
Fluidic Topology Optimization with an Anisotropic Mixture Model

YIFEI LI, MIT CSAIL, USA
TAO DU, MIT CSAIL, USA
SANGEETHA GRAMA SRINIVASAN, University of Wisconsin-Madison, USA
KUI WU, LightSpeed Studios, Tencent, USA
BO ZHU, Dartmouth College, USA
EFTYCHIOS SIFAKIS, University of Wisconsin-Madison, USA
WOJCIECH MATUSIK, MIT CSAIL, USA

Iteration 1 Iteration 10

Iteration 20 Iteration 50

velocity

25

0

20

15

10

5

Inlet

Outlet

Fig. 1. We present a topology optimization pipeline for designing Stokes-flow fluidic systems with flexible and accurate boundary conditions. Our method
automatically creates the structure of this fluidic twister on an 100 ⇥ 100 ⇥ 100 grid a�er optimizing nearly four million decision variables. The goal of this
device is to generate a swirl flow at its outlet given a constant inflow. Le�: our final design is made of spatially-varying anisotropic materials, which we
visualize as a small disk in each voxel colored based on its anisotropic direction (bo�om-le� inset). Our method automatically synthesizes a propeller-like
structure (top-right inset) to facilitate the vortex generation near the outlet. Middle: the flow simulated from the final design, visualized as streamlines. A
vortex emerges near the outlet (top-right inset). Right: visualization of flows from the fluidic device a�er 1, 10, 20, and 50 iterations of topology optimization.

Fluidic devices are crucial components in many industrial applications in-
volving �uid mechanics. Computational design of a high-performance �uidic
system faces multifaceted challenges regarding its geometric representation
and physical accuracy. We present a novel topology optimization method
to design �uidic devices in a Stokes �ow context. Our approach is featured
by its capability in accommodating a broad spectrum of boundary condi-
tions at the solid-�uid interface. Our key contribution is an anisotropic and
di�erentiable constitutive model that uni�es the representation of di�erent
phases and boundary conditions in a Stokes model, enabling a topology
optimization method that can synthesize novel structures with accurate
boundary conditions from a background grid discretization. We demonstrate
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the e�cacy of our approach by conducting several �uidic system design
tasks with over four million design parameters.
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1 INTRODUCTION
Fluidic systems play a vital role in today’s industry and engineer-
ing, supporting applications from jet engines, hydraulic actuators,
to heart valves and bioreactors. Computational design of a �uidic
system that manifests precise functionality and complex geome-
try remains as a substantial challenge. Despite the rapid advent of
additive manufacturing, which enabled the fabrication of intricate
�ow-driven systems on an unprecedented level of printing reso-
lution, the computational exploration of the design space of even
a simple �ow “twister” (one that converts a laminar input �ow to
a swirling pattern at its outlet) remains a di�cult task due to the
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interleaving complexities of the �ow physics simulation, topological
structure exploration, and accurate boundary representations.

We identify two underlying challenges for building a �uidic sys-
tem design framework. First, an accurate �ow simulator needs to
enforce both the incompressibility constraint and accurate boundary
conditions (i.e., slip and non-slip) within a topologically complicated
domain. Especially, when a �uid structure gets narrow, an accurate
model to characterize the solid boundary’s impacts on the near-
boundary �ow behavior is essential for evaluating the system’s
performance and design sensitivities. Conventional approaches, as
a strict adherence to a non-slip boundary condition (which is a mod-
eling hypothesis rather than physical principles), could e�ectively
“clog up” such narrow �uid pathways, and hinder the optimization
process to generate new design features. Second, a capable opti-
mizer is expected to e�ectively explore the high dimensional design
space of both shape and topology without being constrained by
any parameterization priors. Traditional shape optimization frame-
works, despite their ability in featuring the local geometry of the
solid-�uid boundary accurately, could not generate new topological
features that di�er drastically from the current shapes. Considering
these two aspects, we need to carefully choose the design’s discrete
representation that can balance its geometric expressiveness (i.e.,
accurately featuring the local shape) and topological complexities
(i.e., freely evolving the global topology).

Traditional �uidic design frameworks, categorized into �eld-based
methods and shape-based methods according to their design repre-
sentations, su�er from a number of limitations. In particular, current
�eld-based approaches lack an accurate boundary representation,
and shape-based approaches are limited in topological �exibility. A
�eld-based approach (e.g., see [Borrvall and Petersson 2003]) repre-
sents the �uid domain using a density �eld discretized on a back-
ground grid. Akin to the volume-of-�uid (VOF) method [Hirt and
Nichols 1981], the density of each cell speci�es the fraction between
�uid and solid phases occupying the cell’s volume. Such fraction-
based representation, like in VOF, su�ers from its inherent ambigui-
ties in reconstructing the accurate geometry of a sharp interface and
therefore lacks its ability in enforcing accurate boundary conditions.
Shape-based approaches, exempli�ed by the implicit level sets [Fed-
kiw and Osher 2002] and explicit parametric shapes [Du et al. 2020],
lack their �exibility in exploring complex topological changes. In
particular, the lack of ability in tackling topological changes such
as merging, splitting (for parametric shapes), and adding/removing
holes (for level sets), will constrain the algorithm’s exploration of
the design space within a limited scope. A method that can com-
bine the merits of both �eld-based and shape-based approaches,
despite their successes in solving forward simulation problems in
computational physics, such as the Coupled Level-Set and Volume
of Fluid (CLSVOF) [Sussman and Puckett 2000] and particle level-set
method [Enright et al. 2002], remains largely unexplored in the �eld
of computational design of �uidic systems.
To address these two challenges, we propose a non-parametric

topology optimization framework enhanced by accurate boundary
treatments to enable large-scale �uidic system designs. The criti-
cal challenge we addressed in this work is to devise a geometric
representation that can express the phase (solid or �uid), sharp in-
terface (with boundary normals), and anisotropicity (with local �ow

directions) in a uni�ed geometric representation. Our method was
inspired by the anisotropic material model for elastic simulation
[Li and Barbič 2015] and the di�usive imaging model in Magnetic
Resonance Imaging (MRI) [Basser et al. 1994], which use tensor
�elds to encode the local, anisotropic geometry. We propose to rep-
resent the solid, �uid, and their boundary as an anisotropic tensor
�eld discretized on a background grid, which enables us to accu-
rately handle di�erent boundary types and maintain �exibility in
evolving topology. Based upon this novel representation, we further
formulated the di�erentiable simulation and optimization models
in conjunction with our novel block-based incompressibility con-
straint to explore designs in a high-dimensional parameter space.
Compared with the �ow optimization literature, our design system
tackles topologically complicated �ow design problems by express-
ing its spatially �lling, multi-phase, and heterogeneous material
features in a continuous and uni�ed fashion. We validate the e�-
cacy of our approach in multiple �uidic device design problems with
as many as two million design parameters, many of which showed
for the �rst time designs with intricate solid structures and free-slip
�ow �elds in complex �uid domains, which were impractical for
previous methods.

We summarize the main contributions of our paper as follows:

• We propose an anisotropic Stokes �ow model, as well as its
discretization scheme, numerical solver, and gradient compu-
tation, which jointly enable �exible modeling of both free-slip
and no-slip boundary conditions.

• We propose an approach to incorporate volume-preserving
constraints aggregating in rectangular regions that improve
the conditioning of our system.

• We propose a �eld-based topology optimization framework
for computational optimization of �uidic systems with accu-
rate, �exible solid-�uid boundaries.

• We demonstrate the capacity of our framework for obtaining
a variety of complex �uidic devices design.

2 RELATED WORK
Flow optimization. Beginning with the pioneering work of Bor-

rvall and Petersson [2003], a vast literature has been devoted to
the optimization of �uid systems [Alexandersen and Andreasen
2020]. Given a prede�ned design domain with boundary conditions,
a typical optimization objective is to maximize some performance
functional of a �uid system (e.g., the power loss of the system)
constrained by the physical equations. Similar to a conventional
structural optimization problem, the design domain is discretized.
The optimization algorithm decides for each element whether it
should be �uid or solid to optimize some performance function
such as the power loss. Examples of �ow optimization applications
include Stokes �ow [Aage et al. 2008; Borrvall and Petersson 2003;
Challis and Guest 2009; Guest and Prévost 2006], steady-state �ow
[Zhou and Li 2008], weakly compressible �ow [Evgrafov 2006], un-
steady �ow [Deng et al. 2012], channel �ow [Gersborg-Hansen et al.
2005], ducted �ow [Othmer et al. 2007], viscous �ow [Kontoleontos
et al. 2013], �uid-structure interaction (FSI) [Andreasen and Sig-
mund 2013; Casas and Pavanello 2017; Yoon 2010], �uid-thermal
interaction [Matsumori et al. 2013; Yaji et al. 2015], micro�uidics
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[Andreasen et al. 2009], and aerodynamics [Jameson 1995; Maute
and Allen 2004], to name a few. The development of topology op-
timization algorithms to explore functional �ow systems remains
largely unexplored due to the complexities regarding both the sim-
ulation and optimization. In computer graphics, Du et al. [2020] de-
veloped a di�erentiable framework to simulate and optimize Stokes
�ow systems governed by design speci�cations with di�erent types
of boundary conditions. Although this work realized a multitude
of design examples, such as the �ow averager, gates, mixer, and
twister, the generated designs were all limited within the design
space spanned by the prede�ned shape parameters.

Topology optimization. Topology optimization has demonstrated
its e�cacy in creating mechanical designs with complex structures
and extreme properties in many engineering problems (see [Deaton
and Grandhi 2014; Rozvany 2009; Sigmund and Maute 2013] for
surveys). Starting from a volumetric domain with uniform material
distribution, a topology optimization algorithm iteratively redis-
tributes material to develop a structure that minimizes a design
objective (e.g., structural compliance), given the prescribed target
volume and boundary conditions. In computer graphics, a wide
range of topology optimization algorithms have been developed to
accommodate computational fabrication applications and 3D print-
ing designs, including examples of elastic structures [Liu et al. 2018],
shells [Skouras et al. 2014], porous materials [Wu et al. 2018], andmi-
crostructures [Panetta et al. 2015; Schumacher et al. 2015; Zhu et al.
2017]. Despite their successes in structural optimization, research
on topology optimization algorithms for solving �ow systems with
accurate boundary conditions is scarce, limiting their applications in
designing thin and delicate structures in �uidic devices. Finally, we
share inspiration from various works from the graphics community
on di�erentiable simulation [Du et al. 2021; Hu et al. 2018; Li et al.
2022] and shape optimization [Bächer et al. 2017; Wang andWhiting
2016] for computational design and control applications.

Anisotropic methods. Anisotropic methods have been explored in
all aspects of computer graphics. Examples include meshing [Narain
et al. 2012], texturing [McCormack et al. 1999], rendering [Wang
et al. 2008], surface reconstruction [Yu and Turk 2013], and various
physics simulations such as cloth [Narain et al. 2012], solid [Li and
Barbič 2015; Schreck and Wojtan 2020], and �uid [Pfa� et al. 2010;
Xiao et al. 2020]. Typically, an anisotropic method encode the local
orientation information either in discrete spatial discretizations,
such as anisotropic mesh elements or grid cells, or through con-
tinuous tensor representations, such as anisotropic elastic material
models or �uid turbulent models. In this paper, we chose to explore
anisotropic tensor representations discretized on a uniform grid,
which mimics the aniostropic continuum mechanics models and
uses it in a new context for representing solid-�uid boundaries in
topology optimization.

3 METHOD OVERVIEW
We present an overview of our method in Fig. 2. The input to our
method is the speci�cation of a �uidic device de�ned as the target
inlet and outlet �ow pro�les. The �uidic device is represented using

a regular grid �lled with anisotropic materials in each voxel. The ma-
terials are parametrized with scalar �elds describing its anisotropy,
viscosity, and impedance for �ow. The material distribution induces
a multi-phase �uidic device design whose solid-�uid boundaries can
be extracted from cells with highly anisotropic materials. A numeri-
cal di�erentiable simulator then simulates the design to compute its
Stokes �ow, which is compared with the target outlet �ow pro�le
to evaluate its performance. The pipeline computes the gradients
of the performance metric with respect to material parameters and
backpropagating them through the numerical di�erentiable simu-
lator. The pipeline then runs MMA [Svanberg 1987], the standard
gradient-based optimizer in topology optimization, to improve the
performance of the design by evolving its anisotropic material dis-
tribution. After this optimization converges, the resulting design is
computed by a post-processing step to extract the design surface.
We organize the remainder of our paper as follows. We �rst

describe the governing equations for our Stokes �owmodel in Sec. 4.
Then, we discuss its discretization and the numerical solver in Sec. 5.
We next formulate the �uidic system design problem as a numerical
optimization problem and present our optimization algorithm in
Sec. 6. Finally, we present applications and evaluation of our method
in Sec. 7 and provide conclusions in Sec. 8.

4 GOVERNING PARTIAL DIFFERENTIAL EQUATIONS
This section describes the physical model of the Stokes �ow problem
used in this paper. While Stokes equations have been extensively
studied for decades, we revisit this problem with a focus on devel-
oping a novel anisotropic constitutive model that jointly represents
di�erent phases (solid and �uid) and boundary conditions (no-slip
and free-slip) in a uni�ed manner. Our constitutive model provides a
uniform, grid-friendly parametrization of the design space of �uidic
devices without sacri�cing the �exibility and accuracy in solid-�uid
boundary conditions.

4.1 Isotropic Stokes Equations
Quasi-incompressible Stokes �ow. We brie�y review the quasi-

incompressible Stokes �ow model described in Du et al. [2020].
Consider a problem domain ⌦ ⇢ R3 (3 = 2 or 3). The velocity �eld
v : ⌦ ! R3 of the quasi-incompressible Stokes �ow is given by the
following energy minimization problem:

min
v

π
⌦
`krvk2�3x +

π
⌦
_(r · v)23x, (1)

B .C . v (x) = v⇡ (x), 8x 2 m⌦⇡ . (2)
v (x) · n(x) = 0, 8x 2 m⌦� . (3)

Note that Eqn. (1) excludes the external-force energy de�ned in Du
et al. [2020] because we assume no external forces (e.g., gravity) in
our design problem. Here, the notation k ·k� is the Frobenius norm of
a matrix, and ` 2 R+ and _ 2 R+ are two scalar parameters denoting
the �ow’s dynamic viscosity and incompressibility, respectively. In
particular, _ ! +1 implies perfectly incompressible Stokes �ow.
The problem considers the following boundary conditions de�ned
on a partition of the domain boundary m⌦ = m⌦⇡ [ m⌦� [ m⌦$ :
The Dirichlet boundary condition speci�es a desired velocity pro�le
v⇡ on the boundary m⌦⇡ , which is either from prescribed inlet
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Fig. 2. An overview of our pipeline: (1) Our system takes as input the specification of a fluidic device design task on a regular grid, including the locations and
desired profiles of the Stokes flow at the inlet and outlet; (2) The system then represents the fluidic device using anisotropic materials in each voxel, which we
further parametrize using its anisotropic direction (the principal axes of the ellipse in the illustration), viscosity (radius of the ellipse), and impedance for fluid
(shown as the background color of the voxel); (3) A numerical di�erentiable simulator receives the design and solves the Stokes flow; (4) The pipeline then
compares the simulated flow at the outlet with the target profile given in the specification and computes a loss function characterizing their discrepancy. The
loss is then backpropagated through the numerical simulator to compute its gradients with respect to the anisotropic material parameters. The pipeline runs
the method of moving asymptotes (MMA, [Svanberg 1987]), a gradient-based optimizer, to improve the design; (5) The pipeline outputs a final design a�er
post-processing the results from a converged optimization process.

�ow pro�les or from no-slip boundary conditions (v⇡ = 0); the
free-slip boundary condition de�ned on m⌦� requires the velocity’s
projection along the normal direction n be zero; �nally, the open
boundary on m⌦$ imposes no explicit constraints on the velocity
and automatically satis�es zero-traction conditions once the energy
in Eqn. (1) is minimized, which is suitable for modeling free �ows
at an outlet of a �uidic system.

Although we do not consider external forces or non-zero-traction
boundary conditions in our problem, they can be accommodated in
a similar way described in Du et al. [2020]. We refer readers to Du
et al. [2020] for a comprehensive discussion on the derivation of this
quasi-incompressible Stokes �ow model and its numerical bene�ts
in �uidic device design problems. While their paper presented a
computational design pipeline for �uidic devices and demonstrated
examples withmoderately sophisticated solid structures, themethod
constrained the designs in the space of parametric shapes, which
inhibits topologically di�erent designs from emerging.

4.2 Anisotropic Stokes Equations
The challenges in previous methods motivate us to develop a new
geometric representation that simultaneously accommodates expres-
sive topology, �exible boundary conditions, and accurate simulation
in Stokes-�ow �uidic systems. Noting that �uid near solid-�uid
boundaries satis�es di�erent physical constraints in the normal and
tangent directions, we propose an anisotropic material model that
uniformly represents solid, �uid, and solid-�uid boundaries, which
we describe in detail below.

Anisotropic, quasi-incompressible Stokes �ow. We propose the fol-
lowing energy minimization problem that modi�es the previous
isotropic Stokes �ow:

min
v

⇢<,` [v] + ⇢<,_ [v] + ⇢5 [v], (4)

B .C . v (x) = v⇡ (x), 8x 2 mB⇡ . (5)

where each energy component is de�ned as follows:

⇢<,` [v] :=
π
B
`krvQ

1
2
< (x)k2�3x, (6)

⇢<,_ [v] :=
π
B
_(x) (r · v)23x, (7)

⇢5 :=
π
B
kQ

1
2
5
(x)vk223x, (8)

where we use the subscripts< and 5 in the energy names to indicate
they model the material and the frictional e�ects, respectively. Note
that this formulation incorporates the standard, isotropic Stokes
model as a special case, namely by setting Q< = I and Q5 = 0. The
new energy minimization problem introduces a few critical mod-
i�cations to the original problem in Eqns. (1-3): First, we change
the problem domain from ⌦ to B ⇢ R3 , which we assume to be an
axis-aligned, su�ciently large box that encloses the �uidic region ⌦.
Second, we introduce two symmetric positive semi-de�nite matrix
�elds Q<,Q5 : B ! S3

+ and replace the scalar parameter _ with a
spatially varying �eld _ : B ! R+. These three new �elds de�ne a
new material model that enables anisotropic responses to velocities
at di�erent directions. Finally, with the domain changing from ⌦
to a box-shaped B, we adjust the boundary conditions as follows:
We consider a partition of the boundary mB into mB = mB⇡ [ mB$
where mB⇡ and mB$ represent the locations of the Dirichlet bound-
ary and the open boundary conditions, respectively. The Dirichlet
boundary B⇡ now consists of the inlet of the �uidic system where
we enforce a prescribed �ow pro�le and the border of the solid
phase, on which we directly assign zero velocities. The open bound-
ary mB$ still models a zero-traction, free-�ow outlet like before.
The new formulation of boundary conditions does not mean we
exclude no-slip or free-slip solid-�uid boundary conditions in our
problem, however. In fact, solid-�uid boundaries are now absorbed
into the interior of B and will be represented by a careful choice of
Q< , Q5 , and _. We illustrate the new Stokes �ow model in Fig. 3.
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Fig. 3. An illustration of the anisotropic material model in the quasi-
incompressible Stokes flow.We selected three representative material points
from the solid phase (orange), the fluid phase (green), and the free-slip solid-
fluid boundary (yellow). We associate each material point with an ellipse
visualization of Q5 in a way that the material inhibits flow along its minor
principal axis (small radii). For example, a solid material point forces flow
along all directions to be zero and is therefore associated with a small circle.
Similarly, a material point on the free-slip boundary impedes flow only in
the normal direction, so its Q5 is a highly eccentric ellipse aligned with the
tangent and normal direction of the boundary.

The new energy minimization problem uses a single material
model characterized by spatially-varying Q< , Q5 , and _ in the new
problem domain B. We stress that this material model design is not
arbitrary but inspired by strong physics intuition. Below, we will
discuss the subtleties in these three parameters by demonstrating
their capability of expressing di�erent phases (solid and �uid) and
various boundary types (no-slip and free-slip). Concretely speaking,
we will show that by properly setting them everywhere in B, we
can draw an analogy between the two physical models described in
Eqns. (1-3) and Eqns. (4-5).

Fluid-phase material. For any point x in the interior of the �uid
phase in Eqns. (1-3), i.e., x belongs to the interior of ⌦, we choose
Q< = O , Q5 = 0, and _ = _0 where _0 indicates the scalar parameter
used in the original quasi-incompressible Stokes problem (Eqn. (1)).
This way, the energy in Eqns. (6-7) becomes identical to Eqn. (1), con-
�rming that it preserves the physics model of quasi-incompressible
Stokes �ow in the �uid phase.

Solid-phase material. Similarly, for any point x in the interior of
the solid phase, we set Q5 = :5 O where :5 ! +1. According to
the energy in Eqn. (8), this will force the velocity v at x to be 0 just
as expected. As a result, v will be an all-zero �eld in the interior of
the solid phase, leading to ⇢<,` = ⇢<,_ = 0 regardless of the choice
of Q< and _. We suggest Q< = O and _ = _0 in this case, modeling
the solid phase as an isotropic, quasi-incompressible material that
impedes �uid.

No-slip-boundary material. It remains to show how a proper com-
bination of Q< , Q5 , and _ can represent solid-�uid boundary con-
ditions inside the domain B. We consider two types of solid-�uid
boundaries in this work: no-slip and free-slip. Note that a no-slip
solid-�uid boundary simply states the �ow velocity near the bound-
ary should be zero, so we can treat it the same way as we de�ne the
solid material above, i.e., Q5 = :5 O with :5 ! +1, Q< = O , and
_ = _0.

Free-slip-boundary material. The last and most challenging case
is to model free-slip boundary conditions (Eqn. (3)) with a proper

choice of (Q< , Q5 , _). For brevity, we will present our results in 3D
only. Consider a point x on a free-slip solid-�uid boundary, and let
n be its unit normal vector. We augment n with two unit vectors
t1, t2 orthogonal to n so that the matrix X := (n, t1, t2) de�nes an
orthonormal basis in R3.

To derive a proper Q< for free-slip boundaries, we recall that the
isotropic energy krvk2� in the original Stokes �ow model is the vari-
ational form of �v, the Laplacian of the velocity �eld component-by-
component, in the PDE form of Stokes �ow [Borrvall and Petersson
2003; Du et al. 2020]. Intuitively, this states that Stokes �ow creates
a component-by-component as-harmonic-as-possible velocity �eld,
subject to the (quasi-)incompressibility constraint.

We further point out that both the Frobenius norm and the Lapla-
cian are rotationally invariant, allowing us to change the coordinate
systems freely when computing rv. Therefore, we can consider
computing rv in a local frame spanned by the normal and tangent
directions at x , i.e., the columns of X:

vX :=X>
v, (9)

xX :=X>
x, (10)

rxXvX =X>rvX . (11)

Here, the subscript (·)X means the quantity is de�ned in the local
frame spanned by X. For example, the �rst row in rxXvX represents
the spatial gradient of the normal �ow magnitude.

It is now straightforward to see how the physical intuition behind
free-slip boundaries can motivate the de�nition of Q< : Essentially,
free-slip boundaries retain the physical property of Stokes �ow
along the tangent directions and dismiss any spatial gradients along
the normal direction. From the perspective of the Laplacian operator,
this means directly dropping the second-order derivative along the
normal direction and requiring the �ow to be harmonically smooth
only along the tangent directions. Mapping it back to the variational
form, we see it is equivalent to zeroing out the column in rxXvX

that corresponds to the normal direction, leading to the following
energy density to be integrated in ⇢<,` :

 <,` :=`krxXvX⇤(0, 1, 1)k2� (12)

=`kX> (rv)X⇤(0, 1, 1)k2� (13)

=`k (rv) (0, t1, t2)k2� (14)

=`trace((rv) (O � nn
>) (rv)>) (15)

=`krv (O � nn
>) 1

2 k2� (16)

where ⇤ constructs a diagonal matrix from its input. Comparing
Eqn. (16) with Eqn. (6), we see Q< should be de�ned as follows:

Q< = O � nn
> . (17)

Similarly, we propose the following Q5 to impede the normal
�ow in ⇢5 :

Q5 = X⇤(:5 , 0, 0)X> = :5 nn
>, (18)

where :5 ! +1. Plugging this de�nition into ⇢5 in Eqn. (8) will
con�rm that the proposed Q5 leads to the expected behavior: It �rst
converts v to a local frame spanned by X then forces the normal
component of the �ow to be zero and keeps the tangent �ow intact.
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Finally, regarding the choice of _, we set its value to 0 so that ⇢<,_
is ignored for points on free-slip boundaries. We justify this deci-
sion from two perspectives: First, using a positive _ in this case will
attempt to preserve �uidic volume at free-slip boundaries, which
typically means enforcing zero divergence in a neighborhood near
the boundary after discretization. For example, it may suggest that a
mixed cell’s solid and �uid velocities be divergence-free even though
they come from di�erent phases, implying a physically problematic
constraint imposed on the discretized problem. Such constraints
typically lead to conditioning issues in the numerical system after
discretization that calls for a more careful, subcell-accurate treat-
ment of these mixed cells. Second, and more importantly, the real
objective that incompressibility plays near the boundary is to avoid
�uid leakage out of the boundary, which is automatically satis�ed
as long as we disallow normal �ows crossing the boundary and
ensure the interior of the �uid phase is properly incompressible.
Both reasons imply that it is unnecessary to consider a positive _
that encourages the (ill-de�ned) divergence at locations on free-slip
boundaries to be zero, hence our decision to set _ = 0.

Summary. To conclude, we have presented an anisotropic ma-
terial model which provides a uniform representation of di�er-
ent phases and boundary conditions encountered in the quasi-
incompressible Stokes �ow problem. We summarize the anisotropic
material parameters Q< , Q5 , and _ for all cases in Table 1.

Table 1. We summarize the anisotropic material parameters for modeling
di�erent phases and boundary conditions in quasi-incompressible Stokes
problem: _0 2 R+ represents a predefined scalar parameter controlling
the incompressibility in the quasi-incompressible Stokes flow; :5 2 R+

is a scalar parameter that determines the material’s impedance for fluid
flow, with :5 ! +1 creating the solid phase; n 2 R3 is the unit normal
vector on the solid-fluid boundary that decides the material’s anisotropic
responses to normal and tangent flows.

Fluid Solid No-slip boundary Free-slip boundary

Q< O O O O � nn
>

Q5 0 :5 O :5 O :5 nn
>

_ _0 _0 _0 0

5 NUMERICAL SIMULATION
This section outlines the discretization scheme and the numerical
solver for the continuous Stokes �ow model described in the pre-
vious section. The Stokes �ow system, described in Section 4, is
discretely modeled over the entire domain and parameterized to
represent �uid, solid and �uid-solid interface regions on the domain.
Our discretization enables easy speci�cation of boundary condi-
tions, allows seamless application of additional design constraints
over the domain, such as volume fraction, and accommodates a
highly �exible parameter space that helps optimize for complex
designs for �uid-solid interfaces. We use a uniform Cartesian lattice
to discretize domain descriptors and state variables. Fluid velocities
v are stored at grid nodes and bilinearly (2D) or trilinearly (3D)
interpolated, while the design parameters Q<,Q5 and _ are treated
as having a constant value on each grid cell (as we will see, they are

stored indirectly, through some other parameters that are ultimately
stored per-cell). We design a solver that solves for �ow for a given
parameter set, using a symmetric positive-de�nite (SPD) sti�ness
matrix. The solver also includes additional constraints, such as block
divergence, to satisfy the �ow divergence constraint in an aggregate
fashion.

5.1 Anisotropic Material Parametrization
Our anisotropic material is characterized by SPD matrix �elds Q<
and Q5 and a scalar �eld _ in the whole domain. From Table 1, we
notice that these �elds can be induced from the solid/�uid material
distributions and boundary normals, which have lower degrees of
freedom than the full SPDmatrices. This inspires us to reparametrize
Q< , Q5 , and _ with three new �elds: the �uidity d : B ! [0, 1],
which assigns 0 to pure solid and 1 to pure �uid; the isotropy n :
B ! [0, 1] in which larger n means more isotropic material; the
anisotropic orientation " : B ! R3�1, which is a �eld of rotational
angles in 2D and spherical coordinates in 3D. Furthermore, we
compute a unit normal �eld n : B ! R3 induced from " .

Constructing Q< . We de�ne the material matrix �eld Q< as fol-
lows:

Q< = O � (1 � n)dnn> . (19)

Therefore, Q< ⇡ O whenever n ⇡ 1 (isotropic material) or d ⇡ 0
(solid phase), and Q< becomes highly anisotropic only if n ⇡ 0
and d ⇡ 1, i.e., anisotropic �uid that we use to represent free-slip
boundaries.

Constructing Q5 . We de�ne :5 with the following nonlinear map-
ping function borrowed from previous work [Borrvall and Petersson
2003]:

:5 (d) = :5 max + (:5 min � :5 max)d
1 + @
d + @ , (20)

where :5 min ⇡ 0 and :5 max = 145 indicate the range of :5 and
@ = 0.1 is a hyperparameter that controls the sharpness of the
mapping: A smaller @ generates a more binary mapping with the
output :5 concentrating on the bound values. Intuitively, :5 (d) is a
monotonically decreasing function that maps small d (solid phase)
to :5 max and large d (�uid phase) to :5 min. We then de�ne Q5 as
follows:

Q5 = :5 (d)O + (:5 (nd) � :5 (d))nn> . (21)

We can see such a de�nition matches what Table 1 suggests for
each type of material: For �uid phase, which satis�es n ⇡ d ⇡ 1, we
have :5 (nd) ⇡ :5 (d) ⇡ 0, and therefore Q5 ⇡ 0; for solid phases
and no-slip boundaries, we have n ⇡ 1 but d ⇡ 0, which leads to
a large :5 (d) and Q5 ⇡ :5 maxO ; �nally, for free-slip boundaries,
we model them as anisotropic �uid with n ⇡ 0 and d ⇡ 1, which
means :5 (nd) � :5 (d) ⇡ 0 in the de�nition, and it follows that
Q5 ⇡ :5 maxnn

>.

Constructing _. Finally, we construct the _ �eld as follows:

_ = _min + [1 � (1 � n)d]?_max, (22)

where _min = 0.1 and _max = 143 sets the range of _ and ? = 12
is a power index that pushes _ to be a binary choice between _min
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and _min + _max. Similar to Q< de�ned above, this de�nition of _
requires that _ ⇡ _min only if n ⇡ 0 and d ⇡ 1, i.e., near free-slip
boundaries.

Summary. In this manner, the anisotropic material distribution
in the entire domain is parameterized by three �elds d , n , and " .
Comparing the results above with Table 1, we can see that these
new �elds implement the intended properties of the anisotropic
material in �uid, solid, and �exible solid-�uid boundaries.

5.2 Discretization Scheme
We now describe our discretization scheme for solving the Stokes
�ow problem in Sec. 4. We solve the energy minimization problem
de�ned by Eqns. (4-5) on a regular grid of #3 cells and store all
physical quantities at the center of each cell except for �ow velocities,
which we store at grid nodes. We �rst describe how we discretize
the material parameters. Next, we discretize the variational form
and introduce block divergence, a novel numerical treatment of
the (quasi-)incompressibility constraint that improves the condition
number of the numerical system to be solved.

Discretizing material parameters. We discretize the continuous
�elds d , n , and " on the regular grid by storing their values at each
cell center. For brevity, we use ) from now on to refer to the set of
discretized material parameters d , n , and " :

) := {d, n," }. (23)

The induced �elds Q< , Q5 , and _ are also computed and stored at
these cell centers based on the mapping described previously. These
parameters are treated as constant throughout the spatial extent
of each cell; quadrature rules that are discussed next that need to
access such parameters at quadrature point locations throughout
the cell will just use the same constant value assigned to such cell.

Discretizing �uid velocity. We discretize and store the �uid veloc-
ity �eld v on the nodes of each cell in the grid. Then, we compute
the velocity and its spatial gradients at any point with bi/trilinear
interpolation of the nodal values.

Discretizing variational energy terms. With the material parame-
ters and �uid velocity fully discretized, we can now discretize the
variational form in Eqns. (4-5). Here, we will strategically use a
di�erent numerical integration scheme for each of the energy terms
in Eqns. (6-8) as detailed next:
For the term ⇢<,` in Eqn. (6) – we can label this the Anisotropic

Laplace term, recognizing that the isotropic case Q< = I would
yield the Laplace term in the PDE version of Stokes, as in Du et al.
[2020] – we use the Gaussian-Legendre quadrature rule to integrate
this energy numerically within each grid cell. Hence, we employ
four quadrature points in 2D and eight quadrature points in 3D,
in a fashion directly analogous to prior work [Du et al. 2020]. As
mentioned, we use the single value of Q< associated with the cell
at all quadrature points.
The term ⇢<,_ in Eqn. (7) can be labeled the cell-wise divergence

term, and essentially seeks to enforce volume preservation at each
individual cell where it is applied with _ < 0. For a given grid cell

C, we approximate this term with the following expression:

⇢C
<,_ ⇡ _C,C


1

,C

π
C
(r · v)3G

�2

where,C is the volume (⌘2 in 2D, ⌘3 in 3D) of the cell C. Intuitively,
what this approximation suggests is that instead of penalizing a
non-zero divergence at each individual interior point of the cell, we
only seek to drive the net �ux Flux(C) =

Ø
C (r · v)3G to zero, that

treats the entire cell in an aggregate fashion (allowing a non-zero
divergence at interior locations, as long as the aggregate net �ux is
zero). This is an important modi�cation to the numerical discretiza-
tion that circumvents locking behaviors for highly incompressible
materials, and has been shown e�ective and compatible with mixed
FEM formulations for highly incompressible materials [Patterson
et al. 2012]. What is more, since the integrand is linear in the nodal
velocities (when using bilinear/trilinear interpolation), it is posssi-
ble to obtain an analytic expression for the �ux, namely in 2D (if
v = (D, E) are the individual scalar velocity components):

Flux(C) = ⌘
⇣D10 + D11

2
+ E01 + E11

2
� D00 + D01

2
� E00 + E10

2

⌘
(24)

where the subscripts denote each of the four cell vertices. The four
terms of this expression can be easily and intuitively indenti�ed as,
respectively, the (average) signed �uxes through the right, top, left,
and bottom faces of the cell. We would exactly arrive at this same
analytic expression if we simply used a 4-point Gauss quadrature
for the �ux integral, since the linear integrand would be integrated
exactly. An exactly analogous expression can be derived in 3D; the
only di�erence is that we would create the average velocity of each
face by averaging four nodal velocies, and the scalefactor of ⌘2
would replace ⌘ in Eqn. (24) to account for the area of each 3D cell.

Finally, for the term ⇢5 in Eqn. (8) we employ a quadrature scheme
that uses the cell vertices themselves as quadrature points, namely:

⇢C
5 ⇡ ,C

23
’
�

kQ
1
2
5
(C)v� k22

where the index � traverses all cell vertices (4 in 2D; 8 in 3D). We
observe that this term seeks to model a cell as viscous/rigid (in the
solid phase) or permeable (in the �uid phase), hence it is perfectly
reasonable to apply this viscous penalty on a per-vertex basis. Doing
so, in fact, avoids certain hazards of low-order quadrature schemes
(for example a single-point quadrature scheme evaluated at the cell
center could yield a zero result even if non-zero velocities at the
vertices happen to average out to zero at the cell center).

After combining all terms in this discretization scheme, we arrive
at a quadratic energy form, given by ⇢ = v

>
Qv � b

>
v, where v

stacks all velocity degrees of freedom and Q and b the SPD matrix
and vector composed of the material parameters, respectively. We
enforce the Dirichlet boundary condition by forcing the correspond-
ing nodal velocities to be the desired value. Putting them together,
we state the discrete variational form as the following quadratic
programming problem:

min
v

v
>
Q () )v � b () )>v (25)

B .C . v8 = (v⇡ )8 ,8(8, (v⇡ )8 ) 2 D, (26)

where D states the Dirichlet boundary conditions.
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5.3 Block divergence
The variational form and the anisotropic material parametriza-
tion frequently use large hyperparameters to satisfy constraints
that are supposed to be strict, e.g., perfect incompressibility is ap-
proximated with ⇢<,_ penalizing the divergence with a coe�cient
_max ! +1, and free-slip boundaries are replaced with ⇢5 scaled
by (:5 )max ! +1 that penalizes nonzero normal �ows. Unfortu-
nately, while setting such parameters to near in�nity tightens these
constraints from an optimization perspective, it also leads undesir-
able behaviors. Speci�cally, using an exceptionally high _ value is
known to compromise the conditioning of the system. Using a high
:5 value has an even more obscure side e�ect; since boundary cells
use this penalty to prevent �ows from having a component in the
normal direction to the boundary, if there are any two neighbor-
ing boundary cells that have even slightly di�erent directions of
anisotropy, a high :5 value would e�ectively cause the velocities at
any shared vertices between the two cells to be driven to zero, as
their projection to two non-parallel directions (the normals at the
two cells) will jointly and strongly be required to be zero. Hence,
this might inadvertently once again drive us to a situation where
we are unintentionally forcing a no-slip condition.

Using moderately-high values for _ and :5 certainly helps allevi-
ate these issues. The risk of doing so, however, is that we open up
the possibility for volume loss that, even not egregious at the local
level, could add up to a substantial �ow loss at the global scale. This
is aggravated by the fact that (with sound motivation) we do not en-
force incompressibility (we use _ = 0) at boundary cells paired with
a free-slip condition, depending on the zero-normal-�ow condition
(which is not strictly enforced if :5 is not very high) to prevent
leakage at free-slip boundaries.
We introduce an original solution to this issue, by pairing the

moderately-high parameters at the per-cell level with a hard-constraint
of absolute volume preservation at a more aggregate scale, namely
large blocks (typically rectangular boxes of 4 or 8 cells across) that
we partition our domain in. This is illustrated in Figure 11 (right);
we refer to the associated ablation study for an illustration of the
e�ect of this technique (or the consequences of its omission).
We partition the domain B into large blocks (indexed by 1) of

uniform sizes and enforce the (aggregate) net �ux over each block
to be zero. Since the per-cell �ux is a linear expression on the nodal
velocities, the aggregate constraint is simply the sum:

0 = Flux(B1 ) =
’
C2B1

Flux(C)

As one would intuitively expect, the net �ux over the block B1 is a
linear expression of the averaged (signed) �uxes through the faces of
the aggregate block; the contribution of faces interior to B1 cancels
out when �uxes of neighboring cells are summed. Ultimately, the net
�ux constraint on each block yields a single linear equation (with a
zero right-hand side), and these block-divergence constraints for the
entire domain are ultimately distilled into a linear constraint system
Cv = 0. Ultimately, we reformulate our governing anisotropic Stokes
equations as a linearly-constrained, quadratic optimization problem,
where weminimize the functional ⇢ (v) = v

)K() )v�b () )) v (result-
ing from the quadrature schemes in the previous paragraph), subject
to the linear constraint Cv = 0; ) represents the design parameters.

We ultimately solve this constrained optimization problem via the
Karush-Kuhn-Tucker condition, in the system:✓

2K() ) C)
C 0

◆ ✓
v

q

◆
=
✓
b () )
0

◆

(where q are the Langrange multipliers associated with the block-
divergence constraint). We use direct factorization methods (we
employ PARDISO [Alappat et al. 2020]) to solve these symmet-
ric/inde�nite problems both for forward simulation as well as for
the inverse problems associated with optimization; we may omit,
for brevity, an explicit reference to the constraint in our upcoming
discussion of the optimization pipeline, with the understanding that
it is always present in our pipeline. From a practical perspective, we
found this technique to be highly e�ective; in our 3D examples, en-
forcing a hard block-divergence constraint on 4x4x4 blocks, paired
with moderate to moderately-high parameters _ and :5 produced
results that were practically indistinguishable from using a very
high _, and much more resilient to artifacts associated with using
high :5 values. Note that the block-divergence constraint does not
depend on the design parameters ) , contrasted to K and b that do.
Ultimately, we view the solution of this constraint optimization
problem as the simulation function v = � () ) that maps the design
parameters to the corresponding simulation result.

6 OPTIMIZATION
We now describe our optimization problem which is built upon the
numerical simulator described before. We �rst formulate the �uidic
device design task as a numerical optimization problem and state
its formal de�nition. Next, we describe the algorithm for solving
this optimization problem numerically.

6.1 Problem Statement
We formally de�ne the task of designing a �uidic device as the
following numerical optimization problem:

min
)

!5 (v) +F2!2 () ) +F3!3 () ) +F0!0 () ), (27)

B .C . v = � () ), (28)
)min  )  )max, (29)
0  +iso-�uid () )  +max, (30)
0  +all-�uid () )  +b ++max . (31)

Here, !5 states the functional loss given by the task speci�cation,
which is typically de�ned as the !2 di�erence between the outlet
�ow in simulation and the desired outlet �ow pro�le.

Regularizers. The next three terms in the objective are regulariz-
ers on the material parameter ) : Following the standard practice in
the previous �eld-based �uidic topology optimization method [Bor-
rvall and Petersson 2003], the compliance regularizer !2 computes
the elastic energy accumulated from enforcing the outlet �ow pro�le
to be the same as the target as extra Dirichlet constraints:

!2 () ) :=v>2 Q () )v2 � b () )>v2 , (32)
v2 =� () ;D [D$ ), (33)

whereD$ summarizes the extra Dirichlet conditions from the target
outlet �ow pro�le. The motivation behind !2 is that a lower elastic
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energy means the outlet �ow pro�le will be more similar to the
target if we release the extra Dirichlet conditions on the outlet.
Next, the directional regularizer !3 is de�ned as the di�erences

between the normal direction of an anisotropic cell and the nor-
mals from its neighborhood. We �rst �lter out cells that contain
anisotropic materials with two thresholds n0 and d0: a cell is con-
sidered to be anisotropic if its n < n0 and d > d0, i.e., it is modeled
as anisotropic �uid. Let A be the set of anisotropic cells, we de�ne
!3 as follows:

!3 :=
’
22A

1 �kcos ("2 ,"nbr) (34)

where "2 is the anisotropic direction (a unit vector) of cell 2 , "nbr
an average direction �tted from its small neighbors (3 ⇥ 3 ⇥ 3 in
our implementation), andkcos the cosine similarity between them.
Therefore, minimizing !3 encourages smooth free-slip solid-�uid
boundaries.
Finally, the anisotropic regularizer !0 concentrates anisotropic

cells near solid-�uid boundaries:

!0 (n) :=
’
2

n2d2 (d;>20;max � d;>20;min ), (35)

where the sum loops over each cell 2 and d;>20;max and d;>20;min are
the maximum and minimum �uidity from its small neighborhood
(3 ⇥ 3 ⇥ 3 in our implementation). The proposed loss encourages
cells near the solid-�uid boundaries (large d;>20;max � d;>20;min ) to use
anisotropic materials (small n). To avoid chasing a moving target, we
freeze d;>20;max and d;>20;min in !3 when optimizing d in each iteration.

Constraints. Apart from the objective function, the optimization
problem also contains a number of constraints: Eqn. (28) ensures
the �ow �eld v is computed from the numerical simulator, and Eqn.
(29) states the bound constraints on the material parameters. The
last two equations (30) and (31) de�ne volume constraints on the
�uidic region and the free-slip �uid-solid boundaries:

+iso-�uid :=
’
2

n2d2 , (36)

+all-�uid :=
’
2

d2 . (37)

The di�erence between them implies the volume of anisotropic cells,
and +max and +1 are two task-dependent thresholds de�ning the
maximum �uidic volume and the maximum volume of anisotropic
cells (free-slip boundaries), respectively.

Summary. In summary, the optimization problem aims to �nd an
optimal material distribution ) that minimizes the functional loss
under bound constraints and volume constraints. The optimization
process is facilitated by three regularizers that encourage spatially
smooth yet clear solid-�uid boundaries.

6.2 Numerical Optimizer
Standard topology optimization typically consists of hundreds of
thousands of decision variables even for moderate-size problems
(e.g., on a 643 grid), and our numerical optimization is no excep-
tion. In fact, due to the inclusion of additional anisotropic material
parameters, the numerical optimization problem we formulated

has a larger number of decision variables than its isotropic topol-
ogy optimization counterparts. Following the standard practice in
topology optimization, we use the method of moving asymptotes
(MMA) [Svanberg 1987], a widely used gradient-based optimization
algorithm, to solve this large-scale optimization problem. As MMA
requires gradients with respect to the material parameters ) , we ex-
tended the numerical simulation method in Sec. 5 to a di�erentiable
simulator in a way similar to Du et al. [2020], through which the
gradients can be computed from backpropagating the loss function.
To encourage more structured designs during the optimization pro-
cess, we dynamically update the upper bound on the isotropy n2 for
each cell 2 based on the following heuristic:

(n2 )max := 1 � (d;>20;max � d;>20;min ) . (38)

In other words, when a cell is surrounded by both solid and �uid
cells, we force it to choose anisotropic materials (small upper bound
on n). Our empirical experience suggests that this dynamic update
scheme biased the optimization process towards generating more
structured �uidic device designs.

6.3 Choice of Parameters and Interpolation Functions
For the hyperparameter settings, we reused the value from [Borrvall
and Petersson 2003] for :5min . We chose a near-zero value for _min.
The choices of these two hyperparameters followed the convention
in topology optimization. We did not observe noticeable di�erences
when their values were perturbed. For :5max and _max values, we
chose values that can balance the solver performance and block
divergence (See our discussion in Sec. 5.3). We chose the current
block size by experimenting with a minimum block size that gives
satisfactory free-slip boundaries without introducing large diver-
gence errors in small neighborhood. We include an experiment on
the sensitivity of our method to block size in the supplementary
materials. For the choices of interpolation functions, we used the
interpolation function (Eq. 20) in [Borrvall and Petersson 2003] with
the same @ value for :5 , and we used a power-indexed interpolation
function for _, which is conventional in density-based topology
optimization, to encourage the design’s binary convergence. We did
not observe noticeable di�erences between these two functions.

7 RESULTS
In this section, we present various 3D design problems to evaluate
the performance of our di�erentiable anisotropic Stokes �ow sim-
ulator as well as the optimization pipeline. Next, we compare our
method with two previous state-of-the-art baseline methods and
validate our method with ablation studies. A complete demonstra-
tion of our design problems with the evolution of our optimization
process can be found in our supplemental video.

7.1 Applications
We demonstrate a variety of complex �uidic device designs obtained
using our optimization pipeline. We use a grid resolution of 100 ⇥
100⇥ 100 for the Fluid Twister example and 80⇥ 80⇥ 80 for all other
optimization examples and initialize the material parameters to be
isotropic (n = 1) with �uidity d = +max. We run all optimizations
with 300 iterations and use the design that achieves minimum �nal
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Table 2. We report the statistics from optimizing the design problems in Sec. 7.1, including the maximum fluidic volume fraction, the functional loss before
and a�er optimization, and the time decomposition in each optimization iteration: “Forward” represents the time spent on computing the loss function, which
is dominated by the numerical simulator; “Backprop.” stands for the time spent on computing the gradients; “MMA optimizer” reports the time cost from
running one iteration of MMA a�er obtaining the loss and gradients; “Total” is the sum of all the time above.

Resolution Volume Limit Functional Loss (!5 ) Time per Optimization Iteration (s)
(+max) Initial Final Forward Backprop. MMA optimizer Total

Twister 100x100x100 0.30 22.575 0.519 1374.1 152.6 153.2 1679.9
Tree Di�user 80x80x80 0.25 3.966 0.133 721.9 85.0 61.1 868.0
Circuit-1 80x80x80 0.25 86.281 2.125 737.2 86.5 83.1 896.7
Circuit-2 80x80x80 0.50 86.153 1.490 721.3 86.4 82.7 889.7

loss as our optimized design. We report the task-speci�c volume
fraction limit, initial and optimized functional loss, and the execution
time for each task in Table 2. We additionally include design domain
illustration and task speci�cations in supplementary materials.
We implement our optimization pipeline in C++ and use the

implementation of PARDISO [Alappat et al. 2020] for solving our
linear systems and MMA [Svanberg 1987] as our optimizer. Since
the sparsity pattern of the system matrix remains the same over
optimization iterations, we also optimize the matrix factorization
time by performing symbolic factorization only once. We perform
our experiments on an Intel Ice Lake 128-core server and Ubuntu
20.04 operating system.

Motivating examples. As motivating examples, we present the
3D design problems of an ampli�er and a mixer under a 80 ⇥ 80 ⇥
80 grid. The 2D versions of both examples are presented in prior
works [Borrvall and Petersson 2003; Du et al. 2020]. In Ampli�er, we
enforce a constant circular input with in�ow velocity (E8=, 0, 0). The
objective is to amplify the �ow by a factor of 5

3 . InMixer, the design
objective is to mix a high-pressure and low-pressure �ow from
two inlets to produce equal middle-pressure �ows at the two target
outlets. Speci�cally, the two inlets have in�ow velocities (E, 0, 0)
and (0, 2E, 0) and the two outlets have out�ow velocities (1.5E, 0, 0)
and (0, 1.5E, 0), respectively. The volume fraction limit is 0.3 for
Ampli�er and 0.4 for Mixer. We visualize the optimized designs in
Fig. 4.

Inlet

Outlet Outlet

Outlet

Inlet

Inlet

x

z

y

Fig. 4. Designing an Amplifier (le�) and a Mixer (right) under a grid resolu-
tion of 80 ⇥ 80 ⇥ 80. The anisotropic boundaries of the optimized designs
are visualized using small colored disks.

Tree Di�user. The goal of this example is to generate a �uidic
di�user that directs �uids from one constant circular-shaped inlet to
16 small square-shaped outlets while bypassing a small obstacle at

Inlet

Outlet

Fig. 5. Our pipeline generates a tree di�user on a 80 ⇥ 80 ⇥ 80 grid. Top le�:
The anisotropic boundary of the optimized design is visualized using small
colored disks. Bo�om: The 3 images in themiddle visualize the perpendicular
cross-sections of the optimized design at di�erent depths from the inlet.
These cross-sections highlight the progressive branching from a single inlet
to multiple outlets. Top right: The fluid flow, simulated from the optimized
design, is visualized as streamlines.

the center of the domain, whichwe enforce as zero-velocity Dirichlet
constraints. In the optimized design (Fig. 5), an interesting tree-like
topology automatically emerged from our pipeline, where the �uid
�rst branches into four chambers and then into the 16 outlets. The
resulting shape produced by our pipeline exhibits an intuitive design.
The branching is gradual as one moves from the inlet to the interior
of the domain and the branching factor increases gradually in this
direction. The cross-sections in Fig. 5 highlight the progress of the
branching in the optimized design. This example highlights the
ability of our method to synthesize an intricate structure with 16-
outlets without any prior on its shape or topology.

Fluid Twister. In this example, we enforce a circular-shaped con-
stant inlet with in�ow velocity (E8=, 0, 0). The objective of the task
is to generate a swirl �ow in the ~I-plane at the outlet of the do-
main. This example is solved on a 100 ⇥ 100 ⇥ 100 grid with nearly
4 million decision variables, and the �nal design is shown in Fig. 1.
We show the streamline visualization of the optimized design in the
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middle of 1, which successfully generates a swirl �ow at the outlet.
Using our topology optimization approach, a propeller-like struc-
ture automatically emerged from a constant �uidity parameter �eld,
highlighting the ability of our pipeline to create a new topology.

velocity
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Vmax = 0.25

Vmax = 0.5
Fig. 6. We design the Circuit with maximum volume fraction+max = 0.25
(top) and+max = 0.5 (bo�om). Inset:We visualize the domain setup. Di�erent
faces of the domain are marked as inlet and outlet with di�erent flow
velocity. Le�: The anisotropic boundary of the generated design is visualized
using small colored discs. Right: The resulting fluid flow from the optimized
design is visualized using colorcoded streamlines.

Fluid Circuit. In this example, we mimic a �uid circuit that con-
nects multiple inlets, located at two faces of the cubic domain, to
multiple outlets located at the remaining four faces of the cubic
domain. The inlets have three types of inlet velocities, and the goal
of the circuit is to connect the inlets to produce equal �ows at the
outlets. The result of our optimization is shown in Fig. 6. The opti-
mized design that emerges from our pipeline is intuitive, as it seems
to connect the nearest pairs of inlets and outlets that can produce
equal �ows in order to meet the small volume fraction constraint
(0.25 in this example). For instance, the top-right inlet on the left
face (of the domain) is connected to the nearest outlet on the top
face (of the domain). We present two results using di�erent volume
constraints +max = 0.25 and +max = 0.5 and observe di�erent topo-
logical structures, which exhibit di�erent routing plans between the
inlets and outlets.

7.2 Evaluation
Below we show experiments evaluating our method and comparing
our optimizationmethods to previous works [Borrvall and Petersson
2003; Du et al. 2020]. We include an additional evaluation of the
sensitivity of our results to initialization, an experiment validating
our optimized designs, and an ablation study on our new anisotropic
material model in the supplementary material.

Solver evaluation. To verify that our simulation results converge
under re�nement, we evaluate our solver on a 2D �uid ampli�er
design represented by two symmetric Bézier curves. The left of the
domain has horizontal in�ow. We simulate the design in square

domains of dimensions 32, 64, 128, 256, 512, 1024, and 2048, and ob-
serve that the velocity �elds converge to a limit (Fig. 7). To compare
our solver with more traditional Stokes �ow solvers, we simulate
the same ampli�er design using the solver from Du et al. [2020],
which is an exact interface solver that supports free-slip boundaries.
As shown in Fig. 7, the main body of the velocity �elds are similar,
and the discrepancy mainly exhibits near the solid boundary due
to the di�erent boundary treatments. Speci�cally, Du et al. [2020]
assumes an exact interface for the solid-�uid interface and simulates
the cells of the interface with subcell precision, while our method
only assumes the direction of the interface within the cell.
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Fig. 7. Evaluation of our solver on a 2D fluid amplifier design. We visualize
the norm of the nodal velocity field simulated in square domains of dimen-
sion 32, 256 and 2048 (top le�, top middle, bo�om le�). The relative error (to
the solution at dimension 2048) monotonically decreases as the resolution
increases. We additionally simulate the same design at 2048x2048 using a
traditional Stokes flow solver from Du et al. [2020] (bo�om middle), and
visualize the di�erence field (bo�om right, normalized to inflow value).

Sensitivity of results to block size. To evaluate the sensitivity of
the optimization results to block size, we optimize the 2D ampli�er
design problem under 100 ⇥ 100 with volume fraction limit 0.5. The
domain has an inlet with parallel horizontal in�ow located at the left
of the domain and an outlet at the right of the domain. We initialize
the optimization with n = 1 and d = 0.5 and repeat the optimization
with block sizes of 4, 8 and 16 (Fig. 9). We observe that the optimized
designs are similar.

Comparison with baselines. We compare our method with two
representative baseline algorithms in the design and optimization
of �uidic devices: One is a �eld-based �uidic topology optimization
method described by Borrvall and Petersson [2003], which uses
isotropic materials with varying sti�ness to model porous materials
that allow or impede water passing. The other is a parametric-shape
optimization algorithm [Du et al. 2020], which uses parametric
shapes to represent the device boundary and optimize the design by
evolving shape parameters. We implemented the method of Borrvall
and Petersson [2003] exactly as described in the paper with the same
set of hyperparameters and veri�ed that we can obtain the results
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Fig. 8. Comparisons between our method and [Borrvall and Petersson 2003]
using a 2D design problem (60⇥60 cells). The domain has one inlet and outlet
at its le� and right, respectively. The goal is to synthesize a structure that
transports the inlet flow with velocity (E8 , 0) to the outlet. From le� to right:
we run both methods to solve this design problem with varying volume
fraction limits from 0.6 to 0.2. For both methods, we visualize the optimized
fluidity field (row 1, 2) and velocity field (row 4, 5). We additionally visualize
the optimized isotropicity field n for our method (row 3). As we decrease
the volume fraction from le� to right, the method of Borrvall and Petersson
[2003] starts to synthesize non-physical designs and flow, i.e., the solid cells
near the inlet and outlet as well as nonzero fluid velocity on them.

presented. We used the open source implementation for comparison
with [Du et al. 2020].

The main di�erence between our approach and [Borrvall and
Petersson 2003] is the introduction of an anisotropic material model
in �uidic topology optimization problems. To validate the merits of
anisotropic materials, we consider a 2D design problem that aims to
synthesize the internal structure between an inlet and an outlet on
the opposite sides of a square domain (60 ⇥ 60 cells). The inlet �ow
is given by (E8 , 0) and enforced as the Dirichlet boundaries, and the
goal is to create a design so that the outlet �ow at each node is (E8 , 0)
too. While this design problem has a trivial solution of a straight
pipe connecting the inlet and the outlet, we stress test the problem
by imposing various volume fraction+max ranging from 60% to 20%
of the domain (Fig. 8, left to right) and run both methods. As we
decrease +max, the method of Borrvall and Petersson [2003] starts
to generate physically implausible �ow velocities that co-exist with
several solid cells near the inlet and the outlet (Fig. 8 top). The deeper

≈

4 8 16

Ve
lo

ci
ty

 F
ie

ld
�

Lf 6.527 6.363 6.498

Block Size

Fig. 9. Sensitivity of optimization results to block size. We optimize the 2D
amplifier design problem with block sizes 4, 8, and 16 where initial !5 =
141.938. We visualize the norm of the velocity field (top) and the optimized
isotropy field (bo�om) and report the optimized !5 value (bo�om).

reason behind them is that traditional isotropic �eld-based methods
typically lead to blurred solid-�uid boundaries that occupy more
�uid volumes than a physical boundary should. In exchange for that,
such methods have to trade �uid volumes that should have stayed
in the interior of the �uid phase when the volume fraction becomes
tight. In contrast, our method maintains the sharp boundary of the
�nal design and the physically plausible �ow velocity even if we
push+max to its minimum (Fig. 8 bottom), which we attribute to the
anisotropic material model.

velocity
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Fig. 10. Solving the Fluidic Twister example using the open-source imple-
mentation from Du et al. [2020]. Le�: The parametric shape and fluid flow
visualization before optimization, with the top-right insets showing the
designs viewed from their outlets. Right: The corresponding visualizations
a�er optimization.

The di�erence between our method and [Du et al. 2020] is that
our representation of a �uidic system is �eld-based while their
representation is based on parametric shapes. We run both methods
in the Fluidic Twister example, which was also one of the design
problems studied in their paper.We report the optimization results in
Figs. 1 and 10, respectively. It is evident that the design space in [Du
et al. 2020] is limited to parametric shapes that only evolve a simple
surface (Fig. 10) without changing its topology. On the contrary, our
method automatically synthesizes a propeller-like structure without
geometrical or topological priors. Furthermore, our �nal design
achieves a much lower functional loss (0.52) than their approach
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Fig. 11. We study the e�ects of block divergence for simulating divergence-
free Stokes flow using this two-inlet, two-outlet design problem in 2D
(30 ⇥ 30). The inlets and outlets are defined on the le� and right sides of
the domain, respectively. Le�: We model the design with moderate :5 and
_0 without imposing the block divergence constraints in simulation. The
outflux on the two outlets is 67% of the influx from the two inlets, indicating
the flow velocities dissipate into the solid phase inside the domain. Right:
We rerun the same simulation with block divergence constraints with block
sizes of 8 ⇥ 8 (dashed red lines). The resulting outflux is 100% of the influx.

(3.31), indicating that we explored a much larger design space thanks
to the expressiveness of the �eld-based representation.

7.3 Ablation Study
Block divergence. To understand the e�ects of the block diver-

gence constraints in our numerical simulation, we consider a 2D
example with two inlets and two outlets on the left and right sides of
a square domain (Fig. 11). We use moderately large material param-
eters :5 and _0 de�ned in Table 1 to model the design and simulate
the Stokes �ow with and without block divergence. To quantify the
divergence in the whole domain, we compute the ratio between the
out�ux at the two outlets and the in�ux from the two inlets, which
is about 67% without block divergence and 100% with block diver-
gence. These numbers indicate that moderate material parameters,
while friendly to a numerical solver, create leaky �ows disappearing
into the solid phase in the domain. With block divergence, however,
the whole domain remains divergence-free in an aggregated sense
without messing with the conditioning of the numerical system.

8 CONCLUSIONS
In this paper, we provided a density-based �uidic topology opti-
mization pipeline that handles �exible boundary conditions in the
�uidic phase. Our core contribution is to present an anisotropic ma-
terial model that uniformly represents di�erent phases and �exible
boundaries in the Stokes �owmodel. Building on top of this physical
model, we develop numerical solutions to its geometric represen-
tation, simulation, and optimization. We ran ablation studies that
checked the validity of our approach, and comparisons with existing
methods con�rmed the superiority of our approach in designing
�uidic devices with delicate structures and �exible boundary types.

9 LIMITATION AND FUTURE WORK
We identify certain current limitations of our approach and discuss
possible future directions that could address and overcome them.

First, our model has consciously engaged in certain modeling
simpli�cations of the governing physics of a �uidic system. For
example, our approach models the �uid phase as steady-state Stokes
�ow and ignores – as has been the case with almost any prior work
that compares to our feature set – the e�ects of time-dependent �ow
behaviors on the system’s performance. Developing optimization
frameworks for dynamic �uid systems becomes a natural next step
based on our Stokes �ow optimizer. On the other hand, our method
models the solid phase as rigid. Extending the current model to a
compliant solid phase to develop optimization tools for the interac-
tion between incompressible �ow and compliant structures rises as
an important problem to solve for �uid-driven soft robot design.
Second, our model is currently limited by its scalability. Even

though our demonstrated resolutions are quite competitive in the
context of �uidic topology optimization, it lacks by orders of magni-
tude the resolution complexity of topology optimization pipelines
that focus on purely solid/elastic (not �uidic) devices. Our cur-
rent framework employs a direct solver for the algebraic prob-
lems/systems arising from our discretization. To achieve a signi�cant
next leap in scalability, we will need to devise iterative and possi-
bly multi-resolution (e.g. multigrid, or multigrid-preconditioned)
solvers. Although there is precedent for scalable multigrid solvers
performing well for Stokes �ows [Gaspar et al. 2008], there is a
number of complications related to our speci�c needs that will need
to be adressed. For example, most prior Stokes multigrid solvers
rely on staggered discretizations and mixed variational formulations
for proper performance. We would likely need to adopt a mixed
formulation as well [Patterson et al. 2012] but preserving the con-
vergence qualities that are established in staggered discretizations
in the contest of a collocated discretization as the one we employ
will require attention to stability issues and careful adaptation of
relaxation techniques. At the same time, we will need to address
the complications that our anisotropic terms might impart on the
convergence of techniques for pure Stokes problems.

In addition to addressing the issues of model accuracy and solver
scalability, we anticipate to devise new optimization objectives and
constraints to consider the system’s manufacturability in the frame-
work. The methods for fabrication and performance benchmark to
evaluate optimized �uidic devices also remain as an unexplored yet
essential �eld to bridge the gap between simulation and fabrication.
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