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Abstract. We consider the problem of clustering data sets in the presence of arbitrary out-
liers. Traditional clustering algorithms such as k-means and spectral clustering are known
to perform poorly for data sets contaminated with even a small number of outliers. In this
paper, we develop a provably robust spectral clustering algorithm that applies a simple
rounding scheme to denoise a Gaussian kernel matrix built from the data points and uses
vanilla spectral clustering to recover the cluster labels of data points. We analyze the per-
formance of our algorithm under the assumption that the “good” data points are generated
from a mixture of sub-Gaussians (we term these “inliers”), whereas the outlier points can
come from any arbitrary probability distribution. For this general class of models, we show
that the misclassification error decays at an exponential rate in the signal-to-noise ratio,
provided the number of outliers is a small fraction of the inlier points. Surprisingly, this
derived error bound matches with the best-known bound for semidefinite programs
(SDPs) under the same setting without outliers. We conduct extensive experiments on a
variety of simulated and real-world data sets to demonstrate that our algorithm is less sen-
sitive to outliers compared with other state-of-the-art algorithms proposed in the literature.
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1. Introduction
Clustering is a fundamental problem in unsuper-
vised learning, with application domains ranging
from evolutionary biology, market research, and
medical imaging to recommender systems and social
network analysis, etc. In this paper, we consider the
problem of clustering n independent and identically
distributed inlier data points in d-dimensional space
from a mixture of r sub-Gaussian probability distri-
butions with unknown means and covariance matri-
ces in the presence of arbitrary outlier data points.
Given a sample data set consisting of these inlier
and outlier points, the objective of our inference
problem is to recover the latent cluster memberships
for the set of inlier points and, additionally, to iden-
tify the outlier points in the data set.

Sub-Gaussianmixturemodels (SGMMs) are an impor-
tant class of mixture models that provide a distribution-
free approach for analyzing clustering algorithms and

encompass a wide variety of fundamental clustering
models, such as (i) spherical and general Gaussian mix-
ture models (GMMs), (ii) stochastic ball models (Iguchi
et al. 2015, Kushagra et al. 2017), which are mixture mod-
els whose components are isotropic distributions sup-
ported on unit ℓ2-balls, and (iii) mixture models with
component distributions that have a bounded support,
as its special cases.

Taking the clustering objective and tractability of
algorithms into consideration, several different solu-
tion schemes based on Lloyd’s algorithm (Lloyd 1982),
expectation maximization (Dempster et al. 1977),
method of moments (Pearson 1936, Bickel et al. 2011),
spectral methods (Dasgupta 1999, Vempala and Wang
2004), linear programming (Awasthi et al. 2015), and
semidefinite programming (Peng andWei 2007, Mixon
et al. 2017, Yan and Sarkar 2021) have been proposed
for clustering SGMMs. Among these different algo-
rithms, Lloyd’s algorithm, which is a popular heuristic
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to solve the k-means clustering problem, is arguably
the most widely used. When the data lie on a low
dimensional manifold, a popular alternative is spectral
clustering, which applies k-means on the top eigenvec-
tors of a suitably normalized kernel similarity matrix
(Shi and Malik 2000, Ng et al. 2002, Von Luxburg 2007,
Von Luxburg et al. 2008, Schiebinger et al. 2015, Amini
and Razaee 2021).

Despite their popularity, the performances of vanilla
versions of both k-means clustering and spectral clus-
tering are known to deteriorate in the presence of noise
(Li et al. 2007, Bojchevski et al. 2017, Zhang and Rohe
2018). Figure 1 illustrates a simple example where the
two algorithms fail in the presence of outlier points.

1.1. Our Contributions
In this paper, we consider the joint kernel clustering
and outlier detection problem under a SGMM setting
assuming an arbitrary probability distribution for the
set of outlier points. First, we formulate the exact ker-
nel clustering problem with outliers and propose a
robust SDP-based relaxation for the problem, which is
applied after the data have been projected onto the
top r − 1 principal components (when d > r ). This pro-
jection step not only helps tighten our theoretical
bounds but also yields better empirical results when
the dimensionality is large.

Because SDP formulations do not usually scale well
to large problems, we propose a linear programming
relaxation that essentially rounds the kernel matrix,
on which we apply spectral clustering. In some sense,
this algorithm is reminiscent of building a nearest
neighbor graph from the data and applying spectral

clustering on it. In the literature, k-nearest neighbor
graphs have found applications in several machine-
learning algorithms (Cover and Hart 1967, Altman
1992, Hastie and Tibshirani 1996, Ding and He 2004,
Franti et al. 2006) and have been analyzed in the con-
text of density-based clustering algorithms (Du et al.
2016, Verdinelli and Wasserman 2018) and subspace
clustering (Heckel and Bölcskei 2015).

In general, kernel-based methods are harder to
analyze compared with distance-based algorithms be-
cause they involve analyzing nonlinear feature trans-
formations through the kernel function. In this work,
we show that with high probability our algorithm
recovers true cluster labels with small error rates
for the set of inlier points, provided that there is a
reasonable separation between the cluster centers and
the number of outliers is not large. An interesting
theoretical result that emerges from our analysis is
that the error rate obtained for our spectral clustering
algorithm decays exponentially in the square of the
signal-to-noise ratio for the case when no outliers are
present, which matches with the best-known theoreti-
cal error bound for SDP formulations (Fei and Chen
2018) under the SGMM setting.

Empirically, we observe a similar trend in the per-
formances of robust spectral clustering and our pro-
posed robust SDP-based formulation on real-world
datasets, whereas the first is orders of magnitude
faster. This is quite surprising, because in other model
scenarios like the Stochastic Block Model (Holland
et al. 1983), SDPs have been proven to return cluster-
ings correlated to the ground truth in sparse data
regimes (Guédon and Vershynin 2016, Montanari and

Figure 1. (Color online) k-Means++ and the Spectral Clustering Algorithm Proposed by Vempala andWang (2004) are not
Robust to the Outliers

(a) (b)

Notes. The original data set consists of inlier data points (marked as solid circles) drawn from a mixture of two Gaussian distributions with
means m1 � [−5, 0]�, m2 � [5, 0]�, covariance matrices R1 � R2 � I2, and number of points n1 � n2 � 150. There arem � 5 outlier points generated
on the y-axis, which are marked as red x’s. In the clustering obtained from both the algorithms, the original clusters are merged into one, and the
second cluster is comprised entirely of the outlier data points. (a) Original Data set; (b) clustering result obtained from k-means++ and spectral
clustering (Vempala andWang 2004).
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Sen 2016), whereas only regularized variants of spec-
tral clustering (Amini et al. 2013, Le et al. 2015, Joseph
and Yu 2016, Zhang and Rohe 2018) work in these
parameter regimes. However, to be fair, empirically
we see that SDP is less sensitive to hyperparameter
misspecification. We now summarize the main contri-
butions of this paper.

1. We derive an exact formulation for the kernel clus-
tering problem with outliers and obtain its SDP-based
convex relaxation in the presence of outliers in the data
set. Unlike previously proposed robust SDP formula-
tions (Yan and Sarkar 2016, Rujeerapaiboon et al. 2019),
our robust SDP formulation does not require prior
knowledge of the number of clusters, the number of
outliers, or cluster cardinalities.

2. We propose an efficient algorithm based on round-
ing and spectral clustering, which is provably robust.
Specifically, we show that, provided the number of out-
liers is small compared with the inlier points, the error
rate for our algorithm decays exponentially in the
square of the signal-to-noise ratio. This error rate is con-
sistent with the best-known theoretical error bound
for SDP formulations (Fei and Chen 2018, Giraud and
Verzelen 2018).

Although an extensive amount of work has been
done previously to analyze spectral methods in the
context of GMMs (Dasgupta 1999, Vempala andWang
2004, Löffler et al. 2021), to the best of our knowledge,
no prior theoretical work has been done to analyze
robust spectral clustering algorithms for the nonpara-
metric and more general SGMM setting (with or with-
out outliers).

1.2. Related Work
Several previous works (Cuesta-Albertos et al. 1997,
Li et al. 2007, Forero et al. 2012, Bojchevski et al. 2017,
Zhang and Rohe 2018) have proposed robust variants
of k-means and spectral clustering algorithms; how-
ever, they do not provide any recovery guarantees.
Recently, there has been a focus on developing robust
algorithms based on semidefinite programming and
analyzing them for special cases of SGMMs. Kushagra
et al. (2017) developed a robust reformulation of the k-
means clustering SDP proposed by Peng and Wei
(2007) and derived exact recovery guarantees under
arbitrary (not necessarily isotropic) and stochastic ball
model settings using a primal-dual certificate. On a
related note, Rujeerapaiboon et al. (2019) also obtained
a robust SDP-based clustering solution by minimizing
the k-means objective subject to explicit cardinality
constraints on the clusters as well as the set of outlier
points. Besides the SGMM setting, robust clustering
algorithms have been proposed for the related prob-
lem of subspace clustering where similar theoretical
guarantees have been obtained (Soltanolkotabi and

Candés 2012, Wang and Xu 2013, Soltanolkotabi et al.
2014, Heckel and Bölcskei 2015, Heckel et al. 2017,
Wang et al. 2018) as well as for some other model set-
tings (Vinayak and Hassibi 2016, Yan and Sarkar
2016). Particularly relevant to us is the work of Yan
and Sarkar (2016), who compared the robustness of
kernel clustering algorithms based on SDPs and spec-
tral methods. However, they analyzed the algorithms
for the mixture model introduced by El Karoui (2010),
which assumed the data to be generated from a low-
dimensional signal in a high-dimensional noise set-
ting. Intuitively, in this setting, the signal-to-noise
ratio, defined as the ratio of the minimum separation
between cluster centers (Δmin) to the largest spectral
norm (σmax) of the covariance matrices of the mixture
components, grows as

��
d

√
. These authors showed that

without outliers, the SDP-based algorithm is strongly
consistent, that is, it achieves exact recovery, whereas
kernel SVD algorithm is weakly consistent, that is, the
fraction of misclassified data points go to zero in the
limit as long as d increases polynomially in N, the total
number of points. Note that in typical mixture mod-
els, the number of dimensions, although arbitrarily
large, stay fixed, and there is a possibly small yet non-
vanishing Bayes error rate, which is more realistic.

For the no outliers setting, an extensive amount of
work has been done to obtain theoretical guarantees on
the performances of various clustering algorithms
under different distributional assumptions about the
underlying data generation process. For the Gaussian
mixture model setting, Dasgupta (1999) was among the
first to obtain theoretical guarantees for a random
projections-based clustering algorithm that is able to
learn the parameters of mixture model provided the
minimum separation between cluster centers Δmin �
Ω( ��

d
√

σmax). Using distance concentration arguments
based on the isoperimetric inequality, Arora and
Kannan (2001) improved the minimum separation to
Δmin �Ω(d1=4σmax). For the special case of a mixture r
spherical Gaussians, Vempala andWang (2004) showed
that for their spectral algorithm the separation can be
further reduced to Δmin �Ω((r logd)1=4σmax), which,
ignoring the logarithmic factor in d, is essentially inde-
pendent of the dimension of the problem. These results
are generalized and extended further in subsequent
works of Kumar and Kannan (2010) and Awasthi and
Sheffet (2012). For a distribution-free model described
in terms of the proximity conditions considered in
Kumar and Kannan (2010), Li et al. (2020) obtained
guarantees for the Peng and Wei (2007) k-means SDP
relaxation. Under the stochastic ball model setting,
Awasthi et al. (2015) obtained exact recovery guarantees
for linear programming and SDP-based formulations
for k-median and k-means clustering problems using a
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primal-dual certificate argument. Extending the results
of Awasthi et al. (2015), Mixon et al. (2017) showed that
for a mixture of sub-Gaussians, the SDP-based formula-
tion proposed in Peng and Wei (2007) guarantees good
approximations to the true cluster centers provided
the minimum distance between cluster centers Δmin �
Ω(rσmax). Under a similar separation condition, Yan
and Sarkar (2021) also obtained recovery guarantees for
a kernel-based SDP formulation under the SGMM set-
ting. Most pertinent to us is the recent result obtained
by Fei and Chen (2018), who showed that for a mini-
mum separation of Δmin �Ω( ��

r
√

σmax) the misclassifica-
tion error rate of a SGMM with equal-sized clusters
decays exponentially in the square of the signal-to-noise
ratio. Another analogous result for the SDP formulation
proposed by Peng andWei (2007) has been obtained by
Giraud and Verzelen (2018). Very recently, we also
became aware of the result obtained by Löffler et al.
(2021), who obtained an exponentially decaying error
rate for a spectral clustering algorithm for the special
case of spherical Gaussians with identity covariance
matrices. However, in order for their result to hold with
high probability, they required the minimum separa-
tion between cluster centers to go to infinity. In addi-
tion, their proposed algorithm can easily be shown to
fail in the presence of outliers, as discussed in greater
detail in Section 4. For a clear comparison of our work
with these notable works, we have included Table 1.

In addition to the clustering literature where data
are typically drawn i.i.d. from a mixture distribution,
spectral and SDP relaxations for hard combinatorial
optimization problems have also received significant
attention in graph partitioning and community detec-
tion literature (Goemans andWilliamson1995,McSherry

2001, Newman 2006, Rohe et al. 2011, Sussman et al.
2012, Fishkind et al. 2013, Qin and Rohe 2013, Guédon
and Vershynin 2016, Amini and Levina 2018, Yan et al.
2018).

1.3. Paper Organization
The remainder of the paper is structured as follows. In
Section 2, we introduce the notation used in the paper
and describe the problem setup for sub-Gaussian mix-
ture models with outliers. In Section 3, we obtain the
formulation for the kernel clustering problem with out-
liers and derive its SDP and LP relaxations that recover
denoised versions of the kernel matrix. In addition,
we also discuss the details of the clustering algorithm
that obtains cluster labels from this denoised matrix.
Section 4 summarizes the main theoretical findings for
our clustering algorithm, provides an overview of the
proof techniques used, and contrasts our results with
the existing results in the literature. Section 5 presents
experimental results for several simulated and real-
world data sets. Technical details of proofs for the main
theorems are deferred to the online appendix.

2. Notation and Problem Setup
In this section, we introduce the notation used in this
article and explain the formal setup of the kernel clus-
tering problem for sub-Gaussian mixture models with
outliers.

2.1. Notation
For any n ∈ N, we define [n] as the index set {1, : : : ,n}.
We use uppercase boldfaced letters such as A,B to
denote matrices and lowercase boldfaced letters such

Table 1. Notable Related Works, Separation, Failure Probabilities, and Error Rates

Paper SNR Recovery type Algorithm Outliers
Failure

probability
Error
Rate

Vempala and Wang (2004) Ω(r logn)1=4 Exact Spectral No o(1) NA
Kumar and Kannan (2010) Ω(r ·polylog(n)) Exact Spectral No o(1) NA
Awasthi and Sheffet (2012) Ω( ��

r
√ ·polylog(n)) Exact Spectral No o(1) NA

Lu and Zhou (2016) Ω(r) Approx Lloyd’s algorithm initialized
with Spectral Clustering

No e−Ω(SNR) e−Ω(SNR2)

Ω
���������
log (n)√

Exact o(1) NA
Mixon et al. (2017) Ω(r) Approx SDP No o(1) 1

SNR2

Fei and Chen (2018) Ω(r) Approx SDP No o(1) e−Ω(SNR2)

Ω(r+ log (n)) Exact NA
Giraud and Verzelen (2018) Ω(r1=2) Approx SDP No o(1) e−Ω(SNR2)

Löffler et al. (2021) Ω(r) Approx Spectral No o(1) 1
SNR2

∞ Approx e−Ω(SNR) e−Ω(SNR2)

This paper Ω( ������������
min(d, r)√ ) Approx Spectral Yes o(1) e−Ω(SNR2)

Ω̃
�������
2+ η

√ (min(d, r))1=4
( )

1
SNRη

Notes. For all methods that establish exact recovery, we have used NA as error rate. The Ω̃ is used to hide a logarithmic factor in SNR.
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as u,v to denote vectors. For any matrix A, Tr(A)
denotes its trace, with Aij its (i, j)-th entry, and diag(A)
represents the column vector of its diagonal elements.
We define Diag(v) to be a diagonal matrix with vector
v on its main diagonal. We consider different matrix
norms in our analysis. For a matrix A ∈ R

N×N, the
operator norm ‖A‖2 represents the largest singular
value of A, the Frobenius norm ‖A‖F � (∑ijA2

ij)1=2 and
ℓ1-norm ‖A‖1 �∑

ij Aij
∣∣ ∣∣. For two matrices A,B of same

dimensions, the inner product between A and B is
denoted by 〈A,B〉 :� Tr(A�B) �∑

ijAijBij. We represent
the n-dimensional vector of all ones by 1n, the n × n
matrix of all ones by En, the n × n identity matrix by
In, and n × m matrix of all zeros by 0n×m. We define ei
to be the i-th standard basis vector whose i-th coordi-
nate is 1, and all other coordinates are 0. We use S+n to
denote the cone of n × n symmetric positive semide-
finite matrices. Furthermore, we say that an n × n
matrix X:0 if and only if X ∈ S

+
N.

For the asymptotic analysis, we use standard notations
like o,O,Ω and Θ to represent rates of convergence. We
also use standard probabilistic order notations like Op

and oP (see Van der Vaart 2000 for more details). We
define x�y to denote x ≤ cy, where c is some positive
constant. We use Õ to denote O with logarithmic
dependence on the model parameters.

2.2. Problem Setup
We consider a generative model that generates a set of
n independent and identically distributed inlier points,
denoted by I , from a mixture of r sub-Gaussian proba-
bility distributions (Vershynin 2012) {Dk}rk�1. The setO
of outlier points can come from arbitrary distributions
with O| | �m. Given the observed data matrix Y � [y1,
: : : ,yN]� ∈ R

N×d consisting of theseN :� n+m points in
d-dimensional space, the task is to recover the latent
cluster labels for the set of inlier points I and identify
the outliersO in the data set.

For the set of inlier points, let p � (π1, : : : ,πr ), where
p ≥ 0 and p�1r � 1 denote the mixing weights associ-
ated with the r sub-Gaussian probability distributions
in the mixture model such that πmax �maxk∈[r ]πk and
πmin �mink∈[r ]πk. Assume that m1, : : : ,mr ∈ R

d repre-
sent the means of r clusters from which the data points
are generated. Under the SGMMmodel, for each point
i ∈ I , first a label φi ∈ {1, : : : , r } is generated from a
multinomial(p), where p is a r -dimensional vector
denoting the cluster proportions. We define the true
cluster membership matrix Z0 ∈ {0, 1}N×r such that
Z0
ik � 1 if and only if point i ∈ I and φi � k. Thus,

assuming Z0
ik � 1, observation yi is generated from dis-

tributionDk with the following form:

yi :� mk + ji,

where ji is a mean zero sub-Gaussian random vector
with σ2k defined as the largest eigenvalue of its second
moment matrix and σmax :�maxk∈[r]σk. We represent
the k-th cluster by Ck :� {i ∈ I : φi � k} and its cardinal-
ity by nk :� Ck| |. The separation between any pair of
clusters k and l is defined as Δkl :� ‖mk −ml‖2, with the
minimum and maximum separation denoted respec-
tively as Δmin :�mink≠lΔkl and Δmax :�maxk≠lΔkl. In
our analysis, an important quantity of interest is the
signal-to-noise ratio, which, based on Fei and Chen
(2018), is defined as

SNR :� Δmin

σmax
: (1)

Without loss of generality, we assume that the
points in Z0 are ordered such that the inliers and
outliers are indexed together. Within the set of
inliers again, we further assume that the points
belonging to the same cluster are indexed together.
Thus, the true clustering matrix X0 � Z0Z0� is a
block diagonal matrix with X0

ij � 1 if i and j belong to
the same cluster and 0 otherwise. For our algorithm,
we use the Gaussian kernel matrix K ∈ [0, 1]N×N,

whose (i, j)-th entry Kij :� exp
(
− ‖yi−yj‖2

2θ2

)
defines the

similarity between points i and j for some scaling
parameter θ.

3. Robust Kernel Clustering Formulation
Yu and Shi (2003) showed that the normalized k-cut
problem is equivalent to the following trace maximi-
zation problem Tr(Z�KZ), where Z is a scaled cluster
membership matrix. In their seminal paper, Dhillon
et al. (2004) proved the equivalence between the ker-
nel k-means and normalized k-cut problem. Based on
Dhillon et al. (2004) and Yu and Shi (2003), Yan and
Sarkar (2016) proposed a SDP relaxation for the kernel
clustering problem under the assumption of equal-
sized clusters. Yan and Sarkar (2021) further extended
the kernel clustering formulation to unequal-sized
clusters for analyzing the community detection prob-
lem in the presence node covariate information. Their
formulation, which is derived from the SDP formula-
tion for the k-means clustering problem (Peng and
Wei 2007), however, does not account for possible out-
liers in the data set.

In this section, we first consider an exact formula-
tion for the kernel clustering problem with equal-
sized clusters and no outliers. We then extend this
formulation to incorporate the case where cluster sizes
may be unequal as well as unknown, and outliers are
present in the data set. Finally, we use the idea of
“lifting” and “relaxing” to obtain two efficient algo-
rithms based on tractable SDP and spectral relaxations
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for this exact formulation:

maximize
Z

〈K,ZZ�〉
subject to Z ∈ {0, 1}n×r∑

k∈[r]
Zik � 1 ∀i � 1, : : : ,n

∑
i∈[n]

Zik � n
r

∀k � 1, : : : , r (2)

The optimization formulation in (2) represents the
kernel clustering problem without outliers that aims
to maximize the sum of within-cluster similarities sub-
ject to assignment constraints that require each data
point i to belong to exactly one cluster and cardinality
constraints that assume all clusters to be equal-sized
with exactly n

r (assumed to be integral) data points in
each cluster. For the case where the clusters are
required to be equal-sized, the cardinality constraints
in (2) can be equivalently expressed in an aggregated
form by requiring 〈En,ZZ�〉 � n2

r .
In general, however, the clusters are seldom equal-

sized; in addition, their exact cardinalities are also
seldom known in practice. However, if cardinality con-
straints are dropped from the formulation, the optimal
solution Z∗ assigns all points to a single cluster. A natu-
ral way to overcome this issue would be to maximize
〈K− γEn,ZZ�〉 for γ ∈ (0, 1). Note that for a valid cluster
membership matrix, Z, 〈En,ZZ�〉 � n2

r represents its
minimum value, which is achieved exactly when all of
the clusters are equal-sized. Thus, the penalized objec-
tive function essentially tries to find clusters that are
balanced.

We extend the formulation in (2) to account for pos-
sible outliers in the data set by relaxing the assign-
ment constraint on each data point to belong to either
exactly one cluster (if the data point is an inlier) or no
cluster (if the data point is an outlier). The resulting
exact formulation for the kernel clustering problem
with outliers is a binary quadratic program and is
shown in (3).

maximize
Z

〈K − γEN,ZZ�〉

subject to Z ∈ {0, 1}N×r

Z1r ≤ 1N: (3)

maximize
X

〈K − γEN,X〉

subject to X ∈ {0, 1}N×N

X: 0

rank(X) ≤ r (4)

The formulation in (3) involves maximizing a noncon-
vex quadratic objective function over a set of binary

matrices Z ∈ {0, 1}N×r. One way to sidestep this diffi-
culty would be by “lifting” the formulation from a
low-dimensional space of N × r matrices to a high-
dimensional space of N ×N matrices by defining an
auxiliary semidefinite matrix X � ZZ� that represents
the clustering matrix and expressing the feasible
space in terms of the valid inequalities for X. The
resulting formulation is given in (4). In the following
proposition, we show that these two formulations are
equivalent.

Proposition 1. Formulations (3) and (4) are equivalent up
to a rotation; that is, if X∗ is an optimal solution to optimi-
zation problem (4), then there exists a decomposition X∗ �
G∗G∗� and an orthogonal matrix O ∈ R

r×r such that Z∗ �
G∗O is an optimal solution for (3) with the same objective
function value.

We defer the proof to the online appendix. Note
that in the formulation presented in (4), the rows of X
corresponding to outliers are essentially zero vectors.
This provides us with a way to identify the outliers.
However, even this formulation is a nonconvex opti-
mization problem due to the rank and integrality con-
straints imposed on X. Hence, we obtain tractable
reformulations by considering two convex relaxations
for the problem. In the first, we relax the binary con-
straint on X and also drop the rank constraint. This
yields the following SDP formulation:

maximize
X

〈K− γEN,X〉
subject to 0 ≤ Xij ≤ 1 ∀i, j

X:0: (Robust-SDP)

We note here that similar SDP formulations have also
been proposed in the community detection literature
(Cai and Li 2015, Guédon and Vershynin 2016, Amini
et al. 2018). Next, we consider a second relaxation in
which we also allow the SDP constraint to be dropped
from the formulation. The resulting formulation is a
linear program that is specified below:

maximize
X

〈K − γEN,X〉
subject to 0 ≤ Xij ≤ 1 ∀i, j (Robust-LP)

Algorithm 1 (Robust Spectral Clustering/Robust-SDP)
Input: Observations y1, : : : ,yN ∈ R

d, number of clus-
ters r , scaling parameter θ ∈ R+,and offset parameter
γ ∈ (0, 1).
1. Construct Gaussian kernel matrix K, where Kij �

exp
−‖yi−yj‖2

θ2

( )
.

2. Solve Robust-LP (Robust-SDP) to obtain the esti-
mated clustering matrix X̂ (X̂SDP).
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3. Compute the top r eigenvectors of X̂ (X̂SDP)
obtains Û ∈ R

N×r .
4. Apply k-means clustering on rows of Û to estimate

the cluster membership matrix Ẑ.
5. Use X̂ (X̂SDP) to determine the degree threshold τ.

Set Î � {i ∈ [N] : deg(i) ≥ τ} and Ô � [N]\Î .
For convenience, we denote the feasible region of

Robust-LP by set X and its optimal solution by X̂. It is
straightforward to see that X̂ admits a simple analyti-
cal solution, which can be expressed below:

X̂ij � 1 if Kij − γ > 0,
0 otherwise:

{
Algorithm 1 summarizes the robust spectral clustering
algorithm. To obtain the SDP variant of the algorithm,
in step 2 of the algorithm, we solve the Robust-SDP for-
mulation instead of the Robust-LP formulation. We
also note here that steps 3 and 4 of the algorithm sim-
ply correspond to the application of vanilla spectral
clustering to X̂. In general, solving the k-means cluster-
ing problem in step 4 is an NP-hard problem. There-
fore, in our analysis, instead of solving the problem
exactly, similarly to Lei and Rinaldo (2015), we
consider the use of a (1+ ε)-approximate k-means clus-
tering algorithm that runs in polynomial time in the
number of datapoints n (Kumar et al. 2004). In the last
step, we estimate the set of outliers Ô. Based on our
derivations of the Robust-SDP and Robust-LP formu-
lations, we note that the outlier points inO correspond
to near-zero degree nodes in the true clustering matrix
X0. We make use of this fact to determine a degree
threshold τ from the degree distribution of the nodes
in X̂ and assign the nodes that have degrees lesser than
τ in X̂ to the set of outliers Ô. The main idea behind
this procedure is that if X̂ closely approximates X0 and
the threshold τ is appropriately chosen, then the low-
degree nodes below the threshold in X̂ are good candi-
dates for being outliers.

It is important to note that properly choosing the
parameters θ and γ is central to the performance of
the algorithm. For instance, if we choose the value of
γ to be arbitrarily close to 0 or 1, then X̂ obtained after
rounding is either an all ones matrix or an all zeros
matrix, thereby rendering the denoising step useless.
In Section 4, we derive theoretical values for θ and γ
in terms of σmax and Δmin.

4. Main Results
In this section, we summarize our main results and pro-
vide an overview of the approach used to obtain these
results. Our main theoretical result is a finite sample
guarantee on the estimation error for X̂. Specifically,

we show that the relative estimation error for X̂ decays
exponentially in the square of the signal-to-noise ratio
with probability tending to one as N→∞, provided
there is sufficient separation between cluster centers and
the number of outliersm are a small fraction of the num-
ber of inliers points n (Theorem 1). Using the result, we
show that, provided the clusters are approximately bal-
anced, the error rate for X̂ translates into an error rate for
Ẑ, and hence, the fraction of misclassified data points
per cluster also decays exponentially in the square of the
signal-to-noise ratio (Theorem 2).

For analyzing semidefinite relaxations of clustering
problems, a rather useful direction is the approach
described in Guédon and Vershynin (2016), which is
in the context of stochastic block models. The main
idea in the analysis of Guédon and Vershynin (2016)
and Mixon et al. (2017) is to come up with a suitable
reference matrix R and then use concentration of
measure to control the deviation of the input matrix
(adjacency matrix A for Guédon and Vershynin 2016,
the matrix of pairwise squared Euclidean distances in
Mixon et al. 2017, and the kernel matrix K for us)
from the reference matrix. However, there are some
important differences between our setting and theirs.
SGMMs and SBMs are fundamentally different be-
cause the kernel matrix K constructed for a SGMM
arises from n i.i.d. datapoints, leading to entries that
are statistically dependent on each other. In contrast,
the adjacency matrix of a random graph for a SBM has(n
2

)
Bernoulli random variables, which are condition-

ally independent given the latent cluster member-
ships. Therefore, the analytical techniques required to
analyze SGMMs are completely different compared
with SBMs. Both Mixon et al. (2017) and Yan and Sar-
kar (2021) use suitable reference matrices for related
but different SDP relaxations. The proof techniques
that we develop in this section are new and involve
coming up with a new reference matrix that allows us
to carefully bound the tail probabilities. In addition,
the resulting error bound that we get from our analy-
sis is also tighter than that of the aforementioned
papers.

We nowprovide an overview of our proof approach.
Our constructed reference matrix R ∈ [0, 1]N×N satisfies
two properties:

(i) R is close to K with high probability in the
ℓ1-norm sense.

(ii) The solution to the reference optimization prob-
lem (5) defined below corresponds to the true cluster-
ing matrix X0 (Lemma 1).

maximize
X

〈R− γEN,X〉
subject to 0 ≤ Xij ≤ 1 ∀i, j (5)
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In other words, the reference matrix R is chosen in a
way such that the true clustering matrix X0 solves the
reference optimization problem, which is obtained by
replacing kernel matrix K in Robust-LP with R.

We show that if (i) holds, then with high probability
X̂ ∈ X approximately solves the reference optimization
problem in (5), that is, 〈R− γEN, X̂〉 ≈ 〈R− γEN,X0〉
(see Lemma 3). Using this result, we then prove that if
(ii) holds and the number of outliers is a small fraction
of the number of inliers in the data set, then the esti-
mated clusteringmatrix X̂ is close to the true clustering
matrix X0. In other words, the relative estimation error

is ‖X̂−X0‖1
‖X0‖1 ≤ ε (small), with probability tending to one as

N→∞ (see Theorem 1). Next, using the Davis-Kahan
theorem (Yu et al. 2014), we show that, provided the
clusters are relatively balanced in sizes, the error rates
obtained for X̂ also hold for the clustering membership
matrix Ẑ obtained by applying spectral clustering on X̂
(see Theorem 2).

For our analysis, we assume the reference matrix R
to be a random matrix whose (i, j)-th entry is defined
as below:

Rij �
max{Kij,τin} if both i and j ∈ Ck

min{Kij,τ
(k,l)
out } if i ∈ Ck, j ∈ Cl (l≠ k)

γ if either i ∈O or j ∈O

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (6)

Here, τin :� exp (− rin2

θ2 ) and τ(k,l)out :� exp (− r(k,l)out
2

θ2 ) are thresh-
old quantities defined respectively for the diagonal and
off-diagonal blocks of reference matrix over the set of
inlier points. For i, j ∈ Ck, we obtain Rij by thresholding
Kij to τin if Kij < τin. Similarly, for any i ∈ Ck and j ∈ Cl, Rij

thresholds the value to τ(k,l)out if Kij > τ(k,l)out . The values of

parameters rin and r(k,l)out , whichwe specify later in the sec-
tion, are determined such that with high probability
only a few kernel entries violate the thresholds defined
for their respective blocks, and thus property (i) is
satisfied.

To ensure that our constructed reference matrix R
satisfies property (ii), we impose a strong assortativity
condition (similar to the analysis used for SBMs) that
assumes that for the set of inlier points the smallest
entry Rin

min on the diagonal blocks of R is strictly
greater than the largest entry Rout

max on any of its off-
diagonal blocks, that is,

Rin
min � min

i, j∈Ck:k∈[r ]
Rij > max

i∈Ck, j∈Cl:k, l∈[r ]
Rij � Rout

max: (7)

Based on the definition of the reference matrix, it
is clear that Rin

min ≥ τin and Rout
max ≤ τout :�maxk≠l τ

(k,l)
out .

Thus, the strong assortativity condition in (7) is imme-
diately implied if we require that τin > τout. We now
use the strong assortativity condition in (7) to show

that the true clustering matrix X0 is the solution to the
reference optimization problem in (5) as required by
property (ii).

Lemma 1. Suppose that the strong assortativity condition
in (7) holds and Rout

max < γ < Rin
min; then, the true clustering

matrix X0 maximizes the reference optimization problem
in (5).

Proof. Set Rout
max < γ < Rin

min. Then, for the set of inlier
points, all entries on the diagonal blocks of R− γEN are
strictly positive, whereas those on the off-diagonal
blocks are strictly negative. Thus, X0 � argmaxX∈[0, 1]N×N

〈R− γEN,X〉; that is, X0 maximizes the reference objec-
tive function over the feasible region comprising of all
[0, 1]N×N matrices. w

Remark 1. Note that although we do not have
SDP constraints, X0 � Z0Z0� ∈ S+

N, which implies that
X0 ∈ X and X0 ∈ argmaxX∈X 〈R− γEN,X〉. And thus,
Lemma 1 also applies to Robust-SDP.

Next, we present Lemma 2, which provides a
bound on the estimation error for the inlier parts of X0

and X̂ in terms of the difference in their corresponding
objective function values for the reference optimiza-
tion problem.

Lemma 2. Suppose that the strong assortativity condition
in (7) holds and Rout

max < γ < Rin
min; then, the estimation

error for X0 over the set of inlier data points is

‖X̂I −X0
I‖1 ≤

〈R− γEN,X0 − X̂〉
min(Rin

min − γ,γ−Rout
max)

:

Additionally, if the penalty parameter γ ∈ (Rout
max,R

in
min) is

expressed as γ � υτin + (1− υ)τout for some constant υ ∈
(0, 1), then the above bound simplifies to

‖X̂I −X0
I‖1 ≤

〈R− γEN,X0 − X̂〉
min{υ, 1− υ}(τin − τout) :

In the next lemma, we show that if the kernel matrix
is close to the reference matrix in a ℓ1-norm sense,
then the difference in the objective values of the refer-
ence optimization problem is also small.

Lemma 3. Let KI ,RI ∈ [0, 1]n×n denote respectively the
parts of the kernel and reference matrices with each (i, j)-th
entry restricted to the set of inlier points, and then

〈R− γEN,X0 − X̂〉 ≤ 2‖KI −RI‖1:

Based on the definition of the reference matrix in (6),
we note that for the (i, j)-th entry on the diagonal block
of reference matrix where both i, j ∈ Ck, Rij deviates
from its corresponding kernel value Kij only if Kij is
below the threshold value τin. Similarly, for the (i, j)-th
entry on the off-diagonal block where i ∈ Ck and j ∈ Cl,
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Rij differs from Kij only if Kij is above the threshold
value τ(k,l)out for that block. Therefore, we obtain a bound
on ‖KI −RI‖1 by bounding the number of kernel
entries that deviate from their respective threshold
values on the diagonal and off-diagonal blocks. In par-
ticular, we can bound the ℓ1-loss in Lemma 3 by the
following:

2 · ∑
k∈[r ]

∑
i, j∈Ck:i<j

1{Kij<τin}︸���������︷︷���������︸
A

+∑
k≠l

∑
i∈Ck, j∈Cl

1{Kij>τ
(k,l)
out }︸���������︷︷���������︸

B

(8)

If the entries of the kernel matrix were independent, a
straightforward application of standard concentration
inequalities would have provided us a bound. How-
ever, because of the dependence between them, we
use properties of the concept of U-statistics (Hoeffding
1963). In particular, we write the first part (A) of the
above decomposition in terms of the following sum of
one-sample U-statistics:

A � ∑
k

nk
2

( )
Ukk, Ukk �

∑
{(i, j):i, j∈Ck, i<j}1{Kij<τin}

nk(nk − 1)=2 :

(9)

Similarly, we write the second part (B) of the decom-
position in terms of the following sum of two-sample
U-statistics:

B � ∑
k≠l

nknlUkl, Ukl �
∑

i∈Ck, j∈Cl1{Kij>τ
(k,l)
out }

nknl
: (10)

A U-statistic of degree m is an unbiased estimator of
some unknown quantity E[h(w1, : : : ,wm)] (where w1,
: : : ,wn are i.i.d. observations drawn from some under-
lying probability distribution). It can be written as an
average of the h function (also known as the kernel

function) applied on
( n
m

)
size m subsets of the data. It

is not hard to see that Ukk defined in (9) is a U-statistic
created from yi, i ∈ Ck, where yi are drawn i.i.d. from
the k-th SGMM mixture component. On the other
hand, Ukl defined in (10) is a two-sample U-statistic
created from two i.i.d. data sets drawn from the k-th
and l-th SGMM mixture component. Finally, using
concentration results for U-statistics from Hoeffding
(1963) and Arcones (1995), we obtain a probabilistic
bound on the number of corrupt entries. This leads to
the bound on the estimation error for X̂ in Theorem 1,
which we present in the next subsection.

4.1. Estimation Error
We are now in a position to present our first main
result, which states that if the number of outlier points
is much smaller than the number of inlier points in
the data set, then with probability tending to one, the
error rate obtained is small, provided that there is

enough separation between the cluster centers and the
sample size is sufficiently large. We state this result
formally in the theorem below.

Theorem 1 (Estimation Error for Robust-LP Solution X̂).

Let τin � exp
(
− 5Δ2

min
32θ2

)
and τ(k,l)out � exp

(
− Δ2

kl

2θ2

)
. Choose

γ ∈ (τout,τin), where τout :�maxk≠lτ
(k,l)
out � exp

(
− Δ2

min

2θ2

)
.

Suppose θ � Θ(Δmin) and the minimum separation
between cluster centers Δmin ≥ 8σmax

��
d

√
, and then with

probability at least 1− 2r=nmin, we have that the estimation
error for the inlier part of X̂ is

‖X̂I −X0
I‖1 ≤ Cn2 ·max exp − Δ2

min

64σ2max

( )
,
lognmin

nmin

{ }
:

(11)

In addition, the relative estimation error for X̂ is

‖X̂ −X0‖1
‖X0‖1

≤ C′rexp − Δ2
min

64σ2max

( )
+C′′rmax

lognmin

nmin
,
m
n

{ }
:

(12)

Here, C,C′,C′′ > 0 are universal constants, and nmin :�
mink∈[r ]nk > r denotes the cardinality of the smallest
cluster.

Remark 2. In Section 4.3, we prove that if one does a
suitable dimensionality reduction to first project the
data on the top r − 1 principal components, then with
probability tending to one, the projected data becomes
a SGMM in a r − 1 dimensional space with minimum
cluster separation Δmin=2 as N goes to ∞. As a result,
the new separation condition for applying Algorithm
1 to this projected data set becomes

Δmin ≥ 16σmax

�������������
min{d, r }√

: (13)

Remark 3. In the supplementary material (Theorem
E.1), we show that for a mixture of Gaussians with
identical covariance matrices, the separation condition
can be further reduced to d1=4 up to a logarithmic fac-
tor in SNR (which, in conjunction with the same argu-
ment as in Remark 2 gives a separation of min{d, r}1=4)
to get an error rate polynomially decaying in the SNR.

From Theorem 1, we have that if there are no out-
liers in the data set, that is, m � 0, or if the number of
outliers grow at a considerably slower rate compared
with the number of inlier points, that is, m � oP(n),
then asymptotically the error rate for X̂ decays expo-
nentially with the square of the signal-to-noise ratio.
To analyze this result in terms of prior theoretical
work that has been done in the context of sub-
Gaussian mixture models without any outliers, we
note that Mixon et al. (2017) showed that for the
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k-means clustering SDP proposed by Peng and Wei
(2007), which assumes that the number of clusters r is
known, the estimation error (obtained after rescaling)
in a Frobenius norm sense ‖X̂ −X0‖2F decays at a rate

of r 2n2max

SNR2 provided the minimum separation ΔminÚ

rσmax. In more recent work, Fei and Chen (2018)
showed that for their SDP formulation that minimizes
the k-means objective assuming all clusters to be
equal-sized, the relative estimation error decays expo-
nentially in the square of the signal-to-noise ratio
provided ΔminÚ

��
r

√
σmax. Giraud and Verzelen (2018)

obtained a similar error rate for the k-means clustering
SDP proposed by Peng and Wei (2007) that did not
assume clusters to be equal-sized. Similarly to Fei and
Chen (2018) and Giraud and Verzelen (2018), our
result in Theorem 1 also guarantees a theoretical error
bound that decays as exp (−Ω(SNR2)). The obtained
bound is strictly better compared with Mixon et al.
(2017), as shown below:

‖X̂ −X0‖2F ≤ ‖X̂ −X0‖1�n2exp (−Ω(SNR2)):

A key point to note in our results is that, in contrast
to Fei and Chen (2018) and Mixon et al. (2017), our
proof does not assume any prior knowledge about the
number and sizes of clusters. In addition, Theorem 1
generalizes the analysis to incorporate outliers in the
mixture of sub-Gaussians setting. However, the sepa-
ration condition ΔminÚ

��
d

√
σmax does not generalize

well to high-dimensional settings where d� r . To
overcome this, later in this section, we propose a sim-
ple dimensionality reduction procedure that allows us
to obtain the error rate in (12) for a reduced separation
of ΔminÚ

�������������
min{r ,d}√

σmax when r is known.
Very recently, Löffler et al. (2021) obtained an ex-

ponentially decaying bound in the square of the sig-
nal-to-noise ratio for the spectral clustering algorithm
proposed by Vempala and Wang (2004). However, for
their analysis, they assumed the data to be generated
from a mixture of spherical Gaussians with identity
covariance matrices. Furthermore, for their result to
hold with high probability, the minimum separation
Δmin needs to go to infinity. Based on the simple ex-
ample considered in Figure 1, we also note that this
algorithm is not robust to outliers.

We conclude this subsection with a comment on
outliers. In our analysis so far, we have not made any
specific assumptions on the distribution of the outlier
points. However, one may have stronger theoretical
results if such assumptions can be made; in particular,
the following discussion shows that our algorithm
can in fact tolerate O(n) outlier points under suitable
assumptions.

Remark 4. Based on the distance of each outlier
point to its closest cluster center, we divide the set of
outlier points into two sets consisting of “good” and
“bad” outlier points. Intuitively, the “good” outlier
points are far away from all the clusters, whereas the
“bad” outlier points may be arbitrarily close to one
or more clusters. It can be easily shown that any out-
lier point that is “bad” and close to a cluster center

can potentially have as many as Ω
(n
r

)
neighbors

with high probability. For this reason, the first
assumption that we make about the outlier points
requires that the cardinality of the set of bad outlier
points is at most o(n). On the other hand, if the out-
lier points are good, that is, if they are far away from
the clusters, then the set of good outlier points is
potentially allowed to have a cardinality of O(n).
However, these good outlier points must either be
isolated points or occur in small “bunches” or clus-
ters so that the cardinality of any one cluster, com-
prising entirely of outlier points, is not too large (of

the order Ω
(n
r

)
). One can ensure this by restricting

the number of outlier points within a small neigh-
borhood of each good outlier i ∈Og to o(n).

We now mathematically formalize these notions.

Definition 1. We denote the set of good outlier points
byOg :� {i ∈O :mink∈[r]‖yi −mk‖ ≥

��
2

√
Δmin}, which con-

sists of outlier points whose distance from their closest
cluster centers is at least above the threshold

��
2

√
Δmin. In

addition, we also assume that for all i ∈Og, the set of out-

lier neighboring points NO(i) :� j ∈O : ‖yi − yj‖ ≤ Δmin��
2

√
{ }

has cardinality o(n).
We summarize our main result in the proposition

below.

Proposition 2. Let O denote the set of outlier points. Let
Og ⊂O be good outliers satisfying Definition 1. Let
Ob :�O \Og. Suppose the parameters γ and θ are chosen as
described in Theorem 1 and the minimum separation between
cluster centers Δmin ≥ 8σmax

��
d

√
; then, provided that the size

of Og is O(n), with probability at least 1− 3r=nmin, we have
that the relative estimation error for X̂ is

‖X̂ −X0‖1
‖X0‖1

≤ C′r ·max exp − Δ2
min

64σ2max

( )
,

�����������
lognmin

nmin

√⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭
+ 2rOb| |

n
(14)

Here, C′ > 0 is a universal constant, and nmin :�mink∈[r ]
nk > r denotes the cardinality of the smallest cluster.

The proof of the theorem is deferred to the online
appendix.
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Remark 5. In Proposition 2, we have |Og | �O(n), and
as long as |Ob |=n is smaller than the first term, we
have the same asymptotic rate as Theorem 1.

4.2. Rounding Error
As detailed in Algorithm 1, we recover cluster labels Ẑ
from the estimated clustering matrix X̂ by applying
spectral clustering on the columns of X̂. Our proof
technique for analyzing the spectral clustering step is
inspired by the approach discussed in Lei and Rinaldo
(2015), where the authors relied on a (1+ ε)-approxi-
mate k-means clustering algorithm (Kumar et al. 2004)
to cluster the rows of the matrix Û ∈ R

N×r , whose col-
umns consist of the r principal eigenvectors of X̂ that
correspond to an embedding of each point in r -dimen-
sional space. In the next theorem, we derive theoretical
guarantees on themisclassification rate for the solution
Ẑ obtained from this rounding procedure.

Theorem 2 (Clustering Error for Rounded Solution Ẑ).
Let Ẑ be the estimated cluster membership matrix obtained
by applying spectral clustering on X̂ using a (1+ ε)-
approximate k-means clustering algorithm. Define ε̄ to
denote the bound on the relative estimation error of X̂ in
the right hand side of (12). Suppose 64(2+ε)ε̄

n2min

n2
r ≤ 1 and the

separation condition Δmin ≥ 8σmax
��
d

√
hold; then, with

probability at least 1− 2r=nmin, the cardinality of the set of
misclassified data points Sk ⊂ Ck for each k ∈ [r ] is upper
bounded as

∑
k∈[r ]

Sk| |
nk

≤ 64(2+ ε) ‖X
0 − X̂‖1
n2min

, (15)

where nmin :�mink∈[r ]nk > r denotes the cardinality of the
smallest cluster.

Remark 6. Based on our discussion in Remark 2, if
we adopt the dimensionality reduction procedure de-
scribed in Section 4.3 to first project the data on the top
r − 1 principal components, and then the new separa-
tion condition for Theorem 2 to hold for the projected
data set becomes Equation (13) as before.

We note that the added condition on ε̄ is required
to translate the error of X̂ to misclassification error
and is easily satisfied. If the clusters are balanced, that
is, nmin �Θ(n=r), then it will be satisfied as long as
SNR �Ω(log r), n is large, and m/n is small. It can also
be satisfied for an unbalanced setting at the expense
of a larger SNR and large enough nmin. Thus, from
(15), we see that the average misclassification rate per
cluster for inlier data points decays exponentially in
the signal-to-noise ratio as well as N tends to infinity,
provided that the clusters are balanced and m/n is
sufficiently small. In our proof, we first analyze the

approximate k-means clustering step and show that
the average fraction of misclassified data points per
cluster is upper bounded by ‖Û −U0O‖F, where U0 ∈
R

N×r represents the r principal eigenvectors of X0 and
O ∈ R

r×r is the optimal rotation matrix. Next, using
the Davis-Kahan theorem (Yu et al. 2014), we obtain a
bound on the deviation ‖Û −U0O‖F in terms of
‖X0 − X̂‖1.
Remark 7. Based on the minimax results obtained in
Lu and Zhou (2016), we note that for the SGMM set-
ting in which there are no outliers, that is, m � 0, the
error rate derived in (15) is optimal up to a constant
factor in the exponent. Specifically, in Lu and Zhou
(2016), the optimal rate has a factor of 1/8 within the
exponent as opposed to the 1/64 factor that we obtain
from (12) and (15). In Online Appendix H, we show
that by narrowing down the range of values that γ
can take, the 1/64 factor in (12) can be reduced to 1/
33 to obtain a tighter bound.

Remark 8. It is easy to show that with minor modifi-
cations, the results in Theorems 1 and 2 also hold
respectively for the solutions X̂SDP and ẐSDP obtained
from the Robust-SDP formulation.

4.3. Dimensionality Reduction for Large d
In this section, we extend our analysis to high-
dimensional problems where d� r . Without loss of
generality, we make the assumption that the inlier
part of the data (data matrix excluding the outlier
points) is centered at the origin, that is, mean m �∑

k∈[r ]πkmk � 0 for the sub-Gaussian mixture model.
Under this assumption, because the r mean vectors
can lie in at most r − 1 dimensional space, we apply
Algorithm 1 after dimensionality reduction. This is
similar to previous works of Vempala and Wang
(2004) on Gaussian mixture models. In order to main-
tain the independence of data points, similar to
Chaudhuri et al. (2009) and Yan and Sarkar (2021), we
split the data into two random parts. One part is used
to compute the directions of maximum variance using
principal component analysis (PCA) on its covariance
matrix. The data points in the other part are projected
along these principal directions to obtain their repre-
sentations in a low-dimensional space.

In this procedure, we first randomly split the data
matrix Y into two disjoint sets P2 and P1 with their
respective cardinalities N2 and N1 :�N −N2. Using
the points in P2, we construct the sample covariance

matrix R̂2 �
∑

i∈P2 (yi−ȳ2)(yi−ȳ2)�
N2

, where ȳ2 �
∑

i∈P2yi
N2

and

obtain the matrix V(2)
r−1 ∈ R

d×(r−1), whose columns con-
sist of the top r − 1 eigenvectors of R̂2 that represent
the r − 1 principal components. We obtain the projec-
tion yi

′ of each data point i ∈ P1 by projecting yi onto
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the subspace spanned by the top r − 1 eigenvectors of
R̂2, that is, yi

′ �V(2)�
r−1 yi. Sample splitting ensures that

the projection matrix is independent of the data
matrix that is being projected. Hence, the projected
data points yi

′ in the split P1 of data set are independ-
ent of each other. This ensures that the key assump-
tion of independence of data points that underlies
Theorems 1 and 2 is satisfied.
Next, we show that, provided the number of out-

liers is small in comparison with the number of inlier
data points, the original pairwise distances between
cluster centers are largely preserved with high prob-
ability after projection. We state this result formally
in the proposition below. In our result, we assume
that the r cluster means span the r − 1 dimensional
space.

Proposition 3. Assume that
∑

kπkmk � 0 and N2 �Nα for
some 0 < α < 1. Let YO ∈ R

m×d denote the outlier part of
the data matrix and H :�∑

kπkmkm
�
k such that its smallest

positive eigenvalue ηr−1(H) > 5

(
σ2max +C1

��������������
2αdN1−αlogN

n

√
+

C2
m
N+

�������
αlogN
Nα

√( )
max Δ2

max, ‖YO‖22,∞
{ })

for some universal

constants C1 and C2. Then, the projections yi
′ obtained for

inlier data points in P1 are independent sub-Gaussians in
r − 1 dimensional space. In addition, suppose Δmin denotes
the minimum separation between any pair of cluster centers
in the original d-dimensional space; then, the minimum
separation after projection in the reduced space is Δmin=2,
with probability at least 1− Õ(r 2N−α).

The proof can be found in the online appendix. The
condition on ηr−1 essentially lower bounds the separa-
tion between the cluster means. For a simple symmetric
equal-sized two-component mixture model, it is easy to
see that ηr−1 is proportional to the square of the distance
between the cluster centers. It is important to note here
that the sample splitting procedure discussed in this sec-
tion is mainly for theoretical convenience to ensure that
the projected data points are obtained independently of
each other; in practice, as discussed in Chaudhuri et al.
(2009), this step is usually not required. We note that the
cardinality of set P2 is aN−(1−α) fraction of the total num-
ber of points in Y, and hence, it vanishes for largeN. On
the other hand, the misclassification rate for our algo-
rithm for the balanced clusters setting is upper bounded

as
∑

k∈[r ] Sk| |
nk
�Cr2exp (− Δ2

min
64σ2max

) +C′ mr
n , which is asymp-

totically nonvanishing. Therefore, the asymptotic error
rate remains unaffected by sample splitting. If we make
α very large, for example, using N2 �N=logN, then the
condition on the smallest eigenvalue is less restrictive,
butwe only labelN(1− 1=logN) data points.

4.4. Extension to Weakly Separated Clusters
In this section, we consider the problem setup in which
not all clusters have a minimum separation of Δmin �
8σmax

��
d

√
between them, which is the condition required

in Theorem 1 for the results to hold. Specifically, we
extend the theoretical results obtained in Theorems 1
and 2 to show that if the separation between a pair of
clusters is small, then with probability tending to one, it
is possible to recover the “weakly separated” clusters as
a singlemerged cluster with low error rate.

To achieve this, we define the threshold on the min-
imum separation to be Δ0 :� 8σmax

��
d

√
. We classify

each cluster pair (k, l) as “weakly” or “well” separated
based on whether Δkl < Δ0 or Δkl ≥ Δ0, respectively.
Let Swe :� {(k, l) : Δkl < Δ0 for k, l ∈ [r]} denote the set
of all weakly separated pair of cluster pairs, and then
we redefine the reference matrix to incorporate for
weakly separated clusters as below:

Rij

�

max Kij, exp − r2in
θ2

( ){ }
if i, j ∈ Ck or if i ∈ Ck, j ∈ Cl

with (k, l) ∈ Swe

min Kij, exp − rklout
2

θ2

( ){ }
if i ∈ Ck, j ∈ Cl with (k, l) ∈ Scwe

γ if either i ∈O or j ∈O

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

Clearly, if all clusters are well separated, the reference
matrix defined above reduces to the reference matrix
R in (6). However, under weak separation, we note
that the solution X̃ obtained from the reference opti-
mization problem (5) corresponds to the solution
where the weakly separated clusters form a single
merged cluster and is of the form given below:

X̃ij � 1 if i, j ∈ Ck or if i ∈ Ck, j ∈ Cl with (k, l) ∈ Swe

0 otherwise: (17)

{
Proposition 4. Let X̃ be the true solution defined in (17)
and X̂ be the solution obtained from the Robust-LP for-
mulation. Suppose Δ′ :�maxk≠l{Δkl : Δkl < Δ0} and Δ̃min

:�mink≠l {Δkl : Δkl ≥ Δ0} denote, respectively, the maxi-
mum cluster separation below threshold Δ0 and the mini-

mum cluster separation above Δ0. Fix γ ∈
(
exp

(−5Δ̃2
min

32θ2

)
,

exp
(−Δ̃2

min

2θ2

))
and set θ � Θ(Δ̃min). Assume that Δ′ <

min{c̃Δ̃min,Δ0}, and then with probability at least
1− 2r=nmin, the estimation error for the inlier part of X̂ is
upper bounded as

‖X̂I − X̃I ‖1 ≤ Cn2 ·max exp −(Δ̃min −Δ′=c̃)2
64σ2max

( )
,
lognmin

nmin

{ }
:

(18)
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In addition, the relative estimation error for X̂ is

‖X̂ − X̃‖1
‖X̃‖1

≤ C′rexp −(Δ̃min −Δ′=c̃)2
64σ2max

( )

+C′′rmax
lognmin

nmin
,
m
n

{ }
, (19)

Here, C,C′ and c̃ �
���
10

√
8 are positive constants.

To understand the result, we consider a simple
example (refer to Figure 2) where we have a mixture
model consisting of six spherical Gaussians, with each
having unit variance and a between-cluster separation
of five units. We incrementally reduce the mean separa-
tion between the first two clusters Δ12 while keeping the
separation between the remaining clusters as fixed. The
clustering matrices X̂ obtained from the rounding step
are shown in Figure 3. Because the mean separation
between the first two clusters is decreased, we note that
they get gradually merged in X̂, whereas the remaining
part of X̂ corresponding to the “well” separated clusters

remains unchanged. To obtain the final clustering of
points from X̂, we first determine the number of clusters
by adopting the procedure described in Section 5.6
based on the multiplicity of 0 eigenvalue(s) for the nor-
malized graph Laplacian matrix. The corresponding
clustering results obtained by applying the Robust-SC
algorithm are shown in Figure 2.

5. Experiments
In this section, we study the performance of our
Robust-LP-based spectral clustering algorithm (Robust-
SC) on both simulated and real-world data sets. For our
simulation studies, we conduct two different experi-
ments. In the first experiment, we compare Robust-SC
with three SDP-based clustering algorithms: (1) Robust-
SDP, which is our proposed kernel clustering algorithm
based on the Robust-SDP formulation; (2) Robust-
Kmeans proposed by Kushagra et al. (2017), which is a
regularized version of the k-means SDP formulation
in Peng and Wei (2007); and (3) CC-Kmeans proposed
by Rujeerapaiboon et al. (2019), which is another SDP-

Figure 3. (Color online) ClusteringMatrices X̂ Obtained for Different Values of Δ12 Considered in the Example in Figure 2

Notes. As Δ12 is decreased, the overlap between the first two clusters in X̂ increases. However, the remaining part of X̂ remains unaffected.

Figure 2. (Color online) Example Shows the Effect of Reducing the Mean Cluster Separation Below the Threshold Δ0

Notes. The original data set is obtained from a mixture of six spherical Gaussians with unit variances and a mean separation of 5 units. The sepa-
ration between the first two clusters Δ12 is then incrementally reducedwhile keeping the separation between other clusters as fixed. Figure shows
the final clustering obtained by applying the Robust-SC algorithm. As the overlap increases, the algorithmmerges the first two clusters together.
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based algorithm that recovers robust solutions by
imposing explicit cardinality constraints for the clusters
and the outlier points. Similar to Robust-SC and
Robust-SDP algorithms, the formulations for both
Robust-Kmeans and CC-Kmeans are capable of identi-
fying outliers in datasets in addition to being robust to
them. Therefore, we evaluate the performance of these
algorithms in terms of both the inlier clustering accu-
racy and the outlier detection accuracy.

However, the SDP-based algorithms are computa-
tionally intensive to implement and, therefore, do not
scale well to large-scale data sets. For this reason, in
the second simulation experiment, we evaluate the
performance of Robust-SC on larger data sets and
compare it with three additional algorithms: (1) k-
means++, (2) vanilla spectral clustering (SC), and (3)
regularized spectral clustering (RegSC) (Joseph and
Yu 2016, Zhang and Rohe 2018). Finally, for real-world
data sets, we compare Robust-SC with all of the above-
mentioned algorithms.

5.1. Implementation
We carried out all our experiments on a quadcore 1.9
GHz Intel Core i7-8650U CPU with 16GB RAM. For
solving different SDP instances, we used the MAT-
LAB package SDPNAL+ (Yang et al. 2015), which is
based on an efficient implementation of a provably
convergent ADMM-based algorithm.

5.2. Performance Metric
We measure the performance of algorithms in terms of
clustering accuracy for the inliers and the percentage of
outliers we can detect. We also report the overall accu-
racy, which is the total number of correctly clustered
inliers and correctly detected outliers divided byN.

5.3. Parameter Selection
5.3.1. Choice of u. It is well known that a proper
choice of scaling parameter θ in the Gaussian kernel
function plays a significant role in the performance of
both spectral as well as SDP-based kernel clustering
algorithms. We adopt the procedure prescribed by Shi
et al. (2009) for choosing a good value of θ for low-
dimensional problems. The main idea is to select θ in
a way such that for (1− α) × 100% of the data points,
at least a small fraction β (say around 5−10%) of the
points in the neighborhood are within the “range” of
the kernel function. In general, the value of selected β
should be sufficiently high so that points that belong
to the same cluster form a single component with rela-
tively high similarity function values between them.
Based on this idea, we choose θ as follows:

θ � (1− α) quantile of {q1, : : : ,qN}�����������������������������
(1− α) quantile of χ2

d

√ ,

where for all points 1, : : : ,N, each qi equals the β quan-
tile of the ℓ2-distances {‖yi − yj‖, j � 1, : : : ,N} of point i
from other points in the data set. Depending on the
fraction of outlier points in the data set, we usually
choose a small value of α so that for a majority of inlier
points, the points in the neighborhood have a consider-
ably higher similarity value. In all our experiments, we
set β � 0:06 and α � 0:2. For high-dimensional prob-
lems, we use the dimensionality reduction procedure
described in Section 4 to first project the data points
onto a low-dimensional space and then apply the
above procedure to choose θ.

5.3.2. Choice of g. Based on our discussion in Section 3,
the parameter γ plays an equally important role in the
performance of the Robust-LP formulation. For our
experiments on simulated data sets, we choose the fol-
lowing value of γ:

γ � exp − tα
2

( )
,

where tα � (1− α) quantile of χ2
d. This value is obtained

by setting the distance in the Gaussian kernel function
to equal the (1− α) quantile value of {q1, : : : ,qN}.

5.4. Simulation Studies
5.4.1. Comparison with SDP-based Algorithms. For
the experiments in this section, we construct three syn-
thetic data sets: (1) balanced spherical GMMs, (2)
unbalanced spherical GMMs, and (3) balanced ellipsoi-
dal GMMs. These data sets have been obtained from a
mixture of linearly separable Gaussians and explore
the effect of varying different model parameters like
p, {m1, : : : ,mr } and {R1, : : : ,Rr } on the performance of
the algorithms. In all of these data sets, we add outlier
points in the form of uniformly distributed noise to
the clusters. Table 2 lists out the model specifications
for these synthetically generated data sets. Figure 4
depicts these data sets; in each part of this figure, the
clusters formed by the inlier points are represented in
different colors by solid circles, whereas the outlier
points are markedwith red x’s.

As discussed earlier in this section, we compare the
performance of our Robust-SC and Robust-SDP algo-
rithms with two other SDP-based robust formulations,
namely Robust-Kmeans and CC-Kmeans. In addition to
explicitly requiring the number of outliers and cardinal-
ities for all clusters as inputs, the CC-Kmeans algorithm
suffers from several drawbacks. First, in contrast to both
Robust-SDP and Robust-Kmeans, the algorithm requires
solving the SDP formulation twice: once, to identify the
outliers; and second, to recover the clusters after the
outliers have been removed. Secondly, and more im-
portantly, the CC-Kmeans formulation for r clusters, in
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general, requires defining r separate matrix decision
variables ofdimensions (N + 1) × (N + 1), eachwithaposi-
tive semidefinite constraint. Because of extensive mem-
ory and computational requirements, the CC-Kmeans
SDP could not be implemented on the synthetic data
sets for the listed model specifications in Table 2. How-
ever, despite its several shortcomings, CC-Kmeans
does provide us with a benchmark on the solution
quality, provided the clustering problem has been
entirely specified. Therefore, we try to evaluate the per-
formance of CC-Kmeans algorithm by considering a
smaller data set with a total of around 150−200 data
points in each data set, obtained by sampling an equal
number of points from each cluster. We deliberately
choose the clusters to be equal-sized for CC-Kmeans
because when the clusters are equal-sized, the number
of SDP variables per problem instance can be reduced
(although each instance does need to be solved r times),
therebymaking the problem computationally tractable.

For each data set in Table 2, we generate 10 samples
for the stated model specification and obtain clustering
results for each algorithm except CC-Kmeans, for which
we perform a single simulation run. Based on the imple-
mentation times in Table 3, it is quite evident that the
CC-Kmeans algorithm is considerably slower (at least
10− 20 times) compared with the other SDP algorithms
even for a down-sampled data set, and therefore, we
do not show further experiments on CC-Kmeans in our
simulation study.

We summarize the results obtained in Table 4. For
each data set, we report the performance of the algo-
rithms with respect to three metrics: (i) inlier cluster-
ing accuracy, (ii) outlier detection accuracy, and (iii)
overall accuracy. On the balanced spherical GMMs
data set, all of the algorithms perform equally well,
with more than 95%(62%) overall accuracy. For the
unbalanced spherical GMMs data set, Robust-SC
and Robust-SDP are comparable, with about 98%
(60:6%) overall accuracy, whereas Robust-Kmeans
performs poorly, with about 56%(62%) overall accu-
racy. Similarly, for the balanced ellipsoidal GMM
data set, Robust-SC and Robust-SDP have similar
accuracy values of 97:31%(60:6%) and 93:86%(65%),
whereas Robust-Kmeans has a poor accuracy of
50:52%(61%).

Based on the high-accuracy values for inlier and
outlier data points, Robust-SC and Robust-SDP consis-
tently provide high-quality solutions in terms of recov-
ering the true clusters for inlier data points as well as
identifying outliers in the data set. On the other hand,
whereas Robust-Kmeans and CC-Kmeans perform
well for the balanced spherical GMMs data set, they
fail either on the unbalanced spherical GMMs data set,
where the clusters are unbalanced in terms of their
cluster cardinalities (refer to Figure 5(a)), or the bal-
anced ellipsoidal GMMs data set, where the clusters
have significantly different variances along different
directions (refer to Figure 5(b)).

Table 2. Model Specifications for Synthetic Data Sets

Data set Model specifications

1. Balanced Spherical GMMs m1 � [0, 0]�,m2 � [6, 3]�,m3 � [6,− 3]�
R1 � R2 � R3 �Diag([1, 1])
n1 � n2 � n3 � 150,m � 50

2. Unbalanced Spherical GMMs m1 � [0, 0]�,m2 � [20, 3]�,m3 � [20,− 3]�
R1 �Diag([5, 5]),R2 � R3 �Diag([0:5, 0:5])
n1 � 500,n2 � n3 � 150,m � 50

3. Balanced Ellipsoidal GMMs m1 � [0, 5]�,m2 � [0,− 5]�,R1 � R2 �Diag([20,1])
n1 � n2 � 200, m � 25

Figure 4. (Color online) Synthetic Data Sets Generated for Evaluating the Performance of Clustering Algorithms

(a) (b) (c)

Note. (a) Balanced spherical GMMs; (b) unbalanced spherical GMMs; (c) balanced ellipsoidal GMMs.
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In addition, we note that although there is very
little difference between Robust-SC and Robust-SDP
in terms of solution quality, Robust-SC is orders of
magnitude faster than Robust-SDP and other SDP-
based algorithms in terms of solution times (refer to
Table 3).

5.4.2. Comparison with k-Means11 and Spectral
Clustering Algorithms. From the solution times re-
ported in Table 3, it is quite evident that the SDP-based
algorithms are intractable for large scale experiments.
Therefore, in this section, we consider a much larger
experiment setting and compare Robust-SC with more
scalable k-means++ and spectral clustering algorithms.
In the experimental setup for this section, we assume

that the n inlier points are generated in r-dimensional
space from r equal-sized spherical Gaussians, which
are centered at the vertices of a suitably scaled stand-
ard (r− 1)-dimensional simplex and have identity
covariance matrices. Thus, for all clusters, k ∈ [r], mk �
s · ek for some scale parameter s and Rk � Ir. Them out-
lier points are generated from another spherical Gaus-
sian centered at the origin, that is,mO � 0, and having a
much larger variance (RO � 100 · Ir).

We analyze the robustness of the Robust-SC algo-
rithm under different model settings by varying the
number of clusters (r), the number of outliers points (m),
and the separation between cluster centers (Δ :� ��

2
√

s).

We compare Robust-SC with k-means++ and popular
variants of the spectral clustering using clustering accu-
racy for inlier points as the evaluation metric. Figure 6
shows the results obtained. For this set of experiments,
we assume that the default parameter values are set
to r � 15, s � 5, m � 400, and n=r � 400. In each experi-
ment, we assume that, except for the parameter that is
varied, the other parameters are set to their default
values. From the plots, we note that Robust-SC clearly
outperforms the other clustering algorithms in terms of
performance. We further demonstrate the scalability of
the Robust-SC algorithm by repeating the experiment
for r � 50 equal-sized clusters with n � 50, 000 inlier
points and m � 1000 outlier points. For 10 simulation
runs of this experiment, we achieve an average inlier
clustering accuracy of 0.9926 and an average solution
time of 525.34 s with standard deviation values of 5:44 ×
10−4 and 17.8 s respectively.

5.5. Real-World Data Sets
For evaluating the performance of different algorithms
on real-world data sets, we standardize the data set by
applying a z-score transformation to each attribute of
the data set. For high-dimensional data sets, we adopt
the dimensionality reduction procedure described in
Section 4, which involves first computing the cova-
riance matrix R, projecting the data points onto the
subspace spanned by the r − 1 principal eigenvectors

Table 3. Solution Times (in Seconds) for Different Clustering Algorithms on Synthetic Data Sets

Data set Robust-SC Robust-SDP Robust-Kmeans CC-Kmeans

Balanced Spherical GMMs 3.24 265.62 355.65 3718
Unbalanced Spherical GMMs 3.18 828.56 1064.11 5726
Balanced Ellipsoidal GMMs 2.71 273.52 123.74 1944

Notes. For Robust-SC, Robust-SDP, and Robust-Kmeans, the solution times are specified for the entire data set,
averaged over 10 simulation runs. For CC-Kmeans, the algorithm could not be implemented for the entire data set
because of memory and computational limitations. Therefore, for comparison, we specify the run time for a single
simulation on a down-sampled data set with an equal number of points from each cluster.

Table 4. Performance of Clustering Algorithms on Synthetic Data Sets

Data set Robust-SC Robust-SDP Robust-Kmeans CC-Kmeans

Balanced spherical Inlier 0.9902 Inlier 0.9836 Inlier 0.9660 Inlier 1.0000
Outlier 0.9840 Outlier 0.9080 Outlier 0.7540 Outlier 1.0000
Overall 0.9896 Overall 0.9760 Overall 0.9448 Overall 1.0000

Unbalanced spherical Inlier 0.9914 Inlier 0.9908 Inlier 0.5360 Inlier 0.9667
Outlier 0.9680 Outlier 0.8840 Outlier 0.9240 Outlier 0.9600
Overall 0.9900 Overall 0.9845 Overall 0.5588 Overall 0.9650

Balanced ellipsoidal Inlier 0.9468 Inlier 0.9840 Inlier 0.5038 Inlier 0.4933
Outlier 0.8080 Outlier 0.8000 Outlier 0.5280 Outlier 0.6800
Overall 0.9386 Overall 0.9731 Overall 0.5052 Overall 0.5200

Notes. Performance of Robust-SC, Robust-SDP, and Robust-Kmeans algorithms in terms of their inlier clustering accuracy, outlier detection
accuracy, and overall accuracy for synthetic data sets, averaged over 10 simulation runs. For CC-Kmeans, the algorithm could not be
implemented for the entire data set because of memory and computational limitations. Therefore, for comparison, we specify the results for a
single simulation on a down-sampled data set with an equal number of points from each cluster.
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of R and then applying the z-score transformation to
each attribute in the reduced space. All of these data
sets were obtained from the UCI Machine Learning
repository (Dua and Graff 2017). We provide below a
brief description of these data sets and summarize
their main characteristics in Table 5.

• MNIST data set: Handwritten digits data set
comprised of 1,000 samples of 8 × 8 grayscale images
(represented as a 64-dimensional vector) of digits
from 0 to 9.

• Iris data set: Data set consists of a total of 150 sam-
ples from 3 clusters, each representing a particular type

Figure 5. (Color online) Clustering Results for Different Algorithms on Synthetic Data Sets

(a)

(b)

Notes. CC-Kmeans could not be implemented on the entire data set because of memory and computational limitations. Therefore, for compari-
son, we show the clustering results for a down-sampled data set with equal number of points from each cluster. (a) Unbalanced Spherical
GMMs; (b) balanced ellipsoidal GMMs.

Figure 6. (Color online) Effects of Varying the Model Parameters on the Inlier Clustering Accuracy for Different Algorithms

(a) (b) (c)

Notes. The default parameter values are set to r � 15, s � 5,m � 400 and n=r � 400. In each plot, apart from the parameter that is being varied, the
other parameters are set to their default values.
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of Iris plant. The four attributes associated with each
data instance represent the sepal and petal lengths and
widths of each flower in centimeters.

• USPS data set: A subset of the original USPS data
set consisting of 500 random samples, each represent-
ing a 16 × 16 grayscale image of one of the following
four digits: 0, 1, 3, and 7.

• Breast cancer data set:Data set consists of 683 sam-
ples of benign and malignant cancer cases. Every data
instance is described by nine attributes, each having 10
integer-valued discrete levels.

For these real-world data sets, in addition to Robust-
Kmeans and CC-Kmeans, we also compare the perform-
ances of Robust-SC and Robust-SDP with three other
algorithms, namely k-means++, vanilla spectral cluster-
ing (SC), and regularized spectral clustering (RegSC).

As we discussed previously, for high-dimensional
data sets, some form of a dimensionality reduction
procedure is usually needed as an important prepro-
cessing step. In the real-world data sets that we con-
sider in our study, two data sets, namely MNIST and
USPS, have high-dimensional features. Although none
of the other methods that we compare our algorithm
against explicitly recommends or analyzes the dimen-
sionality reduction step for high-dimensional setting,
for fairness, we apply our proposed dimensionality
reduction procedure in Section 4 to all the algorithms.
For reference, however, we consider a variant of the
Robust-Kmeans algorithm, Robust-Kmeans-NoDR, that
does not use our proposed dimensionality reduction
procedure but is applied to the actual data in the origi-
nal high-dimensional space.

Table 6 summarizes the clustering performance of
different algorithms on the real-world datasets in
terms of their overall accuracy for each data set. Based
on the values in the table, we infer that both Robust-SC
and Robust-SDP consistently perform well across all
data sets and considerably better compared with the
other algorithms considered in the study. Addition-
ally, as we previously observed from our simulation
studies, the Robust-SC algorithm recovers solutions
that are almost as good as the Robust-SDP solutions
and, for some data sets (MNIST and Breast Cancer),
marginally better in terms of the clustering accuracy,
even though Robust-SC is based on a simple rounding
scheme, whereas the Robust-SDP algorithm requires
solving the Robust-SDP formulation. For this reason,

there is a significant disparity in the solution times
noted for the two algorithms (refer to Figure 7), with
the Robust-SC algorithm being approximately 100
times faster even for moderately sized problem in-
stances. Additionally, comparing the performance
of Robust-Kmeans and Robust-Kmeans-NoDR on the
high-dimensional data sets, MNIST and USPS, we can
easily see that the dimensionality reduction step signif-
icantly improves the performance of the algorithm on
high-dimensional, real-world data sets.

5.6. Estimating Unknown Number of Clusters
from Robust-SDP Formulation

In several real-world problems, the number of clusters r
is unknown. In this section, we discuss how we can
obtain an estimate r̂ for the number of clusters from the
Robust-SDP solution X̂SDP. In general, the SDP solution
provides a more denoised representation of the kernel
matrix as compared with the simple rounding scheme
based on the Robust-LP solution. We propose a proce-
dure based on the eigengap heuristic (Von Luxburg
2007) of the normalized graph Laplacian matrix LĨ :�
I − D−1=2

Ĩ
X̂SDP

Ĩ
D−1=2

Ĩ
, where DĨ �Diag(X̂SDP

Ĩ
1 Ĩ| |) and

Ĩ � {i : deg (i) ≥ τ̃}. Here, the threshold τ̃ corresponds
to some quantile β̃ of {deg (i), i � 1, : : : ,N}. The key idea
behind this heuristic is to select a value of r̂ such that the
r̂ smallest eigenvalues λ1 ≤ : : : ≤ λr̂ of LĨ are extremely
small (close to 0), whereas λr̂ +1 is relatively large. The
main argument for using the eigengap heuristic comes
from matrix perturbation theory, which leverages the

Table 5. Real-World Data Sets with Their Main Characteristics

Data set N - No. of data points d - No. of dimensions r - No. of clusters

MNIST 1000 64 10
Iris 150 4 3
USPS 500 256 4
Breast Cancer 683 9 2

Table 6. Performance of Different Clustering Algorithms
on Real-World Data Sets

Algorithm MNIST Iris USPS Breast Cancer

Robust-SDP 0.8450 0.8933 0.9720 0.9649
Robust-SC 0.8630 0.8800 0.9620 0.9722
Robust-Kmeans 0.8040 0.8267 0.8320 0.9575
Robust-Kmeans-NoDR 0.6680 0.8267 0.6420 0.9575
CC-Kmeans — 0.8400 — —
SC 0.8580 0.6600 0.3280 0.6471
RegSC 0.7320 0.5200 0.6000 0.8873
k-means++ 0.7850 0.8133 0.6080 0.9575

Notes. Performance of different clustering algorithms on real-world
data sets in terms of their overall clustering accuracy. Entry with ‘-’
indicates that the algorithm failed to terminate within the specified
time limit of 2 hours.
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fact that if a graph consists of r disjoint clusters, then its
graph Laplacianmatrix has an eigenvalue of 0withmul-
tiplicity r and its (r+1)-st smallest eigenvalue λr+1 is
comparatively larger.

Figure 8 denotes the eigenvalues of the normalized
graph Laplacian matrix for both synthetic and real-
world data sets. From the plot, it is easy to see that the
eigengap heuristic correctly predicts the number of clus-
ters for each of the three synthetic data sets. It is impor-
tant to note that the eigengap heuristic for finding the
number of clusters usually works better when the sig-
nal-to-noise ratio is large, that is, either when the clus-
ters are well separated or when the noise around the
clusters is small. However, for many real-world data
sets, a high signal-to-noise ratio is not always observed.
For example, in the MNIST handwritten digits data set,
there are considerable overlaps between clusters that

represent digits 1 and 7 as well as digits 4 and 9. Thus,
when the eigengap heuristic is applied on the MNIST
data set, it returns r̂ � 8 as an estimate for the number of
clusters. Similarly, for the iris data set, two of the clus-
ters (Verginica and Versicolor) are known to intersect
each other (Ana and Jain 2003). Thus, when the number
of clusters is not specified, we get r̂ � 2 instead of the
actual three clusters in the data set.

Although it is possible to obtain an estimate of r by
applying the above procedure on the rounded matrix
X̂ obtained from the Robust-LP formulation, we see
that r̂ obtained from X̂SDP is more accurate.
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Figure 7. (Color online) Solution Times (in Seconds) for Different Algorithms on Real-World Data Sets

(a) (b)

Note. (a) Spectral methods; (b) SDP-basedmethods.

Figure 8. (Color online) Eigenvalues of the Normalized Graph LaplacianMatrix LĨ :� I−D−1=2
Ĩ

X̂SDP
Ĩ

D−1=2
Ĩ

for Synthetic and
Real-World Data Sets with β̃ � 0:8

(a) (b)

Note. (a) Synthetic data sets; (b) real-world data sets.
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