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ABSTRACT. We study the elliptic zastava spaces, their versions (twisted,
Coulomb, Mirkovié local spaces, reduced) and relations with monowalls
moduli spaces and Feigin-Odesskii moduli spaces of G-bundles with parabolic
structure on an elliptic curve.
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1. INTRODUCTION

1.1. Zastava spaces: general overview. Let G be an almost simple simply
connected algebraic group over C. Let us also fix a pair of opposite Borel sub-
groups B, B_ whose intersection is a maximal torus 7. To a smooth projective
complex curve C, one can associate the zastava moduli space Z(C') (the definition
goes back to V. Drinfeld, see e.g. [BEGM]). It is the moduli space of G-bundles
on C' equipped with a generalized B-structure and a generically transversal U_-
structure (here U_ stands for the unipotent radical of B_). It is actually a
scheme with infinitely many connected components numbered by the degrees of
B-bundles. It has numerous applications in geometric representation theory and
especially in the geometric Langlands program (see e.g. [Gai, BF]).

The zastava space Z(C') is equipped with a morphism 7 to the colored con-
figuration space Confg(C) of C' (it keeps track of the points of C' where the B-
and U_-structures fail to be transversal), and one of the key features of Z(C) is
its factorization structure over the configurations (locality over C'). It allows to
define Z(C') for arbitrary smooth complex curve; not necessarily projective: Z(C)
is defined as the preimage 7~ Confs(C) C Z(C) for a smooth compactification
CoC.

A special role is played by three smooth curves carrying the structure of 1-
dimensional complex algebraic groups: the additive group G, the multiplicative
group G,,, and an elliptic curve E. The open zastava Z(C) C Z(C) (given by the
open condition that a B-structure is genuine as opposed to generalized) for these
three curves play a prominent role in physics as various versions of the monopole
moduli spaces.
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More precisely, the additive (or rational) open zastava are isomorphic to the
euclidean monopoles’ moduli spaces [J1, J2], while the multiplicative (or trigono-
metric) open zastava are expected to be related to the periodic monopoles’ moduli
spaces [CK], and elliptic open zastava are expected to be related to the doubly
periodic monopoles’ (or monowalls’) moduli spaces [CW]. Yet more precisely, the
open zastava spaces are equipped with a natural T-action and a map to C™%¢
playing the role of the moment map. These allow to define a sort of (quasi)-
Hamiltonian reduction Z(C'). The reduced zastava in additive case is isomorphic
to the moduli space of centered euclidean monopoles; in multiplicative (resp. el-
liptic) case, the reduced zastava is expected to be isomorphic to the moduli space
of periodic monopoles (resp. monowalls). The monopole moduli spaces come
equipped with a natural hyperkahler structure, and the zastava spaces carry the
corresponding holomorphic symplectic structure that can be defined in modular
terms and explicitly computed in appropriate coordinates.

Furthermore, the euclidean monopole moduli spaces are known to be isomor-
phic to the Coulomb branches of 3-dimensional N = 4-supersymmetric quiver
gauge theories (for the Dynkin quiver of G; with symmetrizers if G is not simply
laced). See [BEN2] for a mathematically rigorous identification of the Coulomb
branch Wi%h Z (G,). Similarly, the K-theoretic Coulomb branch can be identi-
fied with Z(G,,), see [FT]. One of the main topics of the present paper is an
identification of Z (E) with an appropriate version of elliptic Coulomb branch
(whose rigorous mathematical definition is not formulated yet). From this point
of view, the above holomorphic symplectic structures on open zastava arise from
the natural quantizations of the Coulomb branches. These quantizations are, re-
spectively the truncated shifted Yangians [BFN2], the truncated shifted quantum
affine algebras [F'T], and supposedly related to the elliptic quantum groups.

Actually, the reduced elliptic open zastava Z (E) appeared in mathematics long
ago in another disguise in the works of B. Feigin and A. Odesskii. Namely, let
us modify the definition of Z(E), replacing a U_-structure by a U*-structure,
where U¥ is a unipotent group scheme over E obtained from U_ via twisting by

a regular T-torsor Kr. Then the resulting reduced zastava Z %(E) is isomorphic
to the Feigin-Odesskii moduli space of complete flags in the G-bundle Ind$ Kp
with a fixed isomorphism class of the associated graded bundle. B. Feigin and
A. Odesskii constructed a natural symplectic structure on their moduli spaces
(along with its quantization), and it turns out that this symplectic structure
coincides with the one of the previous paragraph.

In the remaining sections of Introduction we provide a more detailed overview
of the above topics along with some other aspects of our work, like Mirkovic local
spaces needed for identification of various types of elliptic zastava.
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1.2. Rational zastava and euclidean monopoles. We denote by B the flag
variety of G. Let A denote the cocharacter lattice of T'; since G is assumed to be
simply connected, this is also the coroot lattice of G. We denote by Ao C A the
sub-semigroup spanned by positive coroots.

It is well-known that H3(B,Z) = A and that an element a@ € Hy(B,Z) is
representable by an effective algebraic curve if and only if o € Aps. The (open)
zastava Z® is the moduli space of maps C' = P! — B of degree a sending oo € P
to B_ € B. It is known [FKMM] that this is a smooth symplectic affine algebraic
variety, which can be identified with the hyperkahler moduli space of framed G-
monopoles on R? with maximal symmetry breaking at infinity of charge o [J1, J2].
Let us mention one more equivalent definition of Z¢: it is the moduli space of
G-bundles on P! equipped with a B-structure of degree o and a U_-structure
transversal to the B-structure at co € P! .

The zastava space is equipped with a factorization mogphism e 29 — A®
with a simple geometric meaning: for a based map ¢ € Z the colored divisor
() is just the pullback of the colored Schubert divisor D C B equal to the
complement of the open B-orbit in B. The morphism 7*: 7% — A% is the Atiyah-
Hitchin integrable system (with respect to the above symplectic structure): all
the fibers of 7 are Lagrangian.

A system of étale birational coordinates on Z® was introduced in [FKMM]. Let
us regall theO definition for G = SL(2). In this case « is a times the simple coroot,
and Z® := Z consists of all maps P! — P! of degree a which send oo to 0. We
can represent such a map by a rational function g where () is a monic polynomial
of degree a and R is a polynomial of degree < a. Let wy,...,w, be the zeros of
Q. Set y,. = R(w,). Then the fuonctions Y1y Ya, W1, ..., W,) form a system of
étale birational coordinates on Z¢, and the above mentioned symplectic form in
these coordinates reads .. = Z;f 1 W

For general G the deﬁmtlon of the above coordinates is quite similar. In this
case given a point in 7 we can define polynomials R;, Q); where ¢ runs through
the set I of vertices of the Dynkin diagram of G, a = ) a;«;, and

(1) @; is a monic polynomial of degree a;,

(2) R; is a polynomial of degree < a;.

Hence, we can define (étale, birational) coordinates (y;,,w;,) where i € I
and r = 1,...,a;. Namely, w;, are the roots of Q;, and y;, = R;(w;,). The
Poisson brackets of these coordinates with respect to the above symplectic form
are as follows: {wi,h wj,s}rat = 0, {wi,ra yj,s}rat = dzydij(srsyj,sa {yi,ra yj,s}rat =
(af, a;)% for i # j, and finally {y;,, Yis}rae = 0. Here o is a simple root,
(,) is the invariant scalar product on (LieT)* such that the square length of a
short root is 2, and dy = (o, a¥)/2.
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Finally, let us mention that the zastava space 7% is isomorphic to the Coulomb
branch of a 3d N = 4 supersymmetric quiver gauge theory (for a Dynkin quiver
of G, with no framing; with symmetrizers for a non simply laced G), see [BFN2,
NW].

1.3. Trigonometric zastava and periodic monopoles. We have an open sub-
set G2 C A“ (colored divisors not meeting 0 € Al) and t}ée trigonometric zastava
is defined as the open subvariety 2% := (7*)~H(G%) C Z*. Tt can be identified
with a solution of a certain moduli problem on the irreducible nodal curve of
arithmetic genus 1 obtained by gluing the points 0,00 € P!, see [FKR]. From
this point of view it acquires a natural symplectic structure Wlth the correspond—
ing bracket {, }uig. Note that {, }uig is not the restriction of {, },a from ZC“ but
rather its trigonometric version.

For example, when G = SL(2) and « is a times the simple coroot, the Atiyah-
Hitchin integrable system 7¢: 70 — A@ ig nothmg but the classical Toda lattice
for GL(a), while its trigonometric version 7 1170 — G\ can be identified with
the relativistic Toda lattice for GL(a), see [FT, §2].

An explicit formula for {, }iig in w, y-coordinates is obtained in [FKR].

The composed morphism
iz ey el =1

(recall that I is the set of s1mp1e coroots of 3) is the group valued moment map of
the Hamiltonian action of T on Z®. The quotient of a level of this moment map by
the action of T is the reduced trigonometric zastava TZ @: the (quasi-)Hamiltonian
reduction of 7.

It is likely that the reduced trigonometric zastava is isomorphic to the mod-
uli space of periodic monopoles (see e.g. [CK]) in one of its complex structures
(it has a natural hyperkahler structure, and among the S?-worth of the under-
lying complex structures we need a generic one, in which this moduli space is
an affine variety). The corresponding holomorphic symplectic structure on the
moduli space of periodic monopoles matches the reduction of {, }+;. Note an
important difference with the rational case: the usual zastava was isomorphic
to the euclidean monopoles’” moduli space, and its Hamiltonian reduction with
respect to the T-action was isomorphic to the centered monopole moduli space.
In the periodic case the monopoles come centered by definition.

Finally, the trigonometric zastava 70 s isomorphic to the K-theoretic
Coulomb branch of a 3d N = 4 supersymmetric quiver gauge theory (for a
Dynkin quiver of G, with no framing; with symmetrizers for a non simply laced
(), see [FT] for the simply laced case. The reduced trigonometric zastava Ze
is isomorphic to the K-theoretic Coulomb branch where the gauge group must
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be taken as the product of SL(V;) (as opposed to the product of GL(V;) for the
trigonometric zastava).

1.4. Elliptic zastava. The explicit formulas for {, },.; and {, }g look like ratio-
nal and trigonometric degenerations of the Feigin-Odesskii bracket [FO] on the
moduli space of GG-bundles with a parabolic structure on an elliptic curve. The
goal of the present paper is to give a precise meaning to this observation. .

For a T-bundle K7 on an elliptic curve £ we consider the moduli space Z§ of
the following data:

(a) a G-bundle Fg on F,

(b) a B-structure ¢, on F¢ such that the induced T-bundle £ = Indgp, has
degree —a,

(c) a UX-structure ¢_ on Fg generically transversal to ¢, . Here U¥ is a sheaf
of unipotent groups locally isomorphic to U_, obtained from the trivial sheaf by
twisting with T-bundle K1 (we view T' as a subgroup of Aut U_ via the adjoint
action). ]

The open elliptic zastava Z§ is a smooth connect%d variety of dimension 2|/
equipped with an affine factorization morphism 7%: Z§ — E“ to a configuration
space of E. It has a relative compactification (compactified elliptic zastava)

7% c 7% I pe
where we allow both a B-structure and a U*-structure to be generalized in the
sense of Drinfeld. There is also an intermediate version Z‘,‘C C Z& C Z% (elliptic
zastava) where only a B-structure is allowed to be generalized.

For example, when G = SL(2), Xr is trivial, and « is a times the simple
coroot, there is an isomorphism Zg =~ ~TFE (@) with the total space of the tangent

bundle of the a-th symmetric power of E. Unfortunately, neither TE nor its
open subvariety Zj  carry any natural Poisson structure.

1.5. Coulomb elliptic zastava. Similarly to the rational and trigonometric
cases, one can consider the elliptic Coulomb branch of a 3d N = 4 supersymmetric
quiver gauge theory for a Dynkin quiver of G with no framing. We restrict our-
selves to the case of simply laced G.? The elliptic Coulomb branch is the (relative)
spectrum of the equivariant Borel-Moore elliptic homology of a certain variety of
triples. The theory of equivariant Borel-Moore elliptic homology is not devel-
oped yet; it is to appear in a forthcoming work of I. Perunov and A. Prikhodko.
We sketch some results in §4. The resulting elliptic Coulomb branch is denoted

IThis goal is achieved in Theorem 6.4.1 where we establish a symplectomorphism of the
Feigin-Odesskii moduli space with a reduced elliptic zastava space. Compare the formula at
the end of §1.7 with the one at the end of §1.2.

2In the non simply laced case one should use the approach of [NW] with symmetrizers.
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C% % . It is equipped with a natural Poisson (in fact, symplectic) structure due
to the existence of quantized elliptic Coulomb branch.

For example, when G = SL(2), there is an isomorphism CZ“ =~ Hilbg (E x
G,,) with the transversal Hilbert scheme of the surface ExG,, (an open subvariety
of the Hilbert scheme of points on E x G, classifying those subschemes whose
projection to E is a closed embedding). Note that we have an open embedding
Hilb{ (E x G,,) C T*E@ into the total space of the cotangent bundle of the a-th
symmetric power of E. Contrary to the rational and trigonometric cases, there
is no isomorphism CZ“ L # Z“ ..., of the open elliptic zastava with the elliptic
Coulomb branch.

Still, the elliptic Coulomb branch is not so much different from the elliptic
zastava. Namely, they can be both obtained by the Mirkovié¢ construction of local
spaces over (the configuration spaces of) E, see e.g. [MYZ, §2]. This construction
depends on a choice of a local line bundle; one choice gives rise to the elliptic
zastava; another gives rise to the elliptic Coulomb branch, see §3. Moreover, this
way we can define the Coulomb elliptic zastava CZO‘ depending on an arbitrary
T-bundle K7, not necessarily trivial.

1.6. Feigin-Odesskii moduli space. Another closely related moduli space
M (F¢, L) depending on a choice of a G-bundle F; and a T-bundle L1 on E
classifies the B-structures ¢ on F; equipped with an isomorphism Indgw = L.
It can be equipped with a natural structure of a derived stack with a (0-shifted)
symplectic form, see §6. B. Feigin and A. Odesskii construct in [FO] a Poisson
structure on the moduli space Bunp of P-bundles on E (where P is a parabolic
subgroup of G). The above moduli spaces M(Fg, L) coincide with certain
symplectic leaves of Bung. For instance, if G = SL(2), then M(Fq, Lr) is the
moduli space of extensions of a line bundle £~! by £ with a fixed isomorphism
class of the resulting rank 2 bundle Vs. If Vg is assumed to be stable, then
M (F¢, Lr) is a symplectic leaf of the Feigin-Odesskii bracket on Bung.

If we fix a regular T-bundle K (this means that all the line bundles associated
to the roots of G are nontrivial), take Fg = IndeKT and deg L1 = —a, then
M (3’“@, Lr) can be identified with a certain “quasi-Hamiltonian” reduction 9DZO‘
of Za Namely, the reduction is defined as the quotient with respect to the
natural T-action of a fiber over D € E! of the composed morphism

Zg I B 5 B

(recall that [ is the set of simple coroots of G).

By the very construction, the Coulomb elliptic zastava CZ?( is also equipped
with the factorization morph1sm T CZ & — E%, and so we can define the reduced
Coulomb elliptic zastava DZ?‘C in a similar way. The important difference with the
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usual elliptic zastava is that the Coulomb elliptic zastava C% % carries a symplec-
tic form, and the above reduction is really a (quas1 )Hamﬂtoman reduction. In
particular, the reduced Coulomb elliptic zastava CZ?‘C inherits a symplectic form.

The two main results of the present paper are as follows:

A. The reduced elliptic zastava and reduced Coulomb elliptic zastava are iso-
morphic: DZ % ~ gZ % for an appropriate ChOlce of a T-bundle X', depending on
K7 and on the level D of the “moment map” (Theorem 2.1).

B. If K is regular, the composed isomorphism M (Ind$X, £7) ~ DZ% ~ %Z @
is a symplectomorphism (Theorem 6.4.1).

It is also likely that the reduced elliptic zastava 4 Z % 1s isomorphic to the moduli
space of monowalls (doubly periodic monopoles) [CW]. The situation is similar
to the case of periodic monopoles: the monowalls come centered by definition.
In the corresponding elliptic Coulomb branch of a quiver gauge theory the gauge
group must be taken as the product of SL(V;) (as opposed to the product of
GL(V;) for the nonreduced Coulomb elliptic zastava).

1.7. An explicit formula for the Feigin-Odesskii Poisson bracket. We are
finally in a position to address the problem of explicit computation of the Feigin-
Odesskii Poisson bracket. The Coulomb elliptic zastava CZ % comes equipped with
étale rational coordinates that are “trigonometric Darboux for its symplectic
form by the very construction. The usual elliptic zastava also carry étale rational
coordinates (v, w; T)11€< IT “ similar to the ones in §1.2 (but now w;, is a point of
E). The reduced elliptic zastava (alias the Feigin-Odesskii moduli space in the
regular case) inherits these coordinates with the following caveats:

(a) The w-coordinates are constrained: for each ¢ € I the sum > " w;, € E
is fixed;

(b) The y-coordinates are homogeneous: only the ratios
foriel, 1 <rr <a,.

Then the only nontrivial Poisson brackets arising from the Feigin-Odesskii sym-
plectic form are as follows:

yi,r o yi,r yi,r o yi,r yi,r’ yj,r o
y Wi - T y Wi - T 3 -
Yir FO  Yig Yir FO Yir Yip Yjp’ FO

Yir . &(C(

Yi,r

i,r!

are well defined

Wi pr — wj,r) - C(wz‘,r' - wj,p) - C(wz‘,pf - wj,r) + C(wz‘,p’ - wj,p))
Yip'  Yjp

in case ¢ # j are joined by an edge in the Dynkin diagram of G, and zero otherwise
(recall that we assume G simply laced). Here ((w) is the Weierstrafl zeta function.
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2. ELLIPTIC ZASTAVA

2.1. A group G. Let G be an almost simple simply connected algebraic group
over C. We fix a pair of opposite Borel subgroups B, B_ whose intersection is a
maximal torus 7. The unipotent radical of B (resp. B_) is denoted U (resp. U_).
Let A (resp. AY) denote the cocharacter (resp. character) lattice of T'; since G is
assumed to be simply connected, this is also the coroot lattice of G. We denote
by Apos C A the sub-semigroup spanned by positive coroots. We say that a > 3
(for o, 8 € A) if @« — 5 € Apos. The simple coroots are {o; }ier; the simple roots
are {a! }ier; the fundamental weights are {w) }ie;. An irreducible G-module with
a dominant highest weight \¥ € AVT is denoted V) ; we fix its highest vector vy .
For a weight p € AV the p’-weight subspace of a G-module V' is denoted V(p”).

2.2. Elliptic zastava. We recall some results of [Gai] about various versions of
zastava on a curve. From now on we always consider an elliptic curve E. We fix
a degree zero T-torsor K7 on E. It gives rise to a collection of line bundles K*’
on E associated to characters p’: T — C*.

Definition 2.2.1. (1) Given o € A5, we define the compactified elliptic zastava
7% as the moduli space of the following data:

(a) a G-bundle ¥ on E;

(b) a T-bundle L of degree —a on F;

(¢) for any dominant weight \Y € AY* a nonzero morphism from the associated
vector bundle &V : VY — KV,

(d) for any X € AV*, a sheaf embedding n*': LY — V),

subject to the following conditions:

(i) the collection of sheaf embeddings £ < V)" satisfy the Pliicker relations,
i.e. define a degree o generalized B-structure in Fg;

(ii) the collection of morphisms V) — X* satisfy the Pliicker relations, i.e.
define a generalized K-twisted U_-structure in Fg;
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(iii) the composition LN Vév — K is not zero for any N, i.e. the above
generalized B- and U_-structures are generically transversal.

(2) The elliptic zastava Zs C Zgg is an open subspace given by the extra con-
dition that the morphisms & : Vév — KN are surjective, i.e. the corresponding
twisted U_-structure is genuine, not generalized.

(3) The open elliptic zastava %gg C Z§ is given by the extra condition that
the embeddings n* : LY — V;}v are embeddings of vector bundles, i.e. £ is
a line subbundle in V;v for any \Y € AY*. In other words, the corresponding
B-structure is genuine, not generalized.

(4) The factorization morphism 7®: Z§ — E“ associates to the data of zastava
the I-colored divisor D € E* such that for any \Y € AV™, the zero divisor of the
composition LA — V)" — K equals (D, \').

(5) The Cartan torus T acts on Z§ by rescaling the morphisms in (c) above:

for t € T we set t(€") := XN(¢) - €¥. This action factors through the adjoint
quotient 724

Remark 2.2.2. The moduli stack Z§ is actually a finite type scheme, irreducible
of dimension 2|a|, see e.g. [Gai, §4, §7.2]. The open subscheme %52 C Z% is
smooth. The scheme Z§ can be nonreduced in general, cf. [FeMa, Example 2.13]
for G = SL(5). This example features a formal arc scheme, but according to the
Grinberg-Kazhdan theorem and [D, §4.4] it implies that an appropriate (rational)
zastava space Z% for G = SL(5) is nonreduced as well. Finally, the rational
zastava Z“ and the elliptic zastava Z§ are isomorphic locally in the étale topology.

In §3 we will consider the variety (73‘{)red equipped with the reduced scheme
structure.

Remark 2.2.3. In §6 we will need elliptic zastava for a reductive group G. It is
defined similarly to Definition 2.2.1 making use of the trick [Sch, §7] with the help
of a central extension 1 — Z — G — G — 1 such that Z is a (connected) central
torus in G, and the derived subgroup [G, G] c Gis simply connected. Namely, we
apply Def/i\nition 2.2.1 to G instead of G itself. The result is independent of the

choice of G and gets rid of some undesirable irreducible components that appear
if we naively apply Definition 2.2.1 to G itself.

The following definition is motivated by the notion of centered euclidean
monopoles.

Definition 2.2.4. We have the Abel-Jacobi morphisms E(%) — Pic* E and their

product AJ: E* — [],., Pic* E. We denote the composed morphism by

Alg: 2§ = B> 25 [] Pic E.

el
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Given a Cé)llection D = (Dy)ier € Pic® E, we define the reduced open elliptic
zastava 2% as AJ,H(D)/T (stack quotient).

The reduced open elliptic zastava DZ is an irreducible stack.’? Let a =
Ziel a;c;. If a; = 0 for some ¢ € I, then all the zastava spaces ZK, Z%, Z%, Zg‘c
coincide with the corresponding zastava spaces for the derived group of the cor-
responding Levi factor of G. If a; > 0 for all ¢ € I, then the action of T ad on the
open elliptic zastava Z is effective, and the dlmensmn of DZ % is 2|a] — 21k G.

Remark 2.2.5. Throughout the paper we will use a trivialization of the canonical
line bundle wg. We fix this trivialization once and for all.

2.3. Example of G = SL(2) and Hilbert schemes. We denote by w’ the
fundamental weight of G = SL(2), and we denote by o = 2w” the simple root of
G. We denote by « the simple coroot of G. We denote the total space of the line
bundle K= over E by Sy_ov, and we denote the complement to the zero section
by Sg{,av. These are algebraic surfaces equipped with a projection to E. For
a € N, we denote Z3* simply by Z%. We denote by Hilb®(S,— ) D Hilba(é’xﬂv)
the degree a Hilbert schemes of points on the surfaces Sy_.v D 3 g—av - We denote
by Hilb® (Sy—av) C Hilb*(Sy—av) (resp. Hilb%(Syov) C Hilb*(Syav)) the open
transversal Hilbert subscheme classifying all quotients of Oswav (resp. of O g,x_av)

whose direct images to E are also CXCHC, i.e. are quotients of Og.

Thus we have projections Hilb?,(Sy—.v) — Hilb*(E) = E@ « Hilb% (Sy_av ).
The transversal Hilbert scheme Hilbg, (S4—ov) is canonically isomorphic to the
total space of the following vector bundle Uy on E@. Let q: E x E Y — E@
be the addition morphism (aka the universal family over Hilb*(E) = E®). Then
Uy = q*pr’};ﬂC_av. We will also need another closely related vector bundle on
E@. Namely, let AY*~! € E x BV be the incidence divisor (note that the line
bundle O(A*~1) on E x E@=Y is isomorphic to the normal bundle to the closed
embedding £ x E@~Y < Ex E@ (2, D") + (x,2+ D'), see e.g. [P, Proposition
19.1]). We set Ty := q.(pryK =" @ O(A~1)). Note that in case X is trivial, the
corresponding vector bundle T is nothing but the tangent bundle of E(®) and the
corre(sg)onding vector bundle U is dual to T, i.e. W ~ T* is the cotangent bundle
of B¢

Furthermore, we have the Abel-Jacobi morphism E® — Pic*(E). For
an arbitrary line bundle X' on F, we denote the composed morphism by
AJ: Hilb?(Sx) — E@ — Pic*(E). For a line bundle D of degree a on
E, the fiberwise dilation action of C* on Sj{/ induces an action of C* o

3Indeed, a general fiber of 7@ is isomorphic to G‘ﬁl, hence irreducible. Any fiber of AJ is
irreducible as well. Finally, all the fibers of AJyz are smooth equidimensional by a computation
of the differential of AJ;. Hence any fiber of AJ is irreducible.
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AJ! (D) c Hllb(tlr(Sg{/> and we define the reduced transversal Hilbert scheme
Hllbtr(SfK/) as AJ71(D)/C* (stack quotient).

Proposition 2.3.1. (a) There are natural isomorphisms
Zh 28, Zh 28w, TP @ 0p).

(b) For a € N, the zastava space Z§ is naturally isomorphic to the total space
of the vector bundle Ty on E@.

(c) Fora € N, D € Pic"(F), the reduced open zastava DZ& 15 naturally isomor-
phic to the reduced transversal Hilbert scheme D@tr(Sw) for XK' =K @D.

Proof. By definition, 7& is the moduli space of the data £ — Vgiv — X*" such
that the composition £*° — K“’ is not zero. Here ng is a vector bundle on F
of rank 2 with trivialized determinant, and £%" is a line bundle of degree —a.
Hence the composition £¢° < X*" identifies £+ with X' (—D) for an effective
divisor D on E of degree a. The trivialization of det V¥' makes V¥ canonically
selfdual, so the dual of our data is X~ — V‘gﬁv — £~ In particular, we obtain
the sheaf embeddings

K @K (-D) =K LY >V L9 ek =k (D)@K

In other words, V¥ is a degree a upper modification of K=" @ K“' (D) at
D. The open subvarlety 78 C Z% is given by the open cond1t10n that the
projection of V‘“ to K is surjective, and the open subvarlety Z“ C Z“* is given
by the extra open condition that the projection of V“ to K= ( ) is surjective.
Yet in other words, Z% is the moduli space of a- dimensional O g-submodules
V C (K ¥(D)/K¥) @ (K /K (=D)), the open subvarlety 78 C 7% is given
by the open condition that V is transversal to X~*"(D)/X~", and the open
subvariety Z % C Zg is given by the extra open condition that V' is transversal to
K )X (D).

If a =1, then D is a s1ngle point z € E, and the fiber of ZL over x €
E is a projective line P((K~ W (z) /K @ (KK (— z))). Hence Zj is the
projectivization of the rank 2 vector bundle X" @ Tp @ K*" over E. The
trivialization of the canonical line bundle wg in Remark 2.2.5 gives rise to a
trivialization of the tangent line bundle T, and we obtain an isomorphism 7& >
P(X " @ X)) =P(X " @ Og). Furthermore, a point of Z over € E can be
viewed as the graph of a homomorphism from iK‘;V to JC;“V, S0 Zj. gets identified
with the total space of the line bundle Hom/(K*", K~+") = X", Finally, a point
of % ! over x € FE can be viewed as the graph of an isomorphism from fK;’jv to
K¢, This completes our proof of (a).

Recall that the fiber of Hilb{ (Sy—av) (respectively, of Hilbfr(g’g{,av)) over D €
E@ is canonically isomorphic to Homg,(Op, X~ /K=" (=D)) (respectively,
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to Isomg, (Op, K~ /K=" (=D))), where Op = Og/Og(—D). On the other
hand, an a-dimensional O g-submodule V C (X~ (D)/X~") @ (X" /X" (-=D))
transversal to K¢ (D)/K~“" is the graph of a homomorphism
hy € Homg, (X /X (=D), K=" (D)/K~") = Homg,(Op, X~ (D)/K ).
Furthermore, V is also transversal to K“' /K“" (—D) iff hy is invertible.

Since Op is a cyclic Og-module with generator 1, a homomorphism
hy € Homg, (0p, K (D)/KX~") is uniquely determined by hy (1), so that
Homg, (Op, K= (D)/K=*") = X~"(D)/KX ", and the latter space is nothing
but the fiber of the vector bundle Tx at D € E. This completes the proof
of (b).

We have just seen that the fiber of %& over D € E@ is canonically iso-
morphic to Isomg,(Op, X~ (D)/KX="). If D runs over the fiber of the Abel-
Jacobi map over D = X ® £ then X~ (D)/X " =~ (X @ D)|p,
and the isomorphism is well defined up to a multiplicative constant. Hence
Isomg, (Op, K= (D)/K~") ~ Isomg,(Op, (KX~ @D)|p), and the isomorphism
is well Odeﬁned up to a multiplicative constant. The latter space is the fiber of
Hilb{,(Sy-avgp) over D. Finally, taking quotient by the action of C* removes
the ambiguity in the choice of the above isomorphism, and produces the desired
canonical isomorphism.

The above argument generalizes straightforwardly to the case of families over a
base B. For example, the isomorphism Isomg, ,(Opxp, K~ (D x B)/K ") ~
Isomg,, ,(Opxs, (K ® D)|pxp) is well defined up to OF.

This completes the proof of (c). O

3. MIRKOVIC CONSTRUCTION

From now on we assume that G is simply laced. We choose an orientation of
the Dynkin diagram of G. We obtain a quiver () with the set of vertices Qg = I,
and the set of arrows ;. For an arrow h = (i — j) we use the standard notation
j=1i(h), i =o(h).

3.1. Compactified zastava. For a T-torsor X7 on E and i € I, we define a
line bundle X; on E associated to the simple root character o} : T' — C*. Given
a collection of line bundles X;, i € I, and f = > bioy; € Apos, we define a line
bundle X# := IEZ-GIZK?Z') on E? = [[,.; E®). Here J{Ebi) is the descent of K
from E% to E®) obtained by passing to Sp,-invariant sections on U (®)  where
U C FE is an affine open subset. Given 3,7 € Ao with 8 + v = «, we consider
the diagram
Ef & FEP x Ev 4 Ee,

where p is the projection, and q is the addition of colored effective divisors. For
1,7 € I we define Afj’” C EP x E7 as the incidence divisor where a point of color
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i in E” meets a point of color j in E7 (the case j = i is allowed). We also define
Afj C EP as the divisor formed by configurations where a point of color i meets
a point of color j. We define the factorizable vector bundle V§ on E® as®

311)  Vi= P a <p* (ﬂcﬁ(ZA N AL ) S Al )
BH+v=a i€l heQ1 icl

It contains two codimension 1 subbundles: Vg~ and V", where in the above
direct sum we omit summands corresponding to § = 0 (resp. v = 0).

The factorization structure is a canonical isomorphism for any decomposition
a = o + ", between the pullbacks of V§ and V§ K VY to (B x E*") 4 (an
open subset of EY x E*” formed by all the pairs of configurations where all the
points of the first configuration are distinct from all the points of the second one).
In particular, the rank of V& equals 2/°l, and the pullback of V§ to ([T,c; E*)ais
is canonically isomorphic to &eI(OCZ &) OE) i) (T s E%)ais (here Q= o ai0y).
Let p*: ([L;e; E*)ais; — Eg; stand for the unramified Galois cover with Galois
group So = [[;c; Sa; (the product of symmetric groups). Then the vector bundle
Ricr(K; @ Op)¥e) [y E®)aw; CAITIES @ natural S,-equivariant structure, and

« a a; Sa
Vitleg, = (02 Bier (5 @ Op)™ )1, 5oass;)

Thus the projectivization IP’(&EI ((fKi@OE)&‘”)) |(Hlez Boi)g,; contains the prod-
uct of the ruled surfaces (P'-bundles over E) [],., P(X;®0p)* Ha (Segre
embedding). Hence PV§|gg = contains ([Tics P(K; ® Op)* |1, £os dls))/S

Definition 3.1.1 (I. Mirkovi¢). (a) Mirkovié compactified zastava M*Z$ is de-
fined as the closure of ([]..;P(X; ® Op)™ (e, E 4i)gy )/ Sa I PV (with the
reduced closed subscheme structure).

(b) The upper (resp. lower) boundary O, *Z% (resp. Qo™ Z%) is defined as
the intersection M*Z§ NPVE™ (resp. MrZg NPV ).

(¢) Mirkovi¢ zastava M*Z$ is defined as the open subscheme in M*Z obtained
by removing the upper boundary 8upM”Z %

el

(d) Mirkovié open zastava MZS is defined as the open subscheme in MirZg
obtained by further removing the lower boundary Oy " Z5-.

Returning to the usual compactified zastava (Definition 2.2.1), we set
(3.1.2) K = KO

Then the factorization property of zastava along with Proposition 2.3.1(a) gives
rise to a canonical isomorphism Z§ ‘Edm =~ ([Le, P(K; @ 08)"|(M1,e, B aigg )/ S

Thus we obtain a birational isomorphism ©°: MrZg =5 Za.

40ur definition looks different from [MYZ, 8§2.4.1,2.4.2]. This is due to dualization,
cf. Lemma 3.4.2 below.
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Theorem 3.1.2 (I. Mirkovi¢). [MYZ, 2.4.6] The birational isomorphism ©° ex-
tends to a reqular isomorphism © : M*Z% =5 (Z%),.q with the compactified zastava
equipped with the reduced scheme structure. Moreover, © restricts to the same
named isomorphisms MZ$E 5 (Z%)rea and also MIZ§ 5 7.

Proof. For the readers’ convenience we sketch a proof. We consider a twisted
version Grpp g of the Beilinson-Drinfeld Grassmannian: the moduli space of
|a|-tuples of points in E, and G-bundles F; on E equipped with a rational iso-

morphism o: F¢g --» Ind$K regular away from the above |a|-tuple. The prod-
uct of symmetric groups S, C S| acts on Grgpx, and we denote by Gr%D;K
the categorical quotient (partially symmetrized twisted Beilinson-Drinfeld Grass-
mannian). The generically transversal generalized B- and twisted U_-structures

in the data of zastava define a generic isomorphism Fg --» Ind?UCT; this way we
obtain a closed embedding Z§ — Grip 4.

We consider the corresponding closed embedding of the T-fixed point sub-
schemes (Z%)" — (Grgpg)”. One can construct an isomorphism (Z§)" ~
L] Bir=a E? x E7. Furthermore, one can identify the restriction of the ample de-
terminant line bundle £ on Grp, 4 to the connected component EPxEY C (Z3)"

. . wf qr— 5 B /
with the line bundle p (JC (=Y ier A+ Yheo Ao i(h))>, cf. [MYZ, Propo-
sition 2.4.1].

Now consider the restrictions q.£ — Q. <£|7%> — Qs <£|(Z?<)T>7
where q: Grzps — E% is the natural projection. — The composition

a:.£ — q. <£|(73<)T> is surjective since it equals another composition of
a:£ = g. (£|(GT%D K)T) — Qs <£|(73<)T> that is surjective e.g. by [Z]. Hence the

restriction ry: Q. (S‘ff}x{) — (£|(7%)T) is surjective as well.

The restriction of q to 73‘( is the factorization morphism 7®. By factorization,
a general fiber of 7 is isomorphic to a product of projective lines, and the restric-
tion of £ to a general fiber is isomorphic to the exterior product of line bundles
Op:(1). Hence the restriction 7 to the T-fixed points is an isomorphism over the

generic point of £*. If the coherent sheaf g, <£|7?<> were torsion free, ry would be

injective, and hence an isomorphism. However, the direct image q, <£|7§Y<) does

have torsion (essentially due to the nonreducedness of the compactified zastava,
cf. Remark 2.2.2).

We denote by Ty C q. <S|7%> the torsion subsheaf. We impose the rela-

tions Ty on the image of the - projective embedding of Z§ into P(q.£). The
resulting closed subscheme of Z% is denoted (V' Z§. The fixed point subschemes
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(WZ$)T and (Z§)T coincide since the latter one is reduced. Hence the restriction
T Qs <£](1>7%) — Qs <£|(73<)T> is surjective. We denote by T; C q, (2](”7?{)
the torsion subsheaf We impose the relations J; on the image of the projec—
tive embeddlng of 1 Z?{ into P(q,£). The resulting closed subscheme of Z % 1

denoted P Z%.
Contmumg hke this we obtain a chain of closed subschemes

75 > WZze 5 @7 5
By the noetherian property of Z§ this chain stabilizes with certain closed sub-
scheme to be denoted (*° ZO‘ C Za If this subscheme is not reduced, we apply
the above procedure to (1)Z% = ({ Oo)Z§‘<)red to obtain its closed subscheme 53)7‘5’2.
Continuing like this we obtain a chain of closed subschemes

o) r7a 00) Za (OO)_cx
<>ZK3(1)Z D Z5 D

By the noetherian property of (*)Z% this chain stabilizes with certain reduced

closed subscheme to be denoted Eg?ﬁg C Z%. Since (00)7‘5‘{ and Z$ coincide

(00)
over the generic point of £, the subscheme Eg?ﬁc must coincide with (75‘-“()red.

The restriction morphism 7 : qx (£|(oo)za) — Qs <£|(734<)T> is surjective. By
(c0) =K

construction, g | £(s0)% Zs is torsion free, so ro, is an isomorphism. Thus 5237‘5‘{
(o)
is embedded into PV§, and must coincide there with the closure of its generic

fiber, i.e. with MrZ¢. O]

3.2. Example of type A; for trivial X a la Mirkovié. Recall the setup
and notation of §2.3. We assume X is trivial and denote 7& by Z® for short.
The argument in the proof of Proposition 2.3.1(a) defines an embedding of Z¢
into the symmetrized version Grgy, o) p@ of Beilinson-Drinfeld Grassmannian of
G = SL(2) of degree a, cf. [Gai, §4, §7.2]. We consider the determinant (relatively
very ample) line bundle £ on Grg5) g and its restriction to Z°. The projection

7% — E@ is denoted by 7¢. We claim that there is a natural isomorphism

(mi2) ~ P a. (p*(OEtw(Ab))(Ab’c))

b+c=a
(notatlon of §3.1). Indeed, let (Z*)” be the fixed point subscheme of Z%. Then
(Z)" = |Uppeea B x FO: to D, € E® D. € E© we associate the a-

dlmensmnal Vector subspace

Vp,.n. = Op(Dy)/Op®0p(=Dy)/Op(—Dy—D,.) C (Op(D)/0r)®(0p/0p(-D))
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(notation of the proof of Proposition 2.3.1(a)) and denote the corresponding
rank 2 vector bundle on E by V“Siv. The restriction to fixed points induces
an isomorphism {€ == m¢(L]7ar), see e.g. [MYZ, §2.4]. The fiber Ly s
det ' RT(E, V%) by definition, so that the fiber Lvp, b, equals

det ' H(E, Op(Dy)/0g) @ det ' H(E, Og(—Dy)/Op(—Dy — D,))
®det H(E,0p/0p(—Dy — D.)) = det?H°(E, Op/Op(—Dy))

(we are making use of the trivialization of wg in Remark 2.2.5 and of the Serre
duality to identify det™ H°(D, Op (D)) with det H°(D,Op)). The latter line is
canonically isomorphic to the fiber of w%a)) at D, € E®. We conclude that

T8 = @iy A(P* w3, ). Furthermore, the dual vector bundle of q.(p*w?,)
is qx (p*w}_j?b) (Ab’c)) by the relative Grothendieck-Serre duality for q since A€ is

the ramification divisor of q. Finally, w];?b) = Opm (AY).

3.3. Example of type A, for trivial K a la Mirkovié. In this section I consists
of two vertices 7, j connected by a single arrow ¢ — 7, and o = a;+a;. We assume
X is trivial and denote Z§ by Z* for short. We consider the embedding of Z into
the Beilinson-Drinfeld Grassmannian Grgy,s), g2 of degree 2, cf. [Gai, §4, §7.2]. We
consider the determinant (relatively very ample) line bundle £ on Grgy,s) g2 and
its restriction to Z*. The projection Z* — E x E is denoted by 7®. We have

(m2 L)Y = 08 5 ® Opxp(—Ay).

X

Indeed, let (Z%)T be the fixed point subscheme of Z%. Then (Z%)7T is isomorphic

to the disjoint union of 4 copies of £ x E. Namely, let v, v, v3 denote the standard

basis in the tautological representation of SL(3) (so that T" acts diagonally). Let

us think of points of Z¢ C Grgp,(3),z2 as of vector bundles V on E identified with

Ogv1 ® Opve ® Ogvs away from points ;, x; € E. Then:

the first copy of E x E consists of V = Ogv; ® Ogvy @ Opvs;

the second copy of E x E consists of V = Og(x;)v; & Op(—x;)ve @ Opus;

the third copy of E x E consists of V = Ogvy @ Op(z;)ve ® Op(—x,)vs;

the fourth copy of E x E consists of V = Op(x;)v1 ® Op(x; — x;)vs & Op(—x;)vs.
The restriction to fixed points induces an isomorphism 7€ — W§(£|(ZQ)T),

see e.g. [MYZ, §2.4]. The fiber £y is det *RT(E,V) by definition. The restriction

of £ to the first three copies of E x FE is trivial, while the restriction of £ to the

fourth copy of E X E is Opxp(A;j).

3.4. Example of type A, for regular X. We consider the situation complemen-
tary to the one of §3.2: we assume that K2 is nontrivial. The open elliptic zastava
of degree a is the moduli space Z% of line subbundles £ C X & K~ of degree
—a. In other words, %& is the moduli space of triples (£, s € H(E, LX), t €
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H°(E,£L7'X~1)) such that s and ¢ have no common zeros, viewed up to common
rescaling. The factorization morphism 7¢: 2?}{ — E@ associates to (£, s,t) the
zero divisor D of s. Weset t' :=t/s € H*(E,X2(D)), a regular section that does
not vanish on D. We can also view ch as the moduli space of triples (£, D, ).
We have an embedding

0 1

We consider the determinant line bundle £ on %5@ whose fiber at (£, D,t') is
det™" HO(E, Coker(Yy)). Consider the dual map T): X' & K — K~ 1(D) @ X.
Then H°(E, Coker(Yy)) gets identified with an a-dimensional subspace in Hp :=
H(E,(X~Y(D)/X™) @ (K/K(—D))). This defines an embedding of %gg into a
relative Grassmannian over E@. The closure of Z % in this relative Grassmannian
is nothing but the compactified zastava Z%. The determinant line bundle £

Ty = (1 t) K 'eK(-D) - K 'K

extends to the same named line bundle on Z%. The fixed point subscheme (?‘QQ)T
(with respect to the Cartan torus 7' C SL(2)) is finite over £(*), and the restriction
morphism

(3.4.1) oL — 71':(£|(73<>T)

is an isomorphism.
We set Vi = @, s <p*<(ﬂ<‘2)(b) (Ab)) (Ab’c)> (notation of §3.2). We

also consider a line bundle M on E® with the fiber det™" H°(D,X|p) over D €
E(@ . We will need the following well known result.

Lemma 3.4.1. For any b > 0, there is an isomorphism w;?b) ~ Opm (AY).

Proof. We were unable to locate a reference, so we give a proof. Let p: E* — E®
be the natural symmetrization morphism. We have a natural map wg,} — p*wg(lw
vanishing on the union of diagonals in E°’. Thus, if v is a global nonvanishing
differential on E, then s = pi/A...Ap;v can be viewed as a global section of p*wg(lb)
(here p,: E* — FE is the projection to the r-th factor). A local computation
shows that s? comes from a global section of w;b) vanishing on A®. This gives

the required isomorphism. O

Now we are in a position to identify the direct image of the determinant line
bundle.

Lemma 3.4.2. We have an isomorphism Wf(ﬂ]@a )T) ~ M ( %_2)\/.
X

Proof. For every splitting D = Dy+ D.. into the sum of effective divisors of degrees
b, c, we have a T-fixed point in Z§ corresponding to the subspace

HY(E,(K7(Dy)/X7") @ (K(—Dy) /K (~D)))
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C H'(E,(XH(D)/X") @ (X/K(—D))) = Hp.

This gives rise to an isomorphism q: | |,, ., & ) x Ble) =~ (Z g ) where 7°q = q.
In order to calculate q,£, note that by the Serre duality on Db we have

HO(E, X1 (Dy)/X™") = H*(Dy, X~ (Dy)|p,) = H"(Dp, wp, ® K(—Dy)|p,)"

Furthermore, by adjunction we have wp, ~ wg(Dy)|p, =~ Or(Dy)|p,- Thus we
get a natural isomorphism det ™ H(E, KX~(D,)/X ') ~ det H°(Dy, X|p,). The

exact sequence
0= X(=Dy)/XK(-=D) - K/K(—=D) = K/K(—Dy) — 0
gives rise to an isomorphism
det ' H°(E, K(—Dy)/X(=D)) ~ det " H°(D,X|p) @ det H*(Dy, X|p, )
Hence we deduce an isomorphism
a*L|p,,p,) ~ det™ 'H(D,X|p) @ det>H°(Dy, X|p,)-
In other words,
QL ~ p*det’mpn, mpK @ ¢°M,

where wge) 1 Dy — E® is the universal divisor, and wg: ®, — F is the natural
projection, while M = det ™" @y @i XK.
From the natural isomorphisms

det wE(b)*w*E:K: ~ Nm@b/E(b) (w*EfK) ® det wE(b)*OQb ~ KO &K Wge)

we deduce an isomorphism q*£ ~ q*M ® p* ((IK2) R w E(b)) Summing up over
all decompositions b 4 ¢ = a we get an isomorphism

7$(£|( ~M® @ q:p ®wE(b>)
b+c=a

Using relative Serre duality for q and an isomorphism of the relative dualizing
sheaf for g with O gy g (A%) we get an isomorphism

( ((fKQ) ® wE(b>)>v ~ q*p*((fK )(b) ® wE(b)) (Ab,c)'

Finally, using the isomorphism w E<b> ~ Ope (A®) of Lemma 3.4.1, we identify the
RHS with the corresponding summand in V§._,
The lemma is proved. O
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3.4.1. Identification of Z% with Mirkovié¢ zastava. From Lemma 3.4.2 we obtain
an embedding of Z‘}C into P (MV ® V&,Q) ~P ( %,2). We want to calculate this
morphism explicitly away from the diagonals.

First, we find an explicit inverse of the isomorphism (3.4.1) over an étale open
in £ In particular, we will work away from the diagonals. Also, we consider the
pullback of the corresponding schemes and vector bundles to £ (but we will keep
the same notations for the base change from E@ to E*). Let D=w;+...+w,
with all the points distinct. For every subset X C {1,...,a} we set

Dy =Y w,, Hy:=H'(E, (X (Dy)/X™") & (X(~Dx)/X(-D))) C Hp.

reX

To Hy we associate a section Oy of the determinant line bundle on the Grass-
mannian Gr(a, Hp) vanishing precisely over the set of subspaces that are not
transversal to Hy. Namely, for a subspace S C Hp, the value of Oy at S is the
determinant of the composition of natural maps S — Hp — Hp/Hy. Thus 6y
is a section of the line bundle with fibers det(Hp/Hy) ® det™'(S). Note that
det(Hp) is canonically trivialized due to Serre duality between H°(D,X~'(D)|p)
and H°(D,X|p), so we can view fy as a global section of £® w?,, det™!(Hy) on
Z4.

Note that Hy and Hj are transversal iff 3 = {1,...,a} ~ N. Thus Ox(H;) =
X

-----

-----

77777

Ze Wp | @D det\(Hy)

----------

3.4.2. Explicit form of the identification of Lemma 3./.2. Now we are in a position
to calculate the isomorphism of Lemma 3.4.2 over a point (wy, ..., w,) € E* This
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isomorphism takes form

(3.4.2) @ det™ (Hy) ~ <®J< 1ywr> @a} <®J<2\wr>.

Note that Hy = @TEN K1 (wr)|wr 5% @TIQN 5<|wr,7 S0

(3.4.3) det™( <®J< —w, |wr> ® <®J<‘1|wr,>

reX r' g

= <®:K_1|wr> ® <® JCQ(—wT)|w'r> .

One can check that the isomorphism (3.4.2) is obtained from (3.4.3) by taking
the direct sum over X C {1,...,a} and making use of the trivializations of w,, =~
wg (W) |w, ~ Og(w,)|w,. Hence the dual isomorphism to (3.4.2) is induced by the

natural isomorphisms
det(Hy) =~ <®J< ) ® (@Klwr,) ~ ( w7.> ® ((X) o wr> :
reX /R r=1 reX

obtained by first taking the point (0{1 apn(p )) eP <@Nc{1 o) det™ (H{l 77777 a}\N)>

77777777

and then applying the natural isomorphisms det™ (H{l
each component. .

Finally, let us calculate the values of 01, .1 x at a point ¢ = (£, s,t) € Z5. By
definition, the corresponding point of the Grassmannian Gr(a, Hp) is the image
of the map

.....

(t',1)

H°(D,X|p) —= H*(D,X""(D)|p ® X|p) = Hp.

.....

rex @R
that is equal to
Oqr....apn(t’) = [ [ Resu, () € QK 2|, ~ det " HO(D, K| p)®det " (H1,...ap)-
ren ren
..... ren K2,

M“Z“ %|p@oa) 1s the point with the homogeneous coordinates

(i.e. in
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(IT,cx Resu, (15’))NC{1 ) It is easy to see that this is nothing but the image
under Segre embedding of the point

(3.4.4) (1:Resy, (1), (1: Resy,(t)).

3.5. Coulomb zastava. In this section we modify the construction of §3.1.
In Theorem 4.2.1 below we will show that the resulting zastava space is iso-
morphic to the elliptic Coulomb branch of a quiver gauge theory (for the Dynkin
quiver @ of G) when all the line bundles X; are trivial.

We define the factorizable vector bundle U§ on E as

(3.5.1) U = @ s« (p*ﬂ(ﬁ ® Oy ( Z Af{%i(h))) :

Bt+y=a he@1

It contains two codimension 1 subbundles: Ug. |, and Ug"™”, where in the above

direct sum we omit summands corresponding to 5 = 0 (resp. v = 0).
As in §3.1, PU:?C‘E&SJ- contains (HZEI P(X; ® Op)% (Tiey B%) dISJ)/S

Definition 3.5.1. (a ) Coulomb compactified zastava ©Z$ is defined as the closure
of ([Lie; P(K;®Op)* ai)41ys )/ Se in PU (with the reduced closed subscheme
structure).

(b) The upper (resp. lower) boundary 0u,¢ Z$ (resp. ow Z%) is defined as the
intersection ©Z§ NPUR™ (resp. “Z§ NPUS .-

(¢) Coulomb zastava °Z§ is defined as the open subscheme in “Z§ obtained by
removing the upper boundary 8upCZ %

(d) Coulomb open zastava CZ‘;‘{ is defined as the open subscheme in “Z% ob-
tained by further removing the lower boundary 9, Z%.

3.6. Example of type A; a la Coulomb. Inside the symmetrized version
Grgp2),p@ of Beilinson-Drinfeld Grassmannian of G = GL(2) of degree a, we
consider the moduli space M* of locally free rank 2 subsheaves W C Ogv; & Ogvy
such that length((Opvi @ Opvs)/W) = a. We consider the determinant (rela-
tively very ample) line bundle £ on GrGL(Q) g and its restriction to M. The

projection M* — E@ is denoted by 7. We have
(mp€)" = w;;m) ® @ A Ope) xpe©
b+c=a

(notation of §3.1). Indeed, let T C GL(2) be the diagonal Cartan torus in the
basis vy, vy of (C2 and let (M?*)T be the fixed point subscheme of M. Then
(M) = oo EY x E©: to D, € E®, D, € E© we associate

WDb,Dc = OE(—D5>U1 () OE(_DC)UQ C Ogv; ® Ogvsy.
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The restriction to fixed points induces an isomorphism 7€ —= w¢(Lpayr).
The fiber £y is det 'RT(E,W) by definition, so that the fiber
Lvwp, p, = det(Op/Op(—Dy)) ® det(Op/Op(—D.)).  The latter line is
canonically isomorphic to the fiber of wyw X wye at (Dy, D,) € E® x B,
We conclude that 7€ = @,, ., d«(Wpw® g ). Furthermore, the dual vector
bundle of qu(wWpe)xp©) IS Q(W b, pe(AP)) by the relative Grothendieck-
Serre duality for q since A%¢ is the ramification divisor of q. Finally,

wE(b)XE(C)(Ab €)= q*wg(la), and we are done by the projection formula.

Generalizing the above example, for a line bundle X on E of degree 0, we
consider the moduli space Mg of locally free rank 2 subsheaves W C K ¢ X!
such that length((X @ X~')/W) = a. The same argument as above provides an
isomorphism “Z% ~ M. Here the Dynkin graph consists of the unique vertex
', and in the deﬁmtlon of “Z% we set K; = K~ o’ — K2 Furthermore, let
M 4 C M be the open subspace formed by all W C K @& K~! transversal to
both X and K~!. Then the isomorphism CZ;Q ~ M restricts to an isomorphism
CZ‘;C ~ M %. Finally, the argument in the proof of Proposition 2.3.1(b) establishes
an 1somorphlsm

(3.6.1) CZ8 ~ % ~ Hilb® (Sc—2).

3.7. Example of type A; a la Coulomb. In this section I consists of two
vertices 7, j connected by a single arrow 7 — j, and o = a; + «;. Then

U% - OE& OE@ (:Kz &OE)(A”) @OE&K] EBJQ @JCJ,

a 4-dimensional vector bundle on £ X E. The Coulomb compactified zastava
©Z% C PUS is the zero locus of the section s of

Sym*(Ug)” @ (K R XK;)(Ay))
defined as follows. First, we set
,Ugac = OE&OE@XZ&OE@OEﬁgC]@KzggCJ = (OE@KZ)X,(OE@K])

Then Sym?('U%)Y @ (K; K X;) has a canonical section o defined as follows. Let
w;, w; be local nonvanishing sections of Og, and let w;, u; be local nonvanishing
sections of K; ', ij_l. Then

o= ((w; Rwj) - (u; Buy) — (wi Buy) - (4 Kwy)) @ (wi vy Bwy ' ug).
We have a tautological embedding
Sym*('Ug)" @ (¥ K K;) — Sym*(Ug)" @ ((Ki B K;)(Ay))

(arising from Ogyxp — Opxr(Aij)), and s is defined as the image of o under this
embedding.
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Thus the family ©Z§ C PUY — E x E has fibers P! x P! C P? (smooth
quadrics) away from the diagonal A;; C E x F that degenerate to P? Up: P C P3
(singular reducible quadrics) over the diagonal A;;.

We choose an analytic neighbourhood W of a point e € F with coordinate w,
and trivialize the line bundles

(K" ROw) (=) lwxw, (Ow BIGH) lwww, (K7 @K [www
compatibly. We denote the coordinates along fibers of these trivialized line bun-

dles by v;,y;,yi; respectively. Then C%%\wa C W x W x A® is cut out by a
single equation y;y; — vij (w1 — we) = 0 and an open condition y;; # 0.

4. ELLipTiC COULOMB BRANCH OF A QUIVER GAUGE THEORY

In this section we discuss the elliptic analogue of the construction [BEN1] of
the Coulomb branch of a gauge theory. This construction made use of equivariant
Borel-Moore homology of a certain variety of triples, and we replace the Borel-
Moore homology with its elliptic version. The results of this section are not
used in the rest of the paper, and serve as a motivation only. We consider a
quiver @ = (Qo, Q1) with the set of vertices @)y and the set of arrows @;. We
use the following notation for the Laurent series field and the Taylor series ring:

F =C(t) > C[t] = O.

4.1. Basics. Let V = ®jcq,Vi, W = @icq,W; be finite dimensional Q)y-graded
complex vector spaces. The group G = GL(V) = [],, GL(Vi) acts naturally on
N = @D,cq, Hom(W:, Vi) & @D ;. j)eq, Hom(Vi, V;). The construction of [BFNI,
§2(i)] associates to this representation of G the wvariety of triples R contained in
an infinite rank vector bundle T over Grg. We consider the equivariant elliptic
Borel-Moore homology ring HEGE‘Z)(R).

A few words about the latter notion are in order. A theory of G-equivariant
elliptic cohomology with values in quasicoherent sheaves of algebras over the mod-
uli space of semistable G-bundles over E was proposed in [Gro, GKV]. After the
proposal of [Gro, GKV], quite a few foundational papers appeared establishing
the basic properties of equivariant elliptic cohomology. We will use [Gan] as a ref-
erence. For one thing, we restrict ourselves to a product of general linear groups G
since the centralizers of commuting pairs in G are connected, and the base change
in equivariant elliptic cohomology holds true [Gan, Theorem 4.6, Corollary 4.10].

Now the equivariant elliptic Borel-Moore homology HeGe(z? (X) is defined as W-
invariants in the Cartan torus equivariant elliptic Borel-Moore homology, and
these in turn are defined by descent from the usual equivariant Borel-Moore
homology or the equivariant homological K-theory as in [Gan, §3.3]. The de-
tails of the construction are to appear in a forthcoming work of I. Perunov and
A. Prikhodko.
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We set a; = dimVj, so that a = Zier a;0;; € Apos 1s a positive coroot com-
bination of the Kac-Moody Lie algebra g with Dynkin diagram (). Then the
equivariant elliptic cohomology Hégcf(pt) = Opa, where E* = [[.., E(@)_ The
equivariant elliptic Borel-Moore homology Hfg‘l? (R) is a quasicoherent sheaf of
commutative O ga-algebras by construction of [BFN1, §3]. Its relative spectrum
is denoted M%* = MZ*(G,N): the elliptic Coulomb branch. By construction,
M is equipped with an affine morphism IT: M%* — E°.

4.2. Compactified elliptic Coulomb branch. From now on we assume that
(@ is an oriented Dynkin diagram of an almost simple simply connected simply
laced complex algebraic group G. We also assume that W = 0. We will denote
Qo by I to match the notation of Sections 2,3.

As in [BFN2, §3(ii)], we consider the subalgebra HSQ(R*) € HS2(R) (homol-

ogy supported over the positive part of the affine Grassmannian Gr¢ C Grg),

. . 04+ I .
and its relative spectrum Mece "+ 5 E* By construction, we have an open

embedding Mo C Meca’Jr of varieties over £“.

As in [BFN2, Remark 3.7], we define a certain support multifiltration
F,HS2 (R*) numbered by the monoid A, of nonnegative integral combinations
of positive roots of G. The (multi)projective spectrum of its Rees algebra is
denoted ﬁg”: the compactified elliptic Coulomb branch. By construction, it is
equipped with a projective morphism I7: ﬂeca — E®. Also we have an open
embedding M € MY’ of varieties over E.

By definition,

G G
FZz’EI of Heﬂ? (:R+) - @ Hef? (:Riiel wi’bi)
Aposaﬂzz bia;<a

(elliptic homology of the preimage in RT of all the fundamental Go-orbits in
Gr¢; here w@;, stands for the n-th fundamental coweight of GL(V;); in particular,
wio = 0 and @;,, = (1,...,1)). All the fundamental Go-orbits in Gr¢ are
closed; more precisely, Grgi‘?vi = Gr(n,a;) (the Grassmannian of n-dimensional
subspaces in V;). We have

Hgff(vi,O) (Gl"(b“ az)) = q*(OE(bi)XE(arbi))

(the sheaf of elliptic cohomology on E(%) notation of §3.1), and dually,

Hege "% (Gr(bi, a:)) = (a(0 00 o)
(elliptic homology). It follows that for § < o and v := a —  we have

Y
er?(ﬂzie]wi’bi) = (q* <OE5 i Z Afﬁz) i(h))>>

heQ1



26 M. FINKELBERG, M. MATVIICHUK, AND A. POLISHCHUK

(notation of §3.1; note that the divisor AZ’V in £° x E7 is the pullback of the
corresponding divisor in E%, so that the twisting and pushforward commute by
the projection formula). The twisting arises from the elliptic analogue of [BFN1,
Theorem 4.1] and localization in elliptic homology, reducing the calculation to
the toric case.

All'in all, we obtain a canonical isomorphism Fy~ _ oy HEQ (RT) = (U*)Y (nota-
tion of §3.5, where we set U* := U§ for trivial line bundles X; = Og). It induces
a morphism ©: ﬁec” — PU“.

Theorem 4.2.1. (a) O is a closed embedding, and its image is € Z® (where we
set €79 .= 073‘{ for trivial line bundles K; = Of).

(b) The isomorphism ©: M&E—CZ* restricts to the same named isomorphism
of the open subvarieties MECM’JF o Cge,

(¢) The isomorphism © : M&*—CZ restricts to the same named isomorphism
of the open subvarieties M&E — cZe.

Proof. We consider the usual equivariant Borel-Moore homology ring HS0 (R*).

The argument in the proof of [BEN1, Proposition 6.8] demonstrates that this ring

is generated by Apos3B=3 biai < HGo (iRer: - ) It follows that the correspond-
0s 1O > = i,b;

ing Rees algebra is generated by Fy~. _ o H So(RT). Since the elliptic cohomology
coincides with the usual cohomology locally in the analytic topology of E¢, it fol-
lows that the Rees algebra of HS2 (R*) is generated by P o HEQ(RF). Hence
O is a closed embedding. The image of @ over the complement to diagonals in
E* is readily identified with ([, ;(E x P')* (Tie, Ei)ay )/ Sa- We conclude that
the image of the closed embedding © coincides with ©Z®. This completes the
proof of (a), and (b,c) follow immediately. O

5. REDUCED ELLIPTIC ZASTAVA

5.1. Poisson structure. According to §3.5, 0752 contains an open smooth sub-
variety U, := (HieIIP’(JCZ- @ Op)™ (Hie[Eai)disj)/Sa' It has a covering ﬁa =
[Lic; P(Ki ® Op)®[(1,., E%)q;> an open subvariety of the product of the ruled
surfaces U, := ng P(X; @ Op)*. Each ruled surface P(X; @ Op) contains an
open subvariety Sy, (notation of §2.3). The canonical class of ;%g(i is trivial,
and the trivialization is defined uniquely by our choice gf trivialization of the
canonical bundle wg, see Remark 2.2.5. In other words, Sy, carries a canonical
symplectic form wyg,. More explicitly, we can trivialize K; étale locally and choose
a function w on E such that dw is the trivialization of wg (Remark 2.2.5). Let
(w,y) be the corresponding étale local coordinates on g’x such that y is invert-
ible. We define the Poisson bracket setting {y,z}x, = y. For this bracket we
have {f(w)y,w}x, = f(w)y. It follows that the brackets on the intersections of
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coordinate patches are all compatible, so they give rise to a global bracket arising
from a symplectic form y,.

Note that €, is invariant with respect to the action of C* by fiberwise di-
lations. Note also that the symplectic structure on *%Ki extends as a Poisson
structure to P(X; & Og) (vanishing along the zero and infinite sections). Finally,
the product Poisson structure on U, is clearly S,-invariant, so by descent we
obtain a Poisson structure on U,, to be denoted {, }%.

It is likely that the Poisson structure {, }$ on U, extends as a Poisson structure
to the Coulomb compactified zastava ©Z§. However, the proof would require the
normality property of “Z% that we do not know at the moment. Instead we
restrict to an open subset U, C U, removing the 0 and oo sections of the surface

P(X; & Op).

Proposition 5.1.1. The Poisson structure {, }5% on US extends to a Poisson
structure {, }sc on Coulomb open zastava CZO‘ CZ%. Moreover the latter Pois-
son structure is symplectic.

Proof. The construction of Coulomb zastava being local, we can restrict our con-
sideration to ©“Z%|we« where W is an analytic open subset of E with a global
coordinate w whose differential dw coincides with the trivialization of wg (Re-
mark 2.2.5); thus we fix an open analytic embedding W < Al. We can also
trivialize all the line bundles X;|w. Combining Theorem 4.2.1 with [BFN2, The-
orem 3.1] we obtain an isomorphism between CZ;’%]Wa and Z “|wa. Here Zo A
is the usual open zastava studied in [BEN2]. In particular, the smoothness of Ze
implies the smoothness of “Z5-.

In order to check that the rational Poisson structure {, }% is symplectic on the
Coulomb open zastava, it suffices to do this over the generic points of diagonals in
E* (equivalently, over the generic points of diagonals in W?). The factorization
isomorphism . . .

CZ%(EBwa)diSj =~ (CZ?; X Cch”(EﬁxEv)disj
is Poisson by construction. Hence it suffices to check the symplectic property
of the Poisson structure over the generic points of diagonals in E* (equivalently,
over the generic points of diagonals in W*) for |3| = 2.

There are 3 cases to consider. If § = «a; + o, and 4, j are not connected by
an arrow, there is nothing to check. If 8 = o; + o, and ¢, j are connected by an
arrow i — j, then the Coulomb open zastava over W” Wlth its Poisson structure is
nothing but the restriction of the rational open zastava 78 (for the group SL(3))
with its Poisson structure to W#. The latter one is symplectic e.g. by [FKMM].
More precisely, comparing (the last line of) §3.7 with e.g. [BFN2, Remark 2.2]
we get an explicit identiﬁcation between the Coulomb open zastava czp x|lwe and
the rational open zastava Z8 lwe sending {, }K to the standard Poisson structure
on Zﬁ|Wa If 8 = 2q, the identification of §3.6 and §2.3 between CZE and the
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corresponding Hilbert scheme sends {, }5 to the standard Poisson (symplectic)
structure on the Hilbert scheme.
This completes the proof of the proposition. O

5.2. Hamiltonian reduction. We assume that a; > 0 for any ¢ € I. Let T2
act on K; via the homomorphism o : 7% — C* and the fiberwise dilation action
of C* on X;. Clearly, this action extends to a fiberwise action on P(X; ® Op).
Furthermore, for any decomposition v = 3 + v (where 8 = )_._, bja;), the fiber-
wise action of 724 on K; induces its action on K? and hence on the vector bundle

q- (p*ﬂ(ﬁ ® Opsx g ( Zhte Af{l)i(h)))' Clearly, the resulting actions of 7% on

U (see §5.1) and on PU% | gg, . are compatible. This way <7 % acquires an effective

hamiltonian action of 724,
We have the Abel-Jacobi morphisms E(®) — Pic* E and their product
AJ: E* = [, Pic" E. We denote the composed morphism by

Alg: €78 — B — ] Pic™ E.
iel
Given a collect1on D = (Dy)ier € Pic" E, we define the reduced Coulomb open
zastava @Z“ as AJ,Y(D ) /T (stack quotient, cf. Definition 2.2. 4) It inherits a
Poisson structure from CZ?‘C, symplectic on the smooth locus of CZ %

Theorem 5.2.1. For D = (D;);c; € Pic" E, the reduced open zastava @Zgg 18
natumlly 1somorphic to the reduced Coulomb open zastava DZ‘S’Q,, where XK, -

X { ® D ® ®h€Q1'z—0 (h) @ 1 :

The proof will be given in §o 4 after some preparation. Throughout the proof
we will make use of the identification M”Z% = 7% of Theorem 3.1.2. Thus we
will compare two types of reduced zastava Constructed from the Dynkin quiver
Q@ (as opposed to the group ). Roughly speaking the idea of the proof is as
follows. Before the reduction, both types of zastava spaces are closures of the
images of certain Segre embeddings into projective bundles over the configuration
space. The key idea is to check that after restricting to the Abel-Jacobi fibers
the two projective bundles become isomorphic up to a twist and the Segre images
correspond to each other. This identification is based on certain calculations with
line bundles over the Abel-Jacobi fibers performed in Lemmas 5.2.3 and 5.2.4
below.

Note that AJ™'(D) is isomorphic to the product of projective spaces [Le Pt
Hence for a sequence of integers v = (n;);c; we have a line bundle O(v) =
Xic1Opa;i—1(n;) on AJ"HD).

Proposition 5.2.2. For any 8 = 3, bio; < o we set b :=b; — >, ,;b;, and
B = e bioi. Then we have an isomorphism
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q. (p* (Kﬂ(zﬁﬁ - Af(h)i(fw)) (ZA?O ‘AJl(D)

iel hEQ1 iel

~ * !B B,
(0 000 ) |50
he@Q1

The proposition follows from the projection formula and Lemmas 5.2.3
and 5.2.4 below. We denote by X7 the preimage q~*(AJ™'(D)). Its projection
to E° (resp. to AJ7}(D)) will be denoted by p (resp. by q). We will also need
some partial desymmetrizations of X?7. Namely, we have Ef = EIfl/ Ss, and
we will identify EBl with Hie s Hle E;,, where E;, is a copy of E. We denote
by Xl 25 XP7 the cartesian product X7 X gs, o (EPl x EY). For any
i € I, r <b;, the composite morphism X" — ElIfl x B7 — E;, x E*7% factors
through p;,: X8y 5 xene—ai o E;, x E*~% . Finally, recall the line bundle
DP = &iengbi) on E# =[], E®). Here ngi) is the descent of DX from E
to E®),

Lemma 5.2.3. (a) We have an isomorphism of line bundles on XP7:

83.0: B (D) © G°O(6) = p° (omzAz)) o 00 (3 A2

i€l i€l
(b) We can choose a collection of isomorphisms ¢g. in (a) satisfying the following

factorization property:
1<r<b;

p*(bﬁ,’}’ = ® pir(bai,afai
iel
away from the preimage of all the diagonals in E®.

Proof. (a) It suffices to construct the desired isomorphism when I consists of a
single element. So we will write E®, E(©) E(@ in place of E#, E7, E*. We denote
by B &2 Ex X 25 X := X®:© the projections. We consider the projections
of the universal divisors F <% 9, 72® B and B &2 D, 729 BO. We keep
the notations ®, C E x X D D, for the pullbacks to X of the universal divisors
over E® and E©. We fix a point e € E. It defines divisors ¥, ¢ E®, Y, C
E© Y, c E@ formed by all the configurations of points on E meeting e.
We have an isomorphism of line bundles on £ x X:

(5.2.1) Opxx (Do + De) ~ ppD @ pxq O(1).
More precisely, we have a canonical isomorphism

(5.2.2) To: Opux(Dp + D) == ppD @ P q" O pw (Ya).
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Indeed, for any z € X the restrictions of both sides to E x {z} are isomorphic.
Thus, there exists a line bundle £x on X such that Op.x (D) + D.) = ppD ®
pxLx. To determine Lx we consider the restrictions to e x X and use the
canonical isomorphisms

Opxx(Dp)|exx = Wye Opw) (Ys), Opxx(De)lexx = @ Op© (Ye),
4" O (Ya) = Ope) (Ys) B Ope (Ye).

Since wrw : D — E® is finite flat, we have the norm morphism
Ny, /gw : Pic(D,) = Pic(E®).
For any line bundle X on £ we have an isomorphism
(5.2.3) KO ~ Nmg, /g (w5 K).

Indeed, we can cover E with open affine charts U; such that Ui(b) cover E® and
K|y, is trivial. Then we claim that both sides are given by the same transition
functions. In effect, this follows from the fact that for a regular function u on a
smooth affine curve C' = Spec(A), one has

Nmg . oo (wpu) = u®" € Sym"(A),

where C &< D¢ — C® is the universal divisor. The latter claim easily reduces
to the case when u is the coordinate on the affine line.
We denote by w: ®, — X the natural projection. We have an isomorphism

(5.2.4) Ox (AP D) ~ detw, 09, @ det '@, (Opxx(—D)|0,)-

Indeed, one can identify A®) (¢ with the locus where the morphism of vector
bundles on X, w*<OE><X(_©C)‘©b) — w0y, fails to be an isomorphism. Passing
to determinants we get (5.2.4).

Recall that for any finite flat morphism f: Y — Z and a line bundle £ on Y
we have an isomorphism

(5.2.5) det f.£ ~ Nmy/z(£) ® det f,Oy.
We have to construct an isomorphism
(5.2.6) Poe: P (DY) @ q*O(b) = p w5, (AP,

Recall that p*Q,,, ~ @.0s,, and hence p*wpe) ~ det w,0p,. The trivializa-
tion of wg (see Remark 2.2.5) induces an isomorphism of Qg x(Dp)|o, and the
relative canonical line bundle for w: ©, — X. Hence, using (5.2.1) along with
the relative Grothendieck-Serre duality for w, we get an isomorphism on F x X:

W« (O(_@c>|©b) =~ w*(<OE><X(@b> ®p*E‘D71 & Mﬁl)‘gb) = w*((p*E® ® M)|'Db)va
where M = piq*O(1). Since M|p, ~ w*q*O(1), we get an isomorphism
det '@, (Opxx(—D¢)|n,) = det(w.(py;Dls,)®q*O(1)) =~ detw. (py;D|s,)®q*O(b).
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Using (5.2.5), we can rewrite this as
det '@, (0(=D¢)|p,) ~ Nmg,,x (ppD) @ detw, 0, ® q*O(b).
Plugging this into (5.2.4) we get
QAL ~ Ny, x (ppD)@det* @, 09,2q* O (b) ~ Nmyg, ) x (D) 2P wre, @q*O(b),

which gives rise to the desired isomorphism (5.2.6) by the virtue of (5.2.3).
This completes the proof of (a).

(b) The isomorphism (5.2.2) can be viewed as a way to choose a section sp p
of D vanishing on D + D’ for (D,D’) € X. Away from the diagonals, writing
D = w; + ... 4wy, we have a collection of restrictions (Sp pr|w, )1<r<p defining an
isomorphism H°(D,Og(D)|p) = @i’:l D|w,. Hence, the tensor product of these
restrictions defines an isomorphism det HO(D, Op(D)|p) = ®°_, Dlw,. More
precisely, away from all the diagonals, the isomorphism 7, of (5.2.2) gives rise to
an isomorphism

Op. detw*OEXx(CDb)bb - detw*(p*EDbb) & q*OE(a) (bYa)

Then over X%(© (notation introduced right before Lemma 5.2.3) we have an
equality

b
(5.2.7) proy, = ®p;01.
r=1

Indeed, let us consider the pullback of 7, under Idg xp: ExX bl) 5 F xX. Away
from the diagonals we have Dy, := (Idp xp) " (Dy) = ||, Dp(r), where Dy (r) :=
(Idg xp,) "' (D). Note that the projection ®y(r) — X is an isomorphism.
Hence,

(IdE Xp)*OEXX(Db”@b(r) = (IdE Xpr)*OEXX(®1)|5b(r)'

But for any r = 1,...,b we have
(Idg xp)*1l35, ¢y = (Ide xpr) 11

(note that we can ignore ®. since we are working away from diagonals). In effect,
both sides have the same restrictions to e € F.
Now p*w.Opxx(Ds)|o, decomposes into a direct sum of the line bundles

(Ide Xp)* Opxx (D)5, on Dy(r) = X% so taking the determinant of

p . T|p, corresponds to taking the product of restrictions to Dy(r) over
r=1,...,b.
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It follows that the isomorphisms (5.2.6) can be chosen in a factorizable fashion
away from all the diagonals, that is satisfying

b
P v = ® PrP1a—1-

Indeed, we replace O(1) on AJ™H(D) = P! ¢ E@ by the isomorphic line bun-
dle Op) (Ya)|sy-1(p) and use the canonical isomorphism (5.2.2). Going through
the construction of isomorphisms (5.2.6) restricted to the complement of all the
diagonals, we see that each step is factorizable, the first step being dealt with
n (5.2.7). The key point in the other steps is that the base change of the relative
divisor ©; over X with respect to X»(© — X becomes a disjoint union of b points.
So the determinant of the push-forward decomposes as tensor product, as well as
the norm of a line bundle, etc. Note finally that the isomorphism (5.2.4) reduces
to the identity away from the diagonals.

This completes the proof of (b). O

In the next lemma it will be convenient to use the notation p;: Ef x EY — E®)
and q;: F? x EY — E(®) for the compositions of p, q with the projections to the
respective i-th factors.

Lemma 5.2.4. (a) We have an isomorphism of line bundles on X :

W,vi@p?( R (D ) ®q1< i)~ 1(b(h)))

iel heQi:0(h)=i heQ1

= O (= 20 Mgy = 2 Ay

he@1 he@
b) We can choose a collection of isomorphisms g~ in (a) satisfying the followin
By ying g
factorization property:
1<r<by(n)
p*¢67"/ = ® pO wao(h) QA—Qo(h)
he@n

away from the preimage of all the diagonals in E“.

Proof. (a) It suffices to construct the desired isomorhism when [ consists
of two vertices connected by an arrow as follows: ¢ — j. We denote by
Dy, Dp;, D¢y, De; C B X X the relative divisors pulled back from the universal
divisors over the corresponding symmetric powers of E (here X = X#7). We
denote by w: ®; — X the natural projection which is a finite flat morphism of
degree b;. Similarly to (5.2.4), we have isomorphisms

OX(—AZ) ~ det_lw*(‘)@bi ®detwo, (OEXX<_®bj)|DbZ-) ~ Nm@bi/X (OEXX(_Dbj)|®bi)’
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OX(—AZ’FY) ~ detilw*O@bi ®detw, (OEXX(_QCj)‘Qbi) ~ Nm@bi/x (OEXX<_®Cj>’Dbi)'

Thus, we have an isomorphism
Ox(—Af — A7) ~ Nmg, /x (Opxx(—Ds, — D))o, )-
Using the isomorphism (recall the projections E <2 E x X 2% X)
Opxx(Dy, +De;) > ppD; @ pxq*0(0, 1)

together with (5.2.3), we get an isomorphism

Nmg, /x (Opxx(—Dy, — ch)bbi) o~ Nmz)bi/x(p}:ﬂ);l) ® q 00, —b;)
= p*(<Dg_1>(bl) X OE(C—L)) & q*O(O, _bz)a
and (a) follows.

The proof of (b) is similar to the one of Lemma 5.2.3(b). It is still enough to
consider the case when [ consists of two vertices connected by an arrow ¢ — 5. We
construct a factorizable collection of g, in stages. At the first step we note that
there is an evident morphism p: X#7 — Xbiasciait(bite)es (addition of j-colored
divisors), and we choose g, as O Vb, it (bj+e;)a; - So it suffices to construct a
factorizable collection of 13, for the particular case when 3 is a multiple of «;.

Next, we have a cartesian diagram

-~ Pi,r oy .
Xazﬂ/ «— lezaz|7’7 [N Ebz X E'Y

| I
Xbiciy _y pbi) « E,

where v = v + (b; — 1)oy;.  We have to choose our isomorphisms ¢ so that
P Uiy = Q) piybasy. To this end note that X' ~ E) x PI'(E,D;),
and we can take v, to be the pullback of the universal section in the space
I'(E x PI(E,D;), D; K O(1)) under the projection E() — E sending D € E)
to the unique z € E such that D + x ~ D;.

The lemma is proved. UJ

5.3. Segre embeddings involved in the definition of zastava spaces. Re-
call that both the zastava spaces we are interested in (Coulomb and Mirkovi¢)
are defined as closures of certain Serge embeddings in projective bundles over
the configuration spaces. In this subsection we write down the equations of the
images of these Segre embeddings.
We redenote

EF & EF x B3 B°
by

BY & pfx g Y pe
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since [ will vary. The ruled surface P(X; ® Og) — E will be denoted P, — FE.
We have the Segre embedding

(5:3.1) (T Pe) /5 = B(Rier (K & O5))) /S

i€l
For any vector bundle W over E we have an isomorphism P(W¥?)/S, ~ P(W@),
where W ) is the subsheaf of S,-invariants in the pushforward of W®¢ from E°

to E(®). Thus, the RHS of (5.3.1) is equal to P(®;e; (K; ® Op)®)). Furthermore,
we have a decomposmon

Rier(K; © Op) ™ = € ofp
Btr=a
(recall that K := Eli@f]{gbi)). Thus we can rewrite the Segre map as
(5.3.2) (IT12*) /S = B( € olpsX”).
el B+v=a

Let (w;,);= = be a collection of distinct points of . Then the fiber of the RHS

of (5.3.2) at the corresponding point of E* is the projectivization of
1<r<a;

Q) (K@ 0p), =P QR X

iel N (i,r)eRr

Wi, r

where the summation runs over all the subsets R of the set of pairs (i,7);5 ="

For s;, € Ki|w,, the Segre embedding is given by

1<r<a;
((Si,ra 1)z'l€§IT§ai) = ® (Si,ra 1) = ( ® Siﬂ")N'
i€l (i,r)ERN

The equations cutting out the image of Segre embedding can be formulated as a
certain factorization property of the sections’ collection (sy). More precisely, let
us consider a morphism

q': EY x B7 — E°, ((wi’r)(” exn, D Z w;, + D,
(Z,r)eN
where [ := Z(M)GN a;, and 7 := a — 3. Let also py: EY x EY — E® denote the
projection. Also, for any (i,7) € X we consider a morphism
pip: BN x BV = E% x E*™% ((wi;)@nex, D) — (wiy, Z w; s + D).
(s)erR~{(ir)}
Note that g% o p;,, = q*. Then we have natural morphisms of vector bundles

kn: fppK” < fpi R Ki = o ( Q) p,p5 K
(3,r)EN
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e Q) (a2ph,Ki) = (R (A pisp}, P Ks)

(3,r)eR (4,r)eR

= @ (@,pn%) = & ( Q) p,paKi).

(i,r)eR (3,r)eN

We are finally able to state the Segre equations on the sections’ collection (sy).
We assume that the section sy corresponding to the empty subset X = 0 is
identically equal to 1 (this assumption is harmless since we are working in the
projectivization.) Then the equations read

(5.3.3) Kx(sy) = s ® Sir)-

(Z,r)EN

5.4. Proof of Theorem 5.2.1. According to Proposition 5.2.2, the summands in
V&|as-1(p) are isomorphic to the corresponding summands in U, |s;-1(p twisted
by O(’) where ' depends linearly on  numbering the summand. The isomor-
phism is given by the tensor product of isomorphisms ¢z, (Lemma 5.2.3(a))
and 15, (Lemma 5.2.4(a)). Comparing with the definition of T*%-action in
the first paragraph of §5.2, we see that the quotients (PV§|y5-1(p)/T*" and
(PUS | a3-1(py) /T coincide.

It remains to check that the closures of the images of Segre embeddings corre-
spond to each other under the above identification. Let X° stand for the open
subset of AJ7*(D) defined as the complement to all the diagonals in £. The
factorization properties of Lemma 5.2.3(b) and Lemma 5.2.4(b) compared with
the Segre equations (5.3.3) show that the isomorphism of the previous paragraph
restricted to X° respects the Segre embeddings.

The theorem is proved.

6. FEIGIN-ODESSKII MODULI SPACE

6.1. A symplectic moduli stack. We fix a G-bundle F; on E and a T-bundle
Lr of degree —a on E. We denote by M(Fg,Lr) the moduli stack of B-
structures ¢ on F¢ equipped with an isomorphism Indbe < L£p. It can be
upgraded to a derived stack equipped with a (0-shifted) symplectic structure.
Indeed, recall [PTVV] that both Bung and Bungy (moduli stacks of G- and
T-bundles on E) carry the canonical 1-shifted symplectic structures. Further-
more, [Saf, Example 4.11] equips the correspondence Bung — Bung x Bunp
with a canonical Lagrangian structure. Finally, the embeddings of stacky points
[Fe] = pt/Aut(Fg) — Bung and [Lr] = pt/Aut(Lr) — Buny are equipped with
the natural Lagrangian structures similarly to [HP, Theorem 3.18]. We consider
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the homotopy fibre product
Mder(ffg,LT) e BUDB

(6.1.1) l l

[Fe] x [£r] —— Bung x Buny.

The truncation of M9 (Fg, Lr) coincides with M (Fg, L1).

Now M4 (Fg, L) is a derived Lagrangian intersection and hence acquires a
O-shifted symplectic structure by [PTVV], cf. a similar construction [Spa] for the
base curve of genus 0.

6.2. Tangent spaces. For a point ¢ in M (Fg, L), we denote by
t, « b, < g, the vector bundles on FE associated with the adjoint
representations of B (clearly, t, is trivial). The tangent complex at the
corresponding point F; of Bung is RI'(E,g,[1]), and the tangent complex
at the corresponding point Lp of Buny is RI'(E,t,[1]), while the tangent
complexes at the corresponding stacky points [Fg| and [Lr] are the truncations
T<oRI'(E, g,[1]) and 7oRI'(E, t,[1]) respectively. From (6.1.1) we deduce the
homotopy fibre square

T, M (Fq, Lr) — RI(E,b,[1])

(6.2.1) l l

T<o R (E, g, (1] @ ,[1]) —— RI(E, g,[1] @ t,[1]).

Hence the tangent space T, M (F, Lr) is canonically isomorphic to the total
complex

(6.2.2) T, M (Fe, L7) = [RU(E, b,[1]) = m50RI(E, g,[1] @ t,[1])].

Furthermore, we have an exact sequence of B-modules 0 — b — gbt — b — 0
and the corresponding exact sequence of associated vector bundles

(6.2.3) 0—b,—>g,dt, = b, 0.
Replacing the right column of (6.2.1) by its cone RI'(E, b,[1]), we can rewrite
(6.2.4) T, M (Fg,Lr) = [7<oRT(E, g, ® t,) — RT(E,b.)].

On the other hand, the exact sequence (6.2.3) is clearly selfdual, and the Serre
duality on E gives rise to a perfect pairing between the RHS of (6.2.2) and (6.2.4).
This perfect pairing on T,,M% (F¢, L) is nothing but the symplectic structure
of §6.1.

Equivalently, at a smooth point ¢ in M (Fs, L), the Poisson bivector is de-
fined using the differential ds of the second page of the hypercohomology spectral
sequence for the complex n, = g, — g,/b,, of vector bundles on E.
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Remark 6.2.1. The original definition of Feigin-Odesskii in [FO] is that of the
Poisson bivector on the (smooth points of) moduli stack of B-bundles (or more
generally P-bundles where P is a parabolic subgroup), which is constructed simi-
larly to our definition above. As we have discussed in §6.1, this Poisson bivector is
a classical shadow of the 0-shifted Poisson structure on Bung associated with the
natural Lagrangian structure on Bung — Bung x Buny. So the truncation of the
smooth part of M (Fg, Lr) is a symplectic leaf of the original Feigin-Odesskii
Poisson structure.

6.3. Regular induced case. We consider a special case when a G-bundle F¢ is
induced from a degree zero T-bundle Kr: Fg = Ind?fKT. Moreover, we assume
that K7 is regular, that is, for any root o’ € RY, the associated line bundle
X" is nontrivial. Then for any dominant weight X € AY* the corresponding
vector bundle V;v (associated to the irreducible G-module V)‘v) canonically splits
into direct sum of its weight components. In particular, we have a projection
e Vﬁv — KN onto the lowest weight component line bundle (associated to
the character wo\ : T — C*). The collection of &¥, X € AY*, is subject to
Pliicker relations. If we act on our data by an automorphism of K7 given by an
element ¢ € T, the projection £ will change to X (¢) - &', cf. Definition 2.2.1(5).
Since Aut(Ind$Xr) = T by regularity of Kp (see e.g. [FMW, Proposition 3.10]
and [FrMo, Theorem 4.1(i)]), the collection of projections &2 : V3" — KX subject
to Pliicker relations is well defined up to the action of T

Another piece of data in the definition of the Feigin-Odesskii moduli space
M(Fg,Lr) is the T-bundle L7. For a fundamental weight w! we consider the
associated line bundle £4, and we set D; := L% @ K“/. We have D; € Pic“ E,
where oo = ) a;a; (recall that —a is the degree of Lr1). We set D = (D;);er.

We consider an open substack M der(IndS Ky, Lr) € M (Ind$Kr, Lr)

>\\/

given by the condition that the compositions £» < VS}V g_» KN never
vanish identically. Ignoring the derived structure we obtain an open substack
M(Ind$Xp, L) € M(Ind$Kyp, Lp).

Proposition 6.3.1. For a reqular T-bundle K, we have a natural isomorphism
pZ5% = M(Ind$ Ky, L7).

Proof. Comparing with Definitions 2.2.1,2.2.4, we see that the collection
of projections &N : Vév — KXY along with the collection of embeddings
LY <5 VY defines a point of reduced zastava ;,Z%. Thus we obtain a morphism
T: ]\C)/[(IndngT,LT) — DZ%. We have to check that T is an isomorphism. To
this end note that a twisted U_-structure on a G-bundle J defines a filtration
on the associated vector bundle Vév for any dominant weight X*. The successive
quotients of this filtration are of the form K+ ® VV (wop’) for the weights p’
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of the irreducible G-module V*'. The regularity condition on Ky ensures that
this filtration splits canonically, i.e. V) = @ K @ VA (wop). This collection
of splittings defines a reduction of F to T' C G that is a canonical 1somorphlsm
F = Ind$XKp. This construction provides a morphism Z —~ M (Ind$Xp, L1)
inverse to Y. O

Remark 6.3.2. The conclusion of Proposition 6.3.1 breaks down if K7 is not
regular. For example, if Xr is trivial, and hence F¢ is a trivial G-bundle for
G = SL(2), the LHS jJZO‘ ..., contains a point corresponding to a line subbundle
L C Vin arank 2 vector bundle V on E that is a nontrivial extension of O with
Og. But the RHS M(IndeKT, L) does not contain such a point.

6.4. Comparison of symplectic structures. The reduced zastava space 9% &
carries a symplectic structure by Theorem 5.2.1 and Proposition 5.1.1, while
the Feigin-Odesskii moduli space M (Ind$XKrp, L7) carries a symplectic struc-
ture by §6.1. The rest of this Section is devoted to an identification of these
two symplectlc structures. Namely, let {, }¢ denote the Poisson bracket on

Z?c o~ ngz, defined as the Hamiltonian reduction of the bracket of Proposi-
tion 5.1.1. Let {, }ro denote the Poisson bracket on M der(Tnd$ Ky, L7) defined
in §0.1. Tt restricts to the same named Poisson bracket on the smooth open locus
of M der(Ind$ %Ky, L7) where the derived structure is trivial.

Theorem 6.4.1. The zsomorphzsm of Proposition 6.53.1 restricted to the smooth
open loci ofDZCY and M(Ind Kr, Lr) takes the Poisson structure {, Yo to {, } ro.

Remark 6.4.2. The stack @Z can be upgraded to a derived stack (p Zo‘)de’r by
its very definition (since the Abel-Jacobi morphism AJy: Za — [ Lie; Pic™ E is
not smooth in general for rk G > 1, its level set acquires a natural derlved struc-
ture). Similarly, the stack of reduced Coulomb zastava 9DZO‘ can be upgraded to
a derived stack (CZ @yder. The 1som0rphlsm of Pl"OpOSlthIl 6.3.1 can be upgraded
to an isomorphism of derived stacks (, Za)der ~ N der(Ind$ Ky, Lp). We also ex-
pect but cannot prove that the isomorphism of Theorem .2.1 can be upgraded
to an isomorphism of derived stacks (25 )% (%Zo‘)der. Thus we expect a
symplectomorphism of derived symplectic stacks ($Z5)de = i der(Ind$ Ky, Lp).

6.5. Compatibility of reduced zastava with Levi factors. Given a sub-
set J C I, we denote by G D L; D T the corresponding Levi factor. For
a = Ziel a;o;, we define oy = ZiEJ a;co;. The factorization of zastava for a
decomposition a = aiy + a;y is a birational isomorphism

o ~ o o
2§ s 257 X Zg.

Composmg with the projection onto Z 7 we get a rational dominant morphism
Zo‘ --> ZC”
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Note that the derived subgroup L', =Ly, L] is also simply connected, and we
can consider its zastava space Z ! (LY), cf. Remark 2.2.3. Here X := (X;)ic, (re-
call that J; = KX~%). The natural morphism Z‘” (L) — %gag is an isomorphism,
and we will use it to identify these moduli sEaces

The rational dominant morphism Z§ --» Z3” (L';) induces a rational dominant
morphism of reduced zastava

Hfi Ly —=> ®JZ§Y<{,(L3)-

Here D stands for (D;);c.

Furthermore, the factorization property of Coulomb zastava similarly gives rise
to a rational dominant morphism CZ"‘ -—» CZO“S (L';) that in turn gives rise to a
rational dominant morphism of reduced Coulomb zastava

C.C%a CSay /
Iy : 52y - DJZKJ(LJ)-

Both morphisms I7Z, II§ are Poisson by construction.

6.6. Compatibility of Feigin-Odesskii moduli spaces with Levi factors.
For a degree zero regular T-bundle X7 and J C I we consider the Feigin- Odesskii
moduli stack M der(IndLJ Kr,Lr) for the Levi factor L;. We have a rational
dominant morphism

M M (Ind$ %Ky, L7) -—» M (Ind% Kr, L7)

constructed as follows.

Let P; D B denote the corresponding parabolic subgroup, and let U; denote
the unipotent radical of P;. Then the coinvariants VUA: carry a natural action
of Ly and form an irreducible Lj;-module with lowest weight wo\’ (and with
highest weight w woX'). The natural projection VYoo V(j\j gives rise to the
projection &) : V) — VQZUJ. Composing with the embedding £ — V)" we
obtain a morphism £ — Vg\rv’UJ. However, this morphism is not necessarily an
embedding of a line subbundle; in general it is only an embedding of an invertible
subsheaf. Hence in general it gives rise to a generalized B-structure in the L ;-
bundle Ind%’% ;. Thus we obtain a morphism

1M N9 (Ind$Kr, L7) — MO (Ind% K, L)

to the Drinfeld closure of A/ der(Ind%’ Ky, Lr). The latter closure is defined as
the open substack in the homotopy fibre product of [Ind%’XKz] x [£7] and Bung,
over Buny, x Buny (cf. (6.1.1)) given by the condition that the generalized Bj-
structure is generically transversal to the tautological U;_-structure in Ind TKr.

It remains to check that I} is dominant, 1 e. gives rise to the desu"ed ra-
tional morphism from M der(lndGﬂCT,LT) to I der(Ind%/ %K, £1). This follows
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from Lemma 6.6.1(b) below, i.e. compatibility of I} with IT% along with the
dominance property of I17.

Comparing with construction of Poisson structure {, }ro in §6.1,6.2 we see
that 1T} is a Poisson morphism. Indeed, we have to check that for a smooth
point ¢ € M (IndeKT,LT) such that H M is regular at ¢, the Poisson bivector

P;: THM MJ(Ind 'Ky, Lp) — THM MJ(Ind 'K, Lr) equals the composition

dIT} o PI o (dIT}")*. To this end note that we have a natural projection of vector
bundles on E:
E: gy~ (L)
and the condition that IT} is regular at ¢ guarantees that Z(b,) = (bz,) i, and
E(ng) = (nr,) g, Moreover, under the identification (6.2.2), the differential

dIT)" s T, M (nd§ Ky, L1) = Tgar My (Indg? Ky, £7)

is induced by =. Furthermore, under the identification (6.2.4), dIT} is also in-
duced by Z, provided we identify b/, with g,/n,. The Poisson property of II M
follows.

Lemma 6.6.1. The following diagrams commute:
025, H—JZ> QJZ?{],(L' )

C
c? HJ} cZay (11
DZ?{/ DJZ &(LJ>7
[e]
o2 — n 2L
HJ

o M o
M(IndS%Kp, £7) —s N, (Ind2 Kp, £1).

Proof. (a) follows from the fact that the isomorphism of Theorem 5.2.1 is com-
patible with factorization.

(b) follows from the definition of factorization isomorphism, cf. the proof
of [BDF, Proposition 3.2]. O

6.7. Proof of Theorem 6.4.1 for G = SL(2). The only vertex of the Dynkin
diagram is denoted by 7. The corresponding simple root and fundamental weight
are denoted simply by o and w”. A regular T-bundle is a line bundle K = K’
such that K; = K2 = K~ is nontr1v1al We fix a line bundle L of degree —a,
and we set D = L71K. A point ¢ of Z% &~ M(ZK ® K, L) is represented by a
short exact sequence

(7t73)

0 £ 50 g0 ! £l 0.
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The associated adjoint vector bundle has a 2-step filtration 0 C n, C b, C g,
with associated graded quotients n, ~ £2, b,/n, ~ End(L) ~ Of, g,/b, ~ L2
It gives rise to the connecting homomorphisms

§: HY(E,L7?) — HY(E,&nd(L)), H'(E,&nd(L)) — H'(E, L?).
If ¢ is a smooth point of ]\O/[(IK ® K1 L), then the tangent space is

T,M(K & X", £) = Ker (H'(E,£72) — H'(E, &nd(L)))/Cs ot,
and dually the cotangent space is

TAM(K @K', L) = (Csot): C HY(E,L?))/H(E, &nd(L)).
Also, we have a splitting
(6.7.1) H°(E,L'K)/Cs ® H(E, LK) /Ct = T,M(X @& K", L),
(w,0) — sop—tow.

Explicitly, given @ € Hom(£,X) and ¢ € Hom(L,X™!), we construct an infini-
tesimal deformation (s.,t.) of (s,t): L — K & K~ over Cle]/(g?) as

sc=s+we: LK, te=t+pe: L — KL

6.7.1. Coordinates. Let D be the zero divisor of s € Hompg(L,XK); we assume

that D is multiplicity free and we choose a numbering wy, ..., w, of its points.
The functions wy, ..., w, 1 L M (Ke X1, L) — F are deﬁned étale locally (and
w, is determined by wy, ..., w,—1 since the sum Y *_, w, € E is fixed).

We also fix a section u of LKt _with zeros dlsJ01nt from D and define the
homogeneous functions y, = %[, : M (K@ X1 L) — C*. Since the reduced
zastava is a quotient by the G,,-action, only the ratios of y-coordinates are well
defined (étale locally). Alternatively, we can normalize ¢ in such a way that

Yoo, u‘wT = 1, and consider the resulting functlons Y1, - -, Ya_1 together with

Wi, ..., We_1 as étale local coordinates on M (K ® X1 L£). The above normal-
izatlon of t is possible (the sum does not vanish 1dent1cally) since £L71K ! is not
isomorphic to £L71XK, hence the restriction map H°(E,L~'K™1) — C%, t — t|p,
is an isomorphism.

The tangent space to E@ at D can be identified with H°(D,Og(D)|p) =
HYE,0p — Og(D)) (the complex O — Og(D) lives in degrees 0,1). The
tangent vector corresponding to the infinitesimal deformation D, equal to the zero
divisor of the section s. (considered right after (6.7.1)) is given by the 1-cocycle
(0,%2). In other words, the corresponding element of H(D, Og(D)|p) is the polar

part of —Z. Note that this is the same as the polar part of (SOQ% Thus the
tangent map to the factorization morphism M(iK oK1 L) = E@ (s,t)— D,

(soo—tow)|p

P where s’ is the nowhere vanishing section of

sends s o o —tow to
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L71K(—D) corresponding to s. It means that the image of the tangent vector
0/0w, under the composition

TN (KX, L) — HY(E, £L7'%)/Cs — H(D, £7'K|p) 12 H(D, 05(D)|p)

is the principal part of the unique (up to an additive constant) rational function

on E that has a simple pole with residue 1 at w, and a simple pole with residue

—1 at w, and no other poles (we use the trivialization of wg, see Remark 2.2.5).
Dually, dw, is the image of (1|,, — 1|,,) under the composition

1/¢'|p 1/tlp

H*(D,0p|D) —= H"(D,£X"Y(D)|p) — H*(D,£*(D)|p)/H"(E, Op)

— HY(E,L*)/H°(E,Op),
where the last arrow is the connecting homomorphism for the short exact sequence
0— L? — L*(D) — L*(D)|p — 0.

The image of the tangent vector d/0y, under the composition

(6.7.2) T,M(X &X', L)— H'(E LK) /Ct — H(D, L‘1K‘1|D)/Ct|p
1/ulp

2 H(D, OE]D)/C b

is 1|w, — 1w, (mod %|p). Indeed, at a point of ]\04(9( @ K~ L) given by a pair
of maps (s,t) : L — X @ X!, the tangent vector 9/9y, is represented by the
linear term of the infinitesimal deformation (s.,t.): £ — X @ X!, where s. =
s, te(w;) = t(w;) for i # r,a, while t.(w,) = t(w,) + eu(w,), and t.(w,) =
t(wy) — eu(w,). Restricting this linear term to D and dividing by u|p, we obtain
Lw, — 1]w,-

6.7.2. Computation of the Feigin-Odesskii bracket. According to the last para-
graph of §6.2, the Feigin-Odesskii Poisson bracket is defined using the differential
ds of the second page of the hypercohomology spectral sequence for the complex

(7t2 7St752)

2 -2 2 (52,25t,7t2) -2
L K=e0ppXK — L7~
Consider the commutative diagram
LQ (—t2,st,52) :K-Q ® OE o :](:2 (s2,2st,—12) L_Q
—t2 5't,s's §'s,2st,—t2
(6.7.3) £2(D) S g2y g O @ K2 S0, g2

l l( (t/p)~2,0,0)
D

LXD)lp —= L2(D)]p.
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Weset H:=g, =K 2®0pdK?* H :=K ?(D)®O0p @ X One can show by
the diagram chase that the following diagram commutes:

Ker (H'(E,£%) — H'(E, X)) —%- H°(E,£~?)/H°(E,X)

(6.7.4) T T

Ker (H(D, £(D)|p) — H'(E,K)) — H°(E,H')/H"(E,X).

Recall that the Hamiltonian vector field A, of dw, is the image of 1|,, — 1|,
under the composition

Ker (H'(E,£2) — H'(E,K)) —2> H(E,L2)/H(E,X)

)
HY(D, 0g|p) L2 Ker (HO(D, £2(D)|p) — H'(E, ).

Due to commutativity of (6.7.4), we can replace this composition with
HO(E, £-2)/ HO(E, %)

HO(D, 0g|p) L2 Ker (HO(D, £2(D)|p) — HY(E,H)) —— HO(E,H')/H(E, ).

It follows that h, gives a section of £~2 divisible by s, say h, = so 0. This means
that in the splitting (6.7.1), h,. lies in the second summand. In particular,

{w,, w}ro =0 for any r,r.

Furthermore, one can see from (6.7.3) that g is the section of £L7'K™! taking
value t|,, at w, and —t|,, at w,. Composing this claim with (6.7.2) we get

{yrs}ro = 0 for v # 7', and {y,,w,}ro = y.
The remaining brackets

{yra yr’}FO = 0.
Indeed, we have proved that ds sends the first summand of the splitting (6.7.1) to
the second one in the dual splitting. But the splitting is symmetric with respect to
swapping the roles of s and ¢ (and replacing the divisor D with the zero divisor of
t). This shows that ds sends the second summand to the first one, so the brackets
of y-coordinates vanish.

6.7.3. Comparison with the reduced transversal Hilbert scheme. According
to Proposition 2.3.1(c), the reducgd zastava is isomorphic to the reduced
transversal Hilbert scheme ,Hilb? (Sg), where X' := X; = K~ @ D. The
symplectic structure wg on the surface §g</ defined in §5.1 gives rise to a
symplectic structure on the transversal Hilbert scheme and on its reduction.
The corresponding bracket is denoted {, }¢. On the other hand, according
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to (3.6.1), the (reduced) transversal Hilbert scheme is nothing but the (reduced)
Coulomb open zastava, and this identification respects the Poisson brackets.

To compare {, }5 with {, } ro we match the local coordinates. We choose a local
trivialization n of X' = K} = L71K 1. We denote by p: Ss — E the projection.
The corresponding local coordinate z on Sy is Z = Tean /p*n, Wheréa Nean 1S the
tautological section of p*X’. On the étale open (S« )* ~ A — Hilb*(Sx/) we have
the induced local coordinates wy, ..., wq, 21, . . ., 2. We have {z,., w, }5 = z,, and
all the other brackets vanish. .

On the reduced transversal Hilbert scheme ,Hilb{ (Sx%:) we have the constraint
that w;+...4w, is a fixed point of E. These coordinates clearly match the same
named coordinates on the reduced zastava of the previous subsections.

Now recall that the identification of reduced zastava with the reduced Hilbert
scheme in Proposition 2.3.1(c) is obtained in the following way. Given a point of
reduced zastava represented by ¢ = (s,t) we fix an isomorphism ¢: Og(D) =D
and consider the image of D x {1} C D x G,, under the isomorphism

(c-t/9)|lp: D x G,, = X'|p

considered up to G,,-action (K'|p stands for the total space of the line bundle).
Here we view t/s as a section of X~2(D). In fact, we can take ¢ = s, so that our
point corresponds to the trivialization of X'|p given by t € HO(FE, LK) =
HO(E, X").

But if we use a local section u € H°(E,L7'K™!) as in §6.7.1 to define the
local trivialization 7 above, the value of the above coordinate z,. at ¢ = (s,t)
equals t/u(w,). This coincides with the value of the coordinate y, of §6.7.1 at
@. In other words, the identification of reduced zastava with reduced transversal
Hilbert scheme takes the (w, y)-coordinates to (w, z)-coordinates, and the bracket

{. }ro to {, }xr.
This completes the proof of Theorem 6.4.1 for G = SL(2).

6.8. Proof of Theorem 6.4.1 for G = SL(3). The vertices of the Dynkin
diagram are denoted by 7,j. A regular T-bundle Kt is specified by the line
bundles K¢ and K% such that K = K2 K5, K9 = K25K ), KT =
KK are all nontrivial. We fix line bundles £, = £4 and L; = £ of
degrees —a;, —a;, we set a = a;a; + ajo; and D; = Li_lﬂ(wy, D, = ,C]-_IJCMX.
We set V = Vo = K @ K9 @ K™ = K, &Ky ®K3. A point ¢ of
DZ % = M (Ind$Kyp, L) is represented by a complex

(81,52733)\ (t1,t2,t3) ]
(6.8.1) L , v Lt

Here s, € H(E,£;'K,) and t4 € H°(E,X;'£;") have no common zeros and
satisfy the equation s1t; + saoty + s3tz3 = 0 € HO(E,Li_le_l). The associated
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adjoint vector bundle
(6.8.2) 0, =070 @ KX
1<c#d<3

(traceless endomorphisms of V) has a 2-step filtration 0 C n, C b, C g, and the
Poisson bivector {, } ro comes from the differential dy of the second page of the
hypercohomology spectral sequence for the complex

(6.8.3) N, — go — 9,/ b,

6.8.1. Coordinates. We use the morphisms Hf‘f} and H?f} of §6.6. The targets
are the Feigin-Odesskii moduli spaces of type A; studied in §6.7. In particular,

the Coor(%inates on them are defined in §6.7.1, and we define the coordinates on
pZ% = M(Ind$Kyp, L7) as the pullbacks of the coordinates of §6.7.1. Thus we

get the étale local coordinates w; 1, ..., w;, (subject to the condition that their
sum in E is fixed), wj1,...,w;q, (also subject to the condition that their sum
in F is fixed), ¢i1,...,Yiq (homogeneous, i.e. only the ratios are well defined),
Y1, - - Yja; (also homogeneous).

More explicitly, w;1,...,w;,, are the zeros of si, while wjy,...,w;,, are
the zeros of t3. We impose the genericity assumption that all the points
Widy ooy Wiay, Wi, -, Wia, are distinct.  Furthermore, we choose sections

u; € HO(E, £7'%,) and u; € HO(E,UCgli]]-_l). We consider the open substack of

M (Ind$Xr, L7) specified by the condition that all the w’s are distinct and also

distinct from the zeros of u; and u;. Finally, y;, = 2|y, ., yjr = %\wﬁ.
% ’ J ’
The only nonvanishing Feigin-Odesskii brackets of i-coordinates (resp.
j-coordinates) are {yi,,Zi,}ro = Vi, (vesp. {yjr,2jrtro = y;,) since Hf\f.}

(resp. I f‘;f}) is Poisson. It remains to compute the brackets of i-coordinates with
j-coordinates. This computation will occupy the rest of this Section.

6.8.2. Brackets with w-coordinates. We extend the complex (6.8.3) to a diagram
FHom((Ky' & K3') /L5, L5) — Hom(VY/L;,L;) = ny — g,
— gcp/bcp — f]-Com(Li, V/Ll) — ﬂ{om(ﬁi, (561 D JCQ)/LZ)
Note that we have isomorphisms of line bundles (K;' @ X3')/L; ~ L]-_lfKQ_lngl

and (K, @ Ky)/L; ~ L£;'K K, Hence composing the first three and the last
three arrows in the above diagram we obtain a complex

£25,%5 2 g, B £725,Ks.
With respect to the decomposition (6.8.2)

XK'k @ KK o KK
g, CO KK, @ IG'K, @ KK,
o K'Ks © KKy @ Ky'Ks,
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the matrix elements of A (resp. B) are

0 0 0 —8152 —S8282 —S83S52
—t1t3 —t2t3 —tgtg resp. S$181 5189 S183
lita  loty sty 0 0 0

(notation of (6.8.1)).

Hence the first and the third rows do not contribute to the differential d, of
the second page of the hypercohomology spectral sequence, and this differential
equals the one for a simpler complex

—tits,—tats,—tats) 5151,5152,5153)

(6.8.4) L2K2%K - KK B O 5 ® K315y

In particular, the image of ds is always divisible by s;.
This implies {w; ,, w;, }ro = {Wir, Yjr }ro = {Yir, Wi tro = 0 for any r, 7.

L72K,Ks.

6.8.3. Type A; revisited. In order to compute {v;,,y;}ro, we need some
preparation on the tangent bundle of the Levi Feigin-Odesskii moduli space

]\04{]‘} (Ind;{‘j}ﬂcT, LT)
Recall from §6.7 that

Tﬂg}wl\%{j}(lndimﬂﬁ, Lr) = Ker (H'(E, £72K;'%5") — H'(E, &nd(£;"))) /Clats,

T ‘P]\(;[{j}(Indin{j}g{T’ Lr) = ((Chats)™ C HY(E, L5K2K5)) /HO(E, End(L7)).

{1}
Splitting (6.7.1) can be rewritten as follows:
(6.8.5)
HO(E, £7'%;")/Cty & HO(E, £7'%51)/Cty TH%@M{j}(Indi{”J{T, Lr),
(@, 0) o ts0 — tawo.

Applying Serre duality to the splitting (6.8.5) of TH?J;}SO]\%{j}(Ind;{“KT,LT),
we obtain the following splitting of Tg%pl\%{j}(lndi{f}j{% Lr):
(6.8.6)
Ty My (Indy Ky, £r) = ((Cta)* € H'(E,£,%2) ) & ((Cha)* € H'(B. LK) ).
v — (vts, —vta).
It will be useful to rewrite the first summand of the splitting (6.8.6) as

ReS(tQ‘DtS ?)

Ker (HO (Diy, £;%(Dyy) |, ) HY(E, oE)>.

This is done by dualizing the first summand of (6.8.5), using the pairing be-
tween HY(E, £;'K5") and HO(Dy,, £;X5(Dy,)|p,,) given by the sum of residues
of the product (as always, we use the trivialization of wg in Remark 2.2.5). The
identification
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Res(tz|D753 -7)

Ker (H (Diy, £%2(Di)lpi,) ———2— H'(B,05)) = ((Ck)* € H'(E, £,%5))

is induced by the connecting homomorphism for the short exact sequence

(687) 0— ijCQ t_3> erjCQ(DtS) — 'C’JUCQ(DtB”DtB — 0.
6.8.4. Brackets of y-coordinates: Cech cocycles. In  order to compute

{YirsYjr } Fo, We need to compute the composition

2|p,,?)
Ker (HO (Diy, Ou(Dyy) |y, ) ———— H'(E, oE))

1
T‘Dt3

L% Ker <H0 (Dtg, Lﬂ<2(Dt3)|Dt3>

Res(t2|Dt3 -7)

H\(E, oE))

— Ker (HY(E, £25,K3) — H'(E,05)) 2 HO(E, £;72K,%K5)/Cs1 55

1
f' s
— HY(E, £7'K,)/Csy ~— H'(D,,,0p, )/C2

Uy

)
Ds,

where u;, u; were defined in §6.8.1, and dy comes from (6.8.4).
We rewrite the above composition as follows:

0 Res(%|Dt3~?) )
(6.8.8) Ker <H (Diy, Ou(Dyy) |, ) HY(E, oE)>
%‘Dtg

]—> Ker <H0 (DtgaLjJCZ(DtS)‘Dtg)

Res(t2|Dt3 7)

H\(E, oE))

— Ker (H'(E, £;X5) — H'(E, 0g)) & HY(E, £;3,%,)/Csy 5,

1,
— HY(E, £7'K,)/Csy ~— H(D,,, 0p, )/C2

Uj

)
Ds,

where the second arrow is the connecting homomorphism coming from (6.8.7),
and ds is the differential in the hypercohomology spectral sequence of the complex

(—t1,—t2,—t3)
e

(6.8.9)  £;%, KKy @ Op B Ky 1K, L2990, p2ge gc)

To perform computations with the first cohomology we introduce a Cech cover

of E by two opens U, := E \ D, and Uy, := E . D;,. We represent dy;,, 1 <
r < a;, as the element of H°(D,,, Op(D,)| py,) given by the principal part of

-1
1 t £ 1
Wy Uj lwj,, Uj lwj,a; T — Wj,a;

Xr — U}jﬂ‘
Then the corresponding l-cocycle in H'(E, £;X5) is given by a section f €
H°(U,,NU,,, £,;%X5) having simple poles at points of D,, (and perhaps some other
poles at D;, that we do not care about) such that the principal part of f at w;, is

Wj,a;
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-1
1
T—Wiq.
Wj,a; 7

whlle the prmmpal parts of f at w;, for r # r’ # a; vanish. Furthermore, we
apply the left morphism in (6.8.9) to the above 1-cocycle to obtain a 1-cocycle
(91,92, 93) € HY(E, X{'Ks @ Op & K5'K>), where g1 = —t1f, go = —t2f g3 =

—t3f. Then g3 has no poles at Dy,, and g, has the principal part — —tz |w] .

to

i1, ) (-
J wj

U

w; |\ Wir g wj

and the principal part of f at w;,; is — (

at

T— w],«

T—Wjq;

wj», and the principal part (Z—Q ) L at Wj,q;, while the principal parts of
I lwj -

, :
g2 at wj, for r # r' # a; vanish.

6.8.5. Brackets of y-coordinates: Weierstraf (-function. Below we write formulas
in terms of the Weierstraf zeta function ((x) (see e.g. [P, Appendix A]) which is
defined on the uniformization of E/. However, the linear combinations we consider
descend to rational functions on E. In particular, the function

@wj,rawj,aj (7) := ((x — wjﬂ”) —((r — wjﬂj)

on F is a rational function with a simple pole at w;, with residue 1 and a simple
pole at w;,, with residue —1, regular away from wj,, w;j; .

Using this function we can express the 1-cocycle (g1, g2, g3) as a coboundary
(91,95, 95) — (91,92793) where (g1, gb, g5) € H°(Up,, K"Ky @ Op ® K5'Ks) and
(g7, 94, g%) € H'(Up,, K{'Ky @ Op @ K3'Ky). In particular, we have

to
@wy‘,mw]:aj .
Wi r

'—0. =2
93 D) (Uj
Furthermore, by definition of dy in (6.8.8), we have
do(f) = s7gh + 515205 + 0 (mod s159)

(note that do(f) is actually a regular section of £;2K;XK, since sit; + saty =
—sst3). Hence we have

t
do(f) = s1gy — 5182 (—2

Uj

) @wj,rrwj,aj (mod s159).
w‘j’r

The composition with the last two arrows in (6.8.8) annihilates the summand

s2g), and we are left with
a;
to Z S2
- (_ ®wj,'r7wj,aj (wiyrl)'
u] Wwj,r r'=1 uZ z r!

Pairing this expression with dy; ,» we finally arrive at

(6810) {yj,ra yi,r’}FO = —YjirYir (ij,r,wjﬂj (wi,r’) - @wjy,\,wjﬂa . (wi,ai)) .

J

To be more precise, recall that our coordinates include w; 1, ..., w;q,—1, but not
W; q,- However, w;,, can be determined from wj 1, ..., w;q,—1 and the constraint
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that > 7 | w;, is fixed in E. The same applies to w;,,. Now, instead of nor-
malizing the y-coordinates by fixing their sum, let us view them as homogeneous
coordinates, so that only their ratios matter. From (6.8.10) one can deduce
(6.8.11)

yi,’f" yj,’f’ } _ yiﬂ", yjﬂ' C(w w ) C(w w ) C('u} w )
R - i’ — Wyr) ™ i, Wyp) ™ i,p' — Wy +§(wz, =Wy, ) .
{ yi,p’ yj,p FO yi,p’ yj,p ( J 2P P J P 7P )

6.8.6. Comparison with the reduced C’ougomb zastava. To compare the bracket
{, }a on the reduced Coulomb zastava § 2%, with the Feigin-Odesskii bracket we
write down the isomorphism of Theorem 5.2.1 explicitly in coordinates. To this
end we envoke the uniformization : C — E = C/(Z @ Z71). We denote by w
the coordinate on C such that the trivialization of wg given by dw coincides with
the one of Remark 2.2.5. We denote by #(w) the theta-function of degree 1 for
the lattice Z @ Zt such that #(0) = 0. We use the standard trivialization of the
pullback P*D; such that [[rL, #(w — w,) descends to a section of D; whenever
05 (30, F(w)) ~ ;. o

The common part of the étale coordinate systems on “Z%, and Z§ is formed

by (w7, wﬂ):,::llaél (we now think of them as of points in C rather than their

. . . . 2 r=1,...,a;
images in F). The additional coordinates on Z§ are (yi,,Yj,)—;. o, Where

Yirt € Kilw, 1+ Vi € Kilu,,,» and K; = K K; = K5, The additional

coordinates on €7 are (2,7, 2, )y "
X i’y A )r=1,...a,

K =K D;D; !, K; =KD

On the reduced zastava the w-variables are constrained to have a fixed sum,
while the y-variables (resp. z-variables) are homogeneous, i.e. only their ratios
are well defined. The isomorphism of Theorem 5.2.1 has form
(6.8.12)
Yipr! = Zi,wﬁbz‘,r’(wz‘,l, .. ;wi,ai>¢<wi,r’; Wiy ,wj,aj), Yjr = Zj,rcbj,r(wj,l, e awj,a]-)7

/ /
, where 2 € Kilw, s 2jr € Kflw,,, and

where (w;,;wj,...,wj,;) descends to a section of D; (unique up to
rescaling) that vanishes at all the points wj1,...,w;.,. Note that rescaling
Y(Wipr;wi1, ..., Wje;) does not change the ratios vy;,/yip, so the above
transformation is well defined. The exact definition of ¢;,/, ¢;, is not important
for our purposes (we observe only that ¢;, is a nonzero element of D; 1]% L)
Thus we can take 7

a;
w(ww/; ’lUjJ, e ,wj’aj) = H Q(wim/ — wj,r)-
r=1

Now recall the coordinates y; ,» of §6.7.1. They depend on a choice of a trivial-
ization v of K;D; and are defined as v, ,» = %‘wl y (recall that t is also a section

of K;D;). On the other hand, y;,» = Res,, , %, where s is a section of D; with
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ZEros W1, . .., W;q,, see (3.4.4). Hence
U
(6813) yi,T’ = yi’f,‘/ . Reswi iy
s

(where we use the trivialization of wg, see Remark 2.2.5). Using the uniformiza-
tion P: C — FE and trivializing P*D; we can view u as a trivialization of K.
Then we can write s(w) = [[7_, (w — w; ), so that (6.8.13) becomes

u(wi)
9/<O> Hp;ér’ 0('(1)1'77‘/ o wi,p)
Thus viewing u as a trivialization of X; and combining this with our trivial-

ization of P*D; we can view z;,» as actual coordinates taking values in C, and
from (6.8.12) we get

Yip: = Yig

a;
Vi = 2B (Win, - wia) [ [ Owisr — wn), Yir = 2508, (Wi, - wja,),
r=1

/
i,r’

where once again, the exact form of ¢
We get

;. .
gzﬁjm is not important for our purposes.

O, (Wi s Wi, Wha,)

w(wiﬂn/; wj,b . 7wj,aj)

{yi,r/a yj,r}fK’ =Yir'Yjr =Yir'Yjr - C(wim’ - wjm)-

This in turn implies

Yip' Yipd K Yip Yip
Comparing with (6.8.11) we see that the brackets {, }x and {, }ro match on
y-coordinates. It is easy to check that they also match on the brackets involving

w-coordinates.
This completes the proof of Theorem 6.4.1 for G = SL(3).

(C(wi,r/ — W) =C(Wir —wjp) —C (Wi —wj )+ (Wi gy _wj,p)) :

6.9. Proof of Theorem 6.4.1 for arbitrary simply laced . The étale local
coordinates on , Z§ are (w; ., Yi ) 2165; sai (as always, w-coordinates are constrained,
and y-coordinates are homogeneous). We have to compare {f, g} ro and {f, g}x,
where f is a coordinate function from the i-th group, and ¢ is a coordinate
function from the j-th group (it may happen that i = j). We consider the Levi
subgroup of rank 1 or 2 corresponding to the Dynkin subdiagram on vertices i, j.
The rational projection /T to the corresponding Levi zastava spaces being Poisson,
it suffices to compare the brackets in question for the Levi zastava spaces. This
comparison was already made in §6.7 for rank 1 and in §6.8 for rank 2.

This completes the proof of Theorem 6.4.1 for arbitrary simply laced G. 0
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