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a b s t r a c t

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems
lack robustness to ‘‘real world’’ events, where the input distributions and tasks encountered by the
deployed systems will not be limited to the original training context, and systems will instead need to
adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the
development of ‘‘Lifelong Learning’’ systems that are capable of (1) Continuous Learning, (2) Transfer
and Adaptation, and (3) Scalability. Unfortunately, efforts to improve these capabilities are typically
treated as distinct areas of research that are assessed independently, without regard to the impact of
each separate capability on other aspects of the system. We instead propose a holistic approach, using
a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is
agnostic to specific domains or system techniques. Through five case studies, we show that this suite
of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight
how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning
system development — both the widely discussed Stability-Plasticity dilemma and the newly proposed
relationship between Sample Efficient and Robust Learning. Further, we make recommendations for
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the formulation and use of metrics to guide the continuing development of Lifelong Learning systems
and assess their progress in the future.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

While machine learning (ML) has made dramatic advances in
he past decade, deployment and use of data-driven ML-based
ystems in the real world faces a crucial challenge: the input
istributions and tasks encountered by the deployed system will
ot be limited to the original training context, and systems will
eed to accommodate novel distributions and tasks while de-
loyed. We define the challenge of LL as enabling a system
o learn and retain knowledge of multiple tasks over its op-
rational lifetime. Addressing this challenge requires new ap-
roaches to both algorithm development and assessment. The
2M program was initiated in 2018 to stimulate fundamental
lgorithmic advances in LL and to assess these LL capabilities
n complex environments. The program focused on both RL and
lassification systems in diverse domains, such as CARLA (Doso-
itskiy, Ros, Codevilla, Lopez, & Koltun, 2017) (3D simulator for
utonomous driving), StarCraft (Vinyals et al., 2017) (real-time
trategy game), AI Habitat (Savva et al., 2019) (photorealistic 3D
imulator for indoor environments), AirSim (Shah, Dey, Lovett,
Kapoor, 2018) (3D drone simulator), and L2Explorer (Johnson

et al., 2022) (open-world exploration). The diversity of domains
was motivated primarily by the research consideration of explor-
ing LL in a broad array of contexts, and it resulted in each research
team developing LL systems for their respective domains.

Throughout this work, we use the term ‘‘LL system’’ rather
han ‘‘LL algorithm’’, as the developed systems were composed
f many different interacting components (e.g. regularization,
xperience replay, task change detection, etc.). The capability to
o LL is a property of the overall system rather than any one
omponent, and multiple metrics are needed to characterize LL
ystems.
The evaluation of these LL systems faced two key questions:

1) what metrics are most suitable for assessing LL, and (2) how
an one apply these LL Metrics in a consistent way to different
L systems, each operating in a different domain? In particular, a
rimary purpose of this evaluation was to measure progress over
he course of the program and to assess the strengths and weak-
esses of different systems in an environment-agnostic manner,
hereby providing deeper insight into LL.

The rest of this paper is organized as follows: In Section 2,
we give an overview on LL systems, as well as different ap-
proaches for evaluating them. In Section 3, we introduce the core
components of our approach for evaluating LL–conditions of LL,
evaluation scenarios, and evaluation protocols. In Section 4, we
define the metrics we use to evaluate LL systems. In Section 5,
we describe a set of case studies that demonstrate the application
of these metrics to varied domains. In Section 6, we conclude
with insights from these case studies and give recommendations
for assessing and advancing LL systems. Throughout this work,
we introduce and use a number of terms which are defined
in Appendix A.

2. Background

The area of machine LL has recently seen a large amount of
attention in the research community (Chen & Liu, 2018a; De
275
Lange et al., 2021; Hadsell, Rao, Rusu, & Pascanu, 2020; Parisi,
Kemker, Part, Kanan, & Wermter, 2019; Silver, Yang, & Li, 2013),
especially through its connections to other subfields such as
multi-task (Caruana, 1997; Zhang & Yang, 2021), transfer (Zhuang
et al., 2019), incremental batch (Kemker, McClure, Abitino, Hayes,
& Kanan, 2018), and online (Hoi, Sahoo, Lu, & Zhao, 2018) learn-
ing; as well as domain adaptation (Csurka, 2017) and general-
ization (Zhou, Liu, Qiao, Xiang, & Loy, 2022). The distinguishing
characteristic of LL is that a deployed system encounters a se-
quence of tasks over its lifetime, with no prior knowledge of the
number, structure, duration, or re-occurrence probability of those
tasks. The two key challenges are to retain expertise on previously
learned tasks, thereby avoiding catastrophic forgetting (French,
1992, 1999; Goodfellow, Mirza, Xiao, Courville, & Bengio, 2013;
McClelland, McNaughton, & O’Reilly, 1995; McCloskey & Cohen,
1989; Ratcliff, 1990), and to transfer acquired expertise to fa-
cilitate learning of new tasks (Pratt, Mostow, & Kamm, 1991;
Sharkey & Sharkey, 1993). Ultimately, an ideal LL system lever-
ages relationships among tasks to improve performance across
all tasks it encounters, even if the input distributions of those
tasks change over a lifetime. Earlier work considered the chal-
lenges of developing algorithms to avoid forgetting and enhance
transfer (Pratt, 1992; Ring, 1997).

As different methods and algorithms for LL have been devel-
oped, various approaches have been taken for evaluating these
systems. A key distinction has been made between evaluation
scenarios and metrics: evaluation scenarios (as shown in Fig. 1)
set up the structure of the lifetime of the LL system–what tasks
occur, how they are presented, and how often–whereas met-
rics assess how well the system performed over that lifetime.
We recommend Mundt, Lang, Delfosse, and Kersting (2022) as
a concurrently-developed work focusing on the challenges of
categorizing different LL algorithms and evaluations in terms
of transparency, replicability, and contextualization. When con-
structing a set of metrics, it is important to decide what they
should be assessing. Zhu, Lin, and Zhou (2020) frame metrics
for LL as assessing either generalization (how prior knowledge
facilitates initial learning on a new task) or mastery (how prior
knowledge facilitates eventual performance on a new task). The
suite of metrics defined in this paper extends these concepts by
defining conditions of LL in Section 3.1.

2.1. Evaluation scenarios for different learning paradigms

The difficulty of quantitatively evaluating LL systems has led
to a variety of approaches, both specific to the learning type and
more general. Quantitatively assessing the performance of classi-
fication LL systems is often more straightforward than assessing
RL systems because there are straightforward ways of generating
tasks from a dataset (e.g., by splitting sets of classes into tasks,
or by inducing domain shifts). However, while evaluating the
LL capability of a classification system is still challenging, the
evaluation scenarios used to do so tend to be specific to the
classification context, such as incremental class learning, e.g., Hsu,
Liu, and Kira (2018). Despite this, there are broader insights that
are applicable for RL as well, as noted by Farquhar and Gal (2019).
In particular, Hayes, Kemker, Cahill, and Kanan (2018) identify
different methods of setting up the sequence of observations that
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Fig. 1. Depiction of a LL Scenario generated to evaluate a given LL system according to the approach outlined in this work. The LL Scenario shown here and described
in Section 3 is an environment-agnostic template used to define the number and sequence of tasks, how they are sequenced in a given ‘‘lifetime’’ (or run) of the
LL system, and how many repeats should be performed to generate statistically reliable results. These sequences of tasks generate application-specific measures
(see Section 4.1) that feed into the calculation of LL Metrics, shown in red and defined in Section 4. The LL Metrics track performance within a system’s lifetime,
and are best interpreted in the context of the corresponding LL Scenario. Examples of this analysis and the impact the suite of LL Metrics provide can be found
in Section 5, followed by practical considerations and insights for assessing and advancing LL systems in Section 6. See Appendix A for further definitions of the
erms used here.
onstitute each lifetime of the system: sampling from different
asks in an i.i.d. fashion, grouping them by task or by class labels
ithin a task, or (most challenging) sampling and grouping them

n a non-i.i.d. fashion.
Evaluation of lifelong RL faces additional challenges: (1) RL can

e highly variable within and across training runs, and across
ollouts of a fixed policy (Chan, Fishman, Korattikara, Canny,
Guadarrama, 2020), (2) rewards across different tasks may

ave different scales or extrema, or may be unbounded, and
3) it is nontrivial to design tasks with well-characterized re-
ationships (see, e.g., Carroll & Seppi, 2005). Nonetheless, work
n RL generalization and transfer offers valuable insight for LL.
irk, Zhang, Grefenstette, and Rocktäschel (2021) propose a use-
ul formalism of a ‘‘contextual Markov decision process (MDP)’’
here for each episode encountered by the system, the state
f the MDP encodes an unseen ‘‘context’’ (e.g., random seeds
nd parameters used to specify the task). During training and
est, the system encounters episodes sampled from training and
est context sets respectively, with generalization assessed using
ero-shot forward transfer and a ‘‘generalization gap’’ metric
difference in expected rewards between train and test). One
f their key recommendations is to specify tasks using a com-
ination of procedural content generation (which varies based
n parameters inherent to the environment) and explicitly spec-
fied parameters. In CORA, (Powers, Xing, Kolve, Mottaghi, &
upta, 2021) present a different approach for RL performance
ssessment. They handcrafted benchmark tasks for four differ-
nt environments (Atari (Bellemare, Naddaf, Veness, & Bowling,
013), ProcGen (Cobbe, Hesse, Hilton, & Schulman, 2020), Mini-
ack (Samvelyan et al., 2021) and AI2-Thor (Kolve et al., 2017)),

and proposed a standard evaluation protocol (N tasks presented
sequentially, cycled M times).
276
2.2. Metrics for different learning paradigms

Metrics commonly used to assess the performance of clas-
sification LL systems include average task accuracy (ACC), for-
ward transfer (FT) and backward transfer (BT) (also denoted
FWT and BWT, respectively), as well as model size, storage and
computational efficiency (Lopez-Paz & Ranzato, 2017; Rodríguez,
Lomonaco, Filliat, & Maltoni, 2018). Other metrics specifically
developed for classification LL include Cumulative Gain, which
tracks ACC after each task exposure during the course of the
system’s lifetime (Prado, Koh, & Riddle, 2020), Ωall, an extension
of ACC that compares the accuracy to an offline learner (Hayes,
Kemker, et al., 2018), and Performance Drop (Balaji, Farajtabar,
Yin, Mott, & Li, 2020), which uses the baseline of a multi-task
model trained jointly on all tasks.

Metrics used for assessing lifelong RL include those introduced
by Powers et al. (2021) for use in CORA: Forgetting (change in
performance on a task before and after learning a new task)
and zero-shot FT (change in performance after learning a new
task, relative to a random agent). They also present baseline
algorithms demonstrating the value of the metrics and tasks. Zhu
et al. (2020) also propose metrics for two-task transfer learning,
comparing performance with and without prior task exposure:
initial performance, asymptotic performance, accumulated re-
ward (measured by an area under the curve (AUC) calculation),
and time to a threshold performance. They also propose a Trans-
fer Ratio (asymptotic performance measured as a ratio), and
performance sensitivity (variance in performance with different
hyperparameter settings).

In summary, there is currently no clear guidance for defining
tasks or scenarios to exercise LL, other than the guidance of
having multiple tasks with some kind of structured similarity
and presenting tasks to the system without specifying the order
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Table 1
Five LL systems were developed during the L2M Program, and the teams were
led by the organizations listed. The corresponding environment and domain
are shown. The variation in the domains represented in the L2M Program
necessitated the development of domain- and environment-agnostic metrics,
as well as LL threshold values at which a system is said to be exhibiting
Lifelong Learning. These domains can include classification and/or Reinforcement
Learning components.
System group
designation

Environment Domain

SG-UPenn 5.1 AI Habitat
(Savva et al., 2019)

Robotics
embodied search

SG-Teledyne 5.2 AirSim
(Shah et al., 2018)

Autonomous navigation
(drones)

SG-HRL 5.3 CARLA
(Dosovitskiy et al.,
2017)

Autonomous navigation
(cars, motorcycles)

SG-Argonne 5.4 L2Explorer
(Johnson et al., 2022)

Open-world
exploration

SG-SRI 5.5 StarCraft 2
(Vinyals et al., 2017)

Game play /
real-time strategy

beforehand. There are also no universally accepted metrics for LL,
though FT is often used for both classification and RL, and average
(or cumulative) change in performance is used in RL. Overall,
there is no agreed-upon standard for how to assess LL systems
across different environments in a uniform manner.

2.3. DARPA L2M program context

The L2M program was initiated to stimulate fundamental ad-
ances in lifelong ML systems. Of particular interest were sys-
ems operating in complex and challenging environments and
otentially applicable to a broad array of domains (including
utonomous driving, embodied search, and real-time strategy). To
his end, research conducted under the program coalesced into
ive different domains.

Table 1 provides information on the five LL systems that
were developed as part of the program, along with their asso-
ciated environments/domains. In this work, we focused on the
evaluation of systems within these five environments, but the
concepts and methods are broadly applicable and could work well
in conjunction with a library like Avalanche (Lomonaco et al.,
2021). We treated each LL system as a black box, intentionally
omitting details of the constituent components. Each system was
developed by a different research team and their algorithmic
advances are described in publications contained in Section 5.

.4. Evaluation of LL systems

How exactly to assess such a wide variety of LL systems oper-
ting in diverse environments was a major challenge addressed
uring the course of the L2M Program. We emphasize that the
oal was not to identify the ‘‘best’’ LL system, as each environ-
ent required different learning strategies. Instead, the goal was

o provide deeper insight into the strengths and weaknesses of LL
ystems in an environment-agnostic manner. The L2M Program
est and evaluation (T&E) team and research teams collabora-
ively identified and defined the following key components of an
L evaluation:

1. The Conditions of LL the system needed to demonstrate,
which are defined in Section 3.1. These conditions specify
diverse criteria identifying different components of the
overall phenomena of LL.
 (
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2. The Evaluation Scenarios that exercise the LL system for
the purpose of computing metrics. This is an environment-
agnostic template that defined the number of tasks and
constraints on their relationships, as well as how they are
sequenced in a given ‘‘lifetime’’ (or run) of the LL sys-
tem. An example is demonstrated in Fig. 1 and details are
provided in Section 3.2.

3. The overall Evaluation Protocol specifies how multiple
lifetimes are set up, and consists of the Evaluation Sce-
narios as well as details (e.g. number of lifetimes) for
obtaining statistically reliable metrics. Evaluation Protocols
are discussed in Section 3.3.

4. The set of LL Metrics (described in Section 4) that assess
the conditions of LL. We discovered early on that a single
metric would not be sufficient to cover all the conditions,
and multiple metrics would be needed to characterize the
LL systems.

. Evaluation approach

We consider three key aspects of evaluating LL systems–the
onditions of LL (Section 3.1), scenarios that systems encounter
Section 3.2), and the overall protocols that specify an evaluation
Section 3.3).

.1. Conditions of lifelong learning

We assert that an LL system must satisfy three necessary and
ufficient conditions:

1. Continuous Learning: The LL system learns a nonstation-
ary stream of tasks (both novel and recurring), continually
consolidating new information to improve performance
while coping with irrelevance and noise.

2. Transfer and Adaptation: As learning progresses, the LL
system performs better on average on the next task it
experiences, for both novel and known tasks (forward and
backward transfer), maintaining performance during rapid
changes in the ongoing task (adaptation).

3. Scalability: The LL system continues learning for an arbi-
trarily long lifetime using limited resources (e.g., memory,
time) in a scalable way.

These three conditions of LL have been used to drive the
evelopment of LL Metrics. They are similar to the notion of
generalization’ and ‘mastery’ introduced by Zhu et al. (2020), and
wo of our metrics can measure these concepts. The jumpstart
ormulation of FT (a Transfer and Adaptation metric) can be con-
idered a measure of ‘generalization,’ and RP – a Scalability metric
can be considered a measure of ‘mastery.’ It is important to
oint out that these conditions are partially independent; indeed,
t is possible for a system to demonstrate LL in one condition but
ot in another. Because of this, it is all the more critical to use
ultiple measures to assess LL systems. The relationship between

he Metrics, the Conditions of LL, and Scenario requirements
ssociated with assessing them are discussed further in Section 4.
It is also worth noting the relationship between the above

efinition and related terms such as ‘‘Continual Learning’’ (Chen
Liu, 2018b). There are two aspects here. First, are the learning

xperiences from different tasks intermixed as an i.i.d sequence
online or streaming learning (Hayes, Cahill, & Kanan, 2018)) or
s a non-i.i.d sequence with same-task experiences being batched
ogether? Second, do new learning experiences expand the do-
ain of already-learned tasks (incremental class learning), or are

hey entirely new tasks with new input and output domains

incremental task learning) (van de Ven & Tolias, 2018)?
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Fig. 2. Illustration of Condensed and Dispersed Scenario Types introduced in Section 3.2 and used in the case studies of Section 5. The structure of these scenarios
as chosen to aid in consistent, thorough evaluation of an LL system and to explore how system performances vary based on differences in task ordering and

requency of task switching.
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Lifelong Learning, as defined above, is incremental task learn-
ng with same-task experiences batched together and with the
dditional constraint that the system leverage prior knowledge to
ecome a more effective and efficient learner. The term ‘‘Contin-
al Learning’’ has historically been used to loosely refer to either
ncremental task or class learning. However, over the past few
ears, it has been used more synonomously with Lifelong Learn-
ng. To avoid confusion, we consistently use the term ‘‘Lifelong
earning’’ in this paper.

.2. Evaluation scenarios

An Evaluation Scenario describes the patterns and frequency
f task or task variant repetitions in sequence, and can facilitate
valuating LL systems with respect to specific metrics as well as
rovide insight into their strengths and weaknesses. Since certain
ask sequences are required to reasonably explore LL metrics,
pecifying a particular Scenario is a critical step in characterizing
he performance of an LL system.

Two of the main scenario types used to accomplish this were
ondensed and Dispersed Scenarios. Both scenario types are illus-
rated in Fig. 2, with further details in Appendix B. Each involved
sequence of multiple tasks and variants. Individual runs had
ifferent permutation orders.
In particular, Condensed Scenarios involved concentrating all

f the experience per task in one longer block. Dispersed Sce-
arios involved the same amount of experience per task, but
ith interleaved tasks in shuffled segments rather than appearing

n sequence. These two scenario types were chosen to explore
ifferences in system performance based on task ordering and
ppearance (since an operationalized system will not have prior
nowledge of task sequences), and to ensure enough task rep-
titions for reasonably evaluating whether a system retained
xpertise on previously seen tasks. In Section 5, we see that
ome LL systems perform differently in various scenarios. These
ifferences enable us to identify the characteristics, strengths, and
eaknesses of an LL system.
In developing these scenario structures, we built on existing

ork in this area. For example, van de Ven and Tolias (2019a)
roposed the class-incremental learning scenario, which is sim-
lar in structure to our condensed scenario. Concurrently to our
ork, Cossu et al. (2021) built off this and suggested the class-

ncremental with repetition scenario, which is similar to our
ispersed scenario. Similarly, Stojanov et al. (2019) designs a
lass-incremental scenario that features parametric variation in
ts task design. Our framework differs in two key ways from these.
irst, it is meant to be more general than these scenarios, as it
an accommodate LL systems that perform classification and/or
einforcement learning. Second, it incorporates task variants into
ts structure, which can help evaluate LL systems on environ-
ents with similar sets of tasks. Ultimately, the existence of

hese other scenarios is beneficial for exploring the combinatorial
esign space of LL scenarios, and benchmarks can be shared
nd extended. See Appendix B for a full example of what an

valuation Scenario looks like.

278
.3. Evaluation protocols

In order to evaluate a particular LL system (consisting of a
ixed set of hyperparameters, algorithms, and components), we
ecommend the use of an Evaluation Protocol. An Evaluation
rotocol is a complete specification for conducting LL Scenarios to
nsure reproducibility and obtain statistically reliable LL Metrics.
In addition to one or more Evaluation Scenarios, this specifica-

ion consists of details about pre-deployment training (e.g., pre-
raining on a fixed dataset like ImageNet), and how multiple
ifetimes (runs) should be generated for each scenario. This eval-
ation approach was used in the L2M program to foster exper-
mentation on LL Metrics and to help researchers evaluate the
erformance and progress of their LL systems.
In addition to the Scenario specification, an Evaluation Proto-

ol contains details for obtaining statistically reliable LL Metrics.
s has been noted in the literature (Agarwal, Schwarzer, Castro,
ourville, & Bellemare, 2021; Colas, Sigaud, & Oudeyer, 2018,

2019; Dror, Shlomov, & Reichart, 2019; Henderson et al., 2018),
the training process for deep RL systems is noisy and variable,
making it challenging to robustly evaluate them.

Our approach to generate statistically reliable LL Metrics is
based on guidance in NIST/SEMATECH (2012), and similar to Colas
et al. (2018). More details on this approach are provided in Ap-
pendix D. In contrast to much of the literature, which considers
the problem of comparing two or more algorithms, here we focus
on the challenge of obtaining reliable estimates of a system’s
performance (with respect to the metrics defined in Section 4).
Given such reliable estimates, we are able to determine whether a
system is meeting a particular threshold. We further propose the
use of LL thresholds in Section 4 to determine whether a system
is demonstrating LL or not.

4. Lifelong learning metric definitions

The Lifelong Learning Metrics are scenario, domain, environ-
ment and task-agnostic measures that characterize one or more
LL capabilities across the lifetime of the system. This suite of LL
Metrics, summarized in Table 2 and visualized in Fig. 3, operates
n application-specific performance measures (Section 4.1), mak-
ng the evaluation methodology as separate as possible from the
mplementation details of a particular system.

The metrics are meant to work in a complementary manner
n order to illustrate and characterize system capability. Thus,
here is some overlap in the conditions they measure, as shown
n Table 2, as well as in the means employed to do so. This ap-
roach ensures that no single metric value is responsible for fully
uantifying an LL system’s performance and instead encourages
eeper analysis into specific performance characteristics and the
rade-offs between them.

The relationship between these metrics and the trade-offs
lluminated by the case studies in Section 5 are explored further
in Section 6. An in-depth discussion of the context of these

metrics and their use can be found in New et al. (2022). Detailed
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Metrics described in this section.
(a) White regions in the graph indicate Learning Blocks, and shaded regions indicate Evaluation Blocks. Bi and Ri refer to performance in the ith Evaluation Block for
he Blue and Red tasks, respectively. Horizontal dashed lines indicate relevant evaluation performance comparison points referred to in the example formulations of
erformance Maintenance, Forward Transfer, and Backward Transfer Metrics.
b) Single task expert (dashed blue) and LL system (solid blue) curves for the scenario shown in Fig. A. Vertical lines indicate the boundaries between each of the
hree Learning Blocks for the Blue Task stitched from above and overlaid with the Single task expert performance output of the same number of Learning Experiences.
xperiences to Saturation and the Saturation Value for the Blue Task are also indicated on the figure to illustrate the example formulations of Sample Efficiency and
elative Performance Metrics.
Table 2
High-level description of the suite of five LL Metrics used in this work, described
in more detail in Section 4. An in-depth discussion of the specific formulation
of the LL Metrics can be found in New, Baker, Nguyen, and Vallabha (2022).
Metric name LL condition Assesses the LL system’s ability to:

Performance
Maintenance (PM)

Continuous
Learning

Avoid catastrophic forgetting despite
the introduction of new parameters
or tasks

Forward
Transfer (FT)

Transfer &
Adaptation

Use expertise in a known task to
facilitate learning a new task

Backward
Transfer (BT)

Transfer &
Adaptation

Use expertise in a new task to
improve performance on a known
task

Relative
Performance (RP)

Scalability Match or exceed the performance of
a single-task expert

Sample
Efficiency (SE)

Scalability Make better use of learning
experiences than an equivalent
single-task expert

formulations from New et al. (2022) are provided in Appendix C.2,
and a publicly-available Python implementation of the metrics
and a logging framework for systems that generate them are
available online (Nguyen, 2022a, 2022b).
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4.1. Application-specific measures

As shown in Fig. 4, an LL system performing tasks in its
environment as specified by the Evaluation Protocol will generate
some number of application-specific measures. Each learning ex-
perience (LX) – the minimum amount of experience with a task
that enables some learning activity on the part of the system – is
assumed to generate one or more scenario, domain, environment,
and application-specific performance measures. A chosen subset
of these application-specific measures is tracked and used to
compute the LL Metrics. It is important to note that a task’s
application-specific performance measures in a scenario will only
be compared to the same task’s same application-specific per-
formance measures. For example, consider an LL system that
encounters two tasks A and B. Before encountering task B, the
system has a performance value for task A of PA,before; after en-
countering task B, the system has a performance value for task
A of PA,after. Then, as defined in Section 4.3.2, we can assess how
learning B changes performance on A with the BT score:

BTB→A =
PA,after

.

PA,before
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Fig. 4. Environments such as AirSim or StarCraft generate many application-specific performance measures, such as classification accuracy, number of enemy units
defeated, or total reward. Some subset of the values reported by the Environment is needed to calculate the Lifelong Learning Metrics (Section 4), but it is not
ecessary to choose the same application-specific measure for computing all of the LL Metrics, since these measures are tracked over the course of the LL system
ifetime. For example, the number of enemy units defeated may be used to compute one metric, and total reward may be used to compute another. This allows a
ystem to be evaluated in a flexible, environment-agnostic way.
ource: Figure adapted from New et al. (2022).
here are no comparisons made between the performance values
f A and B to compute these LL Metrics, so there is correspond-
ngly no need to choose only one application-specific measure
o assess an LL system’s performance across all tasks. In order
o summarize the LL system’s performance for each Metric in
scenario, we used mean aggregation, but other options are
ossible.
In the following section we discuss each LL Condition, includ-

ng the motivation for assessing it, the metrics associated with
oing so, and the question that the metric attempts to address.
t the end of each subsection, we provide LL threshold values for
he metrics associated with that LL Condition.

.2. Continuous learning metrics

A system demonstrating Continuous Learning will consolidate
ew information to improve performance while coping with ir-
elevance, noise, and distribution shift. The LL system needs to
iscover and adaptively select or ignore information that may
e relevant or irrelevant. In particular, a Lifelong Learner must
ot be plagued by catastrophic forgetting, and performance must
uickly recover when the agent is re-introduced to tasks whose
erformance may have degraded. While we have a metric to
ddress whether a system has catastrophically forgotten task
ata, our attempt at formulating a metric to address whether a
ystem recovers after a drop in performance was unsuccessful
nd is discussed more in Section 6.

.2.1. Performance maintenance (PM)
A Lifelong Learner should be capable of maintaining perfor-

ance on each of its tasks. Performance Maintenance (PM) mea-
ures whether an LL system catastrophically forgets a previously
earned task and compares a system’s performance when it first
as the opportunity to learn a task to subsequent times ex-
eriencing the task. An important caveat here is that PM does
ot measure absolute performance levels; rather, it measures a
hange in performance over the course of the system’s lifetime.
hile there is some overlap between what PM and BT measure
Section 4.3), BT compares a particular task’s evaluation blocks

(EBs) immediately before and after learning a new task, whereas
PM can be computed using any sequence of EBs, independent of
how many other tasks were learned between.
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Table 3
LL Threshold values for Performance Maintenance.
Case Interpretation

PM > 0 (Demonstrates LL) that performance on task is getting
better over lifetime; may be an indication of transfer.

PM = 0 No forgetting; no additional learning.
PM < 0 (Does not demonstrate LL) Indicates forgetting.

4.2.2. LL threshold value for performance maintenance
The LL threshold value for PM is zero — this value indicates

that, on average, there are no differences between initial and
subsequent performances on a task. A positive value would in-
dicate improvement over the course of a lifetime - a potential
indicator of transfer. A negative value indicates forgetting. It is
worth noting that this metric may be particularly sensitive to
high variance in the application-specific measure ranges, since
the metric computes a difference rather than use a ratio or a
contrast (see Table 3).

4.3. Transfer and adaptation metrics

One of the hallmark capabilities of a system capable of LL is
the ability to leverage experience on one task toward improving
performance on another. Without assuming knowledge of the
details of how a system may accomplish this, we can measure
progress toward this aim by computing both forward and back-
ward transfer. At the very least, we expect that an LL system will
not exhibit catastrophic forgetting, where learning a new task
interferes with performance of a previously learned task.

For this particular suite of metrics, FT was formulated as a
jumpstart measure as introduced by Taylor and Stone (2007),
where performance changes were assessed at the beginning of a
learning block, measuring whether the system got a ‘‘jumpstart’’
on a future task. We used this formulation for FT for two pri-
mary reasons. First, the intention of these metrics was to be as
domain-agnostic as possible, and addressing the nuance of how
a learning curve changed could require a substantial amount of
computational resources. Second, the preference was for a single
value to express a system’s performance for each of the metrics,
where possible. Transfer has been defined differently by others,
but a jumpstart measure enables evaluation of the beginning of
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Table 4
LL Threshold values for Forward and Backward Transfer.
Case Interpretation

BT/FT > 1 (Demonstrates LL) Indicates positive forward transfer.
BT/FT = 1 No transfer or forgetting
BT/FT < 1 (Does not demonstrate LL) Indicates interference.

a system’s lifetime, which we felt was most appropriate given
that we were assessing widely different systems. An important
implication of this formulation to note is that for interpretability
purposes, a forward transfer value is computed for only the first
two tasks in a sequence.

4.3.1. Forward transfer (FT)
FT involves a system utilizing experience from prior, seen

asks to improve on a future, unseen task. Importantly, since
primary aim in developing these metrics is their application
ithout consideration of task specifics, we compute FT only in
he first instance of each task pair as the ratio of the application-
pecific measure in an evaluation block before and after another
ask is learned. As formulated, this metric measures whether the
L system leverages data from a previously learned task to learn
new task, and it requires the presence of Evaluation Blocks
efore and after each new task’s first Learning Block in order to be
omputed. An important note about FT is that order of the tasks
s important. FT may be present from Task A→ B, but not Task
→ A.

.3.2. Backward transfer (BT)
A system demonstrating BT will use expertise in a new task

o improve performance on a known task. Unlike FT, which is
nly computed on the first instance of each task pair, BT can
e computed for each task after every learning block (LB). This
etric measures whether an LL system leverages data from a
ew task to improve performance on a previously learned task,
nd it requires EBs between each LB to measure the performance
fter new tasks are learned. BT is computed for each task where
cenario structure allows.

.3.3. LL thresholds for forward and backward transfer
Table 4 shows the LL threshold values for both FT and BT. A

alue of 1 would demonstrate no change in task performance,
eaning neither forgetting nor transfer, whereas values above or
elow 1 would indicate transfer and interference, respectively.

.4. Scalability metrics

A fundamental capability for operationalized or deployable ML
ystems is the use of limited resources (e.g., memory, time) to ac-
omplish or learn tasks in a scalable way. We expect an LL system
o be able to sustain learning activity for arbitrarily long lifetimes
ncluding many tasks, though in practice,‘‘arbitrarily long’’ and
‘many tasks’’ are relative to typical operational timescales of
he application domain. While there are several ways to assess
he use of limited resources, one domain-agnostic methods for
oing so (used by Hayes, Kemker, et al., 2018) is to compare
he performance of an LL system that is trying to learn many
asks to a single-task expert (STE) system that is learning just one
ask. The Sustainability metrics assess essential components of LL
ecause it is useful to see if an LL system is being outperformed
y individual subsystems trained for each task. Scalability Metrics
re an important component of system performance, in addition
o being a proxy for task capacity.
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Table 5
LL threshold values for RP and SE. STE indicates Single Task Expert.
Case Interpretation

RP/SE > 1 (Demonstrates LL) Indicates Performance/Performance
Gain above level of STE

RP/SE = 1 Indicates Performance/Performance Gain exactly at level
of STE

RP/SE < 1 (Does not demonstrate LL) Indicates
Performance/Performance Gain below level of STE

4.4.1. Performance relative to a single task expert (RP)
An LL system with good RP will perform well on each of its

tasks when directly compared to the corresponding STE, often
leveraging data from other tasks to do so. As formulated, RP
measures how the performance of an LL system compares to a
non LL system with comparable training. RP is related to the
Transfer metrics in that a system that exhibits strong FT or BT
should benefit from these effects. However, RP offers a more
complete look at performance that combines all of the experience
on a particular task and compares it to the performance of a STE
with a similar amount of experience.

4.4.2. Sample efficiency (SE)
Lifelong Learners are expected to sustain learning over long

periods of time. The rate of performance gain of a system is a part
of scalability; a system that learns quickly is efficient with the
amount of experience it is exposed to. As formulated, SE describes
the rate of task performance gain with additional experience.
This metric measures the performance gain of the LL system
by comparing the absolute level of performance (the ‘‘saturation
value’’) achieved by the LL system and the number of learning
experiences required to get there with the corresponding STE
values.

4.4.3. LL thresholds for relative performance and sample efficiency
Determining threshold values for LL is more nuanced for the

Scalability metrics. Ideally, we want the performance of an LL
system to match or exceed that of an STE, as reflected in the
determination of the LL thresholds in Table 5.

5. Case studies with lifelong learning systems

In this section, we examine five System Group case studies,
all of which exercised the suite of LL Metrics. These metrics were
computed on LL systems developed during the L2M Program
using various techniques and in different environments, as shown
in Table 1. Over the course of L2M, we conducted multiple system
evaluations, which are denoted by M12, M15, and M18. Each of
the following subsections contains a brief overview of the corre-
sponding LL system developed by each SG team, a description of
the tasks used in each of the environments (summarized in Ta-
ble E.18), and a discussion of results and insights provided by the
Metrics. For more details regarding the specific implementation
of these systems and/or the results they generate, please see the
referenced published work.

5.1. System group UPenn - AIHabitat

5.1.1. System overview
This section describes a case study on the development of

the LL system led by SG-UPenn, a modular system that performs
both classification and RL tasks in realistic service robot set-
tings. The core of the system, which integrates factorized models
(deconvolutional factorized convolutional neural networks (DF-
CNNs) for supervised learning (Lee, Stokes, & Eaton, 2019) and
lifelong policy gradients for faster training without forgetting
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Table 6
Select SG-UPenn classification experiment results. All metrics show mean ± standard deviation.
Configuration PM FT BT RP SE

DF-CNN −0.44± 1.12 1.01± 0.09 0.99± 0.02 1.94± 0.26 1.61± 0.12
META-KFO −20.81± 15.22 1.00± 0.00 0.91± 0.07 2.38± 0.40 3.40± 0.46
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(LPG-FTW) for RL (Mendez, Wang, & Eaton, 2020)), is divided
nto separate classification and RL pipelines, with the perception-
ction loop of a mobile robot. The system includes additional
ptional modules that can be combined with the core classifi-
ation and RL pipelines, including a task-agnostic feature meta-
earning module using meta Kronecker factorization optimiza-
ion (Meta-KFO) (Arnold, Iqbal, & Sha, 2021), intrinsic motivation
ia meta-learned intrinsic reward functions (Zheng et al., 2020),
n alternative core RL algorithm based on the advantage ac-
or critic (A2C) algorithm (Mnih et al., 2016), a self-supervised
xploration module based on active visual mapping for robot
avigation (Ramakrishnan, Al-Halah, & Grauman, 2020), and a
DP-based curriculum learning module (Narvekar et al., 2020).
hese components can be turned on and off depending on the
roblem domain, and characterizing their effects through the set
f LL Metrics proposed in this paper was a focus of the exper-
mentation discussed in this case study. The task settings and
elect experimental results for the two pipelines are described
elow.

.1.2. Classification experimental context
Classification. Lifelong classification experiments were car-

ried out by SG-UPenn over data sets collected by simulated agents
performing random walks through household environments in
the AI Habitat simulator (Savva et al., 2019) using the Matterport
3D data set (Chang et al., 2017), resulting in realistic observa-
tions for household service robots derived from real world sensor
data. All experiments were conducted over a fixed curriculum
of object classification tasks, where each task required a mobile
agent to classify a set of objects taken from an object superclass,
e.g. classifying {chair, sofa, cushion, misc_seating} from
the superclass seating_furniture.

5.1.3. Classification experimental results
This case study focuses on a specific classification experi-

ment for which the proposed set of LL Metrics was particularly
informative. The goal of this experiment was to determine the dif-
ferences in performance between factorized classification models
and meta-learned classification models in a lifelong supervised
learning setting. To explore this, SG-UPenn ran the same set of
Lifelong classification experiments over two configurations of the
system: the (factorized) DF-CNN core classification pipeline and
the (meta-learned) META-KFO module. The results (Table 6) show
that, while both approaches show good LL performance, META-
KFO provides faster learning (higher SE) whereas the DF-CNN pro-
vides more stable learning through better catastrophic forgetting
mitigation (higher PM and BT, with lower standard deviations).
As such, SG-UPenn prioritized future development of the DF-CNN
pipeline due to the stability afforded by the factorized method.

5.1.4. Reinforcement learning experimental context
Reinforcement Learning. Lifelong RL experiments were car-

ried out in the AI Habitat simulator using the Matterport 3D data
set. All experiments were conducted over a fixed curriculum of
object search tasks in the form of ‘‘find a given object (e.g. a chair,
a cabinet, a sink, or a plant) in a given household environment
(e.g. an apartment or a town house)’’. The agents observed RGB
images from a head-mounted camera, and their actions were

direct control commands. h
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5.1.5. Reinforcement learning experimental results
The first RL experiment (M12) hypothesized that intrinsic

motivation would improve FT, RP, and SE in LL settings, making
it an effective mechanism for knowledge reuse in lifelong RL.
To test this hypothesis, SG-UPenn used the intrinsic motivation
module combined with the core A2C RL algorithm. The results
did not support this hypothesis, instead showing that intrinsic
motivation is not an effective mechanism for lifelong learning,
as shown in the M12 column of Table 7. The main issue identi-
fied was that the system was highly susceptible to catastrophic
forgetting, as evidenced by the particularly low PM score. To
overcome this problem, SG-UPenn focused system development
on factorized methods instead, which are specifically designed to
mitigate catastrophic forgetting.

The next set of RL experiments (M15) focused on evaluat-
ing the effectiveness of the factorized LPG-FTW algorithm in
the realistic Habitat/Matterport environment. This system con-
figuration used the core LPG-FTW algorithm with no additional
modules. The results show significant improvement compared
to the intrinsic motivation pipeline across all of the Lifelong
Learning Metrics, with the exception of comparable RP. SG-UPenn
notes that while the PM score was still negative, it is signifi-
cantly higher than the intrinsic motivation pipeline, which shows
increased mitigation of catastrophic forgetting. SG-UPenn con-
tinued to develop the LPG-FTW-based system with additional
network architecture search and hyperparameter tuning that tar-
geted the PM metric. Shown in the M18 column of Table 7,
his resulted in significant improvements to both PM and FT.
ontrary to the experimental results in the original LPG-FTW pa-
er (Mendez et al., 2020), there is still relatively low performance
ith respect to single task experts (i.e. in the RP and SE metrics).
G-UPenn hypothesizes that this performance drop is due to the
ncreased challenge of learning in high fidelity environments, and
he higher task complexity that such environments entail.

.2. System group teledyne - AirSim

.2.1. System overview
This section describes a case study on the development of the

L system led by SG-Teledyne. It consists of six key components,
he core of which is the UML (Brna et al., 2019) algorithm.
ML enables adaptation and learning in response to multiple
ypes of uncertainty. Inspired by mechanisms of neuromodula-
ion, UML compares its internal hypotheses against expectations
nd adapts its behavior based on the level of mismatch. Under
igh uncertainty, it re-configures itself and re-evaluates its in-
uts, allowing robust operation in noisy environments or in the
resence of new conditions. Under low uncertainty, the algorithm
an more confidently engage in long-term adaptation to learn
ew tasks or tune its knowledge base. Because uncertainty serves
o gate learning and the type of adaptation in the system, it
an prevent catastrophic forgetting and promote behaviorally-
elevant adaptation. Furthermore, under very high uncertainty
onditions, UML protects existing knowledge to allow one-shot
earning of novel information. Finally, the algorithm can use its
nternal measures of uncertainty to actively seek new informa-
ion to optimize learning and resource utilization (Brown, Brna,
ook, Park, & Aguilar-Simon, 2022). A limitation of UML is that
t requires a robust representation of its inputs. Nonetheless, it

as proven to work well when using the output layer of deep
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Table 7
Select UPenn System Group reinforcement learning experiment results. All metrics show mean ±
standard deviation.
Configuration PM FT BT RP SE

M12 −60.1± 21.5 0.89±−0.80 1.2± 1.56 0.75± 0.07 0.66± 0.27
M15 −14.0± 20.5 1.95± 0.97 1.19± 0.16 0.75± 0.06 1.88± 1.96
M18 4.4± 11.3 3.11± 2.36 1.11± 0.07 0.88± 0.03 0.83±0.03
Table 8
Selected SG-Teledyne experiment results. All metrics show mean ± standard deviation. The baseline
agent is shown in the TDY UML Agent row, and a selected ablation experiment is shown in the
TDY C5 Ablation row. The metrics enabled us to understand the effects of the ablation study on
specific LL characteristics.
Configuration PM FT BT RP SE

TDY UML Agent 0.56± 0.98 11.69± 0.47 1.00± 0.01 1.03± 0.04 2.74± 1.70
TDY C5 Ablation 1.68± 0.36 10.47± 0.23 1.02± 0.02 1.01± 0.03 2.33± 0.74
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neural networks trained on datasets such as ImageNet (Deng
et al., 2009) or COCO (Lin et al., 2014). Another limitation is that it
learns to recognize tasks by the difference in the context of each
task. Therefore, there is a requirement that each task possesses a
sufficiently different context.

5.2.2. Experimental context
The UML algorithm has been evaluated in multiple ML do-

mains, including classification (Basu et al., 2017)), embodied
agents (Brna et al., 2019; Brown et al., 2022), and reinforce-
ment learning. Under DARPA L2M, UML was evaluated using an
embodied agent. Data was generated using AirSim (Shah et al.,
2018) in a custom Unreal Engine 4 environment. The classifi-
cation tasks were split into two ‘‘Asset Groups’’ loosely corre-
sponding to notional municipal interest groups: EMA (Emergency
Management) vehicles and DOT (Department of Transportation)
traffic control assets (e.g., stop signs, traffic lights, etc.). Each
asset group contained 2–3 individual classes of objects. The
classification problems associated with each asset group formed
tasks, and variants of those tasks were generated using different
environmental conditions (e.g., time of day).

Experiments were conducted on permutations in ordering of
these task variants, with a full evaluation across tasks being
conducted after each exposure to a task.

5.2.3. Experimental results
Table 8 shows aggregate results across all such runs generated

using the SG-Teledyne system, which matched or exceeded the LL
threshold value in all 5 metrics across the collected runs. These
metrics enabled us to evaluate the performance of individual
components in the system and their impact on LL capabilities.
In an ablation experiment, TDY showed that the memory con-
solidation technique in one of the system components (C5) was
responsible for a significant gain in FT, but at the expense of PM,
while other metrics remained relatively constant. These metrics
enabled a deeper analysis and more complete understanding of
the impact of this component as it relates to the LL characteristics.

5.3. System group HRL - CARLA

5.3.1. System overview
This section describes a case study on the STELLAR, the LL

system developed by SG-HRL. STELLAR is a general-purpose,
scalable autonomous system capable of continual online RL that is
applicable to a wide range of autonomous system applications, in-
cluding autonomous ground vehicles (both on-road and off-road),
autonomous undersea vehicles, and autonomous aircraft, among
others. It consists of a deep convolutional encoder that feeds
into an actor-critic network and is trained using Proximal Policy

Optimization (Schulman, Wolski, Dhariwal, Radford, & Klimov,
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2017). Importantly, STELLAR integrated 11 innovative compo-
nents that solve different challenges and requirements for LL. It
employed Sliced Cramer Preservation (SCP) (Kolouri, Ketz, Soltog-
gio, & Pilly, 2020), or the sketched version of it (SCP++) (Li et al.,
2021), and Complex Synapse Optimizer (Benna & Fusi, 2016)
o overcome catastrophic forgetting of old tasks; Self-Preserving
orld Model (Ketz, Kolouri, & Pilly, 2019) and Context-Skill
odel (Tutum, Abdulquddos, & Miikkulainen, 2021) for backward

ransfer to old tasks as well as forward transfer to their variants;
euromodulated Attention (Zou, Kolouri, Pilly, & Krichmar, 2020)
or rapid performance recovery when an old task repeats;
odulated Hebbian Network (Ladosz et al., 2022) and Plastic Neu-

omodulated Network (Ben-Iwhiwhu, Dick, Ketz, Pilly, & Soltog-
io, 2021) for rapid adaptation to new tasks; Reflexive Adap-
ation (Maguire, Ketz, Pilly, & Mouret, 2021) and Meta-Learned
nstinct Network (Grbic & Risi, 2021) to safely adapt to new tasks;
nd Probabilistic Program Neurogenesis (Martin & Pilly, 2019)
o scale up the learning of new tasks during fielded operation.
ore details on the precise effect of each of these components
re beyond the scope of this paper; however, this case study
utlines how the integrated system dynamics demonstrated LL
sing the proposed metrics, and how these metrics shaped the
dvancement of the SG-HRL system.

.3.2. Experimental context
STELLAR was evaluated within the CARLA driving simula-

or (Dosovitskiy et al., 2017) in both the Condensed and Dispersed
L Scenarios (described in Section 3.2), which were each based on
hree tasks with two variants per task. The agent was required
o drive safely from one point to another within a designated
ane (either correct or opposite) in traffic. It was given positive
ewards in each time step (every 50 ms) for distance traveled to-
ards the destination and increasing speed within the designated

ane. It was given negative rewards for distance traveled away
rom the destination and decreasing speed within the designated
ane, as well as any collision. A given episode was terminated
hen the destination was reached, a maximum number of time
teps had elapsed, or there was any collision. SG-HRL employed
wo vehicle models (Audi TT [car], Kawasaki Ninja [motorcycle])
ith built-in differences in physical parameters such as for the
ody (e.g., mass, drag coefficient) and wheels (e.g., friction, damp-
ng rate, maximum steering angle, radius). The vehicle models
lso differed in camera orientation (0◦ yaw for car vs. 45◦ yaw
or motorcycle).

The same architecture as the STELLAR systems was used to
rain the STEs to saturation, thereby characterizing the ability of
he STEs to learn each task. SG-HRL collected 10 STE runs per task,
hich were all initialized with the same ‘‘ready-to-deploy’’ state
s the STELLAR system.
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Table 9
LL performance of the STELLAR system in the Condensed and Dispersed scenarios within the CARLA
driving simulator. Mean ± standard deviation values for each metric are shown across n = 33 and
n = 30 lifetimes, respectively, comprising random permutations of tasks and variants.
Configuration PM FT BT RP SE

Condensed (n = 33) −0.24± 5.73 10.02± 4.92 1.19± 0.26 2.49± 1.31 10.02± 13.88
Dispersed (n = 30) −2.21± 3.16 10.71± 2.78 1.10± 0.15 1.85± 0.71 6.25± 3.12
Table 10
Summary of the effects of reducing SCP++ stiffness on the Dispersed scenario for the STELLAR
system. Dispersed results (n = 15) represent a subset of data shown in 9. SCP++ stiffness reduction
(n = 15) results from matched lifetimes. All results show mean ± standard deviation.
Configuration PM FT BT RP SE

Dispersed −2.73± 2.71 9.96± 2.16 1.15± 0.18 1.57± 0.49 7.07± 3.44
Reduced SCP++ stiffness 0.26± 3.84 9.52± 2.97 1.27± 0.29 2.07± 0.44 3.23± 1.42
5.3.3. Experimental results
Given that the STELLAR system integrates the 11 components

isted above with the specific intent to achieve various LL capa-
ilities, SG-HRL expected the metrics to reveal such properties of
he system. Indeed in both Condensed and Dispersed scenarios,
he STELLAR system exceeded the threshold for LL for 4 of the 5
etrics, with only a non-catastrophic degradation in PM of old

asks through the lifetimes (Table 9).
Further, as shown in Table 9, SG-HRL found that the perfor-

ance was not significantly different between the Condensed and
ispersed scenarios. However, all the LL Metrics were numeri-
ally lower for the Dispersed scenario, with the decrements being
ignificant at α = 0.1 for two metrics; namely, FT (p = 0.089,
Mann–Whitney U Test) and RP (p = 0.038, Mann–Whitney U
Test). Potential explanations for the across-the-board numerical
decrements in the metrics include: the increased cost of switch-
ing among tasks in the Dispersed scenario, greater interference
from other tasks in the intervals between learning blocks for
a given task, or the lack of any dependence of the strength
of the consolidation mechanisms (SCP++, Self-Preserving World
Model) on the performance levels acquired in the preceding
learning blocks. In the Dispersed scenario, task performances in
earlier learning blocks are not expected to be high due to shorter
durations. In this case, strong preservation of sub-optimal task
representations would interfere with subsequent learning blocks.
Thus, the hyperparameters that control the degree of preservation
should be reduced to improve all the LL Metrics.

The STELLAR system requires considerable analysis to assess
how each component contributes to various LL capabilities. This
case study represents one such analysis to illustrate the impact
on the metrics. SG-HRL hypothesized that stronger consolidation
mechanisms would reduce LL in the Dispersed scenario which,
unlike the Condensed scenario, has task repetitions. SG-HRL also
predicted that strong consolidation of sub-optimal task repre-
sentations after each task would negatively impact subsequent
learning blocks. Data was collected for the Dispersed scenario
with the SCP++ stiffness coefficient reduced to 10% of the nominal
value (Table 10). As expected, SCP++ stiffness reduction resulted
in improvements in 3 of the 5 metrics; namely, PM (from −2.73
to 0.26), BT by about 10%, and RP by about 30%. But the manipula-
tion also caused decrements in the other 2 metrics; namely, FT by
about 4% and SE by about 50%. Of these effects, the improvement
in RP (p = 0.022, Wilcoxon Signed Rank Test) and the decrement
in SE (p = 0.0026, Wilcoxon Signed Rank Test) were statistically
significant, and the improvement in PM (p = 0.055, Wilcoxon
Signed Rank Test) was significant at α = 0.1. More work will be
needed to understand the dynamics of LL for task repetitions in
the context of the multi-component STELLAR system. It may be
the case that the degree of consolidation (structural regulariza-
tion, interleaving of explicit/generative replays) should be further
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contingent on task learning, and SG-HRL anticipates testing this
in the future.

5.4. System group argonne - L2Explorer

5.4.1. System overview
This section describes a case study on the development of the

LL system led by SG-Argonne. The system’s design was inspired
by the brains of insects and other small animals with the mo-
tivation of developing systems capable of LL that can operate
effectively at the edge (Yanguas-Gil et al., 2019).

In particular, it focuses on the use of: (1) modulatory learning
and processing, which control how information is processed, as
well as when and where learning takes place (Daram, Yanguas-
Gil, & Kudithipudi, 2020); (2) metaplasticity models, which mod-
ulate synaptic plasticity rules that keep either a memory or an
internal state in order to preserve useful information (van de Ven
& Tolias, 2019b); (3) broadly trained representations, which apply
transfer learning to minimize what the system needs to learn
during deployment, and (4) structural sparsity, which minimizes
the impact of forgetting by curtailing gradient propagation in
stochastic gradient descent methods (Madireddy, Yanguas-Gil, &
Balaprakash, 2020).

In the context of RL, Argonne adapted these principles to
propose two types of algorithms. First, they proposed a lifelong
deep Q learning algorithm (Mnih et al., 2013) aimed at solving
problems where a consistent policy is learned across a series
of independent tasks without specific task labels. Second, they
proposed a lifelong cross entropy algorithm, which applies to
situations involving short, potentially contradictory tasks, where
no prior information is available that would lead to accurate and
consistent computations of the value of each state. For the case of
deep Q learning, Argonne’s system realizes short term and long
term memory buffers by implementing periodic shuffling. The
size of the buffers is kept within the length of a single task.

5.4.2. Experimental context
Over the course of the project, SG-Argonne worked in two

different environments. The first and more complex environ-
ment was L2Explorer (Johnson et al., 2022), a first-person point
of view environment built on top of the Unity engine (Juliani
et al., 2018) that allows the creation of tasks involving open-
world exploration. Argonne designed a series of tasks emphasiz-
ing different aspects of a complex policy involving target iden-
tification and selection, navigation through obstacles, navigation
towards landmarks, and foraging objects while avoiding hazards.
The same tasks were implemented in Roundworld, a lightweight,
first-person point of view environment developed by Argonne
that comprises a simpler set of objects and visual inputs, allowing

us to evaluate the algorithm across two different environments.
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Table 11
Evaluation of the lifelong deep-Q learning algorithm in two different environments with varying
complexity levels.
Environment Scenario Agent PM FT BT RP SE

L2Explorer Condensed M18 −4 ± 11 4.6 ± 1.5 2.3 ± 1.6 1.2 ± 0.6 1.2 ± 0.6
Roundworld Condensed M18 15 ± 10 4.2 ± 1.6 2.7 ± 2.1 5 ± 3.4 5.8 ± 1
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5.4.3. Experimental results
Table 11 shows the performance of the deep Q learning al-

gorithms in the two different environments. In both cases there
is a consistent evidence of both forward and backward transfer
across tasks in the proposed scenario. One of the characteristic
aspects of these environments is their task variability, both by
design and driven by the open world nature of the environments.
In the context of RL, this leads to large fluctuations in the values
of PM and BT for both environments, with standard deviations
more than one order of magnitude higher than those typically
observed in image classification scenarios. On the other hand,
both scenarios show values of FT, RP, and SE that are consistent
with the presence of LL behaviors.

Having access to different metrics allows for deeper insight
nto variations in the system’s performance. Overall, the results
btained point to a complex picture in which the same Lifelong
earning system can exhibit different behavior depending on how
ell it can transfer information during its lifetime. However,

urther studies are needed in order to fully explore how the
ehavior of the agent depends on task sequence and its ability
o effectively transfer relevant policies across tasks.

.5. System group SRI - StarCraft II

.5.1. System overview
This section describes a case study on the development of the

L system led by SG-SRI. The system is targeted at real-time strat-
gy games where task change occurs naturally and throughout
ame play. For example, a competent Starcraft-2 (SC2) player is
ble to adapt their tactics to different enemy units. This section
pplies lifelong RL techniques to micromanagement tasks in SC2.
his case study shows that the proposed metrics (a) validate that
he negative effects of task drift are mitigated, (b) drive algorithm
evelopment to improve metrics, and (c) provide insights into
oftware integration of multiple continual learners.
Components of the SG-SRI system (Daniels et al., 2022; Sur

et al., 2022) include: (i) WATCH (Faber, Corizzo, Sniezynski, Baron,
& Japkowicz, 2021, 2022), a Wasserstein-based statistical change-
point detection that detects changes in the environment; (ii)
Self-Taught Associative Memory (STAM) (Smith, Taylor, Baer, &
Dovrolis, 2021), to generate feature maps from RGB images in a
continually updated manner; (iii) Danger detection, using the
continual learner deep streaming linear discriminant analysis
(DeepSLDA) (Hayes & Kanan, 2020); (iv) Compression, using the
REMIND algorithm (Hayes, Kafle, Shrestha, Acharya, & Kanan,
2020) that uses Product Quantization (PQ); and (v) Sleep phase,
implemented using the Eigentask framework (Raghavan, Hostetler
Sur, Rahman, & Divakaran, 2020).

5.5.2. Experimental context
The tasks are defined using different SC2 maps called

‘‘minigames‘‘ (Vinyals et al., 2017). The system is evaluated on
the minigames of DefeatRoaches, DefeatZerglingsAndBanelings and
ollectMineralShards. To each task, SG-SRI added a variant of the
ask that spawns two groups of enemies on each side of the map,
reating a total of 3 tasks and 2 variants each. In the case of
ollect, the variant has fog enabled (partial observability). SG-SRI
otes that combat related tasks (Defeat) are most similar to each
ther (due to their reward structure) and represent 4 out of 6
asks, so high forward transfer (jumpstart) is expected even for

he single task learner. s
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5.5.3. Experimental results
Table 12 shows evolution of the Eigentask algorithm driven by

he proposed LL Metrics, with the current version of the system
denoted M18) achieving the criteria of lifelong learning in all
ut one metric (PM) in the condensed scenario and achieving
he criteria of LL in several metrics for the alternating scenario.
hese versions, denoted as M12, M15, M18, correspond to the
valuations performed under L2M. These versions primarily differ
n the generative replay architecture. The M12 model connects
he autoencoders and policies one after another, whereas M15
ses a two-headed architecture using a common latent space
nd M18 uses hidden replay. In both scenarios, the metrics show
hat the M18 version that uses hidden replay is a significant
mprovement. Of note, the reported metrics have significantly
ower variance with the M18 model compared to the M15 and
12 versions for the condensed scenario.
To study the effect that change detection and compression

ad on the overall performance of the LL system, SG-SRI per-
ormed an ablation experiment against the baseline Eigentask
omponent in two different scenario types. PM and BT values are
ompared in Table 13, showing that triggering the sleep phase
y statistical changepoint detection results in significantly higher
M compared to triggering it by a hand-coded schedule. This
emonstrates the importance of task detection in LL systems in
he task-agnostic setting and also shows that the compression
f wake phase observations results in significantly higher PM.
his ablation experiment demonstrates how the metrics shed
nsight on the impact of various system components during the
evelopment of the SG-SRI LL system.

.6. Summary of case studies of systems demonstrating LL

In this section we have reviewed five System Group case
tudies, all of which operated in different environments and
mployed different algorithms. Each of them used the suite of
L Metrics to inform their system development and evaluate
hether their systems demonstrated the Conditions of Lifelong
earning in various experiments. In Table 14 we see that across
ll of the System Groups, the Lifelong Learning thresholds were
et or exceeded for 52 out of 90 metrics, with Performance
aintenance only meeting the LL Threshold values in 3 of the 18
onfigurations compared to 13 configurations for Forward Trans-
er. This is unsurprising given that Performance Maintenance and
orward Transfer represent different aspects of the well-known
erformance trade-off between stability and plasticity, which we
iscuss further in Section 6.

. Discussion

In this work, we have proposed and investigated a suite of
omain- and technique-agnostic metrics to enable a systems-
evel development approach for evaluating Lifelong Learning sys-
ems. Such an approach is critical to supporting the
ulti-objective nature of Lifelong Learning (LL) system devel-
pment, especially because increasingly complex solutions are
equired to advance the state of the art towards LL. A strength of
ur approach is that it simultaneously considers and quantifies
aried capabilities of LL systems, rather than focusing on any

ingle aspect of performance. By using the full suite of metrics
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Table 12
Evolution of the SRI-led LL system guided by the proposed metrics. Pairwise scenarios are averaged
over 12 lifetimes.
Scenario Agent PM FT BT RP SE

M12 −3.70 ± 2.5 1.15 ± 0.06 1.00 ± 0.13 0.91 ± 0.13 12.22 ± 4.97
Condensed M15 −5.68 ± 5.04 1.42 ± 0.25 1.14 ± 0.28 1.18 ± 0.19 19.37 ± 5.76

M18 −3.05 ± 1.76 1.42 ± 0.11 1.0 ± 0.03 1.17 ± 0.11 16.18 ± 5.19

M12 −7.44 ± 6.19 1.18 ± 0.67 0.88 ± 0.14 0.80 ± 0.14 4.74 ± 2.27
Alternating M15 −8.82 ± 7.95 1.13 ± 0.57 0.80 ± 0.19 0.90 ± 0.11 7.11 ± 3.52

M18 −6.13 ± 7.31 1.85 ± 1.38 0.87 ± 0.27 0.91 ± 0.13 5.89 ± 3.19
Table 13
Ablations comparing system components on Performance Maintenance and Backward Transfer. The
standard error is mentioned in parenthesis (±). Other metrics are omitted for brevity.
Agent Performance Maintenance Backward Transfer

Condensed Pairwise Condensed Pairwise

Single Task Learner (STL) −3.41 (±1.7) −8.2 (±6.54) 1.17 (±0.29) 0.85 (±0.21)
Eigentask (M15) −5.68 (±2.13) −5.40 (±4.9) 1.14 (±0.12) 0.84 (±0.12)
Eigentask + Change detection −0.53 (±4.49) −1.93 (±5.46) 1.02 (±0.33) 1.08 (±0.28)
Eigentask + Compression −3.67 (±3.92) −2.23 (±2.33) 1.13 (±0.42) 0.93 (±0.22)
Table 14
P value results of a one-tailed t-test to determine whether the value is significantly greater than
the LL Threshold value for that metric; t values are provided in Table F.19 of Appendix F. The LL
threshold values were met or exceeded for 45 out of 85 metrics. Note that the UPenn META-KFO
system was designed to speed up the rate of adapting to a new task, but this does not happen
until data for that task is seen, leading to unchanged task values and a standard deviation of zero
for a jumpstart formulation of FT.
SG Config PM FT BT RP SE

UPenn DF-CNN 1.20 · 10−2 2.67 · 10−1 1.58 · 10−2 <10−6 <10−6

META-KFO <10−6 1.00 <10−6 <10−6 <10−6

RL M12 5.65 · 10−3 4.01 · 10−1 4.07 · 10−1 2.83 · 10−3 4.31 · 10−2

RL M15 1.86 · 10−2 3.02 · 10−3 8.65 · 10−4 <10−6 7.35 · 10−2

RL M18 1.71 · 10−1 7.02 · 10−3 1.98 · 10−4 <10−6 <10−6

Teledyne C5 Ablated 3.68 · 10−2 <10−6 2.42 · 10−1 1.01 · 10−2 2.29 · 10−3

UML 8.35 · 10−3 <10−6 4.59 · 10−3 4.96 · 10−2 4.76 · 10−3

HRL Condensed 5.90 · 10−1 <10−6 1.74 · 10−4 <10−6 4.32 · 10−4

Dispersed 1.00 <10−6 1.53 · 10−4 <10−6 <10−6

SCP Ablation 4.00 · 10−1 <10−6 2.00 · 10−3 <10−6 2.03 · 10−5

Argonne L2Explorer 1.07 · 10−1 <10−6 6.31 · 10−3 1.26 · 10−1 1.26 · 10−1

Roundworld 1.48 · 10−4 1.20 · 10−5 8.57 · 10−3 9.17 · 10−4 <10−6

SRI M12 Condensed 1.00 2.28 · 10−6 5.46 · 10−1 9.81 · 10−1 4.09 · 10−5

M15 Condensed 1.00 <10−6 1.10 · 10−2 6.88 · 10−5 <10−6

M18 Condensed 1.00 <10−6 2.73 · 10−1 2.66 · 10−5 <10−6

M12 Alternating 1.00 1.55 · 10−1 9.98 · 10−1 1.00 1.25 · 10−5

M15 Alternating 1.00 1.32 · 10−1 1.00 1.00 <10−6

M18 Alternating 9.93 · 10−1 2.82 · 10−2 9.80 · 10−1 9.86 · 10−1 1.76 · 10−4
to evaluate the System Group case studies, we were able to
identify and study the performance trade-offs inherent to LL.
Next, we discuss known performance trade-offs seen with these
metrics, propose a new trade-off, and make recommendations for
creating additional metrics for future investigations based on the
accomplishments of the DARPA Lifelong Learning Machines (L2M)
program.

6.1. LL performance trade-offs

We have argued that LL is complex and cannot be character-
zed by a single scalar value. This has motivated our development
f a suite of metrics.
Designing an LL system must consider the following trade-

ffs:

1. Stability vs. Plasticity: Should a system stably maintain all
information it has encountered up to some point, even if
that results in less flexibility to adapt to changes?

2. Optimal Performance vs. Computational Cost: Should a sys-
tem be optimized for maximum performance, even if that
comes at a high computational cost?
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3. Sample Efficient vs. Robust Learning: Should a system pri-
oritize a fast performance gain, even if it is less robust to
noise or changes in the environment?

The most widely discussed trade-off in LL literature is the
relationship between Stability, where a system has reliable or
low-variance performance, and Plasticity, where a system is flex-
ible and adaptable to changes (see, e.g., discussion in Grossberg,
1988; Mermillod, Bugaiska, & Bonin, 2013). Performance Mainte-
nance (PM) is a measure of stability, since it assesses how well
a system retains task knowledge gained over the course of its
lifetime; forward transfer (FT) is a measure of plasticity, as it
assesses how well a system can apply knowledge from one task
to another. In some cases, like the stiffness parameter experiment
examined in SG-HRL’s case study (see Table 10), there is an ex-
plicit parameter that can be tuned, depending on the needs of the
particular application, to prioritize reliability or flexibility. This
results in somewhat expected behavior changes. In other cases,
the trade-off is seen as a byproduct of targeting improvements in
transfer, like in SG-Teledyne’s addition of a memory consolidation
component (see Table 8), which manages the system’s stored
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nowledge. This addition caused marked improvement in FT –
measure of Plasticity – but at the cost of PM, a measure of
tability.
It is understood that LL systems operating in diverse envi-

onments will have varied design considerations; the availability
r restriction of computational resources is one such factor. This
an result in an intentional decision to choose system com-
onents that are less performant but cheaper computationally.
hile this discussion surfaces in the literature, particularly with

egard to deployment considerations, we chose not to measure
he computational resource expenditure for these evaluations.
nstead, we allowed system groups to make their own assess-
ents of progress in their domain. Even if an LL system is initially
ery computationally intensive, it may be possible to develop
more efficient system in the future. In non-LL, existing tech-
iques for managing model complexity include: model distilla-
ion (Gou, Yu, Maybank, & Tao, 2021; Hinton, Vinyals, & Dean,
015), intelligently-designed model scaling strategies (Tan & Le,
019), and investigations of broad scaling phenomena (Kaplan
t al., 2020). These approaches could potentially be extended to
L; in Hayes et al. (2020), SG-SRI built on a technique called
progress & compress (Schwarz et al., 2018). We see the addition
f a metric to standardize the measurement of resource utiliza-
ion as an excellent extension of this suite, and we summarize
ome initial efforts in this area in Appendix G. We collect our
omments, observations and recommendations for the design and
se of such a metric in Section 6.2.
We hypothesize that, as more progress is made to develop LL

systems, more of these system design/performance trade-offs will
be discovered. One trade-off that we observed in the SG-UPenn
case study (Section 5.1) was between sample-efficient and robust
learning. The system’s robustness to task or parameter changes
was measured using the PM metric, and efficiency was measured
via the sample efficiency (SE) metric. We can imagine a situation
where a systemmay have an extremely robust representation of a
wide range of tasks – along the lines of a subject matter expert for
a particular problem space – but perhaps amassing that knowl-
edge required significant training data and time. Conversely, a
system may demonstrate aptitude for rapid mastery, but lack the
broader experience to capably handle the details or nuance of
edge cases.

The trade-off, then, may be that in some circumstances, op-
timizing for robustness comes at the cost of learning efficiency
and vice versa. This goal is particularly relevant in data-poor
contexts or where the cost of training is high; both of these
apply in many robotic applications (like the SG-UPenn service
robot setting). The LL system the SG-UPenn team built to address
these challenges includes modularized components and factor-
ized models, an approach that is well-suited to these conditions.
Correspondingly, we see that when modifications were made
between M15 and M18 systems to target gains in PM (Table 7),
the resulting M18 results improved in PM, but at the cost of
a lower Sample Efficiency. This demonstrates a consequence of
the opposing aims of Robust and Sample Efficient learning. We
imagine that this trade-off may not be applicable to problems
with low-cost or abundant training data. However, it is apparent
in this particular example, because SG-UPenn’s system design is
intended for eventual transfer to service robot settings.

6.2. General considerations for formulation and use of metrics

One of the challenges of measuring LL performance is eval-
uating over the space of possible task sequences. Because these
tasks may require orthogonal skills, it is an immense challenge
to quantify a priori what ideal or even ‘good’ performance looks
like for such a sequence. The standard we chose for determining
287
thresholds for LL, which can certainly over-penalize an LL sys-
tem, was perfection – perfect transfer between tasks and perfect
memory of a task over the entire duration of a scenario. Over
the course of the agent’s lifetime, any interference, forgetting, or
performance not equal to or better than an STE was considered
to be below the threshold for LL. Meeting this threshold for
all lifelong learning conditions is likely to be difficult in real-
world conditions. Determining an appropriate upper bound for
performance on a sequence of tasks is a fundamental challenge –
one that requires leveraging information like task difficulty and
task similarity (and thus task transferability) – and was out of
scope for this work. Below we outline some specific recommen-
dations for metric design, some of which pose particularly unique
challenges in the LL domain.

1. Do not design metrics that rely on idealized perfor-
mance curves
Despite knowing that we lack the ability to quantify what
good performance is for a given sequence of tasks, there
were some unanticipated difficulties in using the metrics
related to some key assumptions about the nature and
behavior of LL systems:

• Assumption 1: Learning a particular sequence of tasks is
possible.
When we develop metrics to evaluate any machine
learning system, we are often doing so based on an
implicit assumption that a task is learnable by the sys-
tem or, at least, that the system is capable of demon-
strating some performance gain over the course of its
learning experiences (LXs). In the absence of baseline
approaches on the same sequence of tasks to com-
pare to, we may not even be able to say whether
a sequence of tasks is learnable at all without run-
ning a cost-prohibitive number of experiments. In
fact, the idea of learnability in the Lifelong Learn-
ing context has only recently been investigated in
works such as Geisa et al. (2021), who explores the
relationship between weak and strong learnability
for both in-distribution (i.e. non-LL) and out of dis-
tribution problems. As the theory of learnability for
Lifelong Learning is still developing, we must design
our metrics acknowledging the potential for systems
to demonstrate no learning on some tasks and, impor-
tantly, address whether or not those runs should be
considered in computing the LL metrics. The results
shown in Section 5 included all runs, independent of
whether tasks demonstrated learning.
• Assumption 2: In learning a sequence of tasks, perfor-

mance on a previously learned task may drop, but it can
and will ‘‘bounce back’’ when the task is shown later.
This assumption drove the design of the Performance
Recovery metric, which in theory was designed to
measure whether an LL system’s performance recov-
ers after a change is introduced to its environment.
To compute Performance Recovery, we first calculated
the number of learning experiences the system re-
quired in order to get back to the previously attained
value after a drop (recovery time), and computed the
change in this number of experiences over the course
of the system’s lifetime (i.e., fitted a line to the re-
covery times and computed the slope of the line).
The idea was that a system demonstrating LL would
adapt more quickly to changes as it amassed more
experience.
Of note, Performance Recovery could only be assessed
for scenarios with many task repetitions. The use
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of this metric proved to be problematic, in partic-
ular because some systems would fail to ‘‘bounce
back’’ sufficiently. This dependency of final system
performance on initial LXs has been observed in the
broader deep reinforcement learning (RL) space (Nik-
ishin, Schwarzer, D’Oro, Bacon, & Courville, 2022),
where it was aligned with the concept of ‘‘primacy
bias’’ from human cognition studies (Marshall &
Werder, 1972). Beyond this binary challenge of a sys-
tem returning to previous performance or not; given
the variability in the application-specific measures, it
also remained difficult to discern when performance
has actually ‘‘bounced back’’ and to what should the
new performance be compared, and how should we
handle noise in these measurements? (Dror et al.,
2019) recommends the use of the Almost Stochastic
Dominance test to mitigate the variability issue we
faced, but we were unable to implement this due
to the computational expense associated with this
analysis.
• Assumption 3: We can identify when a task has been

‘‘learned’’, or at least, when the system performance has
saturated.
Computing whether a system’s performance has sat-
urated (and to what value) is not straightforward, in
part due to the heteroskedastic nature of the learning
curves. There is unpredictability to system learning,
and coupling this with noisy learning makes this com-
putation even more of a challenge. In addition, the
notion of ‘‘saturation’’ may be ill-defined, particularly
when the distribution of an environment within a
learning block is nonstationary. In the case of this
suite of metrics, Sample Efficiency explicitly relies
on the computation of a saturation value, and Per-
formance Maintenance compares an average of the
most recent training performance to future evalu-
ation performances – with the implicit assumption
that a system has reached a stable, if not maximal,
performance value at the end of a learning block.

In light of these challenges, we recommend designing an
assessment – even a simple performance threshold specific
to an environment – to determine whether a system has
learned and to lend insight into computed metric values.

2. Do not avoid metrics that measure overlapping con-
cepts.
Due to some similarities in their formulation, we expected
some of the metrics (e.g. PM and BT, SE and RP) to be
strongly correlated. In practice, we found only weak posi-
tive correlations between those two metric pairs, as shown
in Table 15. We also found that SE and PM were weakly
negatively correlated, which supports our discovery of a
performance trade-off between these two metrics. The
strongest correlation across the metrics was between For-
ward Transfer and Relative Performance at ρ = 0.45. This
correlation makes sense in retrospect - a system which ex-
cels at Forward Transfer is likely to require fewer learning
experiences for a task (and thus have a higher RP score)
if it can benefit from another task’s learning experiences
as well. Even in the case of the most correlated metrics, it
was critical to have both measures since they offer an as-
sessment of a different LL condition and add an additional
perspective on assessing the whole system’s performance.

3. Design metrics with clear interpretations based on the
LL thresholds.
In light of the difficulty of determining an upper bound for
an agent’s performance on a sequence of tasks, we made
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two intentional choices when formulating and interpreting
the metrics. In their formulation, the LL thresholds for
the metrics are clearly delineated, giving a straightforward
interpretation — values above the threshold demonstrate
the corresponding condition of LL, and values below do not.
This was extremely useful for interpreting values and de-
termining whether a system demonstrated lifelong learn-
ing. Though we formulated the metrics such that larger
scores are better, this binary interpretation of each of the
metrics allowed for a systems level analysis of performance
rather than a specific focus on any one measure.

4. Compare performance to an STE when possible
Overall, our most robust measure of LL was the metric that
baselined performance to a single task expert — Relative
Performance. Relative Performance offered insight into the
question of whether a system is demonstrating an im-
provement over previous attempts to do lifelong learning
versus simply assessing whether a system demonstrates
lifelong learning. This comparison to a benchmark can also
be used to indicate progress over previous approaches –
similar to an ablation experiment – but functions primarily
as a proxy for establishing an upper bound of performance
on any given task.

5. Be cautious in estimating properties of data from noisy
reward function distributions
As discussed in Section 3.3, Reinforcement Learning sys-
tems can be especially noisy. To remediate some issues
that arise from computing values on noisy data, we prepro-
cessed the data by smoothing it and shifting the range to
exclude zero to avoid the vanishing denominator issue. In
light of the noise intrinsic to these environments described
by Agarwal et al. (2021), we recommend keeping metric
formulations simple. We also recommend being especially
wary of second order metrics, like Performance Recovery,
where noise can be compounded to the point of ineffec-
tiveness. We hope to reformulate Performance Recovery in
the future.

6. Be cautious about application specific metric ranges and
their potential effect on ratios In initial formulations of
Forward and Backward Transfer, we compared the perfor-
mance before and after relevant task learning as a standard
ratio under the assumption that it was unlikely for a system
to achieve zero (or very small values) as an application
specific measure of performance. This assumption, unfortu-
nately, did not hold to be true. To address robustness issues
that arose in those circumstances from an infinitesimal
denominator, we added an alternative formulation of both
forward and backward transfer using the contrast function:

Contrast(a, b) =
a− b
a+ b

where a and b represent a particular task performance ei-
ther before or after learning a new task. While qualitatively
similar to the ratio function, Ratio(a, b) = a

b , contrasts dif-
fer in that they are defined when b = 0. This ensures they
are well-defined in situations where application-specific
measures are or approach zero; while the stability is a
benefit, it can be less intuitive and therefore more compli-
cated to interpret. Due to this difficulty in interpretation,
we reported the ratio values in Section 5.

7. Conclusion

In this work, we argued that evaluating advances in Lifelong
Learning is a complex challenge that requires a systems approach
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Table 15
Correlation analysis of values of different metrics. Despite expecting strong
correlations between PM and BT as well as SE and RP, these metric pairs were
only weakly correlated. We found that SE and PM were weakly negatively
correlated, which supports our discovery of a performance trade-off between
these two metrics.
Metric 1 Metric 2 Spearman Corr. p-value

Perf. Maintenance Forward Transfer 0.06 0.60
Backward Transfer 0.33 0.003
Relative Perf. −0.20 0.07
Sample Efficiency −0.25 0.03

Forward Transfer Backward Transfer −0.09 0.44
Relative Perf. 0.45 0.00003
Sample Efficiency 0.01 0.93

Backward Transfer Relative Perf. −0.15 0.19
Sample Efficiency −0.16 0.14

Relative Perf. Sample Efficiency 0.36 0.001

to assessing performance and quantifying trade-offs, especially
since there are currently no universally accepted metrics for
Lifelong Learning. We presented the Conditions that an LL sys-
tem should demonstrate as a Lifelong Learner, and developed
a suite of metrics to assess those Conditions. We outlined a
method for calculating the metrics in a scenario, domain, envi-
ronment, and task-agnostic fashion to characterize capabilities
of LL systems. We demonstrated the use of the suite of metrics
via five case studies that used varied environments, illustrating
the strengths and weaknesses of each system using the metrics.
We discussed the quantification of three key performance trade-
offs present in the development of many LL systems, and made
recommendations for future metric development for LL systems.

Though the field of LL is nascent, methods and metrics for
omprehensive evaluation are a critical piece in realizing a future
ith operationalized machine learning (ML) systems. As these
L systems increase in complexity to address current limitations,
he challenge of evaluating performance and identifying strengths
nd weaknesses will become both more difficult and more crucial,
specially in domains such as military operations or healthcare.
sing a consistent suite of metrics for evaluation of complex
ystems in a domain- and technique-agnostic way enables a
omplete tracking of progress across the entire field of LL.
Many challenges remain in evaluating LL systems, including

xtending the computation of metrics across all lifetimes of a
ystem, adding additional metrics to consistently quantify the
omputational cost trade-off, and formulating metrics that mea-
ure or account for relationships or properties of various tasks.
ur suite of metrics provides a basis for extensions that can
ddress these and other newly-discovered gaps.
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Appendix A. Terminology

Term Definition
Task Some non-trivial capability that the agent

must learn, and on which performance is
directly measured. A task should have
parameters for stochastic and structured
variation (sufficient to pose a challenging
learning problem), and should have some
notion of generalization. For example, in the
domain of sports, ‘‘Tennis’’ and ‘‘Badminton’’
would be tasks.

Task Variants Variants of a task are substantially different
versions of a task — different enough to pose
a significant learning challenge, and outside
of the range of stochastic variation. For
example, ‘‘Tennis on grass court during day’’
and ‘‘Tennis on clay court at night’’ may be
considered variants.

Task Instance A specific occurrence of a task that an agent
encounters. In the sports domain, ‘‘Tennis’’ is
a task, and an instance of Tennis would be a
single game of tennis, on a specific kind of
court, at a specific time of day and weather,
with specific initial conditions, and so on.

Learning
experience
(LX)

A minimum amount of experience with a task
that enables some learning activity on the
part of the agent. A task instance can be a
single LX, or it might consist of multiple LXs.

Evaluation
experience
(EX)

A minimum amount of experience with a task
that enables some demonstration of learned
activity on the part of the agent. During an
EX, the LL system is being evaluated at a
‘‘frozen’’ state and no weight updates are
allowed.

Block A sequence of Experiences for a single
task/variant. May be a learning block (LB) or
an evaluation block (EB)

Lifetime A sequence of LBs and EBs encountered by
the agent once it is deployed. A lifetime starts
with the agent in a ‘‘Ready-to-deploy’’ state.
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Fig. B.5. Illustration of Condensed and Dispersed Scenario Types introduced in Section 3.2.
Term Definition
Lifelong
Learning
Scenario

A scenario characterizes a single lifetime for
an agent. It consists of a set of tasks (or task
variants), any related parameterization, and
optionally, specifications on how the tasks
should be sequenced in the lifetime.

Evaluation
Protocol

An evaluation protocol is a complete
specification for getting statistically reliable
Lifelong Learning (LL) metrics. It consists of a
specification of pre-deployment training, one
or more scenarios, and how multiple lifetimes
(runs) are generated for each scenario.

Appendix B. Supplementary information about scenarios

B.1. Condensed and dispersed scenarios

We consider two key types of evaluation scenarios. Both con-
ist of an interleaving sequence of learning blocks (LBs) and
valuation blocks (EBs) (see Fig. B.5). In the former, the Lifelong

Learning (LL) system encounters learning experiences (LXs) from
a specific task and improves itself. In the latter, the LL system en-
counters evaluation experiences (EXs) and is tested on how well
it has mastered tasks. Beyond the two types here, many other
variations are also devisable. The condensed scenario assesses
how well a system can retain performance on a wide variety of
tasks. In it, LBs for a given task variant occur only once in the
scenario, and LBs are chosen to be sufficiently long for the system
to attain mastery on that block’s task.

In contrast, the dispersed scenario evaluates how well a sys-
tem performs when the tasks it is exposed to change frequently.
In this scenario, there are three ‘‘superblocks’’ (defined as a single
permutation of task variants with shorter learning blocks, typi-
cally 1/3 the length of an LB in a condensed scenario). A given
task variant occurs exactly once during each superblock and each
superblock uses a different random permutation of task variants.

B.2. Example evaluation scenario

In Table B.16, we show how tasks and task variants can
be defined for two environments–SplitMNIST (Nguyen, Li, Bui, &
Turner, 2018; Shin, Lee, Kim, & Kim, 2017; Zenke, Poole, & Gan-
uli, 2017), and CARLA (Dosovitskiy et al., 2017) environments,
nd in Table B.17, we define the application-specific measures
hat assess LL system performance on these tasks. Our framework
f LBs and EBs is sufficiently general that we can represent
wo diverse scenario structures (condensed and dispersed scenar-
os), as well as two types of learning problems–classification for
plitMNIST and reinforcement learning for CARLA. Task variants
an be defined by random (e.g., random brightness perturbations
or Variant-2 of SplitMNIST’s Task-1) or deterministic (e.g., fixed
otations for Variant-2 or SplitMNIST’s Task-2) transformations.
n addition, experiences can be subsampled from a finite dataset
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Table B.16
An example of how to construct two tasks and associated variants from the
SplitMNIST and CARLA environments.

SplitMNIST CARLA

Task-1 Classify images as being either
0 or 1
• One LX is a minibatch of
sixteen images sampled from a
training set
• One EX is a minibatch of
sixteen images sampled from a
test set
• Variant-1: Images are left
unaltered
• Variant-2: Images have their
brightness randomly perturbed

• Variant-3: Images have their
contrasts randomly perturbed

Task-1: Navigate from one
point to another
• One LX or EX is one
end-to-end navigation
sequence
• Variant-1: There is little
traffic
• Variant-2: There is heavy
traffic
• Variant-3: Navigation
sequences take place at
nighttime

Task-2 Classify images as being either
1 or 2
• One LX is a minibatch of
sixteen images sampled from a
training set
• One EX is a minibatch of
sixteen images sampled from a
test set
• Variant-1: Images are left
unaltered
• Variant-2: Images are rotated
90◦
• Variant-3: Images are rotated
270◦

Follow a sedan for a specified
period of time
• One LX or EX is one
end-to-end navigation
sequence
• Variant-1: It is raining
during navigation sequences
• Variant-2: The vehicle to be
followed drives very quickly
• Variant-3: The vehicle to be
followed is a semi-truck

Table B.17
An example of how to construct application-specific measures for tasks from
the SplitMNIST and CARLA environments.

SplitMNIST CARLA

Application-
specific
measures

• Task-1: ACC
(Lopez-Paz & Ranzato,
2017)
• Task-2: Ωall (Hayes,
Kemker, et al., 2018)

• Task-1: Total travel time,
penalized by unsafe driving
• Task-2: Average distance to
target vehicle during the
navigation sequence, penalized
by unsafe driving

(SplitMNIST) or from a more complex generator (CARLA). If de-
sired, similar tasks can use different application-specific mea-
sures (e.g., SplitMNIST’s tasks using both average task accuracy
(ACC) (Lopez-Paz & Ranzato, 2017) and Ωall (Hayes, Kemker, et al.,
2018)).

Appendix C. Additional details on metrics

C.1. Notation for describing metrics and blocks

We introduce a compact set of notations to describe LL agent
lifetimes and the quantities they output, illustrated in Fig. C.6.a.
In general, a lifetime consists of N Learning Blocks. During each
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Fig. C.6. A notional lifetime containing two tasks, blue (B) and green (G). (a) The tasks alternate, and both are tested during evaluation blocks. The y-axis shows the
gent’s performance on tasks at each point during its lifetime. The x-axis counts the experiences of the lifetime. White shading corresponds to Learning Blocks, and
ray shading corresponds to Evaluation Blocks.
b) Comparing the LL agent to single-task experts for the blue and green tasks (orange). Learning Blocks from the full lifetime are grouped by task and stitched
ogether to form a task-specific learning curve.
ource: Figure adapted from New et al. (2022).
P
f
t

C

e
(

earning block n, the agent is exposed to experiences from a single
ask t(n) drawn from some larger set of possible tasks T . Tasks
may reoccur within a lifetime, or they may appear only once or
not at all. After each Learning Block, an Evaluation Block occurs
in which the agent is tested on all tasks in T .

A Block consists of a sequence of (Learning or Evaluation)
xperiences, and each Experience generates a single task-specific
etric (e.g., a classification accuracy, reward function value, or
inary outcome). These values must be preprocessed prior to cal-
ulation of LL metrics — we recommend following the procedure
escribed in Appendix A of New et al. (2022), which is available
n Nguyen (2022b).

Ultimately, each Task t ’s performance in Learning Block n is
ummarized by a sequence of values PL(n, t) = (PL(n, t, 1), . . . ,
L(n, t, ℓ(n))), and each Task t ’s performance in the Evaluation
lock after Learning Block n is summarized by a scalar PE(n, t).
ifetimes are assumed to start with an Evaluation Block, yielding
nitial performance scores PE(0, t) for all t ∈ T .

Baseline performance on a Task may be assessed by train-
ng a Single-Task Expert and an LL agent exposed to only one
ask. Relative Performance and Sample Efficiency metrics com-
are Learning Block performance of LL agents to STEs. We use
291
STE(n, t) = (PSTE(n, t, 1), . . . , PSTE(n, t, ℓ(n))) to denote the per-
ormance in LX ℓ of the nth Learning Block of an STE trained on
ask t .

.2. Metric formulations

In this section, we present pseudo-code implementations of
ach of the metrics described in Section 4. Our transfer metrics
Algorithm 1 and Algorithm 2) use Ratios, but Contrasts may also
be used in their place (see discussion in Sections 4.3 and 6.2).

Our algorithms for metrics that consider data from single-
task experts – Relative Performance (Algorithm 3) and Sample
Efficiency (Algorithm 4) – consider a simplified setting. Specif-
ically, we assume that (1) for a given task, we have data from
only a single STE, and (2) for a given task, the learning block
lengths are the same across LL agents and STEs. The l2metrics
package (Nguyen, 2022b) offers options for handling data when
these assumptions are violated.
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Algorithm 1 Calculation of Forward Transfer.

Require: Task set T
Require: Evaluation Block Performances {PE(n, t)} for n =

0, ...,N , t ∈ T
Ensure: ForwardTransfer

FTs = LearnedTasks = LearnedTaskPairs = ∅
for Learning Blocks n = 1, ...,N do

if t(n) ̸∈ LearnedTasks then
LearnedTasks← LearnedTasks ∪ {t(n)}
for Tasks t ∈ T \ LearnedTasks do

if (t(n), t) ̸∈ LearnedTaskPairs then
(t(n), t)← LearnedTaskPairs ∪ {(t(n), t)}
Pn, Pt = PE(n, t), PE(n− 1, t)
FTs← FTs ∪ {Contrast(Pn, Pt )}

end if
end for

end if
end for
ForwardTransfer ← mean{FTs}

Algorithm 2 Calculation of Backward Transfer.

Require: Task set T
Require: Evaluation Block Performances {PE(n, t)} for n =

1, ...,N , t ∈ T
Ensure: BackwardTransfer

BTs = LearnedTasks = LearnedTaskPairs = ∅
for Learning Blocks n = 2, ...,N do

if t(n) ̸∈ LearnedTasks then
LearnedTasks← LearnedTasks ∪ {t(n)}

end if
for Tasks t ∈ T \ {t} do

if {t(n), t} ̸∈ LearnedTaskPairs and t ∈ LearnedTasks then
LearnedTaskPairs← LearnedTaskPairs ∪ {{t(n), t}}
Pn−1, Pn = PE(n− 1, t), PE(n, t)
BTs← BTs ∪ {Contrast(Pn, Pn−1)}

end if
end for

end for
BackwardTransfer ← mean{BTs}

Algorithm 3 Calculation of Performance Relative to a Single Task
Expert.
Require: Task set T
Require: Learning Block Performances {PL(n, t, ℓ)} for ℓ =

1, ..., ℓ(n), n = 0, ...,N , t ∈ T
equire: STE Performances {PSTE(n, t, ℓ)} for ℓ = 1, ..., ℓ(n), n =
0, ...,N , t ∈ T

Ensure: RelativePerformance

RPs = ∅ ▷ Relative performances for each task
for Tasks t ∈ T do

RPt ←
∑N

n=1
∑ℓ(n)

ℓ=1 PL(n, t, ℓ)∑N
n=1

∑ℓ(n)
ℓ=1 PSTE(n, t, ℓ)

RPs← RPs ∪ {RPt}
end for
RelativePerformance← mean{RPs}

Appendix D. Statistical reliability

Statistical analyses can fail to recognize when two algorithms
valuated on the same benchmark are the same algorithm (Colas
t al., 2018). Varying approaches have been recommended to
292
Algorithm 4 Calculation of Sample Efficiency.

Require: Task set T
Require: Learning Block Performances {PL(n, t, ℓ)} for ℓ =

1, ..., ℓ(n), n = 0, ...,N , t ∈ T
equire: STE Performances {PSTE(n, t, ℓ)} for ℓ = 1, ..., ℓ(n), n =
0, ...,N , t ∈ T

Require: Smoothing function Smooth, Window length w

Ensure: SampleEfficiency

SEs = ∅ ▷ Sample efficiency scores for each task
for Task t ∈ T do

▷ Concatenate all learning blocks for the current task t

PL,cat,t = concat(PL(n, t) : t(n) = t)

PSTE,cat,t = concat(PSTE(n, t) : t(n) = t)

P̃L,cat,t , P̃STE,cat,t = Smooth(PL,cat,t ), Smooth(PSTE,cat,t )
▷ Find saturation performance values and experience locations

SatVal(L, t), SatExp(L, t) = max P̃L,cat,t , argmax P̃L,cat,t

SatVal(STE, t), SatExp(STE, t) =

max P̃STE,cat,t , argmax P̃STE,cat,t

SEs← SEs ∪
{

SatVal(L, t)
SatVal(STE, t)

SatExp(STE, t)
SatExp(P, t)

}
end for
SampleEfficiency← mean{SEs}

Algorithm 5 Calculation of Performance Maintenance.

Require: Task set T
Require: Evaluation Block Performances {PE(n, t, ℓ)} for ℓ =

1, ..., ℓ(n), n = 0, ...,N , t ∈ T
Ensure: PerformanceMaintenance

MVs(t) = ∅ for all t ∈ T ▷ Maintenance Values
PMs = ∅ ▷ Performance Maintenance scores
MRB(t) = −∞ for all t ∈ T ▷ Most recent LB index for each
task
for Learning Block n = 1, . . . ,N do

MRB(t(n)) = n
for Task t ∈ T do

if MRB(t) > 0 and t ̸= t(n) then
MVs(t)← MVs(t) ∪ {PE(n, t)− PE(MRB(t), t)}

end if
end for

end for
for Task t ∈ T do

PMs← PMs ∪ {mean{MV (t)}}
end for
PerformanceMaintenance← mean{PMs}

mitigate this, including the use of the almost stochastic domi-
nance test (Dror et al., 2019) and performance profiles during
training (Agarwal et al., 2021).

In Fig. 1, we present a nominal LL scenario. An agent is sent
through a sequence of tasks; at the end of each lifetime, it
generates a set of LL metrics. This design suggests two questions:
(1) How should K (the number of repetitions) be chosen ahead of
time? and (2) How should metrics be aggregated across lifetimes
after the fact?

Reliably assessing the variability in the responses of the agent,
assuming the inherent variability of its inputs, requires assessing
performance of the agent over multiple lifetimes. We outline
a procedure based on guidance in NIST/SEMATECH (2012) and
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Table E.18
High level task descriptions used in the five case studies discussed in Section 5. Note that since
the UPenn group performed both classification and RL experiments, their tasks involved either
classifying or finding, respectively.
System Group Environment Task Descriptions

UPenn (Section 5.1) AI Habitat Classify/Find Seating Furniture
Classify/Find Plumbing Furniture
Classify/Find Large Furniture

Teledyne (Section 5.2) AirSim Classify Emergency Management Assets, low altitude
Drone Classify Emergency Management Assets, high altitude

Classify Dept. of Transportation Assets, low altitude

HRL (Section 5.3) CARLA Car navigation
Motorcycle navigation
Motorcycle navigation, opposite lane

ANL (Section 5.4) L2Explorer Identify targets
Navigation despite distractors
Forage specific resources

SRI (Section 5.5) StarCraft II Collect Resources
Defeat Large Enemies
Defeat Small Enemies
similar to Colas et al. (2018) to determine the number of lifetimes
hat need to be run, for a given Evaluation Protocol, to assess an
gent’s performance.
For a given evaluation protocol, let Y be the random variable of

alues a metric can take, assumed to follow a normal distribution
ith population mean and standard deviation µ and σ . We seek
o characterize a system’s performance by estimating µ. For an
stimator Ȳ of Y (typically, the sample mean of a set of values of
he metric taken from multiple independent runs), we evaluate
he null hypothesis that the error in estimating |Ȳ − µ| is no
ore than some error threshold δ. Our hypothesis of normality

s strong, but it is meant to enable easy and efficient estimation
f distribution properties, as well as assumptions that can be
hecked in practice.
One option is to choose a threshold δ based on the specific

rotocol. However, the space of potential protocols is vast, even
or a relatively small number of scenario tasks and agent con-
igurations, and there is no guarantee that the same threshold
ill be informative across protocols. We follow common practice
nd choose the error threshold to be defined as a multiple of the
tandard deviation: δ = kσ . Thus, a procedure for determining
equired sample size prior to training any agents is specified by
he choice of the multiple k, the type I error rate α, and the
ype II error rate β . We recommend, as a default, setting k =
, α = 0.05, and β = 0.1. This yields a suggested required sample
ize of at least 11 runs. Evidence from works such as (Agarwal
t al., 2021) suggests this is likely an underestimate and so, if
omputational resources and time allow, more data will be of
alue.
With respect to the second question, we recommend two pro-

edures for comparing the distribution of an agent’s metric values
o some threshold. The student t-test can be used to compare
aw distributions of metrics values. However, this approach can
e unreliable in the case that the values of a metric are highly
on-normal (from, e.g., outliers or skewness). In that case, a more
obust alternative is to binarize values by checking if they surpass
hat threshold and performing a statistical test on that set of
inary values.

ppendix E. Summary of tasks used in SG case studies

See Table E.18.

ppendix F. T-test values for SG case study data

See Table F.19.
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Table F.19
T values from a one-tailed t-test to determine whether the value is significantly
greater than the LL Threshold value for that metric. Note that the UPenn META-
KFO system is designed to speed up the rate of adapting to a new task, but
this does not happen until data for that task is seen, leading to unchanged task
values and a standard deviation of zero for a jumpstart formulation of FT.
SG Config PM FT BT RP SE

Argonne L2Explorer −1.31 8.65 2.93 1.20 1.20
Roundworld 5.20 6.93 2.80 4.08 16.63

HRL Condensed −0.23 12.67 4.00 6.42 3.67
Disp −3.77 18.78 4.10 6.49 9.06
SCP Ablation 0.25 10.75 3.45 9.10 5.87

SRI M12 Condensed −5.13 8.31 −0.12 −2.36 6.77
M15 Condensed −5.52 8.31 2.46 4.57 15.31
M18 Condensed −6.73 15.31 0.62 5.72 10.95
M12 Alternating −4.66 1.05 −3.53 −5.57 6.15
M15 Alternating −5.44 1.15 −5.09 −4.84 8.51
M18 Alternating −2.91 2.13 −2.31 −2.52 5.09

Teledyne C5 Ablated 1.98 79.33 0.72 2.71 3.55
UML 2.82 72.01 3.15 1.80 3.13

UPenn DF-CNN −2.36 0.63 −2.24 22.00 29.41
META-KFO −8.20 NaN −7.99 20.83 31.47
RL M12 −5.59 −0.28 0.26 −7.14 −2.52
RL M15 −2.37 3.39 4.11 −14.43 1.56
RL M18 0.99 2.97 5.21 −13.27 −18.79

Appendix G. Computational costs of lifelong learning

Different LL algorithms can potentially have different compu-
tational costs. For example, an algorithm with experience replay
might be more computationally expensive during deployment
than one that grew the network as needed. Unfortunately, it is
challenging to compare these costs across agents given differ-
ences in learning frameworks, distributed training, and environ-
ments. Instead, we attempted to get insight into CostOverhead,
the relative cost imposed by an LL system as it tries to preserve
and transfer learning across multiple tasks, compared to the same
algorithm being applied to just a single task (see Table G.20). For
instance, CostOverhead = 1.5 indicates that it takes 1.5x more
computational effort to process a single learning experience (LX)
during deployment (when learning multiple tasks) compared to
a single-task setting.

It should be noted that CostOverhead is a crude measure, with
several limitations: it does not distinguish between learning and
evaluation experiences, does not take overall performance into
account, and does not separately consider agent and environment
computation (for example, a complex 3D environment like AirSim
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Table G.20
Definition of CostOverhead. Note that RawCost and CostPerLX (both single and
multitask) are measured in seconds.
RawCostmultitask Elapsed time for a single lifetime

with multiple tasks, averaged
across the submitted runs.

RawCostsingletask Elapsed time for the single task
expert, trained to saturation.

CostPerLXmultitask
=

RawCostmultitask

Total Number of LXsmultitask Time Cost per LX, for the
multi-task lifelong learner

CostPerLX singletask
=

RawCostsingletask

Total Number of LXssingletask
Time Cost per LX for the
single-task expert

CostOverhead = CostPerLXmultitask

CostPerLX singletask Cost overhead of lifelong learning

may take more computational resources to render than StarCraft).
Even so, CostOverhead can provide useful insight. When applied
to preliminary versions of the LL algorithms developed by the
SGs, the CostOverheads ranged from 1.27 to 2.53, indicating that
some LL algorithms potentially had twice the multi-task overhead
of others. Notably, the CostOverheads are contained within a
small band of values, which is remarkable given the diversity of
environments, tasks and learning algorithms.
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