector ∂/∂yr under the composition

(6.7.2) Tϕ
◦
M(K⊕K−1,L)→ H0(E,L−1K−1)/Ct→ H0(D,L−1K−1|D)/Ct|D

1/u|D−−−→ H0(D,OE|D)/C
t

u

∣∣∣
D

is 1|wr − 1|wa (mod t
u
|D). Indeed, at a point of

◦
M(K ⊕K−1,L) given by a pair

of maps (s, t) : L → K ⊕ K−1, the tangent vector ∂/∂yr is represented by the
linear term of the infinitesimal deformation (sε, tε) : L → K ⊕ K−1, where sε =
s, tε(wi) = t(wi) for i 6= r, a, while tε(wr) = t(wr) + εu(wr), and tε(wa) =
t(wa)− εu(wa). Restricting this linear term to D and dividing by u|D, we obtain
1|wr − 1|wa .

6.7.2. Computation of the Feigin-Odesskii bracket. According to the last para-
graph of §6.2, the Feigin-Odesskii Poisson bracket is defined using the differential
d2 of the second page of the hypercohomology spectral sequence for the complex

L2 (−t2,st,s2)−−−−−−→ K−2 ⊕ OE ⊕K2 (s2,2st,−t2)−−−−−−→ L−2.

Consider the commutative diagram

(6.7.3)

L2 (−t2,st,s2)−−−−−−→ K−2 ⊕ OE ⊕K2 (s2,2st,−t2)−−−−−−→ L−2y y ∥∥∥
L2(D)

(−t2,s′t,s′s)−−−−−−−→ K−2(D)⊕ OE ⊕K2 (s′s,2st,−t2)−−−−−−−→ L−2y y(−(t|D)−2,0,0)

L2(D)|D L2(D)|D.
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We set H := gϕ = K−2 ⊕OE ⊕K2, H′ := K−2(D)⊕OE ⊕K2. One can show by
the diagram chase that the following diagram commutes:

(6.7.4)

Ker
(
H1(E,L2)→ H1(E,H)

) d2−−−→ H0(E,L−2)/H0(E,H)x s′s

x
Ker

(
H0(D,L2(D)|D)→ H1(E,H)

)
−−−→ H0(E,H′)/H0(E,H).

Recall that the Hamiltonian vector field hr of dwr is the image of 1|wr − 1|wa
under the composition

Ker
(
H1(E,L2)→ H1(E,H)

) d2−−−→ H0(E,L−2)/H0(E,H)x
H0(D,OE|D)

1/s′t|D−−−−→ Ker
(
H0(D,L2(D)|D)→ H1(E,H)

)
.

Due to commutativity of (6.7.4), we can replace this composition with

H0(E,L−2)/H0(E,H)

s′s

x
H0(D,OE|D)

1/s′t|D−−−−→ Ker
(
H0(D,L2(D)|D)→ H1(E,H)

)
−−−→ H0(E,H′)/H0(E,H).

It follows that hr gives a section of L−2 divisible by s, say hr = s ◦ %. This means
that in the splitting (6.7.1), hr lies in the second summand. In particular,

{wr, wr′}FO = 0 for any r, r′.

Furthermore, one can see from (6.7.3) that % is the section of L−1K−1 taking
value t|wr at wr and −t|wa at wa. Composing this claim with (6.7.2) we get

{yr, xr′}FO = 0 for r 6= r′, and {yr, wr}FO = yr.

The remaining brackets
{yr, yr′}FO = 0.

Indeed, we have proved that d2 sends the first summand of the splitting (6.7.1) to
the second one in the dual splitting. But the splitting is symmetric with respect to
swapping the roles of s and t (and replacing the divisor D with the zero divisor of
t). This shows that d2 sends the second summand to the first one, so the brackets
of y-coordinates vanish.

6.7.3. Comparison with the reduced transversal Hilbert scheme. According
to Proposition 2.3.1(c), the reduced zastava is isomorphic to the reduced

transversal Hilbert scheme DHilbatr(
◦
SK′), where K′ := K′i = K−α

∨ ⊗ D. The

symplectic structure ωK′ on the surface
◦
SK′ defined in §5.1 gives rise to a

symplectic structure on the transversal Hilbert scheme and on its reduction.
The corresponding bracket is denoted {, }K′ . On the other hand, according
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to (3.6.1), the (reduced) transversal Hilbert scheme is nothing but the (reduced)
Coulomb open zastava, and this identification respects the Poisson brackets.

To compare {, }K′ with {, }FO we match the local coordinates. We choose a local

trivialization η of K′ = K′i = L−1K−1. We denote by p :
◦
SK′ → E the projection.

The corresponding local coordinate z on
◦
SK′ is z = ηcan/p

∗η, where ηcan is the

tautological section of p∗K′. On the étale open (
◦
SK′)

ar∆→ Hilba(
◦
SK′) we have

the induced local coordinates w1, . . . , wa, z1, . . . , za. We have {zr, wr}K′ = zr, and
all the other brackets vanish.

On the reduced transversal Hilbert scheme DHilbatr(
◦
SK′) we have the constraint

that w1 + . . .+wa is a fixed point of E. These coordinates clearly match the same
named coordinates on the reduced zastava of the previous subsections.

Now recall that the identification of reduced zastava with the reduced Hilbert
scheme in Proposition 2.3.1(c) is obtained in the following way. Given a point of

reduced zastava represented by ϕ = (s, t) we fix an isomorphism ς : OE(D) ∼−→D

and consider the image of D × {1} ⊂ D ×Gm under the isomorphism

(ς · t/s)|D : D ×Gm
∼−→K′|D

considered up to Gm-action (K′|D stands for the total space of the line bundle).
Here we view t/s as a section of K−2(D). In fact, we can take ς = s, so that our
point corresponds to the trivialization of K′|D given by t ∈ H0(E,L−1K−1) =
H0(E,K′).

But if we use a local section u ∈ H0(E,L−1K−1) as in §6.7.1 to define the
local trivialization η above, the value of the above coordinate zr at ϕ = (s, t)
equals t/u(wr). This coincides with the value of the coordinate yr of §6.7.1 at
ϕ. In other words, the identification of reduced zastava with reduced transversal
Hilbert scheme takes the (w, y)-coordinates to (w, z)-coordinates, and the bracket
{, }FO to {, }K′ .

This completes the proof of Theorem 6.4.1 for G = SL(2).

6.8. Proof of Theorem 6.4.1 for G = SL(3). The vertices of the Dynkin
diagram are denoted by i, j. A regular T -bundle KT is specified by the line
bundles Kω∨i and Kω∨j such that Kα∨i = K2ω∨iK−ω

∨
j , Kα∨j = K2ω∨jK−ω

∨
i , Kα∨i+α∨j =

Kω∨iKω∨j are all nontrivial. We fix line bundles Li = Lω∨i and Lj = Lω∨j of

degrees −ai,−aj, we set α = aiαi + ajαj and Di = L−1
i Kω∨i , Dj = L−1

j Kω∨j .

We set V = Vω
∨
i = Kω∨i ⊕ Kω∨j−ω∨i ⊕ K−ω

∨
j =: K1 ⊕ K2 ⊕ K3. A point ϕ of

D

◦
Zα

K
∼=
◦
M(IndGTKT ,LT ) is represented by a complex

(6.8.1) Li
(s1,s2,s3)−−−−−→ V

(t1,t2,t3)−−−−−→ L−1
j .

Here sc ∈ H0(E,L−1
i Kc) and td ∈ H0(E,K−1

d L−1
j ) have no common zeros and

satisfy the equation s1t1 + s2t2 + s3t3 = 0 ∈ H0(E,L−1
i L−1

j ). The associated
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adjoint vector bundle

(6.8.2) gϕ = O⊕2
E ⊕

⊕
1≤c 6=d≤3

KcK
−1
d

(traceless endomorphisms of V) has a 2-step filtration 0 ⊂ nϕ ⊂ bϕ ⊂ gϕ, and the
Poisson bivector {, }FO comes from the differential d2 of the second page of the
hypercohomology spectral sequence for the complex

(6.8.3) nϕ → gϕ → gϕ/bϕ.

6.8.1. Coordinates. We use the morphisms ΠM
{i} and ΠM

{j} of §6.6. The targets
are the Feigin-Odesskii moduli spaces of type A1 studied in §6.7. In particular,
the coordinates on them are defined in §6.7.1, and we define the coordinates on

D

◦
Zα

K
∼=

◦
M(IndGTKT ,LT ) as the pullbacks of the coordinates of §6.7.1. Thus we

get the étale local coordinates wi,1, . . . , wi,ai (subject to the condition that their
sum in E is fixed), wj,1, . . . , wj,aj (also subject to the condition that their sum
in E is fixed), yi,1, . . . , yi,ai (homogeneous, i.e. only the ratios are well defined),
yj,1, . . . , yj,aj (also homogeneous).

More explicitly, wi,1, . . . , wi,ai are the zeros of s1, while wj,1, . . . , wj,aj are
the zeros of t3. We impose the genericity assumption that all the points
wi,1, . . . , wi,ai , wj,1, . . . , wj,aj are distinct. Furthermore, we choose sections

ui ∈ H0(E,L−1
i K2) and uj ∈ H0(E,K−1

2 L−1
j ). We consider the open substack of

◦
M(IndGTKT ,LT ) specified by the condition that all the w’s are distinct and also
distinct from the zeros of ui and uj. Finally, yi,r = s2

ui
|wi,r , yj,r = t2

uj
|wj,r .

The only nonvanishing Feigin-Odesskii brackets of i-coordinates (resp.
j-coordinates) are {yi,r, xi,r}FO = yi,r (resp. {yj,r, xj,r}FO = yj,r) since ΠM

{i}
(resp. ΠM

{j}) is Poisson. It remains to compute the brackets of i-coordinates with
j-coordinates. This computation will occupy the rest of this Section.

6.8.2. Brackets with w-coordinates. We extend the complex (6.8.3) to a diagram

Hom((K−1
2 ⊕K−1

3 )/Lj,Lj)→ Hom(V∨/Lj,Lj)→ nϕ → gϕ

→ gϕ/bϕ → Hom(Li,V/Li)→ Hom(Li, (K1 ⊕K2)/Li).

Note that we have isomorphisms of line bundles (K−1
2 ⊕K−1

3 )/Lj ' L−1
j K−1

2 K−1
3

and (K1 ⊕ K2)/Li ' L−1
i K1K2. Hence composing the first three and the last

three arrows in the above diagram we obtain a complex

L2
jK2K3

A−→ gϕ
B−→ L−2

i K1K2.

With respect to the decomposition (6.8.2)

gϕ ⊂
K−1

1 K1 ⊕ K−1
2 K1 ⊕ K−1

3 K1

⊕ K−1
1 K2 ⊕ K−1

2 K2 ⊕ K−1
3 K2

⊕ K−1
1 K3 ⊕ K−1

2 K3 ⊕ K−1
3 K3,
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the matrix elements of A (resp. B) are 0 0 0
−t1t3 −t2t3 −t3t3
t1t2 t2t2 t3t2

 resp.

−s1s2 −s2s2 −s3s2

s1s1 s1s2 s1s3

0 0 0


(notation of (6.8.1)).

Hence the first and the third rows do not contribute to the differential d2 of
the second page of the hypercohomology spectral sequence, and this differential
equals the one for a simpler complex

(6.8.4) L2
jK2K3

(−t1t3,−t2t3,−t3t3)−−−−−−−−−−−→ K−1
1 K2⊕OE⊕K−1

3 K2
(s1s1,s1s2,s1s3)−−−−−−−−−→ L−2

i K1K2.

In particular, the image of d2 is always divisible by s1.
This implies {wi,r, wj,r′}FO = {wi,r, yj,r′}FO = {yi,r, wj,r′}FO = 0 for any r, r′.

6.8.3. Type A1 revisited. In order to compute {yi,r, yj,r′}FO, we need some
preparation on the tangent bundle of the Levi Feigin-Odesskii moduli space
◦
M{j}(Ind

L{j}
T KT ,LT ).

Recall from §6.7 that

TΠM
{j}ϕ

◦
M{j}(Ind

L{j}
T KT ,LT ) = Ker

(
H0(E,L−2

j K−1
2 K−1

3 )→ H1(E,End(L−1
j ))

)
/Ct2t3,

T ∗ΠM
{j}ϕ

◦
M{j}(Ind

L{j}
T KT ,LT ) =

(
(Ct2t3)⊥ ⊂ H1(E,L2

jK2K3)
)
/H0(E,End(L−1

j )).

Splitting (6.7.1) can be rewritten as follows:
(6.8.5)

H0(E,L−1
j K−1

2 )/Ct2 ⊕H0(E,L−1
j K−1

3 )/Ct3 ∼−→ TΠM
{j}ϕ

◦
M{j}(Ind

L{j}
T KT ,LT ),

($, %) 7−→ t3%− t2$.

Applying Serre duality to the splitting (6.8.5) of TΠM
{j}ϕ

◦
M{j}(Ind

L{j}
T KT ,LT ),

we obtain the following splitting of T ∗
ΠM
{j}ϕ

◦
M{j}(Ind

L{j}
T KT ,LT ):

(6.8.6)

T ∗
ΠM
{j}ϕ

◦
M{j}(Ind

L{j}
T KT ,LT ) ∼−→

(
(Ct2)⊥ ⊂ H1(E,LjK2))

)
⊕
(

(Ct3)⊥ ⊂ H1(E,LjK3))
)
,

υ 7−→ (υt3,−υt2).

It will be useful to rewrite the first summand of the splitting (6.8.6) as

Ker
(
H0
(
Dt3 ,LjK2(Dt3)|Dt3

) Res(t2|Dt3 ·?)

−−−−−−−→ H1(E,OE)
)
.

This is done by dualizing the first summand of (6.8.5), using the pairing be-
tween H0(E,L−1

j K−1
2 ) and H0(Dt3 ,LjK2(Dt3)|Dt3 ) given by the sum of residues

of the product (as always, we use the trivialization of ωE in Remark 2.2.5). The
identification
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Ker
(
H0
(
Dt3 ,LjK2(Dt3)|Dt3

) Res(t2|Dt3 ·?)

−−−−−−−→ H1(E,OE)
)
∼−→
(

(Ct2)⊥ ⊂ H1(E,LjK2)
)

is induced by the connecting homomorphism for the short exact sequence

(6.8.7) 0→ LjK2
t3−→ LjK2(Dt3)→ LjK2(Dt3)|Dt3 → 0.

6.8.4. Brackets of y-coordinates: Čech cocycles. In order to compute
{yi,r, yj,r′}FO, we need to compute the composition

Ker
(
H0
(
Dt3 ,OE(Dt3)|Dt3

) Res(
t2
uj
|Dt3 ·?)

−−−−−−−−→ H1(E,OE)
)

1
uj
|Dt3−−−−→ Ker

(
H0
(
Dt3 ,LjK2(Dt3)|Dt3

) Res(t2|Dt3 ·?)

−−−−−−−→ H1(E,OE)
)

→ Ker
(
H1(E,L2

jK2K3)→ H1(E,OE)
) d2−→ H0(E,L−2

i K1K2)/Cs1s2

→ H0(E,L−1
i K2)/Cs2

1
ui
|Ds1−−−−→ H0(Ds1 ,ODs1

)
/
C
s2

uj

∣∣∣
Ds1

,

where ui, uj were defined in §6.8.1, and d2 comes from (6.8.4).
We rewrite the above composition as follows:

(6.8.8) Ker
(
H0
(
Dt3 ,OE(Dt3)|Dt3

) Res(
t2
uj
|Dt3 ·?)

−−−−−−−−→ H1(E,OE)
)

1
uj
|Dt3−−−−→ Ker

(
H0
(
Dt3 ,LjK2(Dt3)|Dt3

) Res(t2|Dt3 ·?)

−−−−−−−→ H1(E,OE)
)

→ Ker
(
H1(E,LjK2)→ H1(E,OE)

) d2−→ H0(E,L−2
i K1K2)/Cs1s2

→ H0(E,L−1
i K2)/Cs2

1
ui
|Ds1−−−−→ H0(Ds1 ,ODs1

)
/
C
s2

uj

∣∣∣
Ds1

,

where the second arrow is the connecting homomorphism coming from (6.8.7),
and d2 is the differential in the hypercohomology spectral sequence of the complex

(6.8.9) LjK2
(−t1,−t2,−t3)−−−−−−−−→ K−1

1 K2 ⊕ OE ⊕K−1
3 K2

(s1s1,s1s2,s1s3)−−−−−−−−−→ L−2
i K1K2.

To perform computations with the first cohomology we introduce a Čech cover
of E by two opens Ut2 := E rDt2 and Ut3 := E rDt3 . We represent dyj,r, 1 ≤
r < aj, as the element of H0(Dt3 ,OE(Dt3)|Dt3 ) given by the principal part of

1

x− wj,r

∣∣∣
wj,r
−
(
t2
uj

∣∣∣
wj,r

)(
t2
uj

∣∣∣
wj,aj

)−1
1

x− wj,aj

∣∣∣
wj,aj

.

Then the corresponding 1-cocycle in H1(E,LjK2) is given by a section f ∈
H0(Ut2∩Ut3 ,LjK2) having simple poles at points of Dt3 (and perhaps some other
poles at Dt2 that we do not care about) such that the principal part of f at wj,r is
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1
uj
|wj,r 1

x−wj,r and the principal part of f at wj,aj is −
(
t2
uj

∣∣∣
wj,r

)(
t2

∣∣∣
wj,aj

)−1
1

x−wj,aj
,

while the principal parts of f at wj,r′ for r 6= r′ 6= aj vanish. Furthermore, we
apply the left morphism in (6.8.9) to the above 1-cocycle to obtain a 1-cocycle
(g1, g2, g3) ∈ H1(E,K−1

1 K2 ⊕ OE ⊕K−1
3 K2), where g1 = −t1f, g2 = −t2f, g3 =

−t3f . Then g3 has no poles at Dt3 , and g2 has the principal part −t2
uj
|wj,r 1

x−wj,r at

wj,r, and the principal part

(
t2
uj

∣∣∣
wj,r

)
1

x−wj,aj
at wj,aj , while the principal parts of

g2 at wj,r′ for r 6= r′ 6= aj vanish.

6.8.5. Brackets of y-coordinates: Weierstraß ζ-function. Below we write formulas
in terms of the Weierstraß zeta function ζ(x) (see e.g. [P, Appendix A]) which is
defined on the uniformization of E. However, the linear combinations we consider
descend to rational functions on E. In particular, the function

Θwj,r,wj,aj
(x) := ζ(x− wj,r)− ζ(x− wj,aj)

on E is a rational function with a simple pole at wj,r with residue 1 and a simple
pole at wj,aj with residue −1, regular away from wj,r, wj,aj .

Using this function we can express the 1-cocycle (g1, g2, g3) as a coboundary
(g′1, g

′
2, g
′
3) − (g′′1 , g

′′
2 , g
′′
3) where (g′1, g

′
2, g
′
3) ∈ H0(Ut3 ,K

−1
1 K2 ⊕ OE ⊕ K−1

3 K2) and
(g′′1 , g

′′
2 , g
′′
3) ∈ H0(Ut2 ,K

−1
1 K2 ⊕ OE ⊕K−1

3 K2). In particular, we have

g′3 = 0, g′2 =

(
t2
uj

∣∣∣
wj,r

)
Θwj,r,wj,aj

.

Furthermore, by definition of d2 in (6.8.8), we have

d2(f) = s2
1g
′
1 + s1s2g

′
2 + 0 (mod s1s2)

(note that d2(f) is actually a regular section of L−2
i K1K2 since s1t1 + s2t2 =

−s3t3). Hence we have

d2(f) = s2
1g
′
1 − s1s2

(
t2
uj

∣∣∣
wj,r

)
Θwj,r,wj,aj

(mod s1s2).

The composition with the last two arrows in (6.8.8) annihilates the summand
s2

1g
′
1, and we are left with

−
(
t2
uj

∣∣∣
wj,r

) ai∑
r′=1

(
s2

ui

∣∣∣
wi,r′

)
Θwj,r,wj,aj

(wi,r′).

Pairing this expression with dyi,r′ we finally arrive at

(6.8.10) {yj,r, yi,r′}FO = −yj,ryi,r′
(
Θwj,r,wj,aj

(wi,r′)−Θwj,r,wj,aj
(wi,ai)

)
.

To be more precise, recall that our coordinates include wi,1, . . . , wi,ai−1, but not
wi,ai . However, wi,ai can be determined from wi,1, . . . , wi,ai−1 and the constraint
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that
∑ai

r′=1wi,r′ is fixed in E. The same applies to wj,aj . Now, instead of nor-
malizing the y-coordinates by fixing their sum, let us view them as homogeneous
coordinates, so that only their ratios matter. From (6.8.10) one can deduce
(6.8.11){yi,r′
yi,p′

,
yj,r
yj,p

}
FO

=
yi,r′

yi,p′
·yj,r
yj,p

(
ζ(wi,r′−wj,r)−ζ(wi,r′−wj,p)−ζ(wi,p′−wj,r)+ζ(wi,p′−wj,p)

)
.

6.8.6. Comparison with the reduced Coulomb zastava. To compare the bracket
{, }K′ on the reduced Coulomb zastava C

D

◦
Zα

K′ with the Feigin-Odesskii bracket we
write down the isomorphism of Theorem 5.2.1 explicitly in coordinates. To this
end we envoke the uniformization P : C → E = C/(Z ⊕ Zτ). We denote by w
the coordinate on C such that the trivialization of ωE given by dw coincides with
the one of Remark 2.2.5. We denote by θ(w) the theta-function of degree 1 for
the lattice Z⊕ Zτ such that θ(0) = 0. We use the standard trivialization of the
pullback P∗Dj such that

∏aj
r=1 θ(w − wr) descends to a section of Dj whenever

OE

(∑aj
r=1 P(wi)

)
' Dj.

The common part of the étale coordinate systems on C
◦
Zα

K′ and
◦
Zα

K is formed

by (wi,r′ , wj,r)
r=1,...,aj
r′=1,...,ai

(we now think of them as of points in C rather than their

images in E). The additional coordinates on
◦
Zα

K are (yi,r′ , yj,r)
r=1,...,aj
r′=1,...,ai

, where

yi,r′ ∈ Ki|wi,r′ , yj,r ∈ Kj|wj,r , and Ki = K−α
∨
i , Kj = K−α

∨
j . The additional

coordinates on C
◦
Zα

K are (zi,r′ , zj,r)
r=1,...,aj
r′=1,...,ai

, where zi,r′ ∈ K′i|wi,r′ , zj,r ∈ K′j|wj,r , and

K′i = K−α
∨
iDiD

−1
j , Kj = K−α

∨
jDj.

On the reduced zastava the w-variables are constrained to have a fixed sum,
while the y-variables (resp. z-variables) are homogeneous, i.e. only their ratios
are well defined. The isomorphism of Theorem 5.2.1 has form
(6.8.12)
yi,r′ = zi,r′φi,r′(wi,1, . . . , wi,ai)ψ(wi,r′ ;wj,1, . . . , wj,aj), yj,r = zj,rφj,r(wj,1, . . . , wj,aj),

where ψ(wi,r′ ;wj,1, . . . , wj,aj) descends to a section of Dj (unique up to
rescaling) that vanishes at all the points wj,1, . . . , wj,aj . Note that rescaling
ψ(wi,r′ ;wj,1, . . . , wj,aj) does not change the ratios yi,q/yi,p, so the above
transformation is well defined. The exact definition of φi,r′ , φj,r is not important
for our purposes (we observe only that φi,r′ is a nonzero element of D−1

i |wi,r′ ).
Thus we can take

ψ(wi,r′ ;wj,1, . . . , wj,aj) =

aj∏
r=1

θ(wi,r′ − wj,r).

Now recall the coordinates yi,r′ of §6.7.1. They depend on a choice of a trivial-
ization u of KiDi and are defined as yi,r′ = t

u
|wi,r′ (recall that t is also a section

of KiDi). On the other hand, yi,r′ = Reswi,r′
t
s
, where s is a section of Di with
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zeros wi,1, . . . , wi,ai , see (3.4.4). Hence

(6.8.13) yi,r′ = yi,r′ · Reswi,r′
u

s

(where we use the trivialization of ωE, see Remark 2.2.5). Using the uniformiza-
tion P : C → E and trivializing P∗Di we can view u as a trivialization of Ki.
Then we can write s(w) =

∏ai
r′=1 θ(w − wi,r′), so that (6.8.13) becomes

yi,r′ = yi,r′ ·
u(wi,r′)

θ′(0)
∏

p6=r′ θ(wi,r′ − wi,p)
.

Thus viewing u as a trivialization of Ki and combining this with our trivial-
ization of P∗Di we can view zi,r′ as actual coordinates taking values in C, and
from (6.8.12) we get

yi,r′ = zi,r′φ
′
i,r′(wi,1, . . . , wi,ai)

aj∏
r=1

θ(wi,r′ − wj,r), yj,r = zj,rφ
′
j,r(wj,1, . . . , wj,aj),

where once again, the exact form of φ′i,r′ , φ
′
j,r is not important for our purposes.

We get

{yi,r′ , yj,r}K′ = yi,r′yj,r ·
∂wj,rψ(wi,r′ ;wj,1, . . . , wj,aj)

ψ(wi,r′ ;wj,1, . . . , wj,aj)
= yi,r′yj,r · ζ(wi,r′ − wj,r).

This in turn implies{yi,r′
yi,p′

,
yj,r
yj,p

}
K′

=
yi,r′

yi,p′
·yj,r
yj,p

(
ζ(wi,r′−wj,r)−ζ(wi,r′−wj,p)−ζ(wi,p′−wj,r)+ζ(wi,p′−wj,p)

)
.

Comparing with (6.8.11) we see that the brackets {, }K′ and {, }FO match on
y-coordinates. It is easy to check that they also match on the brackets involving
w-coordinates.

This completes the proof of Theorem 6.4.1 for G = SL(3).

6.9. Proof of Theorem 6.4.1 for arbitrary simply laced G. The étale local
coordinates on D

◦
Zα

K are (wi,r, yi,r)
1≤r≤ai
i∈I (as always, w-coordinates are constrained,

and y-coordinates are homogeneous). We have to compare {f, g}FO and {f, g}K′ ,
where f is a coordinate function from the i-th group, and g is a coordinate
function from the j-th group (it may happen that i = j). We consider the Levi
subgroup of rank 1 or 2 corresponding to the Dynkin subdiagram on vertices i, j.
The rational projection Π to the corresponding Levi zastava spaces being Poisson,
it suffices to compare the brackets in question for the Levi zastava spaces. This
comparison was already made in §6.7 for rank 1 and in §6.8 for rank 2.

This completes the proof of Theorem 6.4.1 for arbitrary simply laced G. �
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plectic structure on the space of G-monopoles, Commun. Math. Phys. 201
(1999), 411–421. Erratum, Commun. Math. Phys. 334 (2015), 1153–1155;
arXiv:math/9803124, v6.

[FKR] M. Finkelberg, A. Kuznetsov, L. Rybnikov, Towards a cluster structure on trigono-
metric zastava, Selecta Math. (N.S.) 24 (2018), no. 1, 187–225.

[FrMo] R. Friedman, J. W. Morgan, Holomorphic principal bundles over elliptic curves,
arXiv:math/9811130.

[FMW] R. Friedman, J. W. Morgan, E. Witten, Principal G-bundles over elliptic curves,
Math. Res. Lett. 5 (1998), no. 1-2, 97–118.

[FeMa] E. Feigin, E. Makedonskyi, Semi-infinite Plücker relations and Weyl modules, Int.
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