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Random feature methods have been successful in various machine learning tasks, 
are easy to compute, and come with theoretical accuracy bounds. They serve 
as an alternative approach to standard neural networks since they can represent 
similar function spaces without a costly training phase. However, for accuracy, 
random feature methods require more measurements than trainable parameters, 
limiting their use for data-scarce applications. We introduce the sparse random 
feature expansion to obtain parsimonious random feature models. We leverage ideas 
from compressive sensing to generate random feature expansions with theoretical 
guarantees even in the data-scarce setting. We provide generalization bounds for 
functions in a certain class depending on the number of samples and the distribution 
of features. By introducing sparse features, i.e. features with random sparse weights, 
we provide improved bounds for low order functions. We show that our method 
outperforms shallow networks in several scientific machine learning tasks.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The sparsity-of-effects or Pareto principle states that most real-world systems are dominated by a small 
number of low-complexity interactions. This idea is at the heart of compressive sensing and sparse opti-
mization, which computes a sparse representation for a given dataset using a large set of features. The 
feature spaces are often constructed using a random matrix, e.g., each element is independent and identi-
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cally distributed from the normal distribution, or constructed using a bounded orthonormal system, e.g., 
Fourier or orthonormal polynomials. While completely random matrices are useful for compression, their 
lack of structure can limit applications to problems that require physical or meaningful constraints. On the 
other hand, while bounded orthonormal systems provide meaningful structure to the feature space, they 
often require knowledge of the sampling measure and the target functions themselves, e.g., that the target 
function is well-represented by polynomials.

In the high-dimensional setting, neural networks can achieve high test accuracy when there are reasonable 
models for the local interactions between variables. For example, a convolutional neural network imposes 
local spatial dependencies between pixels or nodes. In addition, neural networks can construct data-driven 
feature spaces that far exceed the limitations of pre-specified bases such as polynomials. However, standard 
neural networks often rely on back-propagation or greedy algorithms to train the weights, which is a com-
putationally intensive procedure. Furthermore, the trained models do not provide interpretable results, i.e., 
they remain black-boxes. Randomized networks are a class of neural networks that randomize and fix the 
weights within the architecture [5,36,34,28,31]. When only the final layer is trained, the training problem 
becomes linear and can have a much lower cost than the non-convex optimization-based approaches. This 
method has motivated new algorithms and theory, for example, see [36,34,35,43,44,42,9,27]. Recently, gen-
eralization bounds for over-parameterized random features ridge regression were provided in [30], when the 
Tikhonov regularization parameter tends to zero. The analysis is asymptotic and is restricted to the ReLU 
activation function, with data and features drawn on the sphere.

In this work, we introduce a new framework for approximating high-dimensional functions in the case 
where measurements are expensive and scarce. We propose the sparse random feature expansion (SRFE), 
which enhances the compressive sensing approach by allowing for more flexible functional relationships 
between inputs, as well as a more complex feature space. The choice of basis is inspired by the random 
Fourier feature (RFF) method [36,34], which uses a basis comprised of simple (often trigonometric) functions 
with randomized parameters. In the RFF method, the model is learned using ridge regression, which leads to 
dense (or full) representations. By using sparsity, our approach could be viewed as a way to leverage structure 
in the data-scarce setting while retaining the accuracy and representation capabilities of the randomized 
feature methods. In addition, the use of sparsity allows for reasonable generalization bounds even in the 
very overcomplete setting, which is proving to be a powerful modern tool related to over-parameterized 
neural networks [23,17,26,3].

In terms of the approximation error, the randomized methods can achieve similar results to those asso-
ciated with shallow networks. In [24,4], it was shown that if the Fourier transform of the target function f , 
denoted by f̂ , has finite integral 

∫
Rd |ω||f̂(ω)|dω then there is a two-layer neural network with N terms that 

can approximate f up to an L2 error of O(N− 1
2 ). These results (and their generalizations) often require 

specific (greedy) algorithms to achieve. In addition, neural networks often only achieve good performance 
in the data-rich and over-parameterized regimes. On the other hand, the RFF method achieves uniform 
errors on the order of O(N− 1

2 ) for functions in a certain class (associated with the choice of the basis 
functions) without the need for a particular algorithm or construction [34]. Generalization error bounds for 
random feature ridge regression from [42,57–59] also achieve the rate O(N− 1

2 ), provided the number of data 
samples grows with N and satisfies certain statistical assumptions. Our generalization bounds for random 
feature expansions obtained by �1-minimization match this rate in the general setting without needing a 
rich training set. Specifically, we show that if the underlying function is a low-order function, admitting a 
decomposition into a small number of functions each of which depends on only a few variables, then sparse
random feature expansions can achieve (at worst) generalization bounds of O(N− 1

2+ 1
d ) with constants that 

depend on a polynomial (and not an exponential) of the dimension, in this sense, overcoming the curse of 
dimensionality.

One of the most popular techniques in the area of uncertainty quantification is the Polynomial Chaos 
Expansion (PCE). PCE models are built up from univariate orthonormal polynomial regression; in par-
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ticular, each basis term is the product of univariate orthonormal polynomials and is characterized by the 
multi-index of polynomial degrees in each direction. The standard PCE approach solves for the coefficients 
of the polynomials using the ordinary least squares method. The sparse PCE has recently gained traction, 
where the coefficient vector is determined through sparse regression. Many sparse regression methods used 
in PCE were originally developed for compressive sensing [15,7,37,16]. The success of sparse PCE is due in 
part to the method’s ability to incorporate higher degree terms without overfitting. However, the polynomial 
basis must be orthogonalized with respect to the sampling measure. Moreover, good performance is limited 
to functions which are well-represented by moderate degree polynomials. This serves as another motivation 
for the use of randomized features, which may increase the richness of the approximation.

1.1. Contribution

We propose a sparse feature model (the SRFE) which improves on compressive sensing and PCE ap-
proaches by utilizing random features from the RFF model. Also, the SRFE outperforms a standard shallow 
neural network in the limited data regime. We incorporate sparsity in the proposed model in two ways. The 
first is in our approximation of the target function by using a small number of terms from a large feature 
space to represent the dominate behavior (this is the sparse expansion component). The second level of 
sparsity can be considered as side information on the variables and is incorporated by sampling random 
low order interactions between variables (the sparse features). Building upon these ideas, as part of our 
theoretical contributions, we derive sample and feature complexity bounds such that the error between the 
SRFE and the target function is controlled by the richness of the random features, the compressibility of 
the representation, and the noise on the samples (formalized in Section 3). This also shows the tractability 
of sparse expansions in the context of randomized feature models.

The SRFE offers additional freedom through redundancy of the basis and does not restrict the model class 
to low order interactions in the form of polynomials. While our main results are stated for trigonometric 
features, extensions and applications with ReLU and other standard activation functions can be derived 
in the same way. In addition, our method and analysis could be extended to include different sampling 
strategies such as those used in the recovery of dynamical systems [40,41].

In order to provide generalization bounds, we first characterize the approximation power of the best fit 
approximator; then, we bound the error between the best fit and the sparse random feature expansion. 
The best fit results are extensions of [36,34], but we provide the proof for completeness. The generalization 
bounds and the sparse approximation results are both novel. While we utilize standard coherence-based 
results for sparse recovery, we prove new bounds for the coherence and the sample complexity based on 
the randomized features (for both dense and sparse features). It is important to note that the bounds 
are meaningful even when the sparsity increases, which deviates from the standard compressing sensing 
results. In [45], a sparse random feature algorithm is proposed which iteratively adds random features by 
using a combination of LASSO and hard thresholding. In our work, we provide sample complexity, sparsity 
guarantees, and generalization bounds which did not appear in previous works. In addition, we introduce 
sparse feature weights within our model, which can help with the curse-of-dimensionality for approximating 
low order functions.

The works of [49,51,50] consider the problem of multi-task learning to learn prediction functions, for 
T known tasks that lead to the lowest regularized empirical risk. This differs from our algorithmic and 
theoretical contributions, which focus on the setting of approximating high dimensional low order functions 
with unknown interactions. In [46–48], the aim is to learn pairwise interactions with linear regression or 
logistic regression using sparsity-promoting approaches such as LASSO and group-LASSO. As a comparison, 
we provide generalization bounds which did not appear in previous works. It is also worth noting that 
our method extends to any algorithm that uses coherence-based sparsity guarantees, for example, greedy 
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methods such as orthogonal matching pursuit, and the alternative formulation of the basis pursuit or LASSO 
problem in [52].

A related direction is that of sparse learning-based additive models for kernel regression [56,53,55,54]. 
In [53], the authors propose the shrunk additive least square approximation (SALSA) method to utilize 
the interactions among the variables/features, which in some sense, is related to our aim in this paper to 
leverage the low-order interaction. However, our approach differs from SALSA since we consider sparse 
feature selection. Furthermore, [53] establish bounds on the expected generalization error while we provide 
high-probability generalization bounds for our proposed method. Recently, [54] considered SALSA with an 
�1 penalty and established high-probability generalization bounds; however, it is limited to kernel regression 
with exact kernels. In contrast with [54], we provide explicit sparsity guarantees along with the generalization 
bounds. Moreover, while [53,54] focus on exact kernels, we leverage random features [36,34,35] for efficient 
function approximation.

2. Approximation via Sparse Random Feature Expansion (SRFE)

Notation. Throughout this paper, we use bold letters and bold capital letters to denote column vectors 
and matrices, respectively (e.g., x and A). Let [N ] = {1, . . . , N} for any positive integer N and ‖c‖
denote the Euclidean norm of a vector c. Throughout the paper, f denotes functions of d variables while 
g denotes functions of q � d variables. Furthermore, Bd(M) denotes the Euclidean ball in Rd of radius 
M . A vector c ∈ CN is said to be s-sparse if the number of nonzero components of c is at most s. 
For a vector c ∈ CN , let κs,p(c) denote the error of best s-term approximation to c in the �p sense, 
κs,p(c) := min{‖c − z‖�p : z is s-sparse} [20]. Note in particular that κs,p(c) = 0 if c is s-sparse, and 
κs,p(c) ≤ ‖c‖�p always.

We are interested in identifying an unknown function f : Rd → C, belonging to a certain class (defined in 
Section 3), from a set of samples. We assume that the m sampling points xk’s are drawn with a probability 
measure μ(x) with the corresponding output values

yk = f(xk) + ek, |ek| ≤ E, ∀k ∈ [m], (1)

where ek is the noise.
A fundamental approach in approximation theory relies on the assumption that f has an approximate 

linear representation with respect to a suitable collection of N functions φj(x), j ∈ [N ]:

f(x) ≈
N∑
j=1

cjφj(x). (2)

Important examples of such families of functions include real and complex trigonometric polynomials as 
well as Legendre polynomials [37,38,1,2,10].

Let A ∈ Cm×N be the random feature matrix with entries ak,j = φj(xk), then approximating f in 
Equation (2) is equivalent to

find c ∈ CN such that y ≈ Ac, (3)

where c = [c1, . . . , cN ]T and y = [y1, . . . , ym]T . In many applications, it is often the case that f is well-
approximated by a small subset of the N functions, which implies that c is sparse. By exploiting the sparsity, 
the number of samples m required to obtain an accurate approximation of f may be significantly reduced. 
One effective approach to learn a sparse vector c is to solve the basis pursuit (BP) problem:

c� = arg min ‖c‖1 s.t. ‖Ac − y‖ ≤ η
√
m, (4)
c



314 A. Hashemi et al. / Appl. Comput. Harmon. Anal. 62 (2023) 310–330
where η is a parameter typically related to the measurement noise. The conditions for stable recovery of any 
sparse vector c� satisfying y ≈ Ac� are extensively studied in compressed sensing and statistics [8,6,20].

In order to construct a sufficiently rich family of functions, we use a randomized approach. Specifically, 
consider a collection of functions φ(x; ω) = φ(〈x, ω〉) parameterized by a weight vector ω drawn randomly 
from a probability distribution ρ(ω). Some popular choices for φ are

1. Random Fourier features: φ(x; ω) = exp(i〈x, ω〉).
2. Random trigonometric features: φ(x; ω) = cos(〈x, ω〉) and φ(x; ω) = sin(〈x, ω〉).
3. Random ReLU features: φ(x; ω) = max(〈x, ω〉, 0).

Based on [36,34], we call such φ(· ; ω) the random features. Altogether, we propose the Sparse Random 
Feature Expansion (SRFE) to approximate f , which is summarized in Algorithm 1.

Algorithm 1 Sparse Random Feature Expansion (SRFE).
1: Input: parametric basis function φ( ; ω) = φ(〈x, ω〉), stability parameter η, number of samples m, and number of weights N .
2: Draw m data points xk ∼ Dx and observe outputs yk = f(xk) + ek with |ek| ≤ E.
3: Draw N random weights ωj ∼ Dω (independent of the xk’s).
4: Construct the random feature matrix A ∈ Cm×N such that akj = φ(xk; ωj).
5: Solve

c� = arg min
c

‖c‖1 s.t. ‖Ac − y‖ ≤ η
√
m.

6: (Optional) Pruning: Set S� to be the support set of the s largest (in magnitude) coefficients of c� and redefine c� to be zero 
outside of S�.

7: Output: Form the approximation

f
�(x) =

N∑
j=1

c�
j φ(x;ωj).

3. Low order functions

Often, high dimensional functions that arise from important physical systems are of low order, meaning 
the function is dominated by a few terms, each depending on only a subset of the input variables, say q
out of the d variables where q � d [25,14]. Low order functions also appear in other applications as a way 
to reduce modeling complexity. For example, in dimension reduction and surrogate modeling, sensitivity 
analysis is employed to determine the most influential input variables and thus to reduce the approximation 
onto a subset of the input space [39]. The notion of low order functions is also connected to low-dimensional 
structures [32,33] and active subspaces [19,11,12]. Low order additive functions and sparsely connected 
networks are also well-motivated in computational neuroscience for simple brain architectures [21].

Next, we formalize the notion of low order functions by extending the definition from [25].

Definition 1 (Order-q functions). Fix d, q, K ∈ N with q ≤ d. A function f : Rd → C is an order-q function 
of at most K terms if there exist K functions g1, . . . , gK : Rq → C such that

f(x1, . . . , xd) = 1
K

K∑
j=1

gj(xj1 , . . . , xjq ) = 1
K

K∑
j=1

gj(x|Sj
), (5)

where Sj = {j1, . . . , jq} is a subset of the index set [d], Sj �= Sj′ for j �= j′, and x|Sj
is the restriction of x

onto Sj .

Note that in general, such a decomposition is not unique. Furthermore, we are interested in the smallest 
q to refer to the order of a function; trivially, any order-q function f : Rd → C is also order-d.



A. Hashemi et al. / Appl. Comput. Harmon. Anal. 62 (2023) 310–330 315
With this side information, we can further reduce the number of samples needed (see Theorem 3). We 
modify Algorithm 1 to incorporate the potential coordinate sparsity into the weights ω. Since we do not 
know the set of active variables, we draw a number of sparse random feature weights on every subset S ⊂ [d]
of size |S| = q. That is, for each such S, we draw the on-support feature components randomly from the 
given distribution, and we set the remaining components to be zero. In particular, we have the following 
definition for our random features.

Definition 2 (q-Sparse feature weights). Let d, q, n ∈ N with q ≤ d and a multivariate probability density 
ζ : Rq → R. A collection of N = n(dq) weight vectors ω1, . . . , ωN is said to be a complete set of q-sparse 
feature weights (drawn from density ζ) if they are generated as follows: For each subset Si ⊂ [d] of size 
|Si| = q, draw n random vectors z1, . . . , zn ∈ Rq from ζ, independent of each other and of all previous 
draws. Then, use z1, . . . , zn to form q-sparse feature weights ωi1 , . . . , ωin ∈ Rd by setting supp(ωik) = S
and ωik

∣∣
Si

= zik for k ∈ [n] where ik denotes a reindexing of the weights.

This leads to the Sparse Random Feature Expansion with Sparse Features (SRFE-S) by modifying Step 
(3) of Algorithm 1 to “Draw a complete set of N q-sparse feature weights ωj ∈ Rd sampled from density 
ζ : Rq → R”. We summarize SRFE-S in Algorithm 2.

Algorithm 2 Sparse Random Feature Expansion with Sparse Feature Weights (SRFE-S).
1: Input: parametric basis function φ(x; ω) = φ(〈x, ω〉), feature sparsity level q, probability density ζ : Rq → R, stability parameter 

η, number of samples m, and number of weights N .
2: Draw m data points xk ∼ Dx and observe outputs yk = f(xk) + ek with |ek| ≤ E.
3: Draw a complete set of N q-sparse feature weights ωj ∈ Rd sampled from density ζ : Rq → R as defined in Definition 2 (and 

independent of the xk’s).
4: Construct a random feature matrix A ∈ Cm×N such that akj = φ(xk; ωj).
5: Solve

c� = arg min
c

‖c‖1 s.t. ‖Ac − y‖ ≤ η
√
m.

6: (Optional) Pruning: Set S� to be the support set of the s largest (in magnitude) coefficients of c� and redefine c� to be zero 
outside of S�.

7: Output: Form the approximation

f
�(x) =

N∑
j=1

c�
j φ(x;ωj).

Remark 1. Drawing a complete set of q-sparse feature weights can be slow and cumbersome. In the case 

where ζ(x1, . . . , xq) =
q∏

j=1
ζ(xj) is a tensor product of univariate densities, a significantly more practical 

method for drawing sparse features is as follows: we randomly generate a size q subset of [d] and then define 
the on-support values using ζ. Alternatively, one can draw sparse feature weights by the following procedure: 
for every k ∈ [N ], the j-th entry of ωk ∈ Rd, ωk,j , is set to 0 with probability 

(
1 − q

d

)
and is drawn from 

ζ, ωk,j ∼ ζ, with probability 
q

d
. This procedure is used in the experiments found in Section 5. We further 

note that any side-information on the feasibility of the low order support subsets can be incorporated in 
the procedure outlined in Algorithm 2 to further reduce the required number of sparse features.

4. Theoretical analysis

In this section, we provide theoretical performance guarantees on the approximation given by Algorithm 1
and Algorithm 2. In particular, we derive an explicit bound on the required number of data samples for 
a stable approximation within a target region. Given the connections to Fourier analysis and its desirable 
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characteristics, we mainly focus on the case where φ(x; ω) = exp(i〈x, ω〉). The results in this section 
extend to other distributions and basis functions, in particular, one can show similar results for uniform or 
subgaussian distributions (with a change in the constants that appear in the theorems).

Before stating the main results, we recall some useful definitions. The first definition is a complex-valued 
extension of the class introduced in [34].

Definition 3 (Bounded ρ-norm functions). Fix a probability density function ρ : Rd → R and a function 
φ : Rd ×Rd → C. A function f : Rd → C has finite ρ-norm with respect to φ(x; ω) if it belongs to the class

F(φ, ρ) :=
{
f(x) =

∫
ω∈Rd

α(ω)φ(x;ω) dω : ‖f‖ρ := sup
ω

∣∣∣∣α(ω)
ρ(ω)

∣∣∣∣ < ∞
}
. (6)

Note that in the above definition, if φ(x; ω) = exp(i〈x, ω〉), α : Rd → C is the inverse Fourier transform 
of f .

4.1. Generalization error

We state our main results here. Recall that μ(x) denotes the probability measure for sampling x.

Theorem 1 (Generalization bound for bounded ρ-norm functions). Let f ∈ F(φ, ρ), where φ(x; ω) =
φ(〈x, ω〉) = exp(i〈x, ω〉) and ρ(ω) is the density corresponding to a spherical Gaussian with variance 
σ2, N (0, σ2Id). For a fixed γ, consider a set of data samples x1, . . . , xm ∼ N (0, γ2Id) and frequencies 
ω1, . . . , ωN ∼ N (0, σ2Id). The measurement noise ek is either bounded by E = 2ν or to be drawn i.i.d. from 
N (0, ν2). Let A ∈ Cm×N denote the associated random feature matrix where ak,j = φ(xk; ωj). Let f � be 

defined from Algorithm 1 and Equation (4) with η =
√

2(ε2‖f‖2
ρ + E2) and with the additional pruning step

f �(x) :=
∑
j∈S�

c�j φ(x;ωj).

where S� is the support set of the s largest (in magnitude) coefficients of c�.
For a given s, if the feature parameters σ and N , the confidence δ, and the accuracy ε are chosen so that 

the following conditions hold:

1. γ-σ uncertainty

γ2σ2 ≥ 1
2(13s) 2

d , (7)

2. Number of features

N = 4
ε2

⎛
⎝1 + 4γσd

√
1 +

√
12
d

log m

δ
+

√
1
2 log

(
1
δ

)⎞⎠
2

, (8)

3. Number of measurements

m ≥ 4(2γ2σ2 + 1)d log N2

δ
, (9)

Dimensionality
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d ≥
4 log

(
N2

δ

)
log

(
γ2σ2

e log(2γ2σ2+1)

) . (10)

Then, with probability at least 1 − 6δ the following error bound holds

√√√√∫
Rd

|f(x) − f �(x)|2 dμ ≤ C ′
(

1 + N
1
2 s−

1
2 m− 1

4 log1/4
(

1
δ

))
κs,1(c�)

+ C

(
1 + N

1
2m− 1

4 log1/4
(

1
δ

)) √
ε2 ‖f‖2

ρ + 4ν2,

(11)

where C, C ′ > 0 are constants and c� is the vector

c� = 1
N

[
α(ω1)
ρ(ω1)

, · · · , α(ωN )
ρ(ωN )

]T
. (12)

The constants in Theorem 1 are chosen for simplicity, where more precise bounds can be found in the 
Appendix. For example, expression (7) is a simplification of (B.33). In Theorem 1, we see that the γ-σ
uncertainty principle becomes less severe in the high-dimensional setting.

Remark 2. Although the bounds include a factor of N 1
2 , the error decreases with N in many settings. For 

example, let’s consider the noise-free case E = 0 and set s = N i.e. the upper bound for the sparsity. The 
first term becomes zero and the remaining term simplifies to

√√√√∫
Rd

|f(x) − f#(x)|2 dμ

≤ C

(
N− 1

2 + m− 1
4 log1/4

(
1
δ

)) ⎛
⎝1 + 4γσd

√
1 +

√
12
d

log m

δ
+

√
1
2 log

(
1
δ

)⎞⎠ ‖f‖ρ,

≤ C̃ N− 1
2

(
1 +

log1/4 ( 1
δ

)
log1/4 (N2

δ

)
) ⎛

⎝1 + 4γσd

√
1 +

√
12
d

log m

δ
+

√
1
2 log

(
1
δ

)⎞⎠ ‖f‖ρ.

(13)

where we used the complexity bounds on m:

m = O
(
N2 log N2

δ

)
.

Therefore, up to log terms, our generalization bound is O(γσN− 1
2 ) = O(N− 1

2+ 1
d ).

Interestingly, we observe the appearance of a Heisenberg-type uncertainty principle between “frequency-
domain” and “space-domain” variances, σ2 and γ2 in Theorem 1 [22]. In Theorem 1, the product of the 
variances is bounded below by an O(s 2

d ) term.
Next, we state an informal version of Theorem 1 by simplifying the conditions in the theorem to the 

leading orders, i.e. ignoring the constants and slower log terms. In particular, each condition in Theorem 2
depends on the known or controllable parameters: the dimension d, the sparsity s, the accuracy ε, and the 
confidence δ.
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Theorem 2 (Informal statement: generalization bound for bounded ρ-norm functions). Given the setup from 
Theorem 1 but with E = 0, for a given s, if the feature parameters σ and N , the confidence δ, and the 
accuracy ε are chosen so that the following conditions hold:

1. γ-σ uncertainty

γ2σ2 = O
(
s

2
d

)
, (14)

2. Number of features

N = O
(
ε−2s

2
d d2

)
, (15)

3. Number of measurements

m = O
(
s2 log N2

δ

)
. (16)

4. Dimensionality

d = O
(

log
(
N2

δ

))
(17)

Then, with probability at least 1 −O (δ) the following noise-free error bound holds

√√√√∫
Rd

|f(x) − f �(x)|2 dμ = O
((

1 + N
1
2 s−1

)
κs,1(c�) + N− 1

2 s
1
d + m− 1

4 s
1
d

)
, (18)

in terms of the scaling with N , m, and s only, where c� is the vector

c� = 1
N

[
α(ω1)
ρ(ω1)

, · · · , α(ωN )
ρ(ωN )

]T
. (19)

Note that the dimensionality condition (10) simplifies to (17) as follows. Using the γ-σ uncertainty 
principle, we pick a scaling c > 1 (following the big-O notation) such that

d �
4 log

(
N2

δ

)
log

( 1
2eγ

2σ2
) �

4 log
(

N2

δ

)
log

(
cs

2
d

)

which implies

d �
4d log

(
N2

δ

)
d log (c) + 2 log (s) or d = O

(
log

(
N2

δ

))
.

Remark 3. Consider a function f ∈ F(φ, ρ) whose Fourier transform is supported within a compact set 
Ω ⊂ Rd such that 

∫
Ω ρ(ω) dω =: β < 1. Then the vector c� will be sparse with high probability, as 

its expected sparsity scales like s = β N . Thus, functions with compactly clustered spectral energy are 
well-approximated by the SRFE method.
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Theorem 1 shows that the generalization bound consists of several terms. The first term depends on the 
quality of the best s-term approximation of f with respect to the random feature basis. Since κs,1(c�) is 
bounded by N−s

N ‖f‖ρ, the first error term is related to the complexity of the function class. Part of the 
second term is controlled by the strength of the random features in representing f . By decreasing ε, thereby 
increasing N , we can increase the power of our representation and thus reduce this error term. The other 
component of the second term is proportional to the level of noise on the samples and, in general, cannot 
be reduced arbitrarily. However, in the high-noise case, the bound shows that taking larger m will improve 
the error bounds with respect to the noise.

When more information is known about the target function, the rates and complexity bounds improve 
(especially with respect to the dimension). This helps mitigate issues with the approximation of functions 
in high-dimensions. This result is detailed below.

Theorem 3 (Generalization bounds for order-q functions). Let f be an order-q function of at most K terms 
as defined in Definition 1, such that each term g�, � = 1, 2, . . . , K, belongs to F(φ, ρ) with φ(x; ω) =
φ(〈x, ω〉) = exp(i〈x, ω〉), and ρ : Rq → R the density for a spherical Gaussian with variance σ2, N (0, σ2Iq). 
Let ω1, . . . , ωN be a complete set of q-sparse feature weights drawn from density ρ. Fix γ and draw i.i.d. 
sampling points x1, . . . , xm ∼ N (0, γ2Id). The measurement noise ek is either bounded by E = 2ν or to 
be drawn i.i.d. from N (0, ν2). Let A ∈ Cm×N denote the associated random feature matrix where ak,j =
φ(〈xk, ωj〉) and f � be defined from Algorithm 2 and Equation (4) with the additional pruning step and with 

η =
√

2ε2
(
d
q

)
|||f |||2 + 2E2, where |||f ||| = 1

K

K∑
j=1

‖gj‖ρ.

For a given s, suppose the feature parameters σ and N , the confidence δ, and the accuracy ε are chosen 
so that the following conditions hold:

1. γ-σ uncertainty principle

γ2σ2 ≥ 1
2(13s)

2
q , (20)

2. Number of features

N = n

(
d

q

)
= 4

ε2

⎛
⎝1 + 4γσd

√
1 +

√
12
d

log m

δ
+

√
q

2 log
(
d

δ

)⎞⎠
2

, (21)

3. Number of measurements

m ≥ 4(2γ2σ2 + 1)max{2q−d,0}(γ2σ2 + 1)min{2q,2d−2q} log N2

δ
, (22)

4. Dimensionality

q ≥
4 log

(
N2

δ

)
log

(
γ2σ2

2 2

) (23)

e log(2γ σ +1)
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Then, with probability at least 1 − 6δ the following error bound holds

√√√√∫
Rd

|f(x) − f �(x)|2 dμ ≤ C ′
(

1 + N
1
2 s−

1
2 m− 1

4 log1/4
(

1
δ

))
κs,1(c̃�)

+ C

(
1 + N

1
2m− 1

4 log1/4
(

1
δ

)) √
ε2
(
d

q

)
|||f |||2 + E2,

(24)

where C, C ′ > 0 are constants and the vector c̃∗ = [c̃∗1, . . . , ̃c∗N ]T ∈ CN is defined as follows

c̃�j := 1
K

K∑
�=1

c̃��,j , with c̃��,j =
{

α�(ωj)
nρ(ωj) , if supp(ωj) = S�

0, otherwise.
(25)

The function α�(ω) is the transform of g� using Definition 3 and Definition 1.

We state an informal version of Theorem 3 by simplifying the conditions in the theorem to the leading 
order terms analogous to Theorem 2.

Theorem 4 (Informal statement: generalization bounds for order-q functions). Given the setup from Theo-
rem 3 but with E = 0 and q < d

2 , for a given s, suppose the feature parameters σ and N , the confidence δ, 
and the accuracy ε are chosen so that the following conditions hold:

1. γ-σ uncertainty principle

γ2σ2 = O
(
s

2
q

)
(26)

2. Number of features

N = n

(
d

q

)
= O

(
ε−2s

2
q d2

)
, (27)

3. Number of measurements

m = O
(
s4 log N2

δ

)
, (28)

4. Dimensionality

q = O
(

log
(
N2

δ

))
(29)

Then, with probability at least 1 −O (δ) the following error bound holds

√√√√∫
Rd

|f(x) − f �(x)|2 dμ = O
((

1 + N
1
2 s−

3
2

)
κs,1(c�) + N− 1

2 s
1
q + m− 1

4 s
1
q

)
, (30)

in terms of the scaling with N , m, and s only, where the vector c̃∗ = [c̃∗1, . . . , ̃c∗N ]T ∈ CN is defined as 
follows
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c̃�j := 1
K

K∑
�=1

c̃��,j , with c̃��,j =
{

α�(ωj)
nρ(ωj) , if supp(ωj) = S�

0, otherwise.
(31)

The function α�(ω) is the transform of g� using Definition 3 and Definition 1.

Remark 4. From the proof, the bound for N is

N = 4
ε2

⎛
⎝1 + 4γσd

√
1 +

√
12
d

log m

δ
+

√
1
2 log

(
K

δ

)⎞⎠
2

and we obtain Equation (21) by noting that K ≤
(
d
q

)
≤

(
ed
q

)q

(and redefining ε).

Remark 5. Note that in the bound for the number of measurements, the term (γ2σ2 + 1)2 is in the range

2γ2σ2 + 1 ≤ (γ2σ2 + 1)2 ≤ (2γ2σ2 + 1)2

and thus, if we choose the variances so that uncertainty principle holds with equality, which from the proof 
is (2γ2σ2 + 1) q

2 = O(s), then we see that m scales between s4 for q ≤ d
2 and s2 for q = d.

4.2. Discussion on low-order functions

For low-order functions, Theorems 3 and 4 indicate a significant reduction in terms of the dimension d. 
In particular, for small q, the term 

(
d
q

)
|||f ||| (which includes a dimensional scale of 

(
d
q

) 1
2 ) should grow slower 

than the norm ‖f‖ρ′ where ρ′ is the probability density in the ambient space of dimension d (assuming 
all terms exist). For a simple example, let f be an order-q function with K = 1 and let α(ω) = 1 be 
compactly supported on the square defined by (ω1, . . . , ωq) ∈ [−1, 1]q. If we applied Algorithm 1 in the 
ambient dimension d with ρ′ defined as the uniform probability distribution over the square in dimension 
d, then ‖f‖ρ′ = 2d. Using sparse features with ρ defined as the uniform probability distribution over the 

square in dimension q, we have |||f ||| ≤
(
d
q

) 1
2 2q ≤ d

q
2 2q. For small q relative to d, we see that |||f ||| will grow 

slower than ‖f‖ρ′ with respect to d (in this example). This indicates one of the potential theoretical benefits; 
however, a full characterization is difficult to quantify because the theoretical dependency of the number 
of measurements m scales like s4 in the low-order setting while it scales like s2 in the standard setting. A 
more complete picture will be investigated in future work.

4.3. Proof of Theorem 1

In this section, we discuss our main technical arguments, which lead to Theorem 1. Note that the 
generalization error can be written as

√√√√∫
Rd

|f(x) − f �(x)|2 dμ ≤
√√√√∫

Rd

|f(x) − f�(x)|2 dμ +
√√√√∫

Rd

|f�(x) − f �(x)|2 dμ, (32)

where

f�(x) =
N∑
j=1

c�j exp(i〈x,ωj〉), c�j := α(ωj)
Nρ(ωj)

. (33)

We then aim to study these two sources of error in the following lemmata.
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4.3.1. Bounding the first error term
We first extend an argument from [34,35] to derive a bound on how well a function in F(φ, ρ) can be 

approximated by SRFE and characterize the approximation power of f�, the best φ-based approximation 
to f .

Lemma 1 (Generalization error, Term 1). Fix the confidence parameter δ > 0 and accuracy parameter ε > 0. 
Recall the setting of Algorithm 1 and suppose f ∈ F(φ, ρ) where φ(x; ω) = exp(i〈x, ω〉). The data samples 
xk have probability measure μ(x) and weights ωj are sampled using the probability density ρ(ω). Consider 
the random feature approximation

f�(x) :=
N∑
j=1

c�j exp(i〈x,ωj〉), where c�j := α(ωj)
Nρ(ωj)

. (34)

If the number of features N satisfies the bound

N ≥ 1
ε2

(
1 +

√
2 log

(
1
δ

))2

, (35)

then, with probability at least 1 − δ with respect to the draw of the weights ωj the following holds

√√√√∫
Rd

|f(x) − f�(x)|2 dμ ≤ ε‖f‖ρ. (36)

The proof of Lemma 1 is similar to the result of [35]. The result in Lemma 1 is not constructive since 
c� depends on the unknown function α(ω). Nonetheless, Lemma 1 establishes a useful bound on the first 
source of error in (32).

4.3.2. Bounding the second error term
The next lemma controls the second source of error.

Lemma 2 (Generalization error, Term 2). Let f ∈ F(φ, ρ), where the basis function is φ(x; ω) =
exp(i〈x, ω〉). For a fixed γ and q, consider a set of data samples x1, . . . , xm ∼ N (0, γ2Id) with μ(x) de-
noting the associated probability measure and weights ω1, . . . , ωN drawn from N (0, σ2Id). Assume that the 
noise is bounded by E = 2ν or that the noise terms ej are drawn i.i.d. from N (0, ν2). Let A ∈ Cm×N

denote the associated random feature matrix where ak,j = φ(xk; ωj). Let f � be defined from Algorithm 1
and Equation (4) with η =

√
2(ε2‖f‖2

ρ + E2) and with the additional pruning step

f �(x) :=
∑
j∈S�

c�j φ(x;ωj),

where S� is the support set of the s largest (in magnitude) coefficients of c�. Let the random feature approx-
imation f� be defined as

f�(x) :=
N∑
j=1

c�j exp(i〈x,ωj〉), (37)

where
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c� =
[

α(ω1)
N ρ(ω1)

, · · · , α(ωN )
N ρ(ωN )

]T
. (38)

For a given s, if the feature parameters σ and N , the confidence δ, and the accuracy ε are chosen so that 
the following conditions hold:

γ2σ2 ≥ 1
2(13s) 2

d ,

N = 4
ε2

⎛
⎝1 + 4γσd

√
1 +

√
12
d

log m

δ
+

√
1
2 log

(
1
δ

)⎞⎠

m ≥ 4(2γ2σ2 + 1)d log N2

δ
,

d ≥
4 log

(
N2

δ

)
log

(
γ2σ2

e log(2γ2σ2+1)

) ,
then, with probability at least 1 − 5δ the following error bound holds:

√√√√∫
Rd

|f#(x) − f�(x)|2 dμ ≤ C ′
(

1 + N
1
2 s−

1
2 m− 1

4 log1/4
(

1
δ

))
κs,1(c�)

+ C

(
1 + N

1
2m− 1

4 log1/4
(

1
δ

)) √
ε2 ‖f‖2

ρ + 4ν2.

(39)

where C, C ′ > 0 are constants.

The proof of this lemma (see Appendix C) relies on demonstrating that given the assumptions on the data 
samples xk and random weights ωj , the corresponding random feature matrix A (see Step 4 in Algorithm 1) 
has a small mutual coherence μA, which we recall below.

Definition 4 (Mutual coherence [20]). Let A ∈ Cm×N be a matrix with columns a1, . . . , aN . The mutual 
coherence of A is defined as

μA = sup
� �=j

{
|μj�|, μj� := 〈aj ,a�〉

‖aj‖‖a�‖

}
. (40)

To establish Lemma 2, we argue that a small mutual coherence μA is itself a consequence of the bounded 
separation of the randomly drawn weights. That is, consider a collection of random weights {ωj}Nj=1 in Rd. 
For γ > 0 and a function ψ : Rd → R, we define the quantities

Γj� := ψ (γ(ωj − ω�)) , Γmin := min
j �=�

Γj�, Γmax := max
j �=�

Γj�. (41)

We can quantify its separation with respect to ψ by bounding Γmax and Γmin by values depending on 
N and other dimensional constants. In the setting of Theorem 1 where the sampling points xi’s are i.i.d. 
Gaussian, the bounded separations hold for ψ (γ(ωj − ω�)) = exp

(
−2γ2π2‖ωj − ω�‖2). Consequently, by 

utilizing the fact that the weights ω’s are normally distributed, we show that the collection {ωj}Nj=1 has 
bounded separation by establishing bounds on Γmax and Γmin depending on N .

Given the bounds on Γmax and Γmin, by employing the Bernstein’s inequality, we then establish that 
μA = O (Γmax) with high probability, as long as m ≥ 4

2 log N2
. Consequently, we utilize a result from 
Γmin δ
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compressive sensing regarding the stability of the BP formulation (see, e.g. [20]) to complete the proof of 
Lemma 2.

5. Experimental results

In this section, we test the SRFE approaches (both Algorithm 1 and 2) on benchmark synthetic exam-
ples and on two applications (data-driven approximations for the NACA airfoil and HyShot 30 datasets). 
We compare our method to the RFF method, a two-layer neural network, and the PCE algorithm. The 
examples and comparisons show that the SRFE approaches provide a consistent result over several hyper-
parameters and outperform the other methods in some of the more realistic settings (i.e. limited data, no 
prior information on the sampling distribution, etc.).

Throughout Section 5, we set φ(x; ω, p) = sin(〈x, ω〉 + p), unless otherwise specified. The parameterized 
functions now include an offset term p, referred to as the bias, which allows for the addition of a phase 
to capture both the sine and cosine basis terms. For each experiment, the hyperparameters for the SRFE 
approach will be specified, which include: the number of random features N , the number of data samples 
m, the dimension of the data d, the feature sparsity q (for Algorithm 2), the distributions for the data and 
weights, and the basis pursuit parameter η. To measure the error, we use the relative �2 error on the test 
set (i.e. the relative testing error) defined as:

Error =

√∑
k∈Test |f(xk) − f �(xk)|2∑

k∈Test |f(xk)|2
,

where f is the target function and f � denotes the solution from either Algorithm 1, Algorithm 2, or the 
comparison algorithms. If we are randomly drawing the data, then we construct a test set using 5000
random samples (distinct from the training set). Otherwise, the discussion for each example specifies the 
training-testing data split percentages. For consistency between experiments, we do not use the optional 
pruning step. In fact, the output from Algorithms 1 and 2 are sparse in these examples, although this is 
not guaranteed by the theory. We use the SPGL1 algorithm [60] to solve the sparse basis pursuit step in 
Algorithms 1 and 2.

5.1. Comparison with two layer neural network

In the first example, we show that Algorithm 2 outperforms a shallow neural network on the approxima-
tion of an order-2 function:

f(x1, . . . , x10) = 1
10

9∑
�=1

exp(−x2
�)

1 + x2
�+1

in the data-scarce regime. For Algorithm 2, we set η = 0.01, q = 2 or q = 10, m = 250, x ∼ U [−1, 1]10, 
ω ∼ N (0, 1), and p ∼ U [0, 2π].

In Fig. 1, we compare the SRFE (with N = 5000) to a standard two-layer fully connected ReLU network 
with 500 and 5000 trainable parameters. The ReLU network is trained using gradient descent. The ReLU 
network with 500 trainable parameters is included so as to match the number of active parameters in the 
SRFE. The SRFE with q = d = 10 is more accurate than the shallow network in this data regime. When 
q = 2, the error of SRFE-S is smaller than that of the SRFE results with q = d and is one order of magnitude 
smaller than the neural network.
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Fig. 1. Function Approximation: Comparison of relative testing error versus the size of the training set for the sparse random feature 
model with q = 2 and q = 10 and for the two-layer ReLU network using 500 and 5000 trainable parameters. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Comparison, Overfitting: The first figure is the target function, the second and third figures are the approximations via the 
SRFE and the OLS methods respectively with the same m = 200 randomly sampled points.

5.2. Overfitting and noise

In this example, we consider the interpolation problem and provide a visual comparison of the recovery 
of one-dimensional functions using the SRFE algorithm and the ordinary least squares (OLS) approach. In 
this case, OLS refers to the min-norm interpolator, i.e. the solution to

arg min
c

‖c‖2 s.t. Ac = y.

The first plot of Fig. 2 is the target function (a sine packet), the second and third plots are the approximations 
using the SRFE and the OLS methods respectively using the same training set of m = 200 randomly 
sampled points sampled from U [−2, 2] and the same feature matrix with N = 2500, ω ∼ N (0, 4π2), and 
p ∼ U [−π, π]. The basis pursuit parameter is set to η = 10−3. Since we are comparing interpolators, the OLS 
approximation leads to the appearance of high-frequency aliasing. We observed that when the min-norm 
interpolator is replaced by a ridge regression training problem, the SRFE approach produces better test 
errors in the low-data limit.

In Fig. 3, noisy one dimensional data is considered. The first column includes the Runge function (top) 
and a triangle function (bottom) each with 5% relative noise. The second and third columns are the ap-
proximations using the SRFE and the OLS (i.e. the min-norm interpolator) approaches respectively with 
the same m = 200 randomly sampled points. The first row uses ω ∼ N (0, π2) and the second row uses 
ω ∼ N (0, 4π2). Both the SRFE and OLS approaches use the same feature matrix with N = 2500 and 
p ∼ U [−π, π]. The basis pursuit parameter is set to η = 10−3. The results using the SRFE are more accu-
rate (in terms of interpolation and testing error) and contain less noise artifacts. Note that since the basis 
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Fig. 3. Comparison, Noise: The first column includes the Runge function (top) and a triangle function (bottom) each with 5% relative 
noise. The second and third columns are the approximations via the SRFE and the OLS methods respectively with the same 200 
randomly sampled points.

Table 1
Low Order Examples The table contains the relative test error (as a percentage) for approximating 
various functions using different q values. The purple values represent the order of the function. We 
fix m = 1000 and N = 10000 with random sine features. We draw x ∼ U [−1, 1]d and the nonzero 
values of ω are drawn from N (0, σ2).

f(x) σ d q = 1 q = 2 q = 3 q = 5(∑d
i=1 xj

)2
0.1 1 0.82 5.71 × 10−6 6.92 × 10−5 8.3 × 10−4

(1 + ‖x‖2
2)

−1/2 1 5 3.27 1.60 1.95 1.72√
1 + ‖x‖2

2 1 5 1.02 0.73 0.80 1.10

sinc(x1)sinc(x3)3 + sinc(x2) π 5 12.90 1.19 1.13 3.51
x1x2
1+x6

3
1 5 100.30 .53 4.95 5.06∑d

i=1 exp(−|xi|) 1 100 0.91 1.43 1.57 1.96

is trigonometric, the approximations are smooth. The OLS results have overfit the data, even when the 
feature parameter N is varied.

5.3. Low order approximations

In Table 1, we test the effect of varying q for different functions using Algorithm 2 and record the relative 
errors. The highlighted (purple) values represent the explicit order of the function. We set the parameters 
to m = 1000 and N = 10000. The data is sampled from U [−1, 1]d and the nonzero values of ω are drawn 
from N (0, σ2), where σ and d are included in the table for each example. The basis pursuit parameter is 
η = 0.01.

In the second and third examples, while the functions are order q = d functions, they enjoy better 
accuracy for q = 2. This could be due to several phenomena. The first is that, with fixed m and N , the 
error may increase as q increase (see Theorem 3). However, this should partially be mitigated since we chose 
N = 10000 large enough. Another reason is that, with respect to some expansion (i.e. Fourier or Taylor), 
the functions can be written as an order q < d function within some level of accuracy. This motivates further 
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Table 2
HyShot 30 and NACA Sound Datasets: Average relative train and test errors over 10 random 
trials (as a percentage). For the shallow NN, we choose the hidden layer so that the total 
number of parameters match N .

HyShot 30 N = 100 N = 200 N = 400 N = 800
SRFE with Sine 6.95 6.23 5.76 5.64

SRFE with ReLU 1.40 1.45 1.51 1.59

Random Fourier Features 84.23 89.99 95.17 97.84

Two-layer ReLU Network 7.29 11.50 11.19 11.33

NACA Sound N = 250 N = 1500 N = 5000 N = 10000
SRFE (Train) 3.22 2.30 2.30 2.31

SRFE (Test) 3.22 3.04 2.77 2.78

SRFE (Average Sparsity) 250 364.4 185.7 185.7

Random Fourier Features (Train) 3.22 0.25 0.20 0.19

Random Fourier Features (Test) 7.45 2.13 × 108 1.69 × 108 1.48 × 108

investigations in future work. The other examples show a clear transition when the correct range for q is 
obtained.

5.4. HyShot 30 data

In Table 2, we apply the SRFE on the HyShot dataset (Hypersonics Flow Data [13]) and measure 
the relative testing error as a function of N (the number of random features). The input space is d = 7
dimensional and the dataset includes 52 total samples (which we split into 26-26, i.e. m = 26). We set 
η = 0.01, ω ∼ N (0, 4π2), p ∼ U [0, 1], and q = 7 (no coordinate sparsity is assumed). In this setting, we have 
N � m, which causes the RFF model and the two-layer fully connected ReLU network to overfit on the 
data (the training loss is small). The NN is trained using the gradient descent algorithm and no differences 
were observed when using other standard optimizers.

When using φ(x; ω, p) = sin(〈x, ω〉 + p), the SRFE produces consistent testing error which decreases as 
N increases. On the other hand, when φ(x; ω, p) = ReLU(〈x, ω〉 + p), the results using SRFE achieve a 
smaller overall testing error but do not improve with N . Table 2 shows that unlike the SRFE, no gains are 
made from increasing the number of trainable parameters in the shallow NN model.

5.5. NACA sound dataset

We comparing the SRFE and the RFF models without coordinate sparsity (i.e. q = d) on the National 
Advisory Committee for Aeronautics (NACA) sound dataset [18] and measure the relative training and 
testing error as a function of N . The input space is d = 5 dimensional, the total number of samples is 1503, 
the train-test split 80 − 20 (i.e. m = 1202), η = 0.01, ω ∼ N (0, 1), and p ∼ U [0, 1]. The relative testing 
errors in Table 2 indicate an overall consistent result, in terms of the coefficient sparsity and the errors, 
when using the SRFE approach. The RFF model overfits as N increases beyond the size of the training set.

5.6. Comparison with sparse PCE

In Fig. 4, we compare the SRFE-S approach with the Sparse PCE approach [29] using various random 
sampling methods on the Ishigami example f(x1, x2, x3) = sin(x1) + 7 sin2(x2) + 0.1x4

3 sin(x1) which is 
of order 2. The plots in Fig. 4 show the testing set points (y-axis) against the output prediction of a 
model (x-axis). The line y = x on the plot indicates a perfect fit, while any deviation from the line 
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Fig. 4. Comparison with Sparse PCE. Each scatter plot is the model response versus the data. The first row is the SRFE and the 
second row is the Sparse PCE model. The first column uses i.i.d. samples from U [−π, π]d, the third column uses i.i.d. samples from 
N

(
0, 1

4 Id
)
, and the second column uses the sum of samples from N

(
0, 1

100 Id
)

and U [−π, π]d. Each model uses N = 3276 features 
(which is equivalent to a degree-25 polynomial system in the case of the Sparse PCE approach) and (the same) m = 200 random 
samples. While the Sparse PCE performs well on the uniform distribution (first row), the SRFE produces accurate approximations 
in all cases.

indicates the errors. The first column of Fig. 4 uses i.i.d. samples xk ∼ U [−π, π]d, the third column uses 
i.i.d. samples xk ∼ N

(
0, 1

4Id
)
, and the second column uses a mixed distribution xk = xk,1 + xk,2 where 

xk,1 ∼ N
(
0, 1

100Id
)

and xk,1 ∼ U [−π, π]d. Each model uses N = 3276 features (which is equivalent to a 
degree-25 polynomial system in the case of the Sparse PCE approach) and (the same) m = 200 random 
samples. The hyperparameters for the SRFE-S are set to q = 2, ω ∼ N

(
0, 9

4π
2), and p ∼ U [0, 2π]. When 

using uniformly random samples, the Sparse PCE approach produces lower testing error (0.24% versus 
1.43%), which continues to perform well as N increases. This is due in part to the fact that the orthogonal 
polynomial basis (in this case, the Legendre basis) has knowledge of the input distribution. When the 
samples are Gaussian, the SRFE produces a more accurate solution than the Sparse PCE method (0.44%
versus 6.24%). For the mixture case, the SRFE outperforms the Sparse PCE method (2.11% versus 15.05%). 
Note that the Sparse PCE must derive the orthogonal basis from the data (or use the Legendre basis as its 
default), where as, at least experimentally, our approach is applicable to a larger class of input distributions.

6. Conclusion

We proposed the sparse random features method as a new approach in function approximation. For low 
order functions, i.e. functions that admit a decomposition to terms depending on only a few of the indepen-
dent variables, we introduce low order random features. By utilizing techniques from compressive sensing 
and probability, we provided generalization bounds for the proposed scheme and established sample and 
feature complexities. On several examples, we showed improved accuracy over other popular approximation 
schemes. As part of the future work, we intend to explore the avenues to incorporate additional functional 
structures into the proposed framework with the hope of further improving the approximation properties 
of the proposed scheme. In addition, by considering random features within a ridge regression approach, 
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[57] showed that the computational gains of random features come at the expense of learning accuracy, 
N = O(

√
m logm) features are sufficient for O(1/

√
m) error, where m is the number of samples. Utilizing 

this result in our proposed framework is an interesting direction which is left for future work.
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