
PHYSICAL REVIEW A 107, 033322 (2023)

Measuring nonlocal three-body spatial correlations with Rydberg trimers
in ultracold quantum gases
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We measure nonlocal third-order spatial correlations in nondegenerate ultracold gases of bosonic (84Sr) and
spin-polarized fermionic (87Sr) strontium through studies of the formation rates for ultralong-range trimer
Rydberg molecules. The trimer production rate is observed to be very sensitive to the effects of quantum
statistics with a strong enhancement of up to a factor of 6 (3!), in the case of bosonic 84Sr due to bunching
and a marked reduction for spin-polarized fermionic 87Sr due to antibunching. The experimental results are
compared to theoretical predictions and good agreement is observed. The present approach opens the way to in
situ studies of higher-order nonlocal spatial correlations in a wide array of ultracold atomic-gas systems.
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I. INTRODUCTION

Measurements of atom-atom spatial correlations play an
important role in understanding the properties of quantum
many-body systems and their nonclassical behaviors, such
as Bose-Einstein condensates [1], the Mott insulator state
[2], quantum spin models and magnetism [3–6], Efimov
physics [7], and strongly interacting gases in one dimension
[8–10]. Short-range or local two- and three-body correlations
in quantum gases were examined on length scales � 20 nm
through studies of photoassociation and three-body recombi-
nation [1,8–10], and density fluctuations [11,12]. Long-range
or nonlocal correlations with length scales on the order of
the wavelength of light were explored using Bragg spec-
troscopy [6], direct imaging in optical tweezers [3], and
quantum gas microscopes [5,13]. The measurement of two-
body correlations at intermediate length scales, ∼20–200 nm,
was achieved recently through studies of the formation of
ultralong-range Rydberg molecules (ULRMs) [14]. While this
earlier work focused on the creation of dimer molecules and
two-body correlations, we demonstrate here that this approach
can be extended to examine higher-order correlations and
report measurements of nonlocal three-body spatial correla-
tions in ultracold gases of bosons (84Sr) and spin-polarized
fermions (87Sr).

ULRMs are formed through scattering of the Rydberg elec-
tron from a ground-state atom embedded within the electron
cloud, which results in an attractive “molecular” potential
[15,16]. A typical example of such a potential for a stron-
tium 5s38s 3S1 −5s2 1S0 atom pair, calculated using a Fermi
pseudopotential, is shown in Fig. 1(a) and mirrors the radial
electron probability density distribution. This potential can
support a number of vibrational levels, and the vibrational
wave functions associated with the lower levels are included
in Fig. 1(a). Of particular interest here is the ground ν = 0
vibrational state, which is strongly localized in the outermost
potential well at an (n dependent) internuclear separation

Rn ∼ 1.8(n − δ) 2a0, where a0 is the bohr radius and δ is the
s-state quantum defect.

Measurements of two-body correlations using dimer for-
mation rates [14] exploited the fact that the likelihood of
creating a dimer in the ground vibrational state is proportional
to the probability that there are two ground-state atoms in
the initial sample with the appropriate initial separation Rn.
Thus, by varying n, and hence Rn, it is possible to probe
the probability distribution of atomic separations and deter-
mine the pair-correlation function g(2)(r). A trimer ULRM
in its ground state contains two ground-state atoms in the
vibrational ground state at a distance Rn from the Rydberg
core ion. Measurements of trimer formation can therefore
be used to examine three-body spatial correlations, although
analysis of the data is more complex than for dimers because
the relative positions of the two bound ground-state atoms,
characterized by the angle θ shown in Fig. 1(b), is not fixed
and the measured values represent angle-averaged quantities.
Here results are presented for ULRMs with values of n in the
range 29–45, which correspond to values of Rn of ∼60–170
nm, and sample temperatures of 200 nK to 2 µK. The length
scales probed are less than or on the order of the atomic
thermal de Broglie wavelength λdB, Rn/λdB ∼ 0.2–1, where
the effects of quantum statistics should be clearly visible in
the correlation functions.

II. EXPERIMENTAL METHODS

In the present work, Rydberg trimer excitation rates are
measured in ultracold gases. Cold samples of 84Sr (boson, nu-
clear spin I = 0) and spin-polarized 87Sr (fermion, I = 9/2)
are prepared using standard methods of laser cooling and
trapping [17,18]. Atoms in an atomic beam are slowed in a
Zeeman slower and cooled to ∼1 mK in a magnetooptical trap
(MOT) using the 5s2 1S0 −→ 5s5p 1P1 transition at 461 nm. To
further reduce the temperature to a few µK, a MOT operating
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FIG. 1. (a) Calculated molecular potential for a
5s38s 3S1 −5s2 1S0 strontium atom pair. The calculated vibrational
wave functions, multiplied by the radial coordinate R, for the ν = 0,
1, and 2 vibrational states are included and the horizontal axis for
each indicates its binding energy. (b) Rydberg excitation spectrum in
a cold dense strontium gas in the vicinity of the 5s38s 3S1 Rydberg
state, where, the x axis shows the laser detuning from the Rydberg
atomic line (black). The features associated with the formation of
dimer and trimer ground-state molecules are shown in blue and
red, respectively. The other remaining features (gray) correspond
to creation of vibrationally excited molecular states. Illustrations of
dimer and trimer molecules accompany the states of interest.

on the narrow 5s2 1S0 −→ 5s5p 3P1 transition at 689 nm is
employed. The atoms are then loaded into an optical dipole
trap (ODT) formed by two crossed 1064-nm laser beams,
and evaporative cooling [19] is used to create samples with
final temperatures in the range of 200 nK–2 µK (evaporative
cooling of spin-polarized 87Sr is performed with 84Sr present
in the trap to provide sympathetic cooling). Typically for both
isotopes, 2–7 ×105 atoms remain trapped in the ODT with
peak densities in the range of 0.5–2.5 ×1012 cm−3 calculated
from the measured trap oscillation frequencies and atom num-
ber.

To obtain cold samples of spin-polarized fermions, the
ground state 87Sr atoms are optically pumped to the
mF = 9/2 (F = 9/2) state [14]. A 7.6-G bias magnetic field

is applied after loading atoms into the ODT, which produces a
Zeeman splitting of ∼ 650 kHz between adjacent magnetic
sublevels in the 5s5p 3P1 F = 9/2 manifold. Population is
transferred to the mF = 9/2 ground state by applying a series
of σ (+)-polarized 689-nm laser pulses that are red-detuned
from each of the mF −→ mF + 1 transitions by 50 kHz. The
resulting spin-polarized 87Sr atom sample is then sympathet-
ically cooled with 84Sr atoms to the desired final temperature
and the magnetic field is lowered to 1 G to maintain a quanti-
zation axis during subsequent measurements. All data for the
84Sr and unpolarized 87Sr atom samples are recorded in zero
magnetic field.

Strontium Rydberg dimers and trimers are created by two-
photon excitation from the ground state via the 5s5p 3P1 (F =
11/2 for 87Sr) intermediate state. The first (689 nm) photon is
blue-detuned 14 MHz from the intermediate state. The second
(320 nm) photon is scanned to generate molecular excitation
spectra. Both the lasers are switched on for ∼10 µs. The
ground-state trimer excitation is spectroscopically resolved
from excitation to all other states. Less than one Rydberg
molecule is created per laser shot to avoid Rydberg-Rydberg
interactions. The Rydberg molecule is detected by selective
field ionization [20], where the rise time of the electric field
ramp is 6 µs. The Rydberg electron is ionized within 2 µs of
the onset of the electric field ramp and is directed towards a
microchannel plate (MCP) for detection. In the next 160 µs
the field is returned to zero and the excitation, detection cycle
repeats with a 200 µs period. Typically, 1000 experimental cy-
cles can be performed using a single ultracold sample to build
up statistics. ULRM states with Rydberg principal quantum
number 29 � n � 45 are created in this study, corresponding
to Rydberg atom and ULRM sizes 63 nm � Rn � 165 nm.
Larger n and Rn are not currently accessible because ULRM
spectral features become unresolved at the current spectral
resolution of 100 kHz.

III. g(3)(r) AND g(2)(r) CORRELATION FUNCTIONS

The measurement of correlation functions provides
an effective means to examine the behavior of com-
plex quantum systems, in particular, many-body systems.
G(p)(r1, . . . , rp) (p � 2) represents the diagonal elements of
the reduced p-body density matrix and measures the like-
lihood of finding p particles at the specified position at a
given time. The reduced one-particle density matrix (RDM)
ρ (1)(r1, r2), sometimes also denoted by G(1)(r1, r2) [21], con-
tains information on coherences and off-diagonal correlations
which contrasts the G(p) for values of p � 2. The theoretical
description of correlation functions in the atomic physics con-
text was explored by Glauber et al. [19] and we follow that
analysis to derive the angle-averaged three-body correlation
function relevant for trimer ULRM excitation. In the follow-
ing we will show that for an ideal gas the ensemble averaged
three-body correlation function can be expressed solely in
terms of the RDM.

Let �̂†(r) and �̂(r) be the creation and annihilation op-
erators for an atom at position r, which obey commutation
relations appropriate to either bosons or fermions. The RDM
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is then given by

G(1)(r1, r2) = 〈�̂†(r1)�̂(r2)〉 , (3.1)

and its diagonal elements represent the density

ρ(r) = G(1)(r, r). (3.2)

G(1)(r1, r2) for atoms trapped in a potential V (r) can be ex-
pressed in terms of the generalized Bose function gα [21] as

G(1)(r1, r2) = 1

λ3
dB

g3/2

(
exp

[
μ − [V (r1) +V (r2)]/2

kBT

]
,

× exp

[
−π

(r2 − r1)2

λ2
dB

])
, (3.3)

where gα is given by the series

gα (x, y) =
∞∑
k=1

xky1/k

kα
, (3.4)

μ is the chemical potential, and λdB is the thermal de Broglie
wavelength determined by the sample temperature T . The
optical dipole trap in the present experiment is well approx-
imated by the anisotropic harmonic potential

V (r) = m
(
ω2
xx

2 + ω2
yy

2 + ω2
z z

2
)

2
, (3.5)

where m is the mass of the strontium atom and ωx, ωy,
and ωz are the trap oscillation frequencies. The sizes of the
Rydberg molecules studied here are small compared to the
trap dimensions and the local density approximation (LDA)
can be employed assuming that V (r1) ≈ V (r2) ≈ V (r). The
use of Eq. (3.5) in Eq. (3.3), allows numerical calculation of
G(1)(r1, r2).

Expressions for G(2)(r1, r2) and G(3)(r1, r2, r3) can be
written as

G(2)(r1, r2) = 〈�̂†(r1)�̂†(r2)�̂(r2)�̂(r1)〉 , (3.6)

G(3)(r1, r2, r3) = 〈�̂†(r1)�̂†(r2)�̂†(r3)�̂(r3)�̂(r2)�̂(r1)〉 ,

(3.7)

where r1, r2, and r3 denote the position vectors of the var-
ious particles. For an ideal gas, using Wick’s theorem [22],
G(3)(r1, r2, r3) can be expressed in terms of one-body density
matrices [23] as

G(3)(r1, r2, r3) =G(1)(r1, r1)G(1)(r2, r2)G(1)(r3, r3)

± |G(1)(r1, r2)|2G(1)(r3, r3)

± |G(1)(r2, r3)|2G(1)(r1, r1)

± |G(1)(r3, r1)|2G(1)(r2, r2)

+ 2Re{(G(1)(r1, r2)G(1)(r2, r3)

× G(1)(r3, r1)}. (3.8)

The corresponding expression for G(2)(r1, r2) is

G(2)(r1, r2) = G(1)(r1, r1)G(1)(r2, r2) ± |G(1)(r1, r2)|2.
(3.9)

In the above expressions, the + (−) sign applies to identical
bosons (fermions) in the same internal state.

Consider a dimer molecule where the position vectors r1
and r2 correspond to the atoms that comprise the Rydberg-
bound ground-state atom pair of the dimer and r = r2 − r1
denotes the position of the ground-state atom relative to the
core ion. R = (r2 + r1)/2 denotes the position of the center of
mass (COM) of the pair. G(2) may then be expressed in terms
of these new variables. The normalized and trap-averaged pair
correlation function is then given by

g(2)(r) =
∫
dRG(2)(R, r)∫
dR ρ(R)2

, (3.10)

where we exploit the fact that in the length scale r probed by
the dimer, LDA is applicable and G(2) can be approximated as
independent of the orientation of r.

It is less straightforward to define such averaged correla-
tion functions when three bodies are involved, as is the case
for a Rydberg trimer. In a ground-state Rydberg trimer both of
the two ground-state atoms are bound at the same internuclear
distance r ≈ Rn from the core ion. The measured G(3) depends
on the angle between the relative orientations of ground-state
atoms, defined as the polar angle θ in Fig. 1, but not on the
absolute orientation of the molecule nor on the azimuthal
angle. We consider the relevant three-body correlation func-
tion for the experiments described here, which is normalized,
trap-averaged, and averaged over θ ,

g(3)(r) =
∫
dR 〈G(3)(R, r, θ )〉θ∫

dR ρ(R)3
. (3.11)

Equations (3.10) and (3.11) can be numerically evaluated
and the results for a trap containing a 500-nK sample at a
fugacity z = eμ/kBT of 0.99 are shown in Fig. 2(a). Fifty terms
are retained in the expansion for gα (x, y), which is sufficient
for the convergence of Eq. (3.3) even for a fugacity this close
to degeneracy (i.e., 1). As shown in Fig. 2, the values of
〈G(3)(R, r, θ )〉θ /ρ(R)3 and G(2)(R, r)/ρ(R)2 calculated for
the trap center, i.e., R = 0, do not deviate significantly from
the trap-volume-averaged values for the present experimental
trap parameters.

Figure 2(b) shows G(3)(R = 0, r, θ )/ρ(R = 0)3 for rep-
resentative values of θ for an ideal gas evaluated at the
coordinates corresponding to a Rydberg trimer. It is interest-
ing to note that the three-body correlation function approaches
2 at large r as θ −→ 0 and the two atoms that will become the
ground-state atoms bound to the Rydberg core come closer to
each other.

IV. RESULTS AND DISCUSSION

Generalizing the formalism of [14], the measured dimer
(S (2)

n ) and trimer (S (3)
n ) ULRM signals for principal quantum

number n, which we take as the integrals of the photoexcita-
tion spectral lines, depend on several experimental parameters
and may be approximated as

S (2)
n � αI1I2βnCO(2)

n

∫
d3RG(2)(R,Rn)

= αI1I2N (2)βnCO(2)
n g(2)(Rn), (4.1)
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S (3)
n � αI1I2βnCO(3)

n

∫
d3R 〈G(3)(R,Rn, θ )〉θ

= αI1I2N (3)βnCO(3)
n g(3)(Rn). (4.2)

The MCP detection efficiency is characterized by α and is
independent of isotopes and I1 and I2 are the intensities of the
Rydberg excitation lasers, which are monitored by photode-
tectors. The local excitation rate is assumed to be proportional
to G(p), with appropriate arguments and angle average. This
quantity is proportional to the pth power of the local cold-
atom density. The integral over the trap results in the nonlocal
spatial correlation function g(p)(Rn) and the density scaling
factor N (p) = ∫

d3R ρ(R)p. Other factors that influence the
photoexcitation rate are the square of the reduced two-photon
electronic-transition matrix element, represented by βn, which
depends on the principal quantum number n, the (n indepen-
dent) Clebsch-Gordan coefficients C that couple the levels of
interest, and the effective Franck-Condon factor O(p)

n , given
by the overlap of the initial scattering wave function with
the molecular bound state, which is different for dimers and

dB

FIG. 2. (a) Numerically calculated g(3)(r), g(2)(r), g̃(3)(R, r) ≡
〈G(3)(R, r, θ )〉θ /ρ(R)3, and g̃(2)(R, r) ≡ G(2)(R, r)/ρ(R)2 evaluated
at the trap center (R = 0), for Bose and Fermi gases. (b) Plot of
G(3)(R, r, θ )/ρ(R)3 at R = 0 as a function of r/λdB for an ideal
gas of bosons at various values of θ . At θ = 0, bunching in bosons
(or antibunching in fermions) is expected. In particular, at large r,
the third atom becomes uncorrelated from the other two and the θ

dependence of the three-body correlation represents the two-body
correlation.

ln

ln

FIG. 3. Normalized n dependence of the trimer ground-state pro-
duction rate (S (3)

n /αI1I2CN (3)) in an unpolarized Fermi gas of 87Sr.
The measured trimer signals are well fit by a power law with expo-
nent 12.3 ± 0.8, which furnishes the scaling of the product βnO(3)

n

for trimer excitation. Effects of residual three-body correlations in
the unpolarized sample of 87Sr are small [g(3)

unpol(r) ≈ 1] and are
neglected in determining the normalized trimer excitation rates. All
error bars denote standard error of the mean.

trimers and also depends on n [14]. Once these factors are
taken into account any remaining variations in the excitation
rates can be attributed to changes in g(p)(Rn). This approx-
imation neglects finite position resolution that would result
from the spread of the vibrational wave function. This is a
reasonable assumption because the width of the wave function
around internuclear separation Rn is only about 6% of Rn for
all n explored in this paper.

The n dependence of the product βnO(p)
n for trimers and

dimers is experimentally determined by measuring molecular
excitation rates in an unpolarized 87Sr sample (see Fig. 3).
87Sr has ten degenerate ground states and an unpolarized
sample approximates a classical gas. Ancillary calculations
suggest that residual two- and three-body correlations are
indeed small, i.e., g(p)

unpol(R) ≈ 0.9–1, and their effects are
therefore neglected in the calculation of the n dependence of
βnO(p)

n . For unpolarized 87Sr, all the factors in Eq. 4.2 that
influence the trimer production rate except βn and O(3)

n can be
measured and taken into account, and thus any n dependence
seen in the trimer production rate must be associated with
the product βnO(3)

n . In earlier measurements of ground-state
dimer production, the product βnO(2)

n was observed to scale
as (n − δ)3.5(3) [14], a result confirmed in the present work.
As illustrated by Fig. 3, measurements of trimer formation
showed a much stronger n dependence in the product βnO(3)

n ,
which scales as (n − δ)12.3(8).

Figures 4(a) to 4(h) illustrate the n dependence of the
dimer and trimer excitation spectra recorded using 84Sr and
spin-polarized 87Sr. In each set of measurements the results
are normalized by laser intensities and ground-state atom den-
sities as well as the n dependence in the product βnO(p)

n . Thus
any changes seen in the measured signal levels must be as-
sociated with changes in the correlation functions g(2)(Rn) or
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FIG. 4. Photoexcitation spectra for ground-state dimer and
trimer molecules in a cold strontium gas as a function of laser detun-
ing from the dimer or trimer line center. Each data set is normalized
by laser intensities, atom densities, and the product βnO(p)

n (see text).
Trimer photoexcitation rates for bosonic 84Sr are shown in (a,b) and
for spin-polarized 87Sr in (e,f). Note the strong signal enhancement
as n decreases for bosons compared to suppression for fermions. For
comparison, measurements of dimer formation in the same gases are
plotted in (c,d) and (g,h), which show similar but weaker variation.
The data for dimer and trimer production at n = 39 are all normalized
to the same peak height. Note the change in scale of the vertical axes
between the upper and lower data sets. All error bars denote standard
error of the mean.

g(3)(Rn). For 84Sr the (normalized) trimer photoexcitation rate
increases dramatically with decreasing n, pointing to a sim-
ilar increase in g(3)(r). This results because, as n decreases,
molecule formation probes correlations on ever shorter length
scales, which, for the present sample temperatures, become
smaller than the atomic de Broglie wavelength. In this regime
bunching in bosons results in an increase in the spatial cor-
relation. As seen in Fig. 4, the dimer production rate for

dB

FIG. 5. Measured and calculated values of g(3)(r) and g(2)(r)
for ultracold gases of bosonic (84Sr) and spin-polarized fermionic
(87Sr) atoms. Each set of experimental measurements is fit to the
corresponding theoretical predictions using a single amplitude scal-
ing factor (see text) and the molecular size is scaled by the atomic
thermal de Broglie wavelength. Error bars denote standard error of
the mean of multiple measurements.

84Sr also increases as n decreases, but this increase is much
less pronounced than that observed for trimers highlighting
how much more sensitive trimer formation is to the effects
of spatial correlations. In contrast, the trimer excitation rate
in spin-polarized 87Sr decreases significantly with decreasing
n due to antibunching, i.e., Pauli exclusion. This decrease is
more pronounced than that seen in dimer production, further
demonstrating the greater sensitivity of trimer production to
spatial correlations.

Figure 5 shows the principal findings of this paper. Dimer
and trimer ground-state photoexcitation spectra were recorded
for a range of quantum numbers, 29 � n � 45, at various
temperatures. For each spectrum, the total integrated molec-
ular signal (S (p)

n ) was obtained by fitting to a Voigt profile.
The signal was normalized by αI1I2CN (p)βnO(p)

n to remove
all dependences other than g(3)(r) or g(2)(r) [Eqs. (4.1)-(4.2)],
where r = Rn is taken to be the size of the ULRM. To enable
direct comparison between measurements undertaken at dif-
ferent sample temperatures, the length is scaled by the atomic
thermal de Broglie wavelength, λdB. A single amplitude scal-
ing parameter is fit for each experimental data set, which
normalizes the data to match the corresponding theoretical
curves calculated from Eqs. (3.10) and (3.11). (Fermion dimer
data are taken from [14]). This is equivalent to allowing α

to be a fit parameter, which reflects uncertainty in detection
efficiency. It also can be viewed as accounting for other sys-
tematic uncertainties such as in the absolute measurement
of sample density. Compared to our best estimate of these
quantities, the fit parameter is approximately 1.5, which is in
reasonable agreement.
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As is evident from Fig. 5, experimental observations match
theoretical predictions well. For a Bose gas and small values
of r/λdB, g(2)(r) approaches 2, in agreement with earlier
work [14]. The predicted 3! increase is observed in g(3)(r).
In contrast, for the Fermi gas, molecule formation is strongly
suppressed at small values of r/λdB, and more strongly so for
trimers. Correlations decay towards unity on the length scale
of λdB as expected. Fermi suppression and a higher sample
temperature (due to complexity in the laser cooling of 87Sr)
prevent us from probing low values of r/λdB in the Fermi gas.

V. CONCLUSION

We demonstrated that measurements of the formation
of ground-state trimer ULRMs provide a sensitive in situ
probe of three-body, nonlocal spatial correlations in ultra-
cold gases and applied this probe to observe bunching and

antibunching in thermal gases of indistinguishable bosons
and fermions, respectively. Even higher-order correlations
are accessible by observing the formation of tetramers
and higher p-mers [24], offering the possibility of com-
prehensive characterization of correlations in many-body
quantum systems. It should be possible to apply this
technique to systems where interactions affect particle cor-
relations, such as in strongly interacting one-dimensional
gases.
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