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Abstract

Since its inception in Erikki Oja’s seminal paper in 1982, Oja’s algorithm has become an
established method for streaming principle component analysis (PCA). We study the problem of
streaming PCA, where the data-points are sampled from an irreducible, aperiodic, and reversible
Markov chain. Our goal is to estimate the top eigenvector of the unknown covariance matrix of the
stationary distribution. This setting has implications in situations where data can only be sampled
from a Markov Chain Monte Carlo (MCMC) type algorithm, and the goal is to do inference for
parameters of the stationary distribution of this chain. Most convergence guarantees for Oja’s
algorithm in the literature assume that the data-points are sampled IID. For data streams with
Markovian dependence, one typically downsamples the data to get a “nearly” independent data
stream. In this paper, we obtain the first sharp rate for Oja’s algorithm on the entire data, where
we remove the logarithmic dependence on n resulting from throwing data away in downsampling
strategies.

1 Introduction

Principal Component Analysis (PCA), invented by Karl Pearson in 1901, is a well-established
dimensionality reduction technique that can be used to extract linearly uncorrelated features from high-
dimensional datasets. The many applications of PCA include image processing, visualization, and
dictionary learning [16]. Mathematically, PCA involves the computation of the principal eigenvectors
of the unknown covariance matrix derived from the dataset. This is typically done by extracting
principal eigenvectors of the sample covariance matrix. For very large dimensionality, it becomes
more memory efficient to process one data-point at a time and keep updating the estimated principal
component, reducing memory use from quadratic to linear in dimensionality. This method, also
known as streaming PCA, has a rich history in Computer Science and Statistics. The problem of
streaming PCA updates the estimated principal component one data-point at a time. One of the most
popular algorithms for streaming PCA was introduced by Erikki Oja in 1982 [28, 29]. The “Oja”
update has roots in the Hebbian principle put forward by Donald Hebb, a psychologist, in his 1949
book “Organization of Behavior” [11].

We consider the streaming PCA problem where the data are sampled from an irreducible,
aperiodic, and reversible Markov Chain. In many applications, the data-points are not sampled
IID but from an MCMC process which is converging to a target stationary distribution. Consider,
for example, a set of machines, each hosting an arbitrary fraction of data-points or features. The
machines can communicate with each other using a fixed graph topology that is connected. The goal
is to design a streaming algorithm that respects this topology for communicating between machines
and returns the principal component of the whole dataset. One way to achieve this would be to design
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a Metropolis-Hastings scheme that uses local information to design the transition matrix of a Markov
chain with any desired stationary distribution. Governed by this Markov chain, a random walker then
travels the network of machines and samples one data-point at a time from the current machine, and
computes the update.

However, even when the data stream has reached the stationary distribution, the data-points are
dependent, which deviates from the IID setup. Our goal is to obtain sharp error bounds for the sin?
error of the estimate from the streaming PCA algorithm and the true top eigenvector of the unknown
covariance matrix.

Estimating the first principal component with streaming PCA : Let X; be a mean zero d
dimensional vector with covariance matrix ¥, and let 1, be a decaying learning rate. The update rule
of Oja’s algorithm is given as -

w
Wi < (I + ntXtXtT)wt,l, Wy < m (l)
t

where wy is the estimate of v; and 1 is the step-size at timestep ¢. We aim to analyse the sin’ error
of Oja’s iterate at timestep ¢, defined as 1 — (wy, v1>2, where v; is the top eigenvector of 2.

Streaming PCA in the IID setting: For an IID data stream with E [X;] =0 and E [X; X[ ]| = %,
there has been a lot of work on determining the non-asymptotic convergence rates for Oja’s algorithm
and its various adaptations [14, 1, 3, 37, 12, 13, 25, 20, 24]. Amongst these, [14], [1] and [13] match
the optimal offline sample complexity bound, suggested by the independent and identically distributed
(IID) version of Theorem 1 (See Theorem 1.1 in [14]). We consider Oja’s algorithm in a Markovian

Paper Data Model | Online? sin? error rate Sample Complexity
Jain et al. [14] 11D Y 0 (85;;2 %) 0 ga‘;ﬂ %>
N o(%) o)
Chen et al. [3] Markov Y i 0 (Ztm® ()
Neeman et al. [27] Markov N 0 (m }L) O <m i)
Theorem 1 Makov | Y | O(mtrert) | O (mcbrast)

Table 1: Comparison of sin? error rates and sample complexities using different data models and
algorithms. Here gap := (A — A\3), where A1, Ao are the top 2 eigenvalues of ¥ and the sample
complexities represent the number of samples required to achieve sin” error at most e. We note that
[1] and [13] also match the online sample complexity bound provided in [14]. Further, for the offline
algorithm with IID data, [15] removes the log (d) factor in exchange for a constant probability of
success for large enough n.

data setting where the data is generated from a reversible Markov chain with stationary distribution 7.
In this setting our goal is to estimate the principal eigenvector of E . [X XTI ] . The challenge is that
the data, even when it reaches stationarity, is dependent. Here the degree of dependence is captured
by the second eigenvalue in magnitude of the transition matrix P of the Markov chain. We denote
this quantity by | A2 (P)|. This is closely related to the mixing time of a Markov chain (see 8), denoted
as Tmix, Which is simply the time after which the conditional distribution of a state is close in total
variational distance to its stationary distribution, 7 (See Section 2.1 for a quantitative description).
Intuitively this means that samples which are 7,,;x apart are "nearly" independent of each other and
follow the distribution 7.

Our contribution: Using a series of approximations, we obtain an optimal error rate for the sin?
error, which is worse by a factor of 1/(1 — |A2(P)]|) from the corresponding error rate of the IID case.
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Figure 1: Comparison of Oja’s algorithm with and without downsampling along with the offline baseline for
Bernoulli state distributions. The X axis represents the sample size and the Y axis represents the sin? error of
each algorithm’s estimate of the leading eigenvector. The experimental setup is available in Section 6. Observe
that downsampling performs considerably worse compared to Oja’s algorithm on the entire dataset.

Previous work [3] has established rates worse by a poly-logarithmic factor. We break this logarithmic
barrier by considering a series of approximations of finer granularity which uses reversibility of the
Markov chain and standard mixing conditions of irreducible and aperiodic Markov chains. Our rates
are comparable to the recent work of [27] (Proposition 1) that establishes an offline error analysis for
estimating the principal component of the empirical covariance matrix of Markovian data by using a
Matrix Bernstein inequality. Our results also imply a linearly convergent decentralized algorithm
for streaming PCA in a distributed setting. As a simple byproduct of our theoretical result, we also
obtain a rate for Oja’s algorithm applied on downsampled data, which is worse by a factor of log n,
as shown in Figure 1. To our knowledge, this is the first work that analyzes the Markovian streaming
PCA problem without any downsampling that matches the error of the offline algorithm.

The crux of our analysis uses the mixing properties of the Markov chain. Strong mixing intuitively
says that the conditional distribution of a state s in timestep & given the starting state is exponentially
close to the stationary distribution of s, the closeness being measured using the total variation distance.
All previous work on Markovian data exploits this property by conditioning on states many time
steps before. However, it is crucial to a) adaptively find how far to look back and b) bound the error
of the sequence of matrices we ignore between the current state and the state we are conditioning
on. Observe that these two components are not independent of each other. Looking back too far
makes the dependence very small but increases the error resulting from approximating a larger matrix
product of intermediate matrices. We present a fine analysis that balances these two parts and then
uses spectral theory to bound the second part within a factor of a variance parameter that characterizes
the variability of the matrices and shows up in the analysis of [14, 27].

Related work on streaming PCA and online matrix decomposition on Markovian data: Amongst
recent work, [3] is very relevant to our setting, since it analyzes Oja’s algorithm with Markovian Data
samples. Inspired by the ideas of [8], the authors propose a downsampled version of Oja’s algorithm
to reduce dependence amongst samples and provide a Stochastic Differential Equation (SDE) based

analysis to achieve a sample complexity of O (ﬁ% In? (ﬁ%
than e. We obtain a similar rate in Corollary 1 through our techniques. However, comparing with
Theorem 1, we observe that downsampling leads to an extra O (In (n)) factor. It is important to
point out that [3] provides an analysis for estimating top % principal components, whereas this paper
focuses on obtaining a sharp rate for the first principal component.

Another related work is [21], where the authors analyze online non-negative matrix factorization

)) for sin? error smaller



for Markovian data and show that a suitably defined error converges to zero. Their analysis also
uses the mixing properties of the Markov chain by conditioning on the distant past. While this work
considers a harder problem, it does not provide a rate of convergence.

Stochastic Optimization with Markovian Data : In numerous applications such as Reinforcement
Learning [2, 5] and Linear Dynamic Systems [9, 30, 4], a commonly-used approach for modeling data
dependencies is to assume that a Markovian process produces the data and therefore there has been a
lot of focus in statistics, optimization, and control theory to investigate and develop techniques for
learning and modeling Markovian data. A class of methods has focused on establishing asymptotic
bounds [34, 18, 23]. [8] provided one of the first non-asymptotic analyses of stochastic gradient
descent (SGD) methods for general convex functions with Markovian data. Since then, there has been
extensive work on SGD algorithms for both convex and non-convex problems [31, 6, 7, 10, 39, 33].
The convergence rates (sample complexities) obtained in these works apply to more general problems
but do not exploit the matrix product structure inherent to Oja’s algorithm. In this work, we develop
novel techniques to show that a sharper analysis is possible for the PCA objective.

2 Problem Setup and Preliminaries

This section presents the problem setup and outlines important properties of the Markov chain that
will be utilized subsequently. We assume that the Markov chain is irreducible, aperiodic, reversible,
and starts in stationarity, with state distribution m I Such a Markov chain can arise in various
situations, for eg., while performing random walks on expander graphs which are used extensively in
fields such as computer networks, error-correcting codes, and pseudorandom generators. Each state s
of the Markov chain is associated with a distribution D(s) over d-dimensional vectors with mean
s € R? and covariance matrix X, € R9*9,

For a random walk s1, so, - - - s¢ on C, we define the sequence of random variables X1, X5 - - - X4,
where X; ~ D (s;) is drawn from the distribution corresponding to the state s;. We represent the
total mean as y := Ey¢, [115] and the total covariance matrix as > € R?*4, which can be expressed
as -

2 = EyerEp(s) {(X — ) (X — M)T} = EoerEp(s) [XXT] — pu®
= EvenEp(o [(X = ) (X = )"+ pop? | = "
= ESET(ED(S) [Zs] + ESETFED(S) [Né”?] - MMT

In this work, we assume i = 0 i.e, the data-points are zero-mean with respect to m, which is a
common assumption in the IID setting (see [1]) 2. Therefore, & = Eye-Ep(s) [X XT].

Let the eigenvalues of 3 be denoted as A\; > A2 > A3 --- 4. Let v; denote the leading eigenvector
of ¥ and V, denote the R?*(?~1) matrix with the remaining eigenvectors as columns. For s € €, let
X ~ D (s). We proceed under the following standard assumptions (see for eg. [13]) -

For all states s € €,

. 2
Assumption 1. |[Escr (S5 + pspl — )7 |2 < [EsenEps) (X XT =)o <V
Assumption 2. | XXT — 3|y < M with probability 1

Assumption 2 also implies |2 + pspul — X||2 < M with probability 1. Without loss of generality,
M+ > 1. We will use E[] := EseEp(s) [] to denote the expectation over both the states as
they are drawn from the stationary distribution 7 and over the state-specific distributions D (.), unless
otherwise specified.

IThis assumption may be eliminated by observing an initial burn-in period of Tpy.
2[38] extends Oja’s algorithm to handle non-zero mean IID samples. We believe it’s possible to generalize our result to this
setting as well.



Define the matrix product
By o= (I + X X)) (I +mXea X)) o (T +m X XY) 2)
Unrolling the recursion in 1, the output of Oja’s algorithm at timestep ¢ is given as -

Bt’wo
Wy 1= 3)
" Bewol,

In this work, ||.||2 denotes the Euclidean Lo norm for vectors and the operator norm for matrices
unless otherwise specified.

2.1 Markov chain mixing times

Now we will discuss some well-known properties of an irreducible, aperiodic, and reversible Markov
chain. We refer the reader to Chapter 4 in [19] for detailed proofs of these results. The second largest
absolute eigenvalue of the Markov chain is denoted by |As (P) |. We denote the state-distribution of
the Markov chain at timestep ¢ with X; =  as P!(z,.). For any two probability distributions 7 and
V5, the total variational distance between them is defined as :

1
TV (1, v) = 1 = vallrvi= 5 > n(x) = va(z)]
zeN

The distance from stationarity at the ¢ timestep is defined as :

dmix(t) == sup TV (P*(z,.), ) 4)
zE€Q

For irreducible and aperiodic Markov chains, by Theorem 4.9 in [19], we have
dmix (t) < Cexp(—ct) for some C, ¢ > 0
The mixing time of the Markov chain, 7x(€) is defined as :
Tmix (€) 1= Inf{t : dmix(t) < €}

and we will denote Tiix := Tmix (5 ). Then, we have

7—mix(e) S ’710g2 (1>—‘ Tmix - (5)

It is worth mentioning the useful relationship between dpix () and 7ix, given as
mix (leix) < 2_l Vil € Np. (6)

These results about mixing time are valid for general irreducible and aperiodic Markov chains. A
Markov chain is said to be reversible if it satisfies, V x,y € €,

m(2) P (z,y) = 7 (y) P (y, ) ©)

Let Tyin := mingeq 7 (x). For areversible, irreducible, and aperiodic Markov chain, using Theorems
12.4 and 12.5 from [19], we note the following bound on the mixing time, 7,x(¢), involving the
eigengap of the transition matrix, |A2 (P) | -

o () =0 < T () ©

The gap 1 — |A2(P)|, therefore, determines how quickly the chain mixes. Lemma 1 talks about
additional properties of a reversible, irreducible, and aperiodic Markov chain.




3 Main Results

In this section, we present our main result, a near-optimal convergence rate for Oja’s algorithm on
Markovian data. As a corollary, we also establish a rate of convergence for Oja’s algorithm applied on
downsampled data, where every k™ data-point is considered. Supplement S.5 contains comprehensive
proofs of Theorem 1 and Corollary 1 while the proof of Proposition 1 can be found in Supplement
Section S.2.

Theorem 1. Fixa 6 € (0, 1) and let the step-sizes be 1; := m with ng < é, a > 2. For

and

nn

sufficiently large number of samples n such that —"— > p
hl( ) ln( 1 )

no

#.},—AQ
100002 max {Tmix In (17%) (M + /\1)2 5 (1“21(531)}

(A1 = A2)’In (1+ 525)

8=

the output wy, of Oja’s algorithm (1) satisfies

LV 1 CoM M+ M) Toie (12)°

(T )2 CIL(%) %2(1
L= (wyv1)” < —3 Mn) TR (P (M1 = Az)° "

with probability atleast (1 — §). Here C'is an absolute constant and

2
0, = a® (347 A (P)|)’ -
200 — 1

_350(3
Ta-—1

Next, we compare the rate of convergence proposed in Theorem 1 with the offline algorithm
having access to the entire dataset {Xi}?zl using a recent result from [27]. Here, the authors extend
the Matrix Bernstein inequality [35, 32], to Markovian random matrices. Their setup is much like
ours except that the matrix at any state is fixed, i.e., there is no data distribution D(s) as in our setup.
However, it is easy to extend their result to our setting by observing that conditioned on the state
sequence, the matrices X; X ,i € [n] are independent under our model, and we can push in the
expectation over the state-specific distributions, D(s), whenever required. Therefore, we have the
following result -

Proposition 1 (Theorem 2.2 of [27]+Wedin’s theorem). Fix § € (0,1). Under assumptions 1, 2,
. 1 <
with probability 1 — ¢, the leading eigenvector v of ¥ := — Z XZ-XZ-T satisfies
n

i=1
g (51 Miog (£5) 1\’
l(ﬁTvl)Zggivog( 52) <1+|>\2(P)|)'1+Oé g (55 1
(A1 —X2)* \1=[x(P)[/) A1 =A) (1= X2 (P)[) | m?
9)
for absolute constants C} and C}.
Y

Observe that Theorem 1 matches the leading term in 1 except the log(d) term.

(A1=22)?(1=|A2(P)])
We believe, much like the IID case (also see the remark in [14]), this logarithmic term in [27]’s result

is removable for large n and a constant probability of success.

Remark 1. (Comparison with IID algorithm) Fix a 6 € (0,1). If the data-points {X;}_, are
sampled IID from the stationary distribution m, then using Theorem 4.1 from [14], we have that the
output wy, of Oja’s algorithm 1 satisfies -

1 7\ 2« 2
1= (win)” < Clog (3) [d (ﬂ) 7 4 . (10)

52 n 20 — 1) (A — )21



‘We note that the leading term of Theorem 1 is worse by a factor of Further, it has an

2
additive lower order error term O (lnn(gn)) which is due to the correlations between data samples in

S S
1= (P)]"

the Markov case.

Corollary 1. (Downsampled Oja’s algorithm) Fix a 6 € (0,1). If Oja’s algorithm is applied on the
downsampled data-stream with every k™ data-point, where k 1= Ty (7}%) then under the conditions
of Theorem 1 with appropriately modified o and 3, the output w,, satisfies

1-— (w£v1)2 <
2

C'log (%) p (267mix In (n))ga N CiVTuix In(n)  CoM (M + /\1)2 In? (1) Tonix (ni)
62 n (A —X)? m (A = A2)? n?

with probability atleast (1 — 0). Here C'is an absolute constant and Cy = 2336_‘21 , Oy = ?(’f’%f

Remark 2. Data downsampling to reduce dependence amongst samples has been suggested in recent
work [26, 22, 3]. In Corollary 1, we establish that the rate obtained is sub-optimal compared to
Theorem 1 by a In (n) factor. We prove this by a simple yet elegant observation: the downsampled
data stream can be considered to be drawn from a Markov chain with transition kernel P* (., .) since
each data-point is k steps away from the previous one. For sufficiently large k, this implies that the
mixing time of this chain is © (1). These new parameters are used to select the modified values of
«, B according to Lemma S.12 in the Supplement.

The proof of Theorem 1 follows the same general recipe as in [14] for obtaining a bound on the
sin? error. However, the key is to do a refined analysis for each step under the Markovian data model
since the original proof technique heavily relies on the IID setting. The first step involves obtaining
a high-probability bound on the sin? error, by noting that 3 can be viewed as a single iteration of
the power method on B,,. Therefore, fixing a 6 € (0, 1) using Lemma 3.1 from [14], we have with
probability at least (1 — §),

C'log (%) Tr (VEBnB;I;VJ_)
1) vanBZ;Ul

(an

sin? (wy, v1) <

where C'is an absolute constant. The numerator is bounded by first bounding its expectation (see
Theorem 3) and then using Markov’s inequality. To bound the denominator, similar to [14], we will
use Chebyshev’s inequality. Theorem 4 provides a lower bound for the expectation E [v?BnBZ; vl] .
Chebyshev’s inequality also requires upper-bounding the variance of E [vlTBn BY vl] , which requires

us to bound E [(vaanvl)Q] (see Theorem 5).

4 Proof Idea

In this section, we provide an intuitive sketch of our proof.

4.1 Warm-up with downsampled Oja’s algorithm

Let us start with the simple downsampled Oja’s algorithm to build intuition. Here, one applies Oja’s
update rule (Eq 1) to every k*" data-point, for a suitably chosen k. For k = [ L7y, logn], the total
variation distance between any consecutive data-points in the downsampled data stream is O(n~%).
As we show in Corollary 1, the error of this algorithm is similar to the error of Oja’s algorithm applied
to n/k data-points in the IID setting, i.e., O(V7mix logn/n).

4.2 Oja’s algorithm on the entire dataset
We will take E [vlTBnBS 111] as an example. Let us introduce some notation.

Bji= T+ X;XT) (I +nj-1X;1 X)) ... (I +mX; X]) (12)



We will start by peeling this quantity one matrix at a time from the inside. Note that for a reversible
Markov chain, standard results imply (see Lemma 1) that the mixing conditions apply to the
conditional distribution of a state given another state %k steps in the “future”. The proof can be
found in Supplement section S.3.

Lemma 1. Consider a reversible, irreducible and aperiodic Markov chain started from the stationary
distribution. Then,

1
- P(Z, =s|Zn=t) — = dyir (K
5 SUp §s P (Zy = 8| Zyyr = t) — 7 (5)] (k)

It will be helpful to explain our analysis by comparing it with the IID setting. For this reason, we will
use Eyp[.] to denote the expectation under the IID data model.

T
oy i=E [T B,BTv,] = [UlTBn,Q (T+mS+m X XT = %) (T+mS + (X, XT - %)) B,{zvl}

=E {v{BM (I+mx)? BT vl} +2m E [vf Buo (I +m) (X1 X{ — %) Bl yv1]

n,2
<(14mA1)2en 2 o
+172E {vlTBM (x,xT - %) B,?,Qvl} (13)
Ts

For the IID setting, the second term is zero, and the third term can be bounded as follows:
2 2
Enp [0f Buz (X1 XT = %)° Bl yo1| = Eqp [of BuoE [(X0XT = %)°] BLyw| < VEp [vf Ba2BLyvi]

Let us denote the IID version of a, ; by a} = Eqyp[v] By i B}l ;v1]. The final recursion for the IID
case becomes:

all < (L+2mA + 08 (A +V))alh)

So, for our Markovian data model, the hope is that the cross term 77 (which has a multiplicative factor
of 1) is O(n1) and Ty is O(n?). We will start with the Ty term, which is zero in the IID setting.

v,T k k
E[T mmmTOye O emm|

ot S ;

1_[ (I+nX; X" § I+n,Z
i=2
] xxTx

Figure 2: If the identity matrix could replace the intermediate products (white matrices), we would be able to
use the fact that the conditional expectation of the noise matrix X1 X7 — X conditioned on the grey matrices is
nearly zero.

4.3 Approximation - take one

We hope to reduce the product B,, 2(X; X{ — ¥) into a product of nearly independent matrices.
One hope is that if instead of B,, 2, we had B, >, for some suitably large integer %, then using
(reverse) mixing properties of the Markov chain, we could argue using Lemma 1 that E[X; X{ —
Y|S14k, - - -, Sn] is very close to zero. See Figure 2. The first question we start with is: if we can



replace Hf;l (I +n;X; X! by the identity matrix. Our first approximation shows that this is indeed
possible if kni (M + A1) is small enough.

This leads to the question: how big should k£ be? Let us expand out Hf;;l (I +nX;XF). We
have:

k+1 k+1
[To+mxix])=1+> mXix[+ > amyX5X)HXX)+... (4
i=2 i=2 2<i<j<k+1

Note that the operator norm of the j** term in this expansion can be bounded by O (( ki (M + M) )

(I being the 0" term) using assumption 2. We are also using the fact that we will use a decaying
learning rate, i.e. 7y > 12 > .... Thus, as long as n1 k(M + A1) is sufficiently small, indeed,

k+1

[T +mXix]) = 1] = O (mk(M+ \))

i=2
Observe that, Eq 15 of Lemma 2 establishes that the Hf;l (I +n;X;X]') can be approximated by
1, as long as n; k is small. Since this is a recursive argument, we would need 7;k to be small for
i =1,...n, which is satisfied by the strong condition 7; k¥ is small. However, this seems wasteful. If
all we need is the former condition, should & not also be chosen adaptively? We set k; = dmix(niz)
(see definition in Eq 4). This particular choice of k; allows us to push the error resulting from the
total variation distance to a smaller order term (see Supplement Section S.4 for the detailed proof).
Now we present the lemma which formally bounds the deviation of the k— length matrix product
from identity.

Lemma 2. IfVi € [n],n;k; (M + A1) < €,e € (0,1) and n; forms a non-increasing sequence then
Vm<n—ky,

Bt —1.m = Llly < (1+€) kit (M + A1) and (15)
m4kpy,—1
Boihp-1m—T— > X X[|| < kZnk (M+M\)? (16)
t=m 2

Lemma 2 bounds the norm of the matrix product By, 1, at two levels. The first result provides
a coarse bound, approximating linear and higher-order terms. The second result provides a finer
bound, preserving the linear term and approximating quadratic and higher-order terms. The proofs
involve a straightforward combinatorial expansion of By, 1, and are deferred to the Supplement.
Both of these results play an important role at different stages.

However, unfortunately, this approximation gives us the sub-optimal rate of downsampled Oja’s
algorithm. In hindsight, this is not unexpected since this analysis completely removes all the in-
between matrices. The question is how bad is the approximation in Lemma 2 Eq 15. This investigation
brings us to the second take.

Ty :=E [v{ Bna (I +mY) (X1 X{ — %) B} v1]

k+1 k+1
<E |0 Bugsz | T+ X X] | (T +m3) (X0 X{ %) [ 1+ 0, X;X] | BE o0
j=2 j=2
(17)
+ Ok} an ro
k+1
= ZE [U1TBn>k+2 (anijT) (I +mX) (X1 Xy — %) Br{k+2v1] + O(n%k%)an,k+2
j=2



k+1
= E o] Bugrz (0 X; X)) (I +mE) (X1 X1 — £) BY . ov1] + Ok} am ey

=2
k+1
=> B [0 Bupi2 B [(X,X]) (T +mT) (X1 X1 — D) [ Xps2, .., Xn] BEjyo01
=2
Ty,
+OMk})an pro (18)

Now the question we ask is “Is the 77 ; term really O(1)?” Indeed, naively it can be bounded as
O(1). But we will use a delicate analysis of this to show that it is much smaller.

4.4 Approximation: take two

Recall that, approximating the matrix product in Eq 14 by the 0*" term, i.e. the identity incurs a
O(m1 k1) error. However, if we approximate it by the identity plus the linear term, the error would be
O(n1k1)?. The question is, by including the linear term, can we get a sharper bound?

In the following lemma, we will establish that, indeed, 77 ; has a much smaller norm. The novelty
of our bound is not just in using the mixing properties of the Markov chain but also in teasing out the
variance parameter V. We will state the lemma, in a slightly more general form as -

Lemma 3. Fori < j <1i+k;,
[ (XX = 2) SX,X] Isins - sulll, < (e (PP TV +8p2M M+ 2) ) 151,

where k; is as defined in Lemma S.12 and S is a constant symmetric positive semi-definite matrix.
Lemma 3 bounds the norm of the covariance between matrices (X; X — %) S and X ;X7 In

particular, this implies that the norm of T} ; decays as | A2 (P) R

4.4.1 Proof sketch of Lemma 3 with S = T and k; = k
Here we give a short sketch of the proof with S = I for simplicity of exposition. Define
G) :=E [X;X] = Slsi =] = S+ pup] — %
If X; and X; were sampled IID from the stationary distribution 7 then, since Eyp [X X 3“ ] =73,
Eup [(XiX] = )X, X [Sisn,, - - 5n] = Enp [(XiX] — 2)X;X]| = Eup [XiX] — X Enp [X;X]] =0

For the Markov case, intuitively from Eq 6, we know that X; and X; are approximately independent
if sampled at distant timesteps in the Markovian data stream. This notion is formalized in Lemma
3, which shows that the covariance norm decreases geometrically with (j — ). We sketch a proof
here and defer the details to Supplement section S.4. Note that for a Markov chain, the Markov
property holds in reverse (see Lemma S.6 in Supplement) i.e P (S¢|St41,St42 - - Sn) = P (S¢]St4+1)-
Therefore,

E[(X:X] = S)X; X |Sith,...n]) =E[(XiX] = ) (XX = )|sin] + B [ XX — Slsiqr] 5.
Then,
E [X;X] — E[sipn, = 0] = ZW($)G($) + Z (P¥ (zg,2) — 7 (7)) G(z)

x e
and
E[(X: X = 3)(X;X] = )|sisr, = x0] =E[(X:X] - %) (X;X] —2)]
+ Y (P (@ y) =7 () (PR (20, 2) — 7 (2)) G(a)G(y)

z,yeqN)

10



Since the Markov chain starts in stationarity, E [ X; X/ — ] = 0. ForE [(X,; X] — %) (XijT -],
we note that conditioned on the states s; = x,s; = y, the expectations over of the state-specific
distributions, D (.) can be pushed inside.

E[(X:X]-%) (X;X] =%)] = > (P (y,2) — 7 (x)) 7 (y) B(x) B(y)

=,
-y PO v (Ve ne) (Vo)
z,y €N

Qyz

LetIT := diag (1) € R®**%, Using spectral theory, we can show that the matrix Q := Iz (Pt - ]l]lTH) 2
has operator norm bounded by |\ (P)|’~¢. Consequently we can show that

E[(X:X] =) (XX] - )] <VDo(P)P

Note that for 5 = 4, this boils down to E [(XZXvT — 2)2} <V, which is ensured by Assumption 1.

It can be shown that the remaining terms involving (P! (., x) — 7 (x)) are of a smaller order. This is
achieved by using the mixing properties of the Markov chain, specifically using bounds on the total
variation distance (4), the uniform norm bound (2) on (X; X — X) and the fact that |||, < Ay and
the details can be found in Supplement section S.4.

Let {c1, ¢, c3,c4} be positive constants for ease of notation. Coming back to Eq 13, we can
bound 77 as follows:

Cl|)\2(P)|V 2
Ty < ay —_ k7
1S O kt2 <n11|A2(FU|_+ C2M

A similar argument can be applied to bound 75 as follows -
Ty < o g2 (V + csmk?)
Putting everything together in 13, we have

ci|A2 (P) |
1— X2 (P)]

Error due to Markovian dependence

amé(ﬂ+mhf+ﬂam-+< )Wﬁmmz+ canikiom ko
—_———

Error due to approximation of matrix product

19)

Recursion for IID setting

Recursing on this inequality gives us our bound on E [vlTBn BF vl] , stated formally in Theorem 2.
With the intuition of our proof techniques built in this section, we are now ready to present all our
accompanying theorems.

S Convergence Analysis of Oja’s Algorithm for Markovian Data

In this section, we present our accompanying theorems which are used to obtain the main result in
Theorem 1. But before doing so, we will need to establish some notation. Let k; := 7Tyix (nf) and

the step-sizes be set as 7; = m with «, 5 as defined in Theorem 1. Let ¢ := ﬁ. As

shown in Lemma S.12 in Supplement Section S.3 our choice of step-sizes satisfy, Vi € [n],

2. M < Wik, < (14 2€)m; < 2m; (slow-decay)

11



Further, we define scalar variables -

ri=214 ) knn M+ X)), Cry =40k (M4 X))?
_ 14+ (3+4e) | X2 (P)]
1 =[xz (P)]

Gre = OM[1+382, (M 0)7], V' % (20)

and recall the definitions of B; and B, ; in Eqs 2 and 12, respectively. Then, under assumptions 1
and 2, we state our results below, and draw parallels with the results in the IID setting proved in [14]
(Lemmas 5.1,5.2,5.3 and 5.4).

We are now ready to present the theoretical results needed to prove our main result. For simplicity
of notation, we present versions of the results by using n; := m with «, 8 as defined in
Theorem 1. However, these theorems are in fact valid under more general step size schedules. We
state and prove the more general version in the Supplement Section S.4.

Theorem 2.

n—knp
E [vlTBntvl] <(1+ 7")2 exp ( Z (277t)\1 + 07 (V’ + )\f) + ﬂ?lﬁk,t))

t=1

We notice three primary differences with the IID case here. The first is the (1 + r)2 term. This
occurs since the recursion in 19 leaves out the last k,, terms which are bounded by (1 + T)Q. The
second is the presence of a factor of ﬁ with V which occurs due to the Markovian dependence
between terms and the use of mixing properties of the chain. Finally, we notice an extra lower order
term 77 ¢y +. This is a result of our approximation of the matrix product while conditioning and using
mixing.

Theorem 3. Let v := min{t:t € [n],t — k¢ > 0}, then,

E[Tr (VEB,BIV1)] < (1+ 5e)exp ( > 2mda iy, (VAT + ng’ktwk,t>

t=u+1

n t
X <d+ Z V' + bt Cllc,tntQ—kf, exp ( Z 2n; (A = AQ)))
t=u+1 i=u+1

where Cy , := (14 555) exp 2\ X002, 1))

In this case, the first point of difference is the variable v := min {¢ : ¢ € [n],t — k; > 0}. This is
again a result of conditioning and the constraints of our recursion. The difference from Theorem 2
arises because Theorem 3 uses conditioning on the past, whereas the former uses conditioning on the
future. The factor (1 + 5¢) represents the approximation of the first u terms. The other differences
regarding V' and 1)y, ; remain the same as in the case of Theorem 2.

Theorem 4.

n—knp

n—=knp
E [v{ BpBlv] > (1—s)exp < Z 2mA — Z 477?)&)
t=1

t=1

where s :== 2r + ﬁsoo

Here the bound differs by a multiplicative factor of (1 — s) from its IID counterpart. Furthermore,
the sums go up to (n — k,,) again because of the constraints of the recursion and conditioning. Note

that for sufficiently large n as is proved in the Supplement Lemma S.13, r = O (@) — 0 and
d € (0,1). Therefore, (1 — s) = 1 as n increases.
Theorem 5.

n

n—k n—kny
2
E [(vlTB,,LBzvl) } <(1+7)"exp < Z A\ + Z n?(k,t)
t=1 t=1

12



Finally, this bound again exhibits the same patterns as the previous theorems involving v;. An
interesting point of difference with the IID counterpart is the absence of V in the bound. This is due
to the use of the coarse approximation discussed in Section 4.3, which suffices in this case for our
main result in Theorem 1.

Having established these results, the final step is to plug them into Eq 11 and follow the proof
recipe described earlier. This step is straightforward but requires significant calculations, and is
therefore deferred to the Supplement Section S.5.

6 Experimental Validation

In this section, we present experiments conducted to validate the results presented in Section 3. We
design a Markov chain with [€2|= 10 states, where each state has a probability of (1 — p) to remain
in the same state and ml’—’_l probability of transitioning to any of the remaining states, for p € (0, 1).
The parameter p controls the ease of exploration. Smaller values of p make it harder to explore
new states leading to a longer time needed to mix. It can be verified that the stationary distribution
m = U () is uniform over the state-space and | Ay (P) |~ (1 — p). We set p = 0.2 for figures 1, 3a
and 3b, and vary it in figure 3c.

Each state s € () is associated with a zero-mean distribution D (s) over d = 1000 dimensional

data-points having a covariance matrix X, with X (4,j) = exp (—|i — j|cs) 0;0; where ¢, =
149 <‘5|%11) ,0; := 5i~#. The eigengap of the true covariance matrix ¥ = Y, 7 (i) 5; =

ITll\ Zie(l 3}; for this construction, with 8 = 1.0, is \; — Ay &~ 20. We set 8 = 1.0 for figures 1, 3a
and 3c, and vary it in figure 3b.

During the random-walk, for each state s;, we draw IID samples Z; € R¢ from either the
Bernoulli distribution (parameter p, figures 1 and 3c) or the Uniform distribution (U4 (—\/g, \/5),
figure 3a). The parameter, p, of the Bernoulli distribution is fixed at the beginning of the experiment
as p ~ U (0,0.05). We normalize Z; such that all components have zero mean and unit variance, if

not already so. We then generate the sample data-point for PCA as X; = Ei% Z;. By construction,
Ep(s,) [X:] = 0% and Ep(s:) [XZ-XZ.T} = 3;. The step sizes for Oja’s algorithm are set as n; =
m fora =5,8= %. For downsampled Oja’s algorithm, every 10¢" data-point is
considered and f is accordingly divided by 10. Each plot shows the average over 20 random walks.

Figures 1, and 3a provide a comparison of the performance of different algorithms for various
state distributions. Here, we are checking if the results obtained in Theorem 1, Proposition 1,
and Corollary 1 are reflected in the experiments. The experimental results demonstrate that Oja’s
algorithm performs significantly better than the downsampled version, consistent with the theoretical
results. Figure 1 shows that data downsampling can in fact be much worse. Figure 3a shows a
faster rate of convergence for the case of the uniform distribution since the Bernoulli distribution
generates fewer non-zero data-points. Figure 3b compares the performance of Oja’s algorithm for
different covariance matrices. Smaller values of 3 decrease the eigengap, A1 — A2, and hence lead to
a slower convergence. Figure 3¢ confirms that smaller values of p (larger values of |\s (P) |) make
the problem more challenging.

7 Conclusion

We have considered the problem of streaming PCA for Markovian data, which has implications
in various settings like decentralized optimization, reinforcement learning, etc. The analysis of
streaming algorithms in such settings has seen a renewed surge of interest in recent years. However,
the dependence between data-points makes it difficult to obtain sharp bounds. We provide, to our
knowledge, the first sharp bound for obtaining the first principal component from a Markovian data
stream that breaks the logarithmic barrier present in the analysis done for downsampled data. We
believe that the theoretical tools that we have developed in this paper would enable one to obtain
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Figure 3: Experimental validation of main results: X axis represents the sample size, and Y axis represents the
2
sin” error.

sharp bounds for other dependent data settings, learning top k principal components, and online
inference algorithms with updates involving products of matrices.
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S.1 Notation

For conciseness, we define the stochastic function A :  — R¥*? which maps each state variable of
the Markov chain to a (d x d) positive semi-definite symmetric matrix as

A (St) = XtXtT

where X; ~ D (s;) is drawn from the the distribution corresponding to the state at timestep s;.

S.2 Offline PCA with Markovian Data

In this section, we prove Proposition 1. We note that [27] considers F} (s;) to be random only with
respect to the states. Therefore, we first show that their results generalize to our setting as well, using
F; (sj) == A(sj) — X. From Eq (5) in [27], we have

2

ﬂexp (Z (A (s)) — 2)) H exp ( ) li[exp ( (s) — 2)>

= vec (I)" Hexp (0H (s5)) | vec(Ia)

j=1

where H (s;) := 3 [(A(s;) = %) ® Ig + I ® (A(s;) — ¥)]. Noting that conditioned on the state
sequence, the matrices A (s;),i € [n] are independent under our model, we can push in the
expectation over the state-specific distributions inside. Let [E,. denote the expectation over the
stationary state-sequence of the Markov chain, and E denote the distribution over states. Therefore,

2

E.Ep H exp (g (A(sj) — E)) =E, |vec(Iy)" H Ep(s,) lexp (0H (s;5))] | vec (1q)
F J=1

Defining the multiplication operator (th) () = Ep(q) [exp (0H; (x))] h (z) for any vector-valued
function h, we note that Eq (8) from [27] holds for our case as well.

Next, we adapt Proposition 5.3 from [27] for our setting. Specifically, we have the following
lemma -

Lemma S.1. Consider the operator H (z) := 3 [(A(z) = %)@ Iy + I3 ® (A(z) — X)]. Then,
under assumptions 2 and 1 and the definition of ¥, we have,

1. BxEp(y [H (2)] = 0
2. H(z) 2 MI

@], <v

Proof. The proof follows by using the same arguments as Proposition 5.3 from [27] and using
the expectation E-Ep(,) over both the state sequence and the distribution over states, along with
assumptions 2 and 1. O

3.’

Finally, to prove Bernstein’s inequality, we prove that Lemma 6.7 from [27] holds for our case. To
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note this, we start with equation (57) in their work. We have, using Lemma S.1,

|<v2,EWED(I) [exp (0H (x))] v1>’ = ’<v2,EWED(I) [exp (0H (x))] v1>’

0o ek .
- ‘<02, (1 +EEp) [H (@) + Y 7EEp( [H (z) D u1>‘

k=2

) gk )
<U27Ul> + <'U2 (Z E]EW]ED(Q;) |:H ((L‘) :|> ’U1>‘
k=2
9] 9k
< I{us,00) <1 Ly (Z k'M>>
k=2 "

Therefore, Eq (60) from [27] follows. The other bounds in the proof of Lemma 6.7 from [27] follow
similarly. Therefore, we have the following version of Theorem 2.2 from [27] -

Proposition S.1. Under assumptions 1 and 2, we have

1 n - t2 3—%
P2 a6)-5] 21) <ton|; :
U= +[A2(P)] 8/
ni4 ) 17\A2(P)\”V+ 17M2(P)|Mt

The proof of Proposition 1 now follows by converting the tail bound into a high probability bound
and using Wedin’s theorem [36]. See proof of Theorem 1.1 in [14] for details.

S.3 Useful Results

This section presents some useful lemmas and their proofs that are subsequently used in our proofs.

Lemma S.2. (Reverse mixing) Consider a reversible, irreducible, and aperiodic Markov chain
started from the stationary distribution. Then,

1
—su P(Z =8| Ziyp, =1t) — 7 (8)| = dpix (K
3300 DI (2= ik =)~ (5] = de )

Proof. Let the transition probabilities of the Markov chain be represented as P(z|y) := P(Zi11 =
x|Zy = y). Consider the time-reversed chain Y; := Z,,_; 11 fori = 1,2,...n. Then,
PV, =s|Yi—1 =s1-1,Y1a =51-2... Y1 = 51)

=P (Zn-i41 = 81| Zn—142 = S1-1, Zn—143 = Si—2, ... Zp = 51)

=P (Zn-14+1 = 81|Zn—1+2 = s;—1) using Lemma S.6

P (Zy 1 =81, 20140 = 51-1)

B P(Zp—142 = s1-1)

7 (sy) P(si—1|s1)

 w(sim1)

= P(s|s;—1) using reversibility

This proves that Y,, is an irreducible Markov chain with the same transition probabilities as the
original Markov chain. The irreducibility of Y,, follows from the original Markov chain being
irreducible. Therefore,

P(Zy = 51| Zeyre = 52) =P (Yng1—t = 51| Ynp1—t—k = 52) 21
Then,

1 1
5 ?ggzs: B (Ze = s|Zesr =1) =7 (s)| = 5 iggzs: P (Yotr—t = s[Yns1-1—k = t) — 7 ()| = dmix (K)

where the last inequality follows from the forward mixing properties of the Markov chain. O
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Lemma S.3. Let C;; = Hi:j(l + Zy) fori < §j < n, where Z; € R¥? are symmetric PSD
matrices. Let U € RIxd, Then,

Tr (U Cji1Cl 1 U) < T (UTCyCTU)
Proof.

Tr (UTC;:CTU) = Te (UTClia (I +2Z; + 27)CF 11 U)
=Tt (U"Cji+1Cf ;1 U) + T (U Cji41(2Z; + 27)CF 341 U)

Since Z; and Z? are both PSD, the second term on the RHS is always positive. This yields the
proof. O

Lemma S4. Ler B; = H;:t(f + Z;), where Z; € R™4 are symmetric PSD matrices.
Tr (B,-1BL_,) < Tr (B,B})

Proof.

Tr (ByBL) = T (I + Zy)Bu—1BY (I + Zy,))

Tr (By_1By_y) + Tr (Z,By-1BL_,) + Tr (Bp—1BL_\Z,) + Tt (Z,B,—1BL_,Z,)

n—1

r
=Tr(By1BL_,) + 2T (B} _1Z,By—1) + Tr (B}_1Z2By,—1)

Since Z,, and Z2 are both PSD, the last two terms on the RHS are always positive. This yields the
proof. O

Lemma S.5. Consider matrices X € R¥? and A € RI¥4, Then,
T (XTAX)| < 4], Tr (X7X)
Proof. For a matrix Z € R%*?, let the singular values be denoted as :

Tmas (Z) = 01(Z) > 09 (Z)... > 04 (Z)

Using Von-Neumann’s trace inequality, we have

|Tr (XTAX)| = |Tr (AXXT)]

d
S ZO’Z' (A) g; (XXT>
i=1

d
< Omazx (A) Zoi (XXT)

i=1
= [14]lTr (X X7)
= (4]l (X7 X)

O
Lemma S.6. Given the Markov property in a Markov chain, the reverse Markov property holds, i.e

P(Zt = S‘Zt+1 = ’lU7Zt+2 = St42-. Zn = Sn) = P(Zt = S|Zt+1 = ’U})
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Proof.

P(Zy=5|Zi1 =w,Ziyo = St12... Zp = Sn)
 P(Zy=5,Zt11 =w, Ziy2 =S40 Ly = Sn)
B P(Ziyr=t,Zi10=8t49...Zn = 5p)
 P(Zi=5,Z111 =w) P(Ziyo = 5440... Ly = 8p| 2t = 5, Z11 = W)
o P(Ziy1 =w) P (Ziyo = St42. .. Zn = $p|Zt41 = w)
P(Zy=5,Z141 =w)P(Ziyo = Sty ... Zn = $p|Ziy1 = w)
P(Ziy1 =w)P(Ziya = St42 ... Zyn = $p|Zty1 = w)
P(Z, =5,Z141 = w)
P(Ziy1 = w)
=P (Z; = $|Zs11 = w)

S.3.1 Proof of Lemma 2

Now we are ready to provide a proof of Lemma 2.

Proof of Lemma 2. Without loss of generality, we prove the statement for m = 1. For convenience
of notation, we denote k := k;. Note that,

k r
Bea=> > JImAGi,) Ge={(ir,....ir) €{1,....N} 1y <+ <in}

r=0 (i1,i2...7,)€G, j=1

with the convention that [ | » = 1. Therefore, since 7); forms a non-increasing sequence and |G |= (’:),
we have,

k r
IBea = Il = (> > I A

r=1 (i1,ig...i,)EG, j=1

Z H ﬂijA(Sij)

(i1,d2...ir)EGr ||J=1 2

k) (Hm> (M+N)
i)

TM+ )"

IN

IN

W ||M?r

Y
=

ﬂ
Il
-

IN
M»
|

IN
5
= |l
*E‘?T‘

S (kTh (M+ 1)) —
<km M+ A1) (1+kn (M + Ayp)) using 23
< (1 +€) km (M + ) (22)

where we have used the assumptions that || A(s)|[2< [|A(s)=Z||+[|Z]l2= (M + A1),k (M + A1) <
1 and the useful result that

e’ <1l+x+2%xecl0,1.79) (23)
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This completes the proof for (a).

For part (b), we have

k r
= Z Z H 15, A(si,)

2 ||[r=2 (inzein)€Gr =1 >

k r
Y Mmaey

=2 (i1,iz...i,)EG, ||J=2 2

k
Bk71 — I — Z'I]tA (St)

t=1

<exp (km (M + A1) =1 = kg (M + \p)
< anf (M + )\1)2 using 23 along with kny (M + A1) <1 (24)

which completes the proof. O

S.3.2 Proof of Lemma 3

Before proving Lemma 3, we will need the following lemma.

Lemma S.7. For arbitrary matrices M; € R4*? i € [n] and Q € R™*", we have
> Qay) MM | <[l || D MM
x,y€[n] 9 z€(n] 9

where ||.||, denotes the spectral norm.

Proof. Define matrix X € Réxnd a5 X .= [Ml My ... Mn] We note that

1 X1y =/ Amaa (XXT)

= )\maa: Z M:EMQT

z€[n]

= Z M, MT|| since Z M, M? is a symmetric matrix

z€[n] 9 z€[n]

Then, we have,

z Q (z,y) MTMf = X (Q ® Iyxq) XT, where ® denotes the kronecker product
z,y€[n]
<||IX ||§ |Q ® Iixdl|, using submultiplicativity of the spectral norm

2 .
= [IX[I2 QI since [[A @ Bll, = [[All2[| Bl

which completes our proof. O
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Proof of Lemma 3. We denote k; := k for convenience of notation. By using reversibility (see 21),
we know that the time-reversed process is also a Markov chain with the same transition probabilities.
Then, fori < j < i+ k and any m,

P(si=s5,5; =t|si1p =u) = P(s; = s|sj = t)P(s; = t|sitr = u)
W pi=i(¢, 5) P+ (u, 1)

= P(Sm = S|sm—jti = t)P(sm—jti = t|sSm—r = u)

= P(8m =8, Sm—j+i = t|Sm—r = u) (25)

Step (i) uses reversibility. Therefore,

E[(A(s;) —X)SA(s))|Sitk,---Sn] = Z (Es + ,us,usT — E) S (Zt + ,ututT) P(s; = s,8; = t|Sitk,-- - Sn)

s,t
using Lemma S.6 = Z (Es + us,uf — E) S (Zt + ,utu?) P(s; =s,sj =t|siyk)
s,t
using Eq 25 = Z (ZS + ,us,uf — E) S (Zt + ,utuf) P(sm =8, Sm—jti = t|Sm_t = 1)
s,t

— B (A (5m) — %) SA(5m_341) [5m 4]
=E[(A(s;) —X)SA(s;)]|sj—x] settingm :=j

Therefore, without loss of generality, we proceed with the second form.

[E[(A(s;) — %) SA(si) |sj—& = wolll,
< E[(A(s5) = %) SX[sj—r = zolll, + [E[(A(s5) — £) S (A(si) — %) [sj—r = zo]ll,

Ty T>

T1 2:|

E[(A(s;) — %) SEsj—1 = 2],
[Ep(s,) [(A(s;) — D)) |sj—r = 0] ST,
(5 ) oy = 2] 5

E
E

= 1> P¥(sjk,5) (Ss + papl — %) ST
sEN

2

S Z (Pk(Sj_k,S) -7 (3)) (Es + ,USMZ - Z) +E7r [(Es + /-Ls,uz - E)] HSHQ ||E||2
seQ

= A [IS]l, (

<MSI, MY

se)
< 2X1 ||S]ly Mdmix (Kit1)
<29 M 1S, (26)

Z (P*(sj—ky 8) — 7 (3)) (Bs + pspl — X) )
s€Q 2

PH(s;_k,5) = 7 (5)
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15

IN

[E[(A(s5) = %) S (A(si) = ) [sj—k = ol

Z P(s; =28 =yl|sj—r = 20) Ep(a) [A (z) — E] SEp(y) [A (y) — X]|| using independence of

T,y €N 2

D (z) and D (y) conditioned on x and y

Z P(s; =x,8 =y|sj—x = xo) (Em + ,uz,uf — E) St S3 (Ey + uyug — E)
z,yeN

Wa W?/T 2

Z P(s; =z|si = y)P(ss = y|lsj—r = x0) WJEWyT using the Markov property
z,yeN

2
> P (y,x) PP (g, y) W W,
z,yeN 9
S (P ya) = (@) P (w0, ) Wo W+ > w(2) P (3, y) W W
z,y€Q z,y€eN

2

S (P, w) = (@) PR (o, y) Wa Wy + > (@) Wa Y P (g, ) W
z,yeN zEQ yeN
0
= 2

S (P (y,x) = (x) PR (w0, y) W W

z,yeN

2
Z (PP~ (y, ) — m () (P77 (w0, y) — 7 (y)) Wa W, || + Z (P77 (y, @) — 7 (2)) m (y) W W,
z,yeN 9 z,yeN 9
T21 T22
27
For T5;, we have,
Ty < Y|P (y, o) =7 (@)] [P (wo,) — = ()] W) |,
z,yeN
<|[Slly M2 [P (g, y) — 7w ()] > [P (g 2) — 7 ()]
yeN e
< 2|8y MPdnix (5 — 1) Y [P (20, y) — 7 (y)]
yeN
< 4|S]|y MPdiix (5 — ) dinix (i — 5 + k)
< 4||5], m22” L5 o 5]
,La iti— HkJ
< 8|S, M?2 Tmix since Va,b |a| 4 [b] > [a+0b] —1
< s sll, M2 L) < 8 1811, M2y, () < 87202151, (28)
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For 155, we have,

Too = Z (iji (y,z) -7 (x)) 7 (y) WachT

z,yeN 2
| 5 et o ) ()
z,yeN

2

z,yeN 7T(£L')
(i)
<RIy | D7 (@) (Ba + pratif = %) S (S + papts — %)
zEN 2
=@l HEW [(Zm + Mmﬂg - E) S (Ez + Mmﬂf - E)] ||2
< 1QU 151z |[Br [(S2 + parid = 27|
< V@l ISl (29)

-y Py 2) 7 (@) s (V7@ (B0 + pon? = 3) 5) (Va@)S? (S, + ol

Step (i) uses Lemma S.7 with Q(y, ) := w\/ﬂ' (y) and M, = /7 (2) (S4 + popl — %) S%.

(z)
Let’s now bound ||Q)|,. Let IT := diag (7) € R®* and ¢ := j — i. Then, we have

Q=112 (P'—117T) 1 2
—TzPT 2 —me117me
Now, since we have a reversible Markov chain, IIP = PTTI. Therefore,
MzPII2 = M2~ PTTII 2
— s PTIIs

Therefore, P is similar to the self-adjoint matrix I1z PIT" 2 and their eigenvalues are real and the
1 . . . 1 1 . . .
same. Further note that II2 1 is the leading eigenvector of 11z PII~2 with eigenvalue 1 since

Mz P 21121 = 12 P1
— T121 since P is a stochastic matrix

Now,

102 = HH%PtH—% B ERRER ¢
2

- H (H%PH—%)t 3117

2
<)
= a2 (P)[f

where |z (.) | denotes the second-largest eigenvalue in magnitude. Therefore, using 26, 28 and 29,
we have

E[(A(si) = ) SA(s5) [sis 5] < (122 (PP TV + 8y2M2 4 202M ) 1511
< (1N (P V4 872M (M4 A1) 1S

Hence proved. O
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Lemma S.8. Ler Vi € [n],n;k; (M + A1) < ¢,e € (0,1) and n; forms a non-increasing sequence.
Set ki := Tmix ('yniz) ;v € (0,1). Then for constant matrix U € R*% and constant positive
semi-definite matrix G € Raxd 4 <j<mn,j—1i>k; wehave

|E [Tr (U Bj,i11G (A; = £) B]; ,U)]|

2V |he (P
< 77i+1||G||2<1||>\22((P))I|

x E |:TI' (UTBj,i+ki+1B}:i+k?i+l U):|

M (27 (1480 + (24 (14 %) Ry (M + W))

where B; ; is defined in 12.

Proof. For the convenience of notation, we denote k;11 := k. Let Bj ;41 = Bj i+x (I + R), then

E [Tr (U"Bjis1G (Ai = %) B ,,U)] =

E |Tr (U'BjiwxG (A = S)B), U) | +E | Tr (U B;ixG (A; =) RTB,,.U) | +

Ty T>

E |Tr (U"Bj sk RG (A; = X) Bl U) | +E |Tr (U Bj 114 RG (A; — S) R"B], ,U)

L TB T4
(30)
We will now bound each of the terms E [T] , E [T3] , E [T3] and E [T}].
E[T1] =E[Tr (U Bji44G (A — X) B} ;. U)]
=E|E |:Tr (UTBj7i+kG (Al — E) B}:z—&-kU) Sitky---Sj—1, Sj:|:|
=E |Tr (UTBj7i+kG E l:(AZ - E) Sitky---Sj—1, Sj:l B}:H—kU):l
=FE|Tr (UTBJ-)H;CG E {(Az ) 5i+k:| Bfi+kU)] using Lemma S.6
Now, using Lemma 1, we have,
H]E |:(Ai ) 3i+k] = 1D P (sitk, ) (A = %)
2 seQ 2
= Z (P (sitks8) — () (A — ) + E [(4; — 2)]
sEN T )
= Z (P*(sis,8) — 7 (s)) (4; — 2)
seQ 2
<MD |PH(sivh,s) = (s)
seQ
< 2Mdpmix (kit1)
< 2ymi M 31)
where we have used Lemma S.5. Therefore,
E[T1]] < v MIGI2E [Tt (U By s BT 1 U)] (32)

25



We will now bound E [T3]. Let Ry := Z;i’f;ll neAy. Using Lemma 2 we have
2
”R - R0||2 < 771-2“/%2“ (M + )\1)
Then,

E[T3]

E [Tr (U" Bji+xG (A — £) R"B],,,U)]
E[Tr (U7 By 4G (A — £) RTBT,, U)] +E [Tr (UTBN-HCG (A; — ) (R — Ry)" Bfi+kU>]
E [Tr (U B,k GE[(A; — £) Rf [Sisk, - i1, 8;1B) s xU)] +

E [Tr (UTBN«HCG (A; — ) (R — Ry)" BfHkU)}

Using Lemma 3 with .S := I we have,

i+k—1
B [(Ai = 2) R Isirk, - 85] la < > W(|)\2 ’V+8W73+1M(M+>\1))
l=i+1
A2 (P)] 3
<N V—r" + 8 kit M (M + A 33
S meV 5,y H 8 ki ( 1) (33)
Therefore,
|E T3] |
) V‘)\Q(P)‘ 3 . 2 2 2 E [Tr TB“ BT U
<Gz nz+1717|)\2(P)|+8777i+1kz+1M(M+)‘1)+ni+1ki+1M(M+)‘1) [Tr (U Bjitk itk )]
e (PP . ) E (1 (07 By BT, 0
= ni+1/|Gll2 1_|)\2(P)|+8A/77¢+1k1+1M(M+>\1)+772+1ki+1M(M+ 1) [r(U Gtk Btk )]

(34)
Similarly using Lemma 3 with S := G,

VA2 (P)]

IE [T3]| < 77¢+1||G||2<1 — X2 (P)]

+ 877]?+1k¢+1/\/l (M + /\1) + 77i+1ki2+1M (M + )\1)2> E [TI‘ (UTBj7i+kB}:i+kU)}
(35)
Finally,
[E[T3]] < MIIG2||RIZE [Tr (U Bji+x B} i1 U)]

< (1+ k2 M (M + M) ||G2E [Tr (U'BjixxB};4U)] using Lemma 2
(36)

Therefore, using Eqs 32, 34, 35, 36 along with 30, we have
E [T (U7 B G (4~ %) B, U)]|

2V |\
< Th‘+1||G|2(|2()|

T~ (P)] + N1 M (27+167771+1k‘1+1 (M+)\1)+< +(1+e) ) i (M4 ) ))

< E[Tr (U" Bji+xBji1U)]
+ M (27 (1+ 8e) + (2 F(1+ 6)2) K2,y (M + >\1)2)>

x E [Tr (UTBj,z‘+kBjT,i+kU)]

2V A2 (P)|

<malole( 222

where in the last line we used 7;41k;+1 (M + A1) < e. Hence proved. O]
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Lemma S.9. Ler Vi € [n],n;k; (M + A1) < ¢,e € (0,1) and n; forms a non-increasing sequence.
Set k; := Tix ('yniz) ,v € (0,1]. Then for constant matrices U € R4 G € R4 j < j <
n, j —1i > k;, we have

’]E {Tr (UTBj,i+1G (4; — %) BjT,,,HU)} ‘
< (VM2 @9 + (14 €) 2+ € (1 ) kiga (M + M) G E [Tr (U7 By Bk, U) |

where B ; is defined in 12.
Proof. For convenience of notation, we denote k; 1 := k. Let B; ;41 = Bj itk (I + R), then
E [Tr (UTBN-HG (4, - %)* BT, HU)} _

Js Js

E |Tr (UTBJ»,H;CG(Ai—ZfB.THkU) 4E |Tr (UTBJ,H,CG(AZ-—2)2RTB.TZ,+,€U) n

T1 T2

E|Tr (UTBj7i+kRG(AifE)QBjT’HkU) YE|Tr (UTBJ-_H;CRG(AifE)QRTBjT)HkU)

Ts Ty

We will now bound each of the terms E [T1] , E [T5] , E [T5] and E [T}).

Since

E, {(At - 2)2: H2 <V, therefore

E[T1] =E [Tr (UTBJ,H,CG (A; — %) Bfi+kU)}

=E |E |Tr (UTBj7¢+kG (4; - %) BTi-HcU)

s

Sidtky---Sj—1, S]:|:|

—E|Tr (UTBMHCG E [(Ai -%)?

T
Sitks---Sj—1, Sj] Bj,i+kU):|

= |Tr <UTBN-+;€G E |:(Ai - %)

3i+k:| B;F_Hk U)} using Lemma S.6

(@)
< (V+ 2duix (k) M?) |G|, E [Tr (U Bj ik B 44U)]

where in (¢), we used similar steps as 31 to get

H]E {(Ai —n)? SM} < ’ E, [(Ai - 2)2] H2 + 2l (k) M2 37)
2
Next, using Lemma 2 we have that
[Rlly < (L+€) kivinipr (M + A1) (38)

Therefore,

E[1y] =E [Ty (UTBJ,H,CG (A; — %) RTBjTi+kU)}
< (1+€) kipamip M (M + M) |G, E [Tr (U By i B] ;i 4,.U)]
Similarly,
E[l3] = E [T&« (UTBJ,H,CRG (4, - %)? B, +,CU)}
< (14 €) kig1nipaM?> (M + M) |G|, E [Tr (UTBj7i+kB}:i+kU)]
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Finally, using the bound on || R||> from Eq 38, we have:

E[Ty) = E | Tr (U7 Bj ik RG (4; - £)* RTBY, U |
<(1+ 5)2 ki2+177i2+1M2 (M + )‘1)2 ||GH2 E [Tr (UTBj,HkBjT,iJrkU)]

< e(1+€)? kit M2 (M + A |G|, E [Tr (UT By ipx BY, ., U)] using Vi, nik; (M + A1) < c
Therefore,
‘]E {Tr (UTBJ»,MG (4; — %) BjT)HlU)} ‘

(1)
< (VA Qi M2+ (14€) 2+ € (14 ) kit M? (M + M) |G, E [Tr (U By B} i 14U)]

= (VA+nipM? 21+ (L4 €) (24 € (L4 €) kisr (M + X)) |Gl E [Tr (U B i B} ,,1.U)]
where in (7), we used dpix (k) = dmix (kix1) < ’ynfﬂ. Hence proved. O

Lemma S.10. Let Vi € [n], n;k; (M + A1) < ¢,€ € (0,1) and step-sizes n; forms a non-increasing
sequence. Further, let the step-sizes follow a slow-decay property, i.e, Vi,1; < mi—, < 2n;. Set
ki = T (7773) ;Y € (0,1]. Let G € R¥? be a constant positive semi-definite matrix, and
Pt ="Tr (BtlegllG(At - E)), then,

2V (A2 (P)|

]E[Pf] < Mt —k, (1_)\2(P)

Y (27 (14 8¢) + (2 +(1+ 6)2) K2 (M + A1)2)) |Gl E [Tr (Bi—k, B{_y,)]

where By is defined in 2.

Proof. Let By = (I + R) Bi—, with ||R||2< r. Then,

E[P] =E |Tr (By—y, B{_,G(A — %)) | +E |Tr (By—k, B, R"G(4; — %))

P P; o

+E | Tr (Bi—g, B/, G(As = Z)R) | +E | Tr (Be—y, B{_, R"G(A; — £)R)

Py 3 Py 4

Let’s consider each of the terms above. Using Von-Neumann’s trace inequality and 34, we have,

E[P;1] = E [Tr (Bi—k, B{_,,E[G(A, — )51, 82, ..., 5t—1,]) ]
< E[Tr (Bi—k, B/, GE[(Ar — )|s1—,])]
<NGE[(As = 2)|st—, I, E [Tr (Be—r, Bi_s,)]
< 2Mdix (kt) |Gllo E [Tt (Be—k, B{_,)] using 31
< 2y M||Gl, B [Tr (Bi—r, B/ 4,)]

E[P; ] = E [Tr (Bi—k,B{_1,,.E [RTG(A; — £)U|s1, 52, ., St—1,])]
< ||E[RTG(A¢ — £)Is1, 52, -, 51—k, ) || E [Tr (Bei, B4, )]
= |E[RTG(A¢ = D)lst—r,] ||, E [Tr (Be-r, B +,)]

VA (P .
< i 1G], (TR0 8902 b (M4 )+ - BEM (M 00 ) B [T (B, B, )] wsing 34
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VA2 (P)]
1= X2 (P)|
[P

using similar steps as £

E[Pra] < . |Gl ( S8y ke MM 4 ) i KM (M 4 A1>2) E[Tr (Br_s BT 4, )]

2]

E [P 4] = E [Tr (Bi—k, B{_;,R"G(A; — £)R)]
§7"2M||G||2 [ (Bt ktBt kt>]
<1+’ KM (M + 1) |G|y E [Tr (By—y, BL,)] using Lemma 2
< (14 n2 o k2M (M + M) |Gl E [Tr (Biy, BL,,)]

Therefore we have,

2V A
< kt( PO M (2 10 b M A+ (24 (1 0 o (M 0)7) ) 61

< E [Tr (Bi—r, B ,)]

2V A
< ( 2l +m_km (29 + 167mke (M +20) + (24 (1+ ) 17 <M+A1>Q)> Gl

|/\2
< E [Tr (Bt_ktBlfT_kt)}
(“) 2V |\
( | 2 ( oM (27(1 + 8¢) + (2 Ty 6)2) k2 (M + )\1)2)> G|, E [Tr (Bi_, BL4,)]

where in (7) we used 21—, < n¢ < 11—k, along with n:k; (M + A1) < €in (i7). Hence proved. [

Lemma S.11. Let Vi € [n], ki (M + A1) < €,e € (0,1) and n; forms a non-increasing sequence.
Set ki := Twix (y0?) ,7 € (0,1]. Let U € R**? be a constant matrix and Q; := Tr (B;_1B{ | (A; — )U (A, — %)).
Further, let the decay of the step-sizes be slow such that Vi, n; < iy, < 2n;. Then

E[Qd < (V+ m—pys1M> 2y +2(1+€) (L +e(L+€) ke (M + A1) [U||,E [Tr (Be—y, B_y,)]
where By is defined in 2.
Proof. Let By = (I + R) By_j, with ||R||2< r. Then,

E[Q:] =E | Tr (Bi—k, B{_y, (At — S)U(A; — %)) | +E | Tr (Bi—k, B{_y, R (A — £)U (A, — 5))
Q1 Q.2

+E | Tr (RBy—k, B 1,,(Ay = S)U(A, — %)) | + E | Tr (RB—y,, B{_;,, R (As — £)U (A, — X))
Qt,3 Q.4

Let’s consider each of the terms above. Using Von-Neumann’s trace inequality and noting that
E, {(At - 2)2} H <V, we have
2

E[Q¢1] = E [Tr (Bi—k, B, E[(A: — )U(Ar — Z)|s1, 52, .-, St—k,])]
=E [Tr (Bi—s, B E[(Ar — 2)U(Ar — ) |st—k,])]
< |E[(Ar = 2)U(Ar = B)lse-k, ), E [Tr (Be—r, B4, )]
<|IUl, [|E[(As = £)?|st—k, |||, E [Tr (Be—r, B/_y,)] using 37
<|Ully (V + 2dmix (k) M?) E [Tr (By—r, Bi_y,)]
<|Ully (v + 29mf M?) E [Tr By, B, )]
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E[Qt2] = E [Tr (Bi—y, B{_,E [RT (A — S)U(Ar — X)|s1, 82, .-, St—k, ] )]
< ||E [R" (As — S)U (A — ) st—k, |||, E [Tr (Bi—r, B! 1,)]
< (1+€) ekt 1keM? (M + 1) |U|l, E [Tr (By—k, B,,)] using Lemma 2

E Q3] < (1+€) me—py41keM> (M + A1) |U|l, E [Tr (Bi—y, B{_,)] using a similar argument as Q.

E[Qt4] =E [Tr (RBy—i, B, R" (A4; — 2)U(4; — ¥))]
= E [Tr (B, B/, R" (A, = £)U (A, — T)R)]
<r?|U|ly MPE [Tr (Bi—r, By, )]
< (1+4¢)? Mgy 1 ki M> (M + M)? U, E [Tr (Bs—k, B{_y,)] using Lemma 2

Therefore, we have

E[Q]

= (V + k41 (27%/\42 +2(1+ €) ke M? (M + M) + (L+ €)° g, 41 kfM? (M + >‘1)2)> U, E [T (Be—r, B,
(i)
< (v My 1 M (QW F2(1+€) ke (M A+ A1) + 26 (14 € ky (M + Al))) U, E [Tr (Be_, BL1,)]

= (V4 i1 M? 2yme +2(1+ €) (L+ e (14 €)) ke (M + M) [[U |, E [Tx (Bi—i, B, )]

In (i), we used the slow-decay assumption on 7; mentioned in the lemma statement along with
nik; (M + A1) < e. Hence proved. O

Lemma S.12. (Learning Rate Schedule) Fix any 0 € (0,1). Set k; := Ty (773) Suppose the step
sizes are set such that

«

(A1 —A2) (B+1)

n;, =

Define the linear function

vi e [n], f (i) ::%: ()‘1_A2a)(5+i)’

With € := ﬁ and &1, Cr.iy V', Vit defined in 58, set o > 2, f (0) > e, m := 200 and

: : *a? V' +5A3) o?
5 = 600 max Tmix In (f (0)) (./\/l—i—/\l)oz7 5Tm,xln(f(0))2(/\/l—|—)\12 o , ( + 21)a :
AL = Az 3(A—X2)"In(1+2) 300\ —A) In(1+2)
then we have
1 niki( M+ X)) <e

2. Y9, i < nick, < (14 2¢) m; < 2n; (slow-decay)

3

308 Vi +Gra +407) nf <ln (1+ 2)

@
Il
-

3

&
Il
-

i j=it1

4. (V' + &i) m7_y,, exp (— > o2m (M — )\2)) <

(2(1+1oe) a2> N 1 (24(1+106)a3> M (M +X,)* k2

200 — 1 —x)%n (a—1) (A — \o)® n?
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Proof. We use the following inequalities -
i O[
2
n; <
Jz:; J (/\1 — )\2) 6 +1—

t a t+B+1
;"jz(xlﬂz) ( it > (40)
+

Usmg

(39)

P18
5
+| =
=
IA
SRR
N———

‘ «a t+ 0
%;mS(M—Ag Q+6—1 “D

imme (L B+ — (i +8)F _ (t+ 8+ D)

0 2
2 (1 ST o (42)

ln(x)

For the first result, we observe that f(x) = is a decreasing function of x for x > e. Using 5,

note that
o 2 2Timix 1 _ 4Tmix (6 + Z) (/\1 - )\2) _ 4Tmix .
k; = Tmix (77%) < ) In (7712> = @) In ( o ) = @) In(f () @43)
forn; < 1.Fori >0
A A
f(l)zf(o)_ﬁ( 1a 2)_
Therefore,
) 4Tmix (M + )\1) « (ﬁ + Z) (/\1 — )\2)
b (M d) < TR e ()
_ ATmix (M + )\1) In (f (Z))
In (2) f (@)
4Tmix (M + )\1) hl (f (O))
In (2) f(0)
From the assumptions mentioned in the Lemma statement, we have
In (f(0)) eln (2) B In (2)
FO) " Trm M+ A1) 2007w (M £ A7) )
Therefore,

For the second result, we note that Vi € [n],

Mieks _ B+i
i B+i—k
k;
:1 .

R Er—

1

S
S
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Consider the fraction ﬁ,:f ', We can simplify it as :

B+ S In (2) B+
ki 7 A4Tmix In ((B-‘ri)()\l—)\z))
_ el f()
4Tmix (A1 — A2) In (f (7))
aln (2) f(0)
T 4Thix ()‘1 ) ln( (O))
1
> — from 44
€
where we used the fact that ﬁ is an increasing function for x > e. Therefore, we have that
Ni—k; 1
t <]
o N % -1
1
T 1—¢

IN

1+ 2efore € (0,0.1)
For the third result, we note that
Gt = 40kyr (M + M2,
= 20 M [3+ 9K,y (M4 A1)’
< 24, M [km (M + Al)ﬂ since (M + A1) > 1 WLOG
<24e(1+€) kg (M + )\1)2 since n; < (14 2€) mpy1 and myy1kerr (M + X)) <e

Therefore,

n

Z (Vi + Ci) i = (V' +5)07) Z 7+ 4L (M + Ay)? Z n7kiv1

=1 =1 =1
(i) u u
< (V451 D nf 45 (M + M) D ndy ki (46)
i=1 =
T1 T2

where (i) follows from the slow decay property of 7;.

For T, using 39 we have,

042

<< — 47
1_()\1_)\2)26 ( )

For T, substituting the value of k; from 43 for ; < 1 we have,

ATmix a 2= ) (BHi+1)
T2 _Zm“k‘“—l ()Z((/\ —Az)(ﬁ+z’+1)> m( «@ ) (48)

=1 1

o ATimix In (f (Z + 1))
T In(2) ; fi+1)° 49

Note that f () is a linear function of 7 and Vi fGE+1)—f@6) = ’\1;’\2. We observe that g(z) =

ln(m) is a decreasing function of z for z > €2 ~ 1.65. Therefore,

AL — Ag In (f (i +1)) Frt D) (2) N
( a ); fi+1)? _/f(l) Ea
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Substituting in 49 we have,

T, < ﬁlﬂ(ng) ()\1 - )\2) /,:: - lnx(zx )
- 1?2) <A1 . Az) (_ <1n9(cx) " jc)
<o () (0 )
8Tmix «Q In 1
~ In(2) ()\1 >\2) ( J(CJEI()))>
Timix o In
v (v 2s)

Putting everything together in 46 and using the bounds on 3, f (0) mentioned in the lemma statement,

we have,

Z (Vk,i + Cii) m; < 460 (M+)‘1)27-mix< < ) :
i=1 AL — Az

Therefore,

> (Vi) m}y, exp (—
i=1

= (1+ 5e)

Let’s define

g (i) —eXP(

= 4607mix In (f (0))

n (f(0)) o?
0 T n—n)8

0[2 9 2
7(& — /\2)2 3 (M+ )" + 7@1 — /\2)2 3

§ln(l+6>
m

Finally, for the last result we first note that

0 = 20 M [+ 9KE,, (M4 21)’]

< 249, M [ka (M + /\1)2] since (M + A1) > 1 WLOG

3

|

Z 2n; (M —

j=i+1

Jj=

>

i+1

1+5¢) ) (V' +&ki)n
i=1

n
V’n? exp | —
i=1

Az2)

2nj (A1 —

+2€2Z V' +&i)n eXp(_
i=1

exp (—

j=i+1

> 2 (= Ao

S o
> 2 (= Ao

j=i+1

)

>\2))

n
+ ) &ran exp

i=1

)) since € € (0,0.1)

(_

> 2 (= Ao

j=i+1

(V' +5A1)

(V' +5X7)

(50)

) c Tsi=Y mig(i), Ta=Y nig(i), T —Zn3k2
=1 =1
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Note that since k,, > k;,

Zn%? <k? Zm = k2T,

Then,

Z (V/ + gk,z) 771.27]“_ exp (— Z 277J ()\1 — )\2)) S (]. + 56) |:V/T3 + 24M (M + )\1)2 T5:|
i=1 j=i+1

< (1+ 5¢) [V’T3 +24M (M + \p)? kgn}

(51

, 2a 2 3
Using 40, g (i) < (::r%ill) . Noting that (%) < (%) < 2, we have

Jj=i1+1

a V& 1 i+ BE1\%
:<>\1)\2) ;(ﬁﬂ')? <n+i’+1>
<< o >2</3+1)2 1 (i+ﬁ+1>2“
T\ — A Ié] 1(,8+z+1) n+p+1
_( a >2<B+1>2 1 (i+6+1>2"
A1 — Az B z1(5—1—2—1—1) n+p+1

o 2 1 - . 2a—2
<2<)\1—>\2> (n+ﬁ+1)2a;(z+ﬁ+1)

< 2 ( @ )2 ! (n+ﬁ+2>2ausin 42
“2a—-1\M-X/) mn+B+2) \n+Bh+1 g

2 a \? 1 1 2o
:204—1(/\1—)\2> (n+6+2) (1+n+ﬁ+1) (52)

Zm exp (2 > omp(h - Az)

NgE

3

M=

and similarly,
4= Zﬁf’ exp <—2 > o a - Az))

j=i+1

- 1 i+p+1
) ;(5+13(n+5+1>
3 . 2a

B8+1 1 i+p8+1

< W (5 Sorir (555

( >3<B+1>3 o 1 (i+ﬁ+1>2"

B ~ (B+i+1)° \n+p+1

3

o’ 1 - 203
2(A1A2> (n+5+1)za2(z+5+1)

i=1

[0= I

IN
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1 a \? 1 n+ﬁ+2>2“ .
< using 42
a—1<A1—>\2> (n+B8+2) <n+ﬁ+1 £

1 o 3 1 1 20
a—1\ ) — X (n+6+2) TL+6+1

Using 45, we have

«

Va1 IIn AL —A2) < n)\ < nkn>\ <e<0.1
n+B+1 M (A1 2) <AL <1 1S €

Therefore, using [17]

1 2 (i) 1 (id) 4
<1+> STTm < 1+ % <144

2a —
n+p8+1 — mTAT n+0+1
where (i) follows since #gﬂ < 1by 54 and (i) follows since 1~ < 1+ 2z forz € [0, §].

Using 55 with 52, we have

<2 ( o )2 1 (1+ 4o )
T 2a—1\ X —X/) (n+B8+2) n+p+1
<2(1+4e)( o )2 1

= 2a-1 \M—-X/) (n+8+2)

Using 55 with 53, we have

1+4 3 1
T, < + e( o ) i
a-1\A—-X/) (n+3+2)
Let
2 (14 10¢) o? 24 (1 + 10€) o3
C = C =
! 20—1 2 (a—1)

Putting together 56, 57 in 51 and using the definition of k; in 43 we have

(1 + 56) V/Tg

IN

2 (14 5€) (1 + 4e) o« NV
204_1 )\1—/\2 <n+6+2)
2 /
<205109a7 V1 G <0.05
20—-1 (A= X)"

and similarly,

3 2.2
24(1+56)M(M+)\1)2k721T4§24(1+5€)(1+4€)a M(M+/\13) k—g
a—1 (A1 =A2)” 1

Therefore from 51, we have

n

SV HGanexp [ = D 2 M=) | <G 2

Hence proved.
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(53)

(54)

(55)

(56)

(57)
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S.4 Proofs : Convergence Analysis of Oja’s Algorithm for Markovian
Data
In this section, we present proofs of Theorems 2, 3, 4 and 5. We state versions of these theorems that

are valid under more general conditions on the step sizes. Speciﬁcally, for the following, we only
require a sequence of non-increasing step-sizes which satisfy, for € := 100 ,Vi € [n] -

1. niki ( M+ A1) <e
2. mi <Mk < (14 2€)m; < 21, (slow-decay)

The version of these theorems stated in the manuscript are obtained by plugging in the step-sizes as
n; = m for the values of «, 8 provided in Lemma S.12. Before starting with the proofs,
we define the following scalar variables -

ri=2 (1 + 6) kniin (M + )\1) ) Ck,t = 4Okt+1 (M + >‘1)2

VYp = 6M |1+ 3k7, | (M + )\1)2} , Skt = Mi—k, Ykt
14 (3+4e) (X2 (P) ] 5 2
V= V, Vie:i=V + {4+ 58
1_‘)\2(}3)‘ k,t 1 fk,t (58)

Theorem 2. (General Version)

n—=kny
E [v] B, Bl v1] < (1+7)%exp ( 2nedi 4+ 07 (V + A7+ & t)))
1

t=
where Bj ; is defined in 12.
Proof. Define oy, ¢ :=E [Tr (vlTBn_thZ;tvl)} =K [vlTBn,th;tvﬂ ,4 <t <n. Then, we have

i BniBy o1 = 0] Bu g1 (I+ 0 2)°By 01 + 200 (0] Buiar (I +mX)(Ar = X)Bl g v1)
Pt
+ 07 (vf Buus1(Ay — S)°Bq01) (59)
Qn,t

<0f Bjiy1B] o1 (14 mA1)?) + 17 Qnt + 20 Py
Using Lemma S.8 with U = v1,G = (I + n:X),~ = 1 and noting that E, [A; — ] = 0, along
with observing that avy, 14k, , < @ ¢4k, from Lemma S.3, we have
2V |2 (P)|
1—[A2(P)]
We note that Vi, k; > 1, therefore, using the assumption in 58, 1+ A1 < 14n:ky (M + A1) < 1+e.

1Pl < s (14 mehn) FaM (2 26c+ (24 (14.97) s (M 00°) e,

Next, using Lemma S.9 with U = v;,G = I, = 1 and noting that

Ex (4 -] < v
2
along with observing that vy, ¢y, , < Qn,¢1k, Using Lemma S.3, we have

IE[Qne]l < (VA+mpaM® 2ng1 + (1 +€) 2+ € (1 + €) ke (M4 A1) onegr,
< (VA4 26 M + 0 MP (L4 €) (24 € (1+ €)) ki (M + A1) s,

where in the last line, we used ;-1 M < 1 (M 4+ A1) < ik (M4 ) <e

Then from 59 forn — k; >t > 1,

1+ (3+4€) (X2 (P) |
1=z (P)]

o < (14 77t)\1) Qp t+1 + ( ) Vntzan,wkt + Ck,tn?an,tJrkt (60)
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where C}, ; is defined as

Cha = M [4(1+€) (14 8¢) + 2e + Fipyr M+ 21) (L4 €) 2+ (14 ) M+2(24+ (147 huya (M4 A1)
(7) 2 2 2
SMAA+A+8)+2e+ ((1+2+e(l+)+2(2+(1+97)) K (M + 1))
= M (44386 + 326 4 (64 26 + (1+€) (14 26) ) Ky (M4 A)’]

where in (i) we used M < ky 1 (M + Aq).

Then recalling the definition of & ¢ in 58, and noting that oy, ¢4, < o, 41 using Lemma S.3
we have from 60,

1+ (3+4e) |\ (P
g < (14m0)° O t41 + <( (1 — |)\2)(|P§|( ) |) V+ fk,t) N7 btk

14 (34 4€) | X2 (P
= (vromn e (SRR ) vt ane

Therefore using this recursion, we have,

n—k n—Fk
$ " 14 (344¢) | o (P
Qn,1 < Unp n—k,+1 €XP <2A1 E N + E 77152 << (1 — )\2)(|P2)( ) |> Y+ )\% + gki))

t=1 t=1

Let By, n—k,+1 = I + R’, where | R'||< r a.s.
Onp—kn,+1 = E [U?Bn,nfkn+1B;f,n—kn+1vl]
=E[v{v1] +E [o] (R + R")v] +E [v] R’ R v,]
<142 412

Using Lemma 2 we have

S (1 + 6) nlin—k,+1 (M + /\1)
S (1 + 6) nlin—k, (M + )\1)
<21 +€)kpnn (M + A1) since np_k, < 2,

Therefore,
n—~k n—~k
$ ‘ 14+ (3+4e) | A2 (P
apy < (1+2r +7‘2) exp (2)\1 Z e + Z n; (( (1 — )\2)(|P2)( ) |) V+ A7 +€k7t>>
t=1 t=1
Hence proved. O

Theorem 3. (General Version) Let v := min{i : i € [n],i — k; > 0}. Then,

E[Tr (VI B,BI'V1)] < (1+ 5¢) exp ( > 2o+ (VA AT+ &) ni )
i=u+1

x | d+ Z (V' + &ki) Crami—, exp Z 2n; (A1 — A2)
1=u+1 j=u+1

where C} , := exp (2)\1 Z;‘:l (M — Me—ugj) + ZJ L (Vej V;w#u)) and By is defined in 2.
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Proof. Fort < n, let
o =0y =E [futhBtTvl] =K [Tr (vlTBtBtT’ul)] , as defined in Theorem 2
By :=E[Tr (VI B,B]'V.)]
Note that oy + 5 = Tr (BtB;‘F ) by definition. Then,
Tv (BB} VLVI) = Tr (Bea By (I +mZ)VLVE (I + ) + e Tr (B (I +mX)VLVE (A — 2)By-y)
+n: Tr (B (A = 2)VLVE (I +mE)By—1) +n; Tr (B BE (A — D)V V(A - %))
< (T4 nx2)? Tr (Beo BE VA VE) + 20 Tr (By—1 B (I + i)V VI (A — X))

Py

+ 07 Tt (Bio1 B (A4 — )V VI (4, - £))
Qt

Let B;_1 = (I + R) B;_j, with ||[R||2< 7. Using Lemma S.10 with G = (I +n,X) V, VI =
Vi({I+ ntAL)VJ_T, v =1,where A| isad— 1 x d — 1 diagonal matrix of eigenvalues Ao, ..., Ay
of ¥, and noting that ||VLVf||2 =1,

2V A2 (P)|
1—[A2 (P)]

< (14 €)1, (% + 1y M (2 (1+ 8¢) + (2 F (1 6)2) k2 (M + )\1)2>> (Ce—i, + Brry)

E[P)] < (1+ neh1) ne—r, ( e M (2 (1+ 8¢) + (2 T+ 6)2) k2 (M + Al)Q)) (i + Bizry)

where in the last line, we used A1 < ik (M + A1) <.

Using Lemma S.11 with U = V, VI vy =1,

E[Qd] < (V+mepe1t M2 2 +2(1+€) (L +e(14€) ke (M4 A1) (u—r, + Be—r,)
%) (V + 2emM + 2my_pp 1 M? (L4 €) (L4 € (1 +€) ke (M + A1) (ae—p, + Bi—r,)
i)

< (v + 2en M + 2y, 1 M ((1 b (1+e(l+e) k2 (M+ A1)2)> (@, + Be_ry)

where in (i) we used Vi, ;M < n;k; (M 4+ A1) < e and in (74) we used M < ky (M + Ap).
Putting everything together, we have,

E[Tr (BB{VLV])]
< (14 mA2)? Bioa
F2(1+ €) e, (% + gy M (2 (1+8¢) + (2 1+ 6)2) k2 (M + /\1)2>> (Ctt—ry + Biiy)

0 (Vo 2emM - 21 M (1) (L4 € (14 ) B (M + M0)?) ) (i, + Bir,)

< (1+mAe)” By
+2(1+e)n,, (% g M (2 (1+8¢) + (2 +(1+ 6)2) k2 (M + )\1)2)) (Ct—ry + Be—ry)
0 (V4 200 M+ 20 M (140 (U (L )R (M + A0)°) ) (0, + Bici,)

1+ (34 4e) A2 (P) ]
1— Az (P)]

< (L4 mho) Bimt + 17, (( ) Y+ §k,t) (t—k, + Bi—t,)
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where &, ; is as defined in 58. Therefore using Lemma S.4,

B (1 (55 VD)) < (1 2mwt o, (SR v g6 ) ) i

1+ (3+44e€) | (P
+ 77t24ct (( ha (1 +/\€2)(|P§< ) |> V+ §k,t> o] (61)

Let xe := 1 +4€(1 +€) (1 + €+ €?) < 1.05. From Theorem 2 denoting

Phe = 1A 4L+ ) ke M+ M) +4(1+ ) nf ki M+ M) <1+de(l+e) (1+e+e?) = xe,
(62)

we have,

t—ki—1 t—ke—1
1+ (3+4e) X2 (P
a1 <rgpexp (20 > mt+ YW (( B+ 2010 { )> v+A%+§k,i>
i=1 i=1 1= (P)]
Now, we note the definition of Vj ; and )’ as mentioned in 58 -

o 1+ (344e) | X2 (P)]
Vie = < T~ (P)]

=V + AT+ &y

> V+ )‘% + &kt
Therefore using 61,

i=1 i=1

t—ky—1 t—ki—1
Be < (14 2meda + 07—y, Vi) Beor + 17—, ht (V' + €k t) exp (2/\1 Z ni + Z T]?Wm)

Recursing on the above inequality for u < ¢t < n where w = min {i : ¢ € [n],i — k; > 0}, we have,

Bn < Buexp <2 z A + Z mﬁf_ki>

1=u+1 1=u-+1
+ Y Vgt e |0 (2nde + Viegniy, ) | exe | 3 2k + Vi
i=u+1 j=i+1 J=1
n
< exp ( Z 2m; A2 + Vk,iﬂ?-k,;)
1=u+1
X | Bu+ Z Thyi (V' + &i) 17k, exp (201 + Vi ;) = Z (277j)\2 + Vk’jn?_kf)
i=u+1 j=1 j=u+1
Now, since k;, k; > k,, = u, therefore, we have
n PR
5. < exp ( 3 2 ¢ Vn) .
1=u+1
n i—u 7
But D rhei VA &) nig exp | Do +Vim)) — D> (20 + Vi)
i=u+1 Jj=1 Jj=u+l

Recall that Cj, ; := exp (2/\1 S (0 = i) + i n? (Ve — Vk7j+u)) as defined in 58.
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Therefore,

Bn < exp ( Z 21 A2 +Vk.,i77i2—ki> X

i=u+1

Bu + Z T (V' 4 Eki) Cr i1y, exp Z 2n; (M1 — A2)

1=u+1 j=u+1
Let B, = I + R’ with ||R||< " a.s. Using Lemma 2 we have

(1+€) kym (M+ )

(L4 €) kumo (M + A1)

2(1+4¢€) kynu (M 4+ A1) since g = Nu—rk, < 27y
2¢(1+€)

VANRVARVAN \/\

Therefore,

E [Tr (VI B.BLVL)]

E[Tr (VIVL)] +E[Tr (VI(R + RT)VL)] +E [Tr (VI R'RTV, )]
d(1+42r" +7'%)
d
d
Xed

IN

IN

(1+4e + €) + 4¢* (1—1—6)2)
( +4e(1+¢) (1+e+62))

The proof follows by noting that r, ; < x. as shown in 62. O

Theorem 4. (General Version)

n—kny n—=ky
E [U?Bn,lBg,ﬂu] > (1 —t)exp ( Z 2m A1 — Z 4772)\2>
i=1

where t := 2r + 5,5 := 3 (1 +7) exp (A1 ) Y W, M7 exp (Zl i1 771) Wit =
V' + &« and Bj ; has been defined in 12.

Proof. We will start will expanding the quantity of interest using Eq 59.
Oy =E [vT B, BT 0] > E [vl Biir (I +m%)? BY vy + 2ntPn,t} 63)

where P, ; has been defined in Theorem 2. Let’s define

1

t
S; ::H(I—i—mE)H(I—FmE), So =1 and
=1

i=t
Oyt :=E [v] Bn 418 BL 1]
Note that d,, o = 1. First we bound 6, 5,—, . Let By, = I + R'. By Lemma 2 along with

the slow-decay assumption on the step-sizes, we know that ||R'||2< r := 2 (1 + €) npkn (M + A1)
a.s. Then,

n—ky, n—ky,
5n,n7kn — H (]. + 771')\1)2 Z —2 |E[’U%1R/Sn,kn’l)1” Z —27’ H (1 + 7]2')\1)2
i=1 i=1
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Therefore,

n—kny

5n,n—k'n Z H 1 + 7]1)\1 1 — 27’)

(1 —27°) [|Sn— (64)

Now using 63, we have

Ont—1 > Ot + 2 E 0] Bppy1 (I +0:2) Se—1 (A — %) Bf,mm

U

First, observe that S;_; = UAU”, where U denotes a matrix of eigenvectors of 3, and A is a PSD
diagonal matrix. Since I + 1,3 = UA'U7 for some other PSD diagonal matrix A’, the product will
also be PSD.

By using Lemma S.8 with U = v1,G = (I + 7:X) S;—1,v = 1 and noting that E, [4; — ] = 0,
we have

2V |As (P)]
_ arinz s Jn
|E [Ut” < (1 + 7;,5)\1)771:+1 ||St71||2 <1 _ |/\2 (P)|

< (X4 €) g [|Se—1llo Wt 0 141

+ M (2 (1+ 8e¢) + (2 +(1+ e)2> k2 (M + A1)2)) Otk

where Wy, ; = V' + & 4. Therefore,
Snt—1 = Ont —2(1+ € Wiamian i1 ||Si—1ly fort <n —k,

Let

(143449 (P
V'( T~ e (P) )V

as defined in 58. Unwinding the recursion for ¢t < n — k,,, we have,

—Rn

n
On0 = Onn—tk, —2(1+¢) Z Wianiana1 [1Se-1l,
t=

kn — n—kny
> (19[S lls 20+ (L4 S Wi exp <2A1 S gt S V’+A2+cm)> 1Se-1l;

t=1 1=t+1 1=t+1

where second step followed from Theorem 2 and 64.

Using the inequalities Vx € R, 1 +z < e andVx €¢ R, = > 0,1+ > ef”_””Q, YVt we
have,

t t
[Sell, = H(l +niA1)? < exp <2)\1 Zm) , and

i=1 i=1

t t t
ISelly = TT(1 +miA1)? = exp <2>\1 > mi— 4N ZU?)

=1 =1 i=1
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Therefore denoting 6, := 2 (1 + €) exp (2A7 >_I"_; n?), we have

7

n—kny

n—knp n—kny
dn,0 > €xp (2)\1 Z ni — 42 Z nf) (1-2r)—6.(1+7r)° Z Wi} exp (
i=1 i=1

t=1

3
=
3

=t

+
Ju

<
Il

n—knp n—knp n—kny n—kny
> exp (2/\1 Z ni — 4N Z 773) (1—=2r)—0.(147)° Z Wi} exp ( Z n; (V' + A+ Cry)
i=1 i=1 L t=1 i=t+1
n—=kny n—=kny B n—kny n—kny
> exp (2/\1 Z N — 4\ Z 773) 1— (27" +6.(1+ T)2 Z Wi exp ( 07 Ve
i=1 i=1 L t=1 i=t+1
where W is defined in 58. Hence proved. O

Theorem 5. (General Version)

n—knp n—=kny
E [(U{Bn11351v1>2} < (1 + r)4exp ( Z 4771-)\1 + Z U?Ck,z)

i=1 i=1
where B; ; has been defined in 12.
Proof. Define Q,; := vIB 1 (A — E)QBZJ/_HUL and P, := vIBu1 (I + n:2) (A —
E)Bitﬂvl. Using 59, we have, forn > ¢ > 1,
0< UlTBn’th’tvl =] Bpya (I + ntZ)QBitHvl +02Qn.t + 20t Pt
< U1TBj,t+1BjT,t+1vl(1 +mA1)? + npM? (’U1TBn,t+1B;{,t+1vl) + 20 Py
< UlTBj’tHBjT’tHUl ((1 +mA)? + ’7t2M2) +2n. P4

Thus, we have -
2
Knt :=E [(vlTBn,tBitvl)Q] <E {(CtvlTBn)tHBfatHvl + Qntht) }

< Ghingr +4An7E [P2 ] + 4einiB [ (v] Buas1 Bl 11v1) Pat
(65)

Note that,
2
E[P2,] <E[(of Buusa(I + n3) (A = D)BLav1)’]
2
< (1 mA)*MPE | (of Busr Bl 1v1)°|
=1+ ﬂt)\l)zMz/‘in,Hl

Now we work on the cross-term. For the convenience of notation, let’s denote k := k1 unless
otherwise specified. Let By, 111 = By, 14+, (I + R) with,

IR|2< (1 + e)psrk(M + X)) =11, < e(l+¢)
Using Lemma 2, we have

T T T T T T T\ T
|v1 B t+1B5, 41101 — V1 Btk By V1] = 01 Buwk(R+ R + RRY) B, 41

Y1

< o] Brasu By iy 01| (2re +77) (66)

42

))

WV A4 cm)

)




‘We will also bound

0] Brgr1 (I + m3)(Ar — )BE o1 — vf B (L +me ) (Ag — S)BY o1

Yz
= v} BRI+ 0 S) (A — £)(1 + RT)ij;tJrkUl + 0] B (I +0:2) (Ag — E)RTBE,H/@UH
< (2re+77) (1 +ned) Mol Bk B i (67)

So, now we have:

E[(vi B ntHBrftH“an t)]

=E [(v] Bng41B) 1 1v1) (0] Byt (I + 3 2) (A — £)BL,y01)]
= [(YI +vq Bn t+an t+kv1)(y2 +v; Bn,t+k(l + e X)(Ay — E)Bg;tJrkvl)]
=E[Y1Yo] + E [Y10] Buysu(I + mE) (A — £)BL o1 | + E [You] Buasi By 401

T T> Ts
+E [(Ul By, t+an t+kv1)(vl By vk (I +me Y)(Ay — E)Bg,wkvl)}
Ty

Lets start with the last term, T;. Using Lemma S.3 we have,

Tyl < |E [ Bn t+an t+kv1)(vl Btk (I +mX)E [(Ar — X)[st1x] B;{,t+kvl)] |
< 2(1 + e A ) Mdiix (k) K4k
< 207y (L e d) Mg
< 277t2+1(1 +neA) MEn 41

Using Eqs 66 and 67 the first three terms can be bounded as:

T |<E[Y1Ya]] < (2re + ﬁ)g L4+ mA) MEp 4k

< (2re + rt) (14 n¢A1) My, 441 using Lemma S.3

= (247777 (14 ne)) Mbg i1

<A+?2+e(+6)” X+ mA) np ki M (M + M)? K
<(1+e)’(2+ete ) N2 k2 M (M + A1) Ko e since ey < e
IT2|<E UylvlTBn,tJrk(I +m: ) (A — E)B,{Hkvll] (24 7¢) e (141 A1) MEgy 4k

2+mr)r (1+ 7)t>\1) M, 141 using Lemma S.3

(2+6+6 ) (L4 €) (1 + meAr) megrkers (M 4 A1) Meg 41
< (1+e)? (2+e+e ) Ner1ke 1t M (M4 A1) Bty

and similarly,

|T5|<E [Y2U?Bn,t+kBZ:t+kU1} (247¢) (L4 m ) MEp i1k

—+7r

€) (2 +e+ 62) (14 mA1) mgpr ke M (M 4+ A1) B itk
¢)?

¢)?

[VARVAN

IN

(2 + e+ 62) ’l’}t+1kt+1M (M + )\1) l‘in,t+k

-
(1+

(1+
1+ (2 + e+ 62) Nt1ke1 M (M + A1) Ky ¢41 using Lemma S.3

IN
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Note that

e o= (14 m01)% + 92 M? <1+ 2 + 262, and
— (1420 + 02 (M? +23))?
= 14+ 4520% 4+t (M2 + 23)7 + dpedy + 4pd A (M2 +A3) + 202 (M2 4 22)
< T4 dmAs + 57 (2M? +6A7 + eM + edr) +4ni A (M? + A7)
<14 4AnAp + 602 (M + A1)+ 4nP A (M + Ap)?
Define
de=(1+¢) (2+e+e)
We := 1 + 2¢ + 2¢2
Gt 1= (1048 (14 €) + 4 (1 +2€) ) ecrkypr (M + \)?

Putting everything together in Eq 65, for t < n — k;1 we have,

< dn? (L nA) M 4 A (1 9 eonM (200 kean (M4 X0) + (24 02K (M 0)°) )
n,t+

< A2 (L4 M) M2 +4(1+ €) eopM (2¢Entk:t+1 (M + A1) + (2 + @22, (M + )\1)2) nf)
— ¢ o g [M? 426, (14 €) MM+ M) ] + 45 [(1+20) M + (1+ ) oM (24 62k2, (M + \0)?)|
< ctz + 477,52 [2 4 2¢c (1 +€) cthepr ] M (M + A1) +4 (1 + 2¢) nt [/\1 + M (2 + ¢2k5t+1 (M + )\1)2”

<1+ 4An 4 02 [10 4 8¢ (2 + €) crkipr] (M + A1) +4 (1 + 26) ) [)\1 + 20, M + 12k} (M + )\1)3}

<e (4m1 02 (10 + 86 (1+ €) crkpan) (M 4+ A1) +4(1+26) 3 (Al + oM+ 200%K2, (M + /\1)3))
< exp (4 A1+ 02 (10 + 8¢ (1+ €) crkert) (M + M) + e (1 + 2€) 2 (2@ + 2k (M + )\1)2))

< exp (4 A+ 2 (8e (14 2€) we + (10 + (8 (1 + €) + de (1 + 2€) be) bewekpsr) (M + /\1)2))

<e p<4 A1+ 72 (1+ 10 + 20ke41) (M + \y) ))

<e <4m)\1 + 2 (1 4 (10 4 20ke 1) (M + A1) ))

< exp (4W1 + 40721 (M + A1) ) since (M + A1), keyq > 1

Recall our definition of k := k;; ;. We can use the above recursion for 1 <t < n — k;4;. We note
that t = n — k,, satisfies the conditions. Therefore,

n—kn n_kn
Fin1 < exp ( PBEIOYEY 77i2<k,i> Fonn— ko +1

i=1 =1

Let By n—k,+1 = I + R/, with | R/[|2< r as.

2
Rnn—k,+1 = E {(’Ufan”—kn-i-anT:n—kn-&-lUl) ]
—F {(UITUI + 0T (R + RT Yoy + vl R R vy) }

< (1 +2r + r2)2 E {(vipvl)z]
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Using Lemma 2, we have

<(1+ek n+1"Mn—k, 11 (M + A1)
< (1 + 6) nlin—k,, (M + )\1)
<21 +€) kpnn (M + A1) since np_k, < 20,

which completes our proof. O

S.5 Main Results : Details and Proofs
S.5.1 Proof of Theorem 1

Lemma S.13. This lemma proves conditions required later in the proof. Let the step-sizes be set
according to Lemma S.12 and m := 200. Define

=2(1+€)nukn M+ X1),

n—k,—1 n—ky,—1
=3(1+r)? Z Wk’tntgexp< Z V;”nf>

t=1 i=t+41

where Wy, is defined in Theorem 4, V. ; is defined in 58 and ., 3, f (.) , & are defined in Lemma
S.12. Then for sufficiently large number of samples n, such that

n S 153

In (f(n)) = In(f(0))

we have

1 2r+s<1(72)
2. r=2(1+€) ukn (M+ ) < %% (75)
Proof. For (1), using Lemma S.12-(3), we note that

n—ky,—1 n—kn,—1
s<3(1+m)? Y Wk,mfexp< > Vm?)

t=1 i=t+1

n—kn,—1
= 1)
ot W (1 2)

t=1
3(1+1r)? ) )
—_ 14+ —)In|14+ —
T ( +m> n( —i—m) (68)
2
i U ) L CO BN I
50 m
Therefore,
3(147)°
2 <2 _
r+s<2r+4 5
3 56 3
?5+% +%7" (69)

Setting > s+ @r + —7’ § 5, we have,

356 3, 1
25 25 25 T 2

= 6r2+112r —19<0
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which holds for r € [0, 5.

For (2), using Lemma S.12 and substituting the value of k; := Tmix (7?) < ?:?‘213‘ In (n%) for

7; < 1, we note that

r<8(1—|—6)7'mix(./\/l+/\1) [0} n((/\l—)\g)(ﬁ-‘rn))
- In (2) (M —X2) (B+n) «
((Alf)\Q)(ﬁJrn))

8 (14 €) Tmix (M + Ay) I
In (2) Oa—22)(B+n)

[e3

~ 8(14€) Twix (M + A1) In (£ (n))
In (2) f(n)

Therefore (2) holds for sufficiently large n, i.e,

F(n) 400 (1+ ) (14 ) mix (M + M)
I (f (n)) = In(2) 2

m

This is satisfied if

n__ 4007w (1+2)(1+€) (M+A)
In(f(n)) ~ In (2) (A1 = A2)

From Lemma S.12, we have

«
5 (70)

B 6007mix (1+ 2€)> (M 4 A1) a2 () 4007mix (I+2)(1+e) (M+)a
In(f(0) =  (M-X)Phm(1+2) T In (2) M — o) &

m m

where (i) follows since J)\\ffi‘; > 1,a > 2andIn (1 + z) < z Va. Therefore, mre 1n(f(o))
suffices. Further, we note that (2) implies (1) for m = 200, § < 1. Therefore, the condition on 7 is

sufficient for both results. Hence proved. O

Lemma S.14. Let
w:=min{i:i € [n],i —k; >0}
where k; is defined in Lemma S.12. Then,

u< B <P

Proof. Using the definition of k; mentioned in Lemma S.12, we have

2Tmi 1
ki = Tmix (7712) S In I(n;; In (7’2>

AT In ((/\1 —X2) (B +i)>

~ In(2) e!
Therefore,
ATinix B+ Lﬁj
18] — kLﬁJ >8] - In (2) In ( /\13>\2 )
B 4Tmix Qﬂ .
> 5~ n(2) In (Ala&) since § > 1
=4 B - éj‘(“;) In (2g (0))} , where f (.) is defined in Lemma S.12
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Now, from Lemma S.12, we know that f (0) > e. Therefore, In (2f (0)) < 2In (f (0)). Then,

1 8mix In(f(0))
2 In(2) 8B

Again, from the conditions in Lemma S.12, we know that

18] — kg =8

In (f (0)) € )\1 — )\2 1 . )\1 )\2 1
< < since o > 2, <l,e< —
6 ~ 6Tmix (M + )\1) a = 1207mix "M + M 10

o

Therefore,

1 8
Lm_kaZﬁ(Q_lQOln(Q)>ZO

Hence proved. O

S.5.1.1 Numerator
Using Theorem 3 and Markov’s Inequality, we have with probability atleast (1 — §)
T (VI B,BLV.) <

exp (o1 202 + Vi, )

1.
05 5

d+ D> (V' +&) Chamipexp | Y 205 (A — )
i=u+1 j=u+1

S.5.1.2 Denominator

Using Chebyshev’s Inequality we have, with probability atleast (1 — 9)

T T T T 1| B {(U{ " Z;vl)z}
vi BpB, v1 > E |v] B,B,v 1—14/= -1 71)
' 1 [ ' ! 1] g E [U{Bnt;vl]Q

Letr :=2(1 4+ €)nukp, M+ Xp) < %. Using Theorem 3, we have

n—=knp n—=knp
E {(u{Bntvlﬂ < (1+7) exp ( S dnid+ Y n?gk’t>

i=1 i=1

Using Theorem 4, we have

n—ky n—kp n—ky n—Fkny
E [vlTBn,le;lvﬂ > exp <2)\1 Z 0 — 4N Z 773) [ <27" +3(147) Z Wi +n? exp < Z nVr, 1))]

i=1 i=1 i=t+1
Let
n— k?n n— kn
2
Z W, t77t exp < Z n; Vk 1)
i=t+1
Then,

E| (] BuBEv1)’] O (n En ))

E [of B,Blv,]* ~— (1—2r—5s)
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By Lemma S.13, we have that

2r +s

I/\
M\H

(72)

Then, using

1 A 1
m§1+6xf0raze {0,2] and, (1+ )" <145z forx € [0,10}

we have,
E (o BuBIvi)’]
E [v] B, BLv,]?

n—kny
< (1+457) (1 +12r + 65) exp(Z " g,“+4/\2)>
i=1
n—kn
(1 + 177 4 65 + 6072 +307’5 exp ( Z n; Q“ +4)\2)>
i=1

n—k
n 1
1+ 227 + 125) c4+402) | sincer < —
< (1+22r + sexp(zg;n Cri + )) since r < 75

By Lemma S.12-(3), we have that

n—k
mn 6
exp(Zn Ckz+4)\2)><l+m (73)
1=1

By 68, we have that

2 2
125548(1—m<1+5> ln(1+5>
100 m m

2
1
(1 + 6) In (1 + 6) since r < — (74)
m m 10

<

ol w

By Lemma S.13, we have that

1 §/m
_2(1+€)nnkn(M+)\l)<%71+6/m (75)
Then,

E| (] BuBEv1)’]

< (1+22r +12s) (1+ 6)
m

=1+6+22r<1+5)+12s(1+5>
m m m

3
<1+5+”5+3@+5)mQ+5)
m

E [v B, BIv]?

m 50 5 m
22
1+£+—£+ll é since § < 1, m = 200
m  50m 10
0 229 790
< i T
1+m+50m+10 since Vo, In (1 + z) <
<1432
m
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Then setting m = 200, from 71 we have

n—k
n 1 5
vI'B,BTv; > exp < Z 2\ — 477?)3) (1-2r—ys) (1 —\/= 3)
i=1

oV m
> ex ninz A — An2\2 1—i5/7m—i 1+é 2111 1+é 1—,/E using 74, 75
=P P AL = S A 2514+46/m 20 m m m g%
5 N—~Kn
>exp<z 2172-)\1—4771-2)\%) since 6 < 1 and m = 200
6 i=1

S.5.1.3 Fraction

Now that we have established this result let’s calculate the fraction. Let the step-sizes be set according
to Lemma S.12. Define

n n—ky
S :=exp < Z Wﬂh‘z—m + Z 4)\%777;2)
i=1

1=u+1

n

Qu :=exp [ 2\ Z??j— Z nj

=1 J=n—knt1
exp (Zj;q 15 (Ve — Vk,j+u)) exp (2)\1 > ka1 nj)

Rk,t = "
exp (2)\1 ijl 77t—u+j>

Then, recall that
w:=min{i: i€ [n],i —k; > 0}
€t 1= 61—, M {1 43k, (M + )\1)2}

. 14+ (B344e) | M2 (P)]
V‘( I~ o (P) )V

Vit =V + M+ &y

)

u

t—u
Cl/c,t ==exp | 2\ Z (77j - ntfquj) + Z 77j2- (W,] - Vk,j+u) = QuR

j=1 j=1
Therefore,
Tr (VIB,BLV))

vI' B, BT'v,

L3 exp (X1, 41 2nide + Viean? g, " i
s ( ,:;1 5 le) d+ Z V' + &ki) Cr i —k, exp Z 205 (M — A2)
exp (Zz’:l " 2mi A — 4n; )‘1) i=u+1 j=ut1

IN

1.3 S n n i
5 Q. P ( > 2 (A - )\1)> d+ D V' +&) Crmipexp | Y 205 (M — )

i=u+1 i=u+1 j=u+1

IN

1.3 dexp (30,11 2m (A2 — A1) n "
< TS ( +Q1 ) + Z (V’ +&ki) Rk,ini{ki exp | — Z 21; (A1 — A2)
- i=ut1 i
X1
Xa

(76)
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For X, we have
X < dexp (Z?_uJFQlQm (A2 — 1))
dexp (31,1 2m (A2 — A1)
exp (2)\1 (2?21 M = 2 jmn ki1 "i))
dexp (37,11 20 (A2 — A1)
exp (—2)\1 (Z?:n—kn-ﬁ-l 77j>>

< dexp ( Z 2n; (A — )\1)> exp | 2\ Z n;
j=

i=u+t1 j=n—kn+1

Note that

ex 1 n: | <ex + 2€) AMMEpMn—k. +1) using monotonicity of 7;
p2n > | <exp(2(1+2€) Mknnn_k,+1) using icity of 7

< exp (4 (1 + 2¢) A1kpny,) using slow-decay of 7;

1
<1+ 2— using Lemma S.13 along with e < 1 + 2 + 2 for z € (0, 1)
m

2«
Xﬁd(ufj) (’BZU)

exp (X928 02 (Vg = Vi) ) exp (20 )i 2175

Therefore, using 40

Next, for X5, we first have

Rk:,t = "
exp (2)‘1 Zj:l ntfquj)
t—u n
<exp [ Y mVij |exp 20 Y
j=1 j=n—kp+1

25\
< <1 + > using Lemmas S.12 — (3), S.13 and e® < 1 + 2 4 2% for z € (0,1)
m

Now, using S.12-(4) we have,

me{k exp | — Z 2nj (M —A2) | <

i=1 j=it1

7

(([3+n)(>\1—/\2))

(2(1+106) a2) V' l+ (800(1+106)a3> MM+ 1) 72 In”
200 — 1 (A — )\2)2 n (a—1) (A1 — )\2)3 n?

Then,

2 2 1 3 2,9
X2<<1+25> (2(1+1Oe)a> 1% 1+<24(1+106)a>M(M+A1) 2
m ()\1 n

2o 1 = %)’ @-1 ) u-x)' @
Cl CZ
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Therefore substituting in 76,

n

Tr (VIB,BIV. . ? 2 / *
r(TJ_ a0 1) _ 138 (1+25) d<5+u> LG 23+02M(M+?1) Iig
v BBl é (A1 — X2)" 1 (A1 — A2) n

(77)

Proof of Theorem 1. To complete our proof, we bound S to simplify 77. We note that under the
learning rate schedule presented in Lemma S.12-(3),

S§<1+6)
m

Therefore,
T (VEB.BIVL) 13 20\*[ (B+u)\™ GV 1 CGMWM+M)’ K
vI'B,BT'v;, — 6 m n (A1 — Ag)? 1 (AL — Ag)® 2
1.4 oY 1 CoM(M N R
< —= d(5+u) + - 3+ 2 +31)%
5 n (A1 —X2)" 1 (A1 —A2)" 7

Using lemma S.14, we have that v < . Then, using Lemma 3.1 from [14] completes our proof. [

S.5.2 Proof of Corollary 1

Proof of Corollary 1. We note that the downsampled data stream can be considered to be drawn
from a Markov chain with transition kernel P* (.,.) since each data-point is k steps away from the
previous one. For sufficiently large k, this implies that the mixing time of this chain is © (1).

Therefore, as noted in the theorem statement, we plug in the modified parameters in the bound
proved for Theorem 1.

Next, we note that for the transition kernel P* (., .), the second-largest absolute eigenvalue is given

as A2 (P)|k. Therefore, for k 1= Tmix (717%) < iTlr(“Q”)‘ In (#) < Cm In(n),C > 1, using
standard bounds on mixing times for reversible Markov chains (see for example, [19]). Consider the

function f (z) := 2 7= for z € (0,1). Then,

(@) = f (@) (1—x—xln2(x)> -0

z(1l—2x)

) n
Therefore, f () < lim, 1 f (z) = L < 1. which implies [As (P)* < ()™ < 1. Here (i)
follows if C' > 1,n > 3, which is true. Therefore,

v <1+(3+46)A2 (kP)’“> V< 5y
1= (P

This also implies that mixing time for the new Markov chain for sub-sampled data is © (1). The

bound then follows by substituting n to be 7 = nj = © ( and setting the T, in the

n
Cix In(n)
original expression of Theorem 1 to a constant. O
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