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ARTICLE INFO ABSTRACT
Article history: Despite the advancement of machine learning techniques in recent years, state-of-the-art systems
Available online 20 January 2023 lack robustness to “real world” events, where the input distributions and tasks encountered by the

deployed systems will not be limited to the original training context, and systems will instead need to
adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the
development of “Lifelong Learning” systems that are capable of (1) Continuous Learning, (2) Transfer

Keywords:
Lifelong learning
Reinforcement learning

Continual learning and Adaptation, and (3) Scalability. Unfortunately, efforts to improve these capabilities are typically
System evaluation treated as distinct areas of research that are assessed independently, without regard to the impact of
Catastrophic forgetting each separate capability on other aspects of the system. We instead propose a holistic approach, using

a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is
agnostic to specific domains or system techniques. Through five case studies, we show that this suite
of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight
how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning
system development — both the widely discussed Stability-Plasticity dilemma and the newly proposed
relationship between Sample Efficient and Robust Learning. Further, we make recommendations for
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the formulation and use of metrics to guide the continuing development of Lifelong Learning systems
and assess their progress in the future.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

While machine learning (ML) has made dramatic advances in
the past decade, deployment and use of data-driven ML-based
systems in the real world faces a crucial challenge: the input
distributions and tasks encountered by the deployed system will
not be limited to the original training context, and systems will
need to accommodate novel distributions and tasks while de-
ployed. We define the challenge of LL as enabling a system
to learn and retain knowledge of multiple tasks over its op-
erational lifetime. Addressing this challenge requires new ap-
proaches to both algorithm development and assessment. The
L2M program was initiated in 2018 to stimulate fundamental
algorithmic advances in LL and to assess these LL capabilities
in complex environments. The program focused on both RL and
classification systems in diverse domains, such as CARLA (Doso-
vitskiy, Ros, Codevilla, Lopez, & Koltun, 2017) (3D simulator for
autonomous driving), StarCraft (Vinyals et al., 2017) (real-time
strategy game), Al Habitat (Savva et al.,, 2019) (photorealistic 3D
simulator for indoor environments), AirSim (Shah, Dey, Lovett,
& Kapoor, 2018) (3D drone simulator), and L2Explorer (Johnson
et al., 2022) (open-world exploration). The diversity of domains
was motivated primarily by the research consideration of explor-
ing LL in a broad array of contexts, and it resulted in each research
team developing LL systems for their respective domains.

Throughout this work, we use the term “LL system” rather
than “LL algorithm”, as the developed systems were composed
of many different interacting components (e.g. regularization,
experience replay, task change detection, etc.). The capability to
do LL is a property of the overall system rather than any one
component, and multiple metrics are needed to characterize LL
systems.

The evaluation of these LL systems faced two key questions:
(1) what metrics are most suitable for assessing LL, and (2) how
can one apply these LL Metrics in a consistent way to different
LL systems, each operating in a different domain? In particular, a
primary purpose of this evaluation was to measure progress over
the course of the program and to assess the strengths and weak-
nesses of different systems in an environment-agnostic manner,
thereby providing deeper insight into LL.

The rest of this paper is organized as follows: In Section 2,
we give an overview on LL systems, as well as different ap-
proaches for evaluating them. In Section 3, we introduce the core
components of our approach for evaluating LL-conditions of LL,
evaluation scenarios, and evaluation protocols. In Section 4, we
define the metrics we use to evaluate LL systems. In Section 5,
we describe a set of case studies that demonstrate the application
of these metrics to varied domains. In Section 6, we conclude
with insights from these case studies and give recommendations
for assessing and advancing LL systems. Throughout this work,
we introduce and use a number of terms which are defined
in Appendix A.

2. Background

The area of machine LL has recently seen a large amount of
attention in the research community (Chen & Liu, 2018a; De
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Lange et al., 2021; Hadsell, Rao, Rusu, & Pascanu, 2020; Parisi,
Kembker, Part, Kanan, & Wermter, 2019; Silver, Yang, & Li, 2013),
especially through its connections to other subfields such as
multi-task (Caruana, 1997; Zhang & Yang, 2021), transfer (Zhuang
et al., 2019), incremental batch (Kemker, McClure, Abitino, Hayes,
& Kanan, 2018), and online (Hoi, Sahoo, Lu, & Zhao, 2018) learn-
ing; as well as domain adaptation (Csurka, 2017) and general-
ization (Zhou, Liu, Qiao, Xiang, & Loy, 2022). The distinguishing
characteristic of LL is that a deployed system encounters a se-
quence of tasks over its lifetime, with no prior knowledge of the
number, structure, duration, or re-occurrence probability of those
tasks. The two key challenges are to retain expertise on previously
learned tasks, thereby avoiding catastrophic forgetting (French,
1992, 1999; Goodfellow, Mirza, Xiao, Courville, & Bengio, 2013;
McClelland, McNaughton, & O'Reilly, 1995; McCloskey & Cohen,
1989; Ratcliff, 1990), and to transfer acquired expertise to fa-
cilitate learning of new tasks (Pratt, Mostow, & Kamm, 1991;
Sharkey & Sharkey, 1993). Ultimately, an ideal LL system lever-
ages relationships among tasks to improve performance across
all tasks it encounters, even if the input distributions of those
tasks change over a lifetime. Earlier work considered the chal-
lenges of developing algorithms to avoid forgetting and enhance
transfer (Pratt, 1992; Ring, 1997).

As different methods and algorithms for LL have been devel-
oped, various approaches have been taken for evaluating these
systems. A key distinction has been made between evaluation
scenarios and metrics: evaluation scenarios (as shown in Fig. 1)
set up the structure of the lifetime of the LL system-what tasks
occur, how they are presented, and how often-whereas met-
rics assess how well the system performed over that lifetime.
We recommend Mundt, Lang, Delfosse, and Kersting (2022) as
a concurrently-developed work focusing on the challenges of
categorizing different LL algorithms and evaluations in terms
of transparency, replicability, and contextualization. When con-
structing a set of metrics, it is important to decide what they
should be assessing. Zhu, Lin, and Zhou (2020) frame metrics
for LL as assessing either generalization (how prior knowledge
facilitates initial learning on a new task) or mastery (how prior
knowledge facilitates eventual performance on a new task). The
suite of metrics defined in this paper extends these concepts by
defining conditions of LL in Section 3.1.

2.1. Evaluation scenarios for different learning paradigms

The difficulty of quantitatively evaluating LL systems has led
to a variety of approaches, both specific to the learning type and
more general. Quantitatively assessing the performance of classi-
fication LL systems is often more straightforward than assessing
RL systems because there are straightforward ways of generating
tasks from a dataset (e.g., by splitting sets of classes into tasks,
or by inducing domain shifts). However, while evaluating the
LL capability of a classification system is still challenging, the
evaluation scenarios used to do so tend to be specific to the
classification context, such as incremental class learning, e.g., Hsu,
Liu, and Kira (2018). Despite this, there are broader insights that
are applicable for RL as well, as noted by Farquhar and Gal (2019).
In particular, Hayes, Kemker, Cahill, and Kanan (2018) identify
different methods of setting up the sequence of observations that
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Fig. 1. Depiction of a LL Scenario generated to evaluate a given LL system according to the approach outlined in this work. The LL Scenario shown here and described
in Section 3 is an environment-agnostic template used to define the number and sequence of tasks, how they are sequenced in a given “lifetime” (or run) of the
LL system, and how many repeats should be performed to generate statistically reliable results. These sequences of tasks generate application-specific measures
(see Section 4.1) that feed into the calculation of LL Metrics, shown in red and defined in Section 4. The LL Metrics track performance within a system’s lifetime,
and are best interpreted in the context of the corresponding LL Scenario. Examples of this analysis and the impact the suite of LL Metrics provide can be found
in Section 5, followed by practical considerations and insights for assessing and advancing LL systems in Section 6. See Appendix A for further definitions of the

terms used here.

constitute each lifetime of the system: sampling from different
tasks in an i.i.d. fashion, grouping them by task or by class labels
within a task, or (most challenging) sampling and grouping them
in a non-i.i.d. fashion.

Evaluation of lifelong RL faces additional challenges: (1) RL can
be highly variable within and across training runs, and across
rollouts of a fixed policy (Chan, Fishman, Korattikara, Canny,
& Guadarrama, 2020), (2) rewards across different tasks may
have different scales or extrema, or may be unbounded, and
(3) it is nontrivial to design tasks with well-characterized re-
lationships (see, e.g., Carroll & Seppi, 2005). Nonetheless, work
on RL generalization and transfer offers valuable insight for LL.
Kirk, Zhang, Grefenstette, and Rocktdschel (2021) propose a use-
ful formalism of a “contextual Markov decision process (MDP)”
where for each episode encountered by the system, the state
of the MDP encodes an unseen “context” (e.g., random seeds
and parameters used to specify the task). During training and
test, the system encounters episodes sampled from training and
test context sets respectively, with generalization assessed using
zero-shot forward transfer and a “generalization gap” metric
(difference in expected rewards between train and test). One
of their key recommendations is to specify tasks using a com-
bination of procedural content generation (which varies based
on parameters inherent to the environment) and explicitly spec-
ified parameters. In CORA, (Powers, Xing, Kolve, Mottaghi, &
Gupta, 2021) present a different approach for RL performance
assessment. They handcrafted benchmark tasks for four differ-
ent environments (Atari (Bellemare, Naddaf, Veness, & Bowling,
2013), ProcGen (Cobbe, Hesse, Hilton, & Schulman, 2020), Mini-
Hack (Samvelyan et al., 2021) and AI2-Thor (Kolve et al., 2017)),
and proposed a standard evaluation protocol (N tasks presented
sequentially, cycled M times).
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2.2. Metrics for different learning paradigms

Metrics commonly used to assess the performance of clas-
sification LL systems include average task accuracy (ACC), for-
ward transfer (FT) and backward transfer (BT) (also denoted
FWT and BWT, respectively), as well as model size, storage and
computational efficiency (Lopez-Paz & Ranzato, 2017; Rodriguez,
Lomonaco, Filliat, & Maltoni, 2018). Other metrics specifically
developed for classification LL include Cumulative Gain, which
tracks ACC after each task exposure during the course of the
system'’s lifetime (Prado, Koh, & Riddle, 2020), £24, an extension
of ACC that compares the accuracy to an offline learner (Hayes,
Kembker, et al., 2018), and Performance Drop (Balaji, Farajtabar,
Yin, Mott, & Li, 2020), which uses the baseline of a multi-task
model trained jointly on all tasks.

Metrics used for assessing lifelong RL include those introduced
by Powers et al. (2021) for use in CORA: Forgetting (change in
performance on a task before and after learning a new task)
and zero-shot FT (change in performance after learning a new
task, relative to a random agent). They also present baseline
algorithms demonstrating the value of the metrics and tasks. Zhu
et al. (2020) also propose metrics for two-task transfer learning,
comparing performance with and without prior task exposure:
initial performance, asymptotic performance, accumulated re-
ward (measured by an area under the curve (AUC) calculation),
and time to a threshold performance. They also propose a Trans-
fer Ratio (asymptotic performance measured as a ratio), and
performance sensitivity (variance in performance with different
hyperparameter settings).

In summary, there is currently no clear guidance for defining
tasks or scenarios to exercise LL, other than the guidance of
having multiple tasks with some kind of structured similarity
and presenting tasks to the system without specifying the order
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Table 1

Five LL systems were developed during the L2M Program, and the teams were
led by the organizations listed. The corresponding environment and domain
are shown. The variation in the domains represented in the L2M Program
necessitated the development of domain- and environment-agnostic metrics,
as well as LL threshold values at which a system is said to be exhibiting
Lifelong Learning. These domains can include classification and/or Reinforcement
Learning components.

System group Environment Domain

designation

SG-UPenn 5.1 Al Habitat Robotics
(Savva et al., 2019) embodied search

SG-Teledyne 5.2 AirSim Autonomous navigation
(Shah et al., 2018) (drones)

SG-HRL 5.3 CARLA Autonomous navigation
(Dosovitskiy et al., (cars, motorcycles)
2017)

SG-Argonne 5.4 L2Explorer Open-world
(Johnson et al, 2022) exploration

SG-SRI 5.5 StarCraft 2 Game play /

(Vinyals et al,, 2017)  real-time strategy

beforehand. There are also no universally accepted metrics for LL,
though FT is often used for both classification and RL, and average
(or cumulative) change in performance is used in RL. Overall,
there is no agreed-upon standard for how to assess LL systems
across different environments in a uniform manner.

2.3. DARPA L2M program context

The L2M program was initiated to stimulate fundamental ad-
vances in lifelong ML systems. Of particular interest were sys-
tems operating in complex and challenging environments and
potentially applicable to a broad array of domains (including
autonomous driving, embodied search, and real-time strategy). To
this end, research conducted under the program coalesced into
five different domains.

Table 1 provides information on the five LL systems that
were developed as part of the program, along with their asso-
ciated environments/domains. In this work, we focused on the
evaluation of systems within these five environments, but the
concepts and methods are broadly applicable and could work well
in conjunction with a library like Avalanche (Lomonaco et al,,
2021). We treated each LL system as a black box, intentionally
omitting details of the constituent components. Each system was
developed by a different research team and their algorithmic
advances are described in publications contained in Section 5.

2.4. Evaluation of LL systems

How exactly to assess such a wide variety of LL systems oper-
ating in diverse environments was a major challenge addressed
during the course of the L2M Program. We emphasize that the
goal was not to identify the “best” LL system, as each environ-
ment required different learning strategies. Instead, the goal was
to provide deeper insight into the strengths and weaknesses of LL
systems in an environment-agnostic manner. The L2M Program
test and evaluation (T&E) team and research teams collabora-
tively identified and defined the following key components of an
LL evaluation:

1. The Conditions of LL the system needed to demonstrate,
which are defined in Section 3.1. These conditions specify
diverse criteria identifying different components of the
overall phenomena of LL.
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2. The Evaluation Scenarios that exercise the LL system for
the purpose of computing metrics. This is an environment-
agnostic template that defined the number of tasks and
constraints on their relationships, as well as how they are
sequenced in a given “lifetime” (or run) of the LL sys-
tem. An example is demonstrated in Fig. 1 and details are
provided in Section 3.2.

3. The overall Evaluation Protocol specifies how multiple
lifetimes are set up, and consists of the Evaluation Sce-
narios as well as details (e.g. number of lifetimes) for
obtaining statistically reliable metrics. Evaluation Protocols
are discussed in Section 3.3.

4. The set of LL Metrics (described in Section 4) that assess
the conditions of LL. We discovered early on that a single
metric would not be sufficient to cover all the conditions,
and multiple metrics would be needed to characterize the
LL systems.

3. Evaluation approach

We consider three key aspects of evaluating LL systems-the
conditions of LL (Section 3.1), scenarios that systems encounter
(Section 3.2), and the overall protocols that specify an evaluation
(Section 3.3).

3.1. Conditions of lifelong learning

We assert that an LL system must satisfy three necessary and
sufficient conditions:

1. Continuous Learning: The LL system learns a nonstation-
ary stream of tasks (both novel and recurring), continually
consolidating new information to improve performance
while coping with irrelevance and noise.

2. Transfer and Adaptation: As learning progresses, the LL
system performs better on average on the next task it
experiences, for both novel and known tasks (forward and
backward transfer), maintaining performance during rapid
changes in the ongoing task (adaptation).

. Scalability: The LL system continues learning for an arbi-
trarily long lifetime using limited resources (e.g., memory,
time) in a scalable way.

These three conditions of LL have been used to drive the
development of LL Metrics. They are similar to the notion of
‘generalization’ and ‘mastery’ introduced by Zhu et al. (2020), and
two of our metrics can measure these concepts. The jumpstart
formulation of FT (a Transfer and Adaptation metric) can be con-
sidered a measure of ‘generalization,” and RP - a Scalability metric
- can be considered a measure of ‘mastery.’ It is important to
point out that these conditions are partially independent; indeed,
it is possible for a system to demonstrate LL in one condition but
not in another. Because of this, it is all the more critical to use
multiple measures to assess LL systems. The relationship between
the Metrics, the Conditions of LL, and Scenario requirements
associated with assessing them are discussed further in Section 4.

It is also worth noting the relationship between the above
definition and related terms such as “Continual Learning” (Chen
& Liu, 2018b). There are two aspects here. First, are the learning
experiences from different tasks intermixed as an i.i.d sequence
(online or streaming learning (Hayes, Cahill, & Kanan, 2018)) or
as a non-i.i.d sequence with same-task experiences being batched
together? Second, do new learning experiences expand the do-
main of already-learned tasks (incremental class learning), or are
they entirely new tasks with new input and output domains
(incremental task learning) (van de Ven & Tolias, 2018)?
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Condensed
Each variant occurs
exactly once per lifetime

Task 6
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Each variant occurs

3 times per lifetime
(same lifetime length

as Condensed scenario)

System Lifetime

Fig. 2. Illustration of Condensed and Dispersed Scenario Types introduced in Section 3.2 and used in the case studies of Section 5. The structure of these scenarios
was chosen to aid in consistent, thorough evaluation of an LL system and to explore how system performances vary based on differences in task ordering and

frequency of task switching.

Lifelong Learning, as defined above, is incremental task learn-
ing with same-task experiences batched together and with the
additional constraint that the system leverage prior knowledge to
become a more effective and efficient learner. The term “Contin-
ual Learning” has historically been used to loosely refer to either
incremental task or class learning. However, over the past few
years, it has been used more synonomously with Lifelong Learn-
ing. To avoid confusion, we consistently use the term “Lifelong
Learning” in this paper.

3.2. Evaluation scenarios

An Evaluation Scenario describes the patterns and frequency
of task or task variant repetitions in sequence, and can facilitate
evaluating LL systems with respect to specific metrics as well as
provide insight into their strengths and weaknesses. Since certain
task sequences are required to reasonably explore LL metrics,
specifying a particular Scenario is a critical step in characterizing
the performance of an LL system.

Two of the main scenario types used to accomplish this were
Condensed and Dispersed Scenarios. Both scenario types are illus-
trated in Fig. 2, with further details in Appendix B. Each involved
a sequence of multiple tasks and variants. Individual runs had
different permutation orders.

In particular, Condensed Scenarios involved concentrating all
of the experience per task in one longer block. Dispersed Sce-
narios involved the same amount of experience per task, but
with interleaved tasks in shuffled segments rather than appearing
in sequence. These two scenario types were chosen to explore
differences in system performance based on task ordering and
appearance (since an operationalized system will not have prior
knowledge of task sequences), and to ensure enough task rep-
etitions for reasonably evaluating whether a system retained
expertise on previously seen tasks. In Section 5, we see that
some LL systems perform differently in various scenarios. These
differences enable us to identify the characteristics, strengths, and
weaknesses of an LL system.

In developing these scenario structures, we built on existing
work in this area. For example, van de Ven and Tolias (2019a)
proposed the class-incremental learning scenario, which is sim-
ilar in structure to our condensed scenario. Concurrently to our
work, Cossu et al. (2021) built off this and suggested the class-
incremental with repetition scenario, which is similar to our
dispersed scenario. Similarly, Stojanov et al. (2019) designs a
class-incremental scenario that features parametric variation in
its task design. Our framework differs in two key ways from these.
First, it is meant to be more general than these scenarios, as it
can accommodate LL systems that perform classification and/or
reinforcement learning. Second, it incorporates task variants into
its structure, which can help evaluate LL systems on environ-
ments with similar sets of tasks. Ultimately, the existence of
these other scenarios is beneficial for exploring the combinatorial
design space of LL scenarios, and benchmarks can be shared
and extended. See Appendix B for a full example of what an
Evaluation Scenario looks like.
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3.3. Evaluation protocols

In order to evaluate a particular LL system (consisting of a
fixed set of hyperparameters, algorithms, and components), we
recommend the use of an Evaluation Protocol. An Evaluation
Protocol is a complete specification for conducting LL Scenarios to
ensure reproducibility and obtain statistically reliable LL Metrics.

In addition to one or more Evaluation Scenarios, this specifica-
tion consists of details about pre-deployment training (e.g., pre-
training on a fixed dataset like ImageNet), and how multiple
lifetimes (runs) should be generated for each scenario. This eval-
uation approach was used in the L2M program to foster exper-
imentation on LL Metrics and to help researchers evaluate the
performance and progress of their LL systems.

In addition to the Scenario specification, an Evaluation Proto-
col contains details for obtaining statistically reliable LL Metrics.
As has been noted in the literature (Agarwal, Schwarzer, Castro,
Courville, & Bellemare, 2021; Colas, Sigaud, & Oudeyer, 2018,
2019; Dror, Shlomov, & Reichart, 2019; Henderson et al., 2018),
the training process for deep RL systems is noisy and variable,
making it challenging to robustly evaluate them.

Our approach to generate statistically reliable LL Metrics is
based on guidance in NIST/SEMATECH (2012), and similar to Colas
et al. (2018). More details on this approach are provided in Ap-
pendix D. In contrast to much of the literature, which considers
the problem of comparing two or more algorithms, here we focus
on the challenge of obtaining reliable estimates of a system'’s
performance (with respect to the metrics defined in Section 4).
Given such reliable estimates, we are able to determine whether a
system is meeting a particular threshold. We further propose the
use of LL thresholds in Section 4 to determine whether a system
is demonstrating LL or not.

4. Lifelong learning metric definitions

The Lifelong Learning Metrics are scenario, domain, environ-
ment and task-agnostic measures that characterize one or more
LL capabilities across the lifetime of the system. This suite of LL
Metrics, summarized in Table 2 and visualized in Fig. 3, operates
on application-specific performance measures (Section 4.1), mak-
ing the evaluation methodology as separate as possible from the
implementation details of a particular system.

The metrics are meant to work in a complementary manner
in order to illustrate and characterize system capability. Thus,
there is some overlap in the conditions they measure, as shown
in Table 2, as well as in the means employed to do so. This ap-
proach ensures that no single metric value is responsible for fully
quantifying an LL system’s performance and instead encourages
deeper analysis into specific performance characteristics and the
trade-offs between them.

The relationship between these metrics and the trade-offs
illuminated by the case studies in Section 5 are explored further
in Section 6. An in-depth discussion of the context of these
metrics and their use can be found in New et al. (2022). Detailed
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Fig. 3. Performance output for an LL system in a scenario with two tasks indicated in blue (B) and red (R), annotated to illustrate the computation of the five LL

Metrics described in this section.

(a) White regions in the graph indicate Learning Blocks, and shaded regions indicate Evaluation Blocks. B; and R; refer to performance in the ith Evaluation Block for
the Blue and Red tasks, respectively. Horizontal dashed lines indicate relevant evaluation performance comparison points referred to in the example formulations of

Performance Maintenance, Forward Transfer, and Backward Transfer Metrics.

(b) Single task expert (dashed blue) and LL system (solid blue) curves for the scenario shown in Fig. A. Vertical lines indicate the boundaries between each of the
three Learning Blocks for the Blue Task stitched from above and overlaid with the Single task expert performance output of the same number of Learning Experiences.
Experiences to Saturation and the Saturation Value for the Blue Task are also indicated on the figure to illustrate the example formulations of Sample Efficiency and

Relative Performance Metrics.

Table 2

High-level description of the suite of five LL Metrics used in this work, described
in more detail in Section 4. An in-depth discussion of the specific formulation
of the LL Metrics can be found in New, Baker, Nguyen, and Vallabha (2022).

Metric name

LL condition  Assesses the LL system’s ability to:

Performance Continuous Avoid catastrophic forgetting despite

Maintenance (PM) Learning the introduction of new parameters
or tasks

Forward Transfer & Use expertise in a known task to

Transfer (FT) Adaptation facilitate learning a new task

Backward Transfer & Use expertise in a new task to

Transfer (BT) Adaptation improve performance on a known
task

Relative Scalability Match or exceed the performance of

Performance (RP) a single-task expert

Sample Scalability Make better use of learning

Efficiency (SE) experiences than an equivalent

single-task expert

formulations from New et al. (2022) are provided in Appendix C.2,
and a publicly-available Python implementation of the metrics
and a logging framework for systems that generate them are
available online (Nguyen, 2022a, 2022b).
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4.1. Application-specific measures

As shown in Fig. 4, an LL system performing tasks in its
environment as specified by the Evaluation Protocol will generate
some number of application-specific measures. Each learning ex-
perience (LX) - the minimum amount of experience with a task
that enables some learning activity on the part of the system - is
assumed to generate one or more scenario, domain, environment,
and application-specific performance measures. A chosen subset
of these application-specific measures is tracked and used to
compute the LL Metrics. It is important to note that a task’s
application-specific performance measures in a scenario will only
be compared to the same task’s same application-specific per-
formance measures. For example, consider an LL system that
encounters two tasks A and B. Before encountering task B, the
system has a performance value for task A of P4 pefore; after en-
countering task B, the system has a performance value for task
A of Py afeer- Then, as defined in Section 4.3.2, we can assess how
learning B changes performance on A with the BT score:

P A, after

BTg .4 .
PA,before
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Environment 2 (StarCraft Il)
All performance

measures for
StarCraft Il

Fig. 4. Environments such as AirSim or StarCraft generate many application-specific performance measures, such as classification accuracy, number of enemy units
defeated, or total reward. Some subset of the values reported by the Environment is needed to calculate the Lifelong Learning Metrics (Section 4), but it is not
necessary to choose the same application-specific measure for computing all of the LL Metrics, since these measures are tracked over the course of the LL system
lifetime. For example, the number of enemy units defeated may be used to compute one metric, and total reward may be used to compute another. This allows a

system to be evaluated in a flexible, environment-agnostic way.
Source: Figure adapted from New et al. (2022).

There are no comparisons made between the performance values
of A and B to compute these LL Metrics, so there is correspond-
ingly no need to choose only one application-specific measure
to assess an LL system’s performance across all tasks. In order
to summarize the LL system’s performance for each Metric in
a scenario, we used mean aggregation, but other options are
possible.

In the following section we discuss each LL Condition, includ-
ing the motivation for assessing it, the metrics associated with
doing so, and the question that the metric attempts to address.
At the end of each subsection, we provide LL threshold values for
the metrics associated with that LL Condition.

4.2. Continuous learning metrics

A system demonstrating Continuous Learning will consolidate
new information to improve performance while coping with ir-
relevance, noise, and distribution shift. The LL system needs to
discover and adaptively select or ignore information that may
be relevant or irrelevant. In particular, a Lifelong Learner must
not be plagued by catastrophic forgetting, and performance must
quickly recover when the agent is re-introduced to tasks whose
performance may have degraded. While we have a metric to
address whether a system has catastrophically forgotten task
data, our attempt at formulating a metric to address whether a
system recovers after a drop in performance was unsuccessful
and is discussed more in Section 6.

4.2.1. Performance maintenance (PM)

A Lifelong Learner should be capable of maintaining perfor-
mance on each of its tasks. Performance Maintenance (PM) mea-
sures whether an LL system catastrophically forgets a previously
learned task and compares a system’s performance when it first
has the opportunity to learn a task to subsequent times ex-
periencing the task. An important caveat here is that PM does
not measure absolute performance levels; rather, it measures a
change in performance over the course of the system'’s lifetime.
While there is some overlap between what PM and BT measure
( Section 4.3), BT compares a particular task’s evaluation blocks
(EBs) immediately before and after learning a new task, whereas
PM can be computed using any sequence of EBs, independent of
how many other tasks were learned between.
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Table 3
LL Threshold values for Performance Maintenance.

Case Interpretation

PM > 0 (Demonstrates LL) that performance on task is getting
better over lifetime; may be an indication of transfer.

PM =0 No forgetting; no additional learning.

PM < 0 (Does not demonstrate LL) Indicates forgetting.

4.2.2. LL threshold value for performance maintenance

The LL threshold value for PM is zero — this value indicates
that, on average, there are no differences between initial and
subsequent performances on a task. A positive value would in-
dicate improvement over the course of a lifetime - a potential
indicator of transfer. A negative value indicates forgetting. It is
worth noting that this metric may be particularly sensitive to
high variance in the application-specific measure ranges, since
the metric computes a difference rather than use a ratio or a
contrast (see Table 3).

4.3. Transfer and adaptation metrics

One of the hallmark capabilities of a system capable of LL is
the ability to leverage experience on one task toward improving
performance on another. Without assuming knowledge of the
details of how a system may accomplish this, we can measure
progress toward this aim by computing both forward and back-
ward transfer. At the very least, we expect that an LL system will
not exhibit catastrophic forgetting, where learning a new task
interferes with performance of a previously learned task.

For this particular suite of metrics, FT was formulated as a
jumpstart measure as introduced by Taylor and Stone (2007),
where performance changes were assessed at the beginning of a
learning block, measuring whether the system got a “jumpstart”
on a future task. We used this formulation for FT for two pri-
mary reasons. First, the intention of these metrics was to be as
domain-agnostic as possible, and addressing the nuance of how
a learning curve changed could require a substantial amount of
computational resources. Second, the preference was for a single
value to express a system’s performance for each of the metrics,
where possible. Transfer has been defined differently by others,
but a jumpstart measure enables evaluation of the beginning of
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Table 5
LL threshold values for RP and SE. STE indicates Single Task Expert.

Case Interpretation Case Interpretation
BT/FT > 1 (Demonstrates LL) Indicates positive forward transfer. RP/SE > 1 (Demonstrates LL) Indicates Performance/Performance
BT/FT = 1 No transfer or forgetting Gain above level of STE
BT/FT < 1 (Does not demonstrate LL) Indicates interference. RP/SE = 1 Indicates Performance/Performance Gain exactly at level
of STE
RP/SE < 1 (Does not demonstrate LL) Indicates

a system’s lifetime, which we felt was most appropriate given
that we were assessing widely different systems. An important
implication of this formulation to note is that for interpretability
purposes, a forward transfer value is computed for only the first
two tasks in a sequence.

4.3.1. Forward transfer (FT)

FT involves a system utilizing experience from prior, seen
tasks to improve on a future, unseen task. Importantly, since
a primary aim in developing these metrics is their application
without consideration of task specifics, we compute FT only in
the first instance of each task pair as the ratio of the application-
specific measure in an evaluation block before and after another
task is learned. As formulated, this metric measures whether the
LL system leverages data from a previously learned task to learn
a new task, and it requires the presence of Evaluation Blocks
before and after each new task’s first Learning Block in order to be
computed. An important note about FT is that order of the tasks
is important. FT may be present from Task A — B, but not Task
B — A

4.3.2. Backward transfer (BT)

A system demonstrating BT will use expertise in a new task
to improve performance on a known task. Unlike FT, which is
only computed on the first instance of each task pair, BT can
be computed for each task after every learning block (LB). This
metric measures whether an LL system leverages data from a
new task to improve performance on a previously learned task,
and it requires EBs between each LB to measure the performance
after new tasks are learned. BT is computed for each task where
scenario structure allows.

4.3.3. LL thresholds for forward and backward transfer

Table 4 shows the LL threshold values for both FT and BT. A
value of 1 would demonstrate no change in task performance,
meaning neither forgetting nor transfer, whereas values above or
below 1 would indicate transfer and interference, respectively.

4.4. Scalability metrics

A fundamental capability for operationalized or deployable ML
systems is the use of limited resources (e.g., memory, time) to ac-
complish or learn tasks in a scalable way. We expect an LL system
to be able to sustain learning activity for arbitrarily long lifetimes
including many tasks, though in practice,“arbitrarily long” and
“many tasks” are relative to typical operational timescales of
the application domain. While there are several ways to assess
the use of limited resources, one domain-agnostic methods for
doing so (used by Hayes, Kemker, et al.,, 2018) is to compare
the performance of an LL system that is trying to learn many
tasks to a single-task expert (STE) system that is learning just one
task. The Sustainability metrics assess essential components of LL
because it is useful to see if an LL system is being outperformed
by individual subsystems trained for each task. Scalability Metrics
are an important component of system performance, in addition
to being a proxy for task capacity.
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Performance/Performance Gain below level of STE

4.4.1. Performance relative to a single task expert (RP)

An LL system with good RP will perform well on each of its
tasks when directly compared to the corresponding STE, often
leveraging data from other tasks to do so. As formulated, RP
measures how the performance of an LL system compares to a
non LL system with comparable training. RP is related to the
Transfer metrics in that a system that exhibits strong FT or BT
should benefit from these effects. However, RP offers a more
complete look at performance that combines all of the experience
on a particular task and compares it to the performance of a STE
with a similar amount of experience.

4.4.2. Sample efficiency (SE)

Lifelong Learners are expected to sustain learning over long
periods of time. The rate of performance gain of a system is a part
of scalability; a system that learns quickly is efficient with the
amount of experience it is exposed to. As formulated, SE describes
the rate of task performance gain with additional experience.
This metric measures the performance gain of the LL system
by comparing the absolute level of performance (the “saturation
value”) achieved by the LL system and the number of learning
experiences required to get there with the corresponding STE
values.

4.4.3. LL thresholds for relative performance and sample efficiency

Determining threshold values for LL is more nuanced for the
Scalability metrics. Ideally, we want the performance of an LL
system to match or exceed that of an STE, as reflected in the
determination of the LL thresholds in Table 5.

5. Case studies with lifelong learning systems

In this section, we examine five System Group case studies,
all of which exercised the suite of LL Metrics. These metrics were
computed on LL systems developed during the L2M Program
using various techniques and in different environments, as shown
in Table 1. Over the course of L2M, we conducted multiple system
evaluations, which are denoted by M12, M15, and M18. Each of
the following subsections contains a brief overview of the corre-
sponding LL system developed by each SG team, a description of
the tasks used in each of the environments (summarized in Ta-
ble E.18), and a discussion of results and insights provided by the
Metrics. For more details regarding the specific implementation
of these systems and/or the results they generate, please see the
referenced published work.

5.1. System group UPenn - AlHabitat

5.1.1. System overview

This section describes a case study on the development of
the LL system led by SG-UPenn, a modular system that performs
both classification and RL tasks in realistic service robot set-
tings. The core of the system, which integrates factorized models
(deconvolutional factorized convolutional neural networks (DF-
CNNs) for supervised learning (Lee, Stokes, & Eaton, 2019) and
lifelong policy gradients for faster training without forgetting
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Table 6

Select SG-UPenn classification experiment results. All metrics show mean + standard deviation.
Configuration PM FT BT RP SE
DF-CNN —0.44+1.12 1.01+0.09 0.99 £0.02 1.94+0.26 1.61+0.12
META-KFO —20.81+15.22 1.00+0.00 0.91+0.07 2.38+040 3.40+0.46

(LPG-FTW) for RL (Mendez, Wang, & Eaton, 2020)), is divided
into separate classification and RL pipelines, with the perception-
action loop of a mobile robot. The system includes additional
optional modules that can be combined with the core classifi-
cation and RL pipelines, including a task-agnostic feature meta-
learning module using meta Kronecker factorization optimiza-
tion (Meta-KFO) (Arnold, Igbal, & Sha, 2021), intrinsic motivation
via meta-learned intrinsic reward functions (Zheng et al., 2020),
an alternative core RL algorithm based on the advantage ac-
tor critic (A2C) algorithm (Mnih et al,, 2016), a self-supervised
exploration module based on active visual mapping for robot
navigation (Ramakrishnan, Al-Halah, & Grauman, 2020), and a
MDP-based curriculum learning module (Narvekar et al., 2020).
These components can be turned on and off depending on the
problem domain, and characterizing their effects through the set
of LL Metrics proposed in this paper was a focus of the exper-
imentation discussed in this case study. The task settings and
select experimental results for the two pipelines are described
below.

5.1.2. Classification experimental context

Classification. Lifelong classification experiments were car-
ried out by SG-UPenn over data sets collected by simulated agents
performing random walks through household environments in
the Al Habitat simulator (Savva et al., 2019) using the Matterport
3D data set (Chang et al.,, 2017), resulting in realistic observa-
tions for household service robots derived from real world sensor
data. All experiments were conducted over a fixed curriculum
of object classification tasks, where each task required a mobile
agent to classify a set of objects taken from an object superclass,
e.g. classifying {chair, sofa, cushion, misc_seating} from
the superclass seating_furniture.

5.1.3. Classification experimental results

This case study focuses on a specific classification experi-
ment for which the proposed set of LL Metrics was particularly
informative. The goal of this experiment was to determine the dif-
ferences in performance between factorized classification models
and meta-learned classification models in a lifelong supervised
learning setting. To explore this, SG-UPenn ran the same set of
Lifelong classification experiments over two configurations of the
system: the (factorized) DF-CNN core classification pipeline and
the (meta-learned) META-KFO module. The results (Table 6) show
that, while both approaches show good LL performance, META-
KFO provides faster learning (higher SE) whereas the DF-CNN pro-
vides more stable learning through better catastrophic forgetting
mitigation (higher PM and BT, with lower standard deviations).
As such, SG-UPenn prioritized future development of the DF-CNN
pipeline due to the stability afforded by the factorized method.

5.1.4. Reinforcement learning experimental context

Reinforcement Learning. Lifelong RL experiments were car-
ried out in the Al Habitat simulator using the Matterport 3D data
set. All experiments were conducted over a fixed curriculum of
object search tasks in the form of “find a given object (e.g. a chair,
a cabinet, a sink, or a plant) in a given household environment
(e.g. an apartment or a town house)”. The agents observed RGB
images from a head-mounted camera, and their actions were
direct control commands.

282

5.1.5. Reinforcement learning experimental results

The first RL experiment (M12) hypothesized that intrinsic
motivation would improve FT, RP, and SE in LL settings, making
it an effective mechanism for knowledge reuse in lifelong RL.
To test this hypothesis, SG-UPenn used the intrinsic motivation
module combined with the core A2C RL algorithm. The results
did not support this hypothesis, instead showing that intrinsic
motivation is not an effective mechanism for lifelong learning,
as shown in the M12 column of Table 7. The main issue identi-
fied was that the system was highly susceptible to catastrophic
forgetting, as evidenced by the particularly low PM score. To
overcome this problem, SG-UPenn focused system development
on factorized methods instead, which are specifically designed to
mitigate catastrophic forgetting.

The next set of RL experiments (M15) focused on evaluat-
ing the effectiveness of the factorized LPG-FTW algorithm in
the realistic Habitat/Matterport environment. This system con-
figuration used the core LPG-FTW algorithm with no additional
modules. The results show significant improvement compared
to the intrinsic motivation pipeline across all of the Lifelong
Learning Metrics, with the exception of comparable RP. SG-UPenn
notes that while the PM score was still negative, it is signifi-
cantly higher than the intrinsic motivation pipeline, which shows
increased mitigation of catastrophic forgetting. SG-UPenn con-
tinued to develop the LPG-FTW-based system with additional
network architecture search and hyperparameter tuning that tar-
geted the PM metric. Shown in the M18 column of Table 7,
this resulted in significant improvements to both PM and FT.
Contrary to the experimental results in the original LPG-FTW pa-
per (Mendez et al., 2020), there is still relatively low performance
with respect to single task experts (i.e. in the RP and SE metrics).
SG-UPenn hypothesizes that this performance drop is due to the
increased challenge of learning in high fidelity environments, and
the higher task complexity that such environments entail.

5.2. System group teledyne - AirSim

5.2.1. System overview

This section describes a case study on the development of the
LL system led by SG-Teledyne. It consists of six key components,
the core of which is the UML (Brna et al., 2019) algorithm.
UML enables adaptation and learning in response to multiple
types of uncertainty. Inspired by mechanisms of neuromodula-
tion, UML compares its internal hypotheses against expectations
and adapts its behavior based on the level of mismatch. Under
high uncertainty, it re-configures itself and re-evaluates its in-
puts, allowing robust operation in noisy environments or in the
presence of new conditions. Under low uncertainty, the algorithm
can more confidently engage in long-term adaptation to learn
new tasks or tune its knowledge base. Because uncertainty serves
to gate learning and the type of adaptation in the system, it
can prevent catastrophic forgetting and promote behaviorally-
relevant adaptation. Furthermore, under very high uncertainty
conditions, UML protects existing knowledge to allow one-shot
learning of novel information. Finally, the algorithm can use its
internal measures of uncertainty to actively seek new informa-
tion to optimize learning and resource utilization (Brown, Brna,
Cook, Park, & Aguilar-Simon, 2022). A limitation of UML is that
it requires a robust representation of its inputs. Nonetheless, it
has proven to work well when using the output layer of deep
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Select UPenn System Group reinforcement learning experiment results. All metrics show mean +

standard deviation.

Configuration PM FT BT RP SE

M12 —60.1+21.5 0.89 + —0.80 1.2+ 1.56 0.75 £ 0.07 0.66 +0.27

M15 —14.0 £ 20.5 1.95 4+ 0.97 1.19+£0.16 0.75 +0.06 1.88 +1.96

M18 44+11.3 3.11£2.36 1.11+0.07 0.88 £0.03 0.83+0.03
Table 8

Selected SG-Teledyne experiment results. All metrics show mean =+ standard deviation. The baseline
agent is shown in the TDY UML Agent row, and a selected ablation experiment is shown in the
TDY C5 Ablation row. The metrics enabled us to understand the effects of the ablation study on

specific LL characteristics.

Configuration PM FT BT RP SE
TDY UML Agent 0.56 +0.98 11.69 £ 0.47 1.00 £0.01 1.03+0.04 2.74+1.70
TDY C5 Ablation  1.68 +0.36 10.47 +£0.23 1.02 +0.02 1.01+£0.03 2.33+0.74

neural networks trained on datasets such as ImageNet (Deng
et al., 2009) or COCO (Lin et al., 2014). Another limitation is that it
learns to recognize tasks by the difference in the context of each
task. Therefore, there is a requirement that each task possesses a
sufficiently different context.

5.2.2. Experimental context

The UML algorithm has been evaluated in multiple ML do-
mains, including classification (Basu et al., 2017)), embodied
agents (Brna et al, 2019; Brown et al,, 2022), and reinforce-
ment learning. Under DARPA L2M, UML was evaluated using an
embodied agent. Data was generated using AirSim (Shah et al,,
2018) in a custom Unreal Engine 4 environment. The classifi-
cation tasks were split into two “Asset Groups” loosely corre-
sponding to notional municipal interest groups: EMA (Emergency
Management) vehicles and DOT (Department of Transportation)
traffic control assets (e.g., stop signs, traffic lights, etc.). Each
asset group contained 2-3 individual classes of objects. The
classification problems associated with each asset group formed
tasks, and variants of those tasks were generated using different
environmental conditions (e.g., time of day).

Experiments were conducted on permutations in ordering of
these task variants, with a full evaluation across tasks being
conducted after each exposure to a task.

5.2.3. Experimental results

Table 8 shows aggregate results across all such runs generated
using the SG-Teledyne system, which matched or exceeded the LL
threshold value in all 5 metrics across the collected runs. These
metrics enabled us to evaluate the performance of individual
components in the system and their impact on LL capabilities.
In an ablation experiment, TDY showed that the memory con-
solidation technique in one of the system components (C5) was
responsible for a significant gain in FT, but at the expense of PM,
while other metrics remained relatively constant. These metrics
enabled a deeper analysis and more complete understanding of
the impact of this component as it relates to the LL characteristics.

5.3. System group HRL - CARLA

5.3.1. System overview

This section describes a case study on the STELLAR, the LL
system developed by SG-HRL. STELLAR is a general-purpose,
scalable autonomous system capable of continual online RL that is
applicable to a wide range of autonomous system applications, in-
cluding autonomous ground vehicles (both on-road and off-road),
autonomous undersea vehicles, and autonomous aircraft, among
others. It consists of a deep convolutional encoder that feeds
into an actor-critic network and is trained using Proximal Policy
Optimization (Schulman, Wolski, Dhariwal, Radford, & Klimov,
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2017). Importantly, STELLAR integrated 11 innovative compo-
nents that solve different challenges and requirements for LL. It
employed Sliced Cramer Preservation (SCP) (Kolouri, Ketz, Soltog-
gio, & Pilly, 2020), or the sketched version of it (SCP++) (Li et al.,
2021), and Complex Synapse Optimizer (Benna & Fusi, 2016)
to overcome catastrophic forgetting of old tasks; Self-Preserving
World Model (Ketz, Kolouri, & Pilly, 2019) and Context-Skill
Model (Tutum, Abdulquddos, & Miikkulainen, 2021) for backward
transfer to old tasks as well as forward transfer to their variants;
Neuromodulated Attention (Zou, Kolouri, Pilly, & Krichmar, 2020)
for rapid performance recovery when an old task repeats;
Modulated Hebbian Network (Ladosz et al., 2022) and Plastic Neu-
romodulated Network (Ben-Iwhiwhu, Dick, Ketz, Pilly, & Soltog-
gio, 2021) for rapid adaptation to new tasks; Reflexive Adap-
tation (Maguire, Ketz, Pilly, & Mouret, 2021) and Meta-Learned
Instinct Network (Grbic & Risi, 2021) to safely adapt to new tasks;
and Probabilistic Program Neurogenesis (Martin & Pilly, 2019)
to scale up the learning of new tasks during fielded operation.
More details on the precise effect of each of these components
are beyond the scope of this paper; however, this case study
outlines how the integrated system dynamics demonstrated LL
using the proposed metrics, and how these metrics shaped the
advancement of the SG-HRL system.

5.3.2. Experimental context

STELLAR was evaluated within the CARLA driving simula-
tor (Dosovitskiy et al., 2017) in both the Condensed and Dispersed
LL Scenarios (described in Section 3.2), which were each based on
three tasks with two variants per task. The agent was required
to drive safely from one point to another within a designated
lane (either correct or opposite) in traffic. It was given positive
rewards in each time step (every 50 ms) for distance traveled to-
wards the destination and increasing speed within the designated
lane. It was given negative rewards for distance traveled away
from the destination and decreasing speed within the designated
lane, as well as any collision. A given episode was terminated
when the destination was reached, a maximum number of time
steps had elapsed, or there was any collision. SG-HRL employed
two vehicle models (Audi TT [car], Kawasaki Ninja [motorcycle])
with built-in differences in physical parameters such as for the
body (e.g., mass, drag coefficient) and wheels (e.g., friction, damp-
ing rate, maximum steering angle, radius). The vehicle models
also differed in camera orientation (0° yaw for car vs. 45° yaw
for motorcycle).

The same architecture as the STELLAR systems was used to
train the STEs to saturation, thereby characterizing the ability of
the STEs to learn each task. SG-HRL collected 10 STE runs per task,
which were all initialized with the same “ready-to-deploy” state
as the STELLAR system.
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LL performance of the STELLAR system in the Condensed and Dispersed scenarios within the CARLA
driving simulator. Mean =+ standard deviation values for each metric are shown across n = 33 and
n = 30 lifetimes, respectively, comprising random permutations of tasks and variants.

Configuration PM FT BT RP SE
Condensed (n = 33) —0.24+5.73 10.02+4.92 1.19+0.26 2.49+1.31 10.02+ 13.88
Dispersed (n = 30) —2.21+3.16 10.71+2.78 1.10+0.15 1.85+0.71 6.25+3.12

Table 10

Summary of the effects of reducing SCP++ stiffness on the Dispersed scenario for the STELLAR
system. Dispersed results (n = 15) represent a subset of data shown in 9. SCP++ stiffness reduction
(n = 15) results from matched lifetimes. All results show mean =+ standard deviation.

Configuration PM FT BT RP SE
Dispersed —2.73+271 996+2.16 1.15+0.18 1.57+0.49 7.07+3.44
Reduced SCP++ stiffness 0.26 &+ 3.84 9.52+297 1274029 2.07+044 3.23+1.42

5.3.3. Experimental results

Given that the STELLAR system integrates the 11 components
listed above with the specific intent to achieve various LL capa-
bilities, SG-HRL expected the metrics to reveal such properties of
the system. Indeed in both Condensed and Dispersed scenarios,
the STELLAR system exceeded the threshold for LL for 4 of the 5
metrics, with only a non-catastrophic degradation in PM of old
tasks through the lifetimes (Table 9).

Further, as shown in Table 9, SG-HRL found that the perfor-
mance was not significantly different between the Condensed and
Dispersed scenarios. However, all the LL Metrics were numeri-
cally lower for the Dispersed scenario, with the decrements being
significant at « = 0.1 for two metrics; namely, FT (p = 0.089,
Mann-Whitney U Test) and RP (p = 0.038, Mann-Whitney U
Test). Potential explanations for the across-the-board numerical
decrements in the metrics include: the increased cost of switch-
ing among tasks in the Dispersed scenario, greater interference
from other tasks in the intervals between learning blocks for
a given task, or the lack of any dependence of the strength
of the consolidation mechanisms (SCP++, Self-Preserving World
Model) on the performance levels acquired in the preceding
learning blocks. In the Dispersed scenario, task performances in
earlier learning blocks are not expected to be high due to shorter
durations. In this case, strong preservation of sub-optimal task
representations would interfere with subsequent learning blocks.
Thus, the hyperparameters that control the degree of preservation
should be reduced to improve all the LL Metrics.

The STELLAR system requires considerable analysis to assess
how each component contributes to various LL capabilities. This
case study represents one such analysis to illustrate the impact
on the metrics. SG-HRL hypothesized that stronger consolidation
mechanisms would reduce LL in the Dispersed scenario which,
unlike the Condensed scenario, has task repetitions. SG-HRL also
predicted that strong consolidation of sub-optimal task repre-
sentations after each task would negatively impact subsequent
learning blocks. Data was collected for the Dispersed scenario
with the SCP++ stiffness coefficient reduced to 10% of the nominal
value (Table 10). As expected, SCP++ stiffness reduction resulted
in improvements in 3 of the 5 metrics; namely, PM (from —2.73
to 0.26), BT by about 10%, and RP by about 30%. But the manipula-
tion also caused decrements in the other 2 metrics; namely, FT by
about 4% and SE by about 50%. Of these effects, the improvement
in RP (p = 0.022, Wilcoxon Signed Rank Test) and the decrement
in SE (p = 0.0026, Wilcoxon Signed Rank Test) were statistically
significant, and the improvement in PM (p = 0.055, Wilcoxon
Signed Rank Test) was significant at « = 0.1. More work will be
needed to understand the dynamics of LL for task repetitions in
the context of the multi-component STELLAR system. It may be
the case that the degree of consolidation (structural regulariza-
tion, interleaving of explicit/generative replays) should be further
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contingent on task learning, and SG-HRL anticipates testing this
in the future.

5.4. System group argonne - L2Explorer

5.4.1. System overview

This section describes a case study on the development of the
LL system led by SG-Argonne. The system’s design was inspired
by the brains of insects and other small animals with the mo-
tivation of developing systems capable of LL that can operate
effectively at the edge (Yanguas-Gil et al.,, 2019).

In particular, it focuses on the use of: (1) modulatory learning
and processing, which control how information is processed, as
well as when and where learning takes place (Daram, Yanguas-
Gil, & Kudithipudi, 2020); (2) metaplasticity models, which mod-
ulate synaptic plasticity rules that keep either a memory or an
internal state in order to preserve useful information (van de Ven
& Tolias, 2019b); (3) broadly trained representations, which apply
transfer learning to minimize what the system needs to learn
during deployment, and (4) structural sparsity, which minimizes
the impact of forgetting by curtailing gradient propagation in
stochastic gradient descent methods (Madireddy, Yanguas-Gil, &
Balaprakash, 2020).

In the context of RL, Argonne adapted these principles to
propose two types of algorithms. First, they proposed a lifelong
deep Q learning algorithm (Mnih et al,, 2013) aimed at solving
problems where a consistent policy is learned across a series
of independent tasks without specific task labels. Second, they
proposed a lifelong cross entropy algorithm, which applies to
situations involving short, potentially contradictory tasks, where
no prior information is available that would lead to accurate and
consistent computations of the value of each state. For the case of
deep Q learning, Argonne’s system realizes short term and long
term memory buffers by implementing periodic shuffling. The
size of the buffers is kept within the length of a single task.

5.4.2. Experimental context

Over the course of the project, SG-Argonne worked in two
different environments. The first and more complex environ-
ment was L2Explorer (Johnson et al., 2022), a first-person point
of view environment built on top of the Unity engine (Juliani
et al, 2018) that allows the creation of tasks involving open-
world exploration. Argonne designed a series of tasks emphasiz-
ing different aspects of a complex policy involving target iden-
tification and selection, navigation through obstacles, navigation
towards landmarks, and foraging objects while avoiding hazards.
The same tasks were implemented in Roundworld, a lightweight,
first-person point of view environment developed by Argonne
that comprises a simpler set of objects and visual inputs, allowing
us to evaluate the algorithm across two different environments.



M.M. Baker, A. New, M. Aguilar-Simon et al.

Table 11
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Evaluation of the lifelong deep-Q learning algorithm in two different environments with varying

complexity levels.

Environment Scenario Agent PM FT BT RP SE
L2Explorer Condensed M18 —-4+11 46+15 23+16 12+06 12=+06
Roundworld  Condensed M18 15+£10 42+16 27+£21 5+£34 58+ 1

5.4.3. Experimental results

Table 11 shows the performance of the deep Q learning al-
gorithms in the two different environments. In both cases there
is a consistent evidence of both forward and backward transfer
across tasks in the proposed scenario. One of the characteristic
aspects of these environments is their task variability, both by
design and driven by the open world nature of the environments.
In the context of RL, this leads to large fluctuations in the values
of PM and BT for both environments, with standard deviations
more than one order of magnitude higher than those typically
observed in image classification scenarios. On the other hand,
both scenarios show values of FT, RP, and SE that are consistent
with the presence of LL behaviors.

Having access to different metrics allows for deeper insight
into variations in the system’s performance. Overall, the results
obtained point to a complex picture in which the same Lifelong
Learning system can exhibit different behavior depending on how
well it can transfer information during its lifetime. However,
further studies are needed in order to fully explore how the
behavior of the agent depends on task sequence and its ability
to effectively transfer relevant policies across tasks.

5.5. System group SRI - StarCraft I

5.5.1. System overview

This section describes a case study on the development of the
LL system led by SG-SRI. The system is targeted at real-time strat-
egy games where task change occurs naturally and throughout
game play. For example, a competent Starcraft-2 (SC2) player is
able to adapt their tactics to different enemy units. This section
applies lifelong RL techniques to micromanagement tasks in SC2.
This case study shows that the proposed metrics (a) validate that
the negative effects of task drift are mitigated, (b) drive algorithm
development to improve metrics, and (c) provide insights into
software integration of multiple continual learners.

Components of the SG-SRI system (Daniels et al., 2022; Sur
etal., 2022) include: (i) WATCH (Faber, Corizzo, Sniezynski, Baron,
& Japkowicz, 2021, 2022), a Wasserstein-based statistical change-
point detection that detects changes in the environment; (ii)
Self-Taught Associative Memory (STAM) (Smith, Taylor, Baer, &
Dovrolis, 2021), to generate feature maps from RGB images in a
continually updated manner; (iii) Danger detection, using the
continual learner deep streaming linear discriminant analysis
(DeepSLDA) (Hayes & Kanan, 2020); (iv) Compression, using the
REMIND algorithm (Hayes, Kafle, Shrestha, Acharya, & Kanan,
2020) that uses Product Quantization (PQ); and (v) Sleep phase,
implemented using the Eigentask framework (Raghavan, Hostetler,
Sur, Rahman, & Divakaran, 2020).

5.5.2. Experimental context

The tasks are defined using different SC2 maps called
“minigames* (Vinyals et al., 2017). The system is evaluated on
the minigames of DefeatRoaches, DefeatZerglingsAndBanelings and
CollectMineralShards. To each task, SG-SRI added a variant of the
task that spawns two groups of enemies on each side of the map,
creating a total of 3 tasks and 2 variants each. In the case of
Collect, the variant has fog enabled (partial observability). SG-SRI
notes that combat related tasks (Defeat) are most similar to each
other (due to their reward structure) and represent 4 out of 6
tasks, so high forward transfer (jumpstart) is expected even for
the single task learner.
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5.5.3. Experimental results

Table 12 shows evolution of the Eigentask algorithm driven by
the proposed LL Metrics, with the current version of the system
(denoted M18) achieving the criteria of lifelong learning in all
but one metric (PM) in the condensed scenario and achieving
the criteria of LL in several metrics for the alternating scenario.
These versions, denoted as M12, M15, M18, correspond to the
evaluations performed under L2M. These versions primarily differ
in the generative replay architecture. The M12 model connects
the autoencoders and policies one after another, whereas M15
uses a two-headed architecture using a common latent space
and M18 uses hidden replay. In both scenarios, the metrics show
that the M18 version that uses hidden replay is a significant
improvement. Of note, the reported metrics have significantly
lower variance with the M18 model compared to the M15 and
M12 versions for the condensed scenario.

To study the effect that change detection and compression
had on the overall performance of the LL system, SG-SRI per-
formed an ablation experiment against the baseline Eigentask
component in two different scenario types. PM and BT values are
compared in Table 13, showing that triggering the sleep phase
by statistical changepoint detection results in significantly higher
PM compared to triggering it by a hand-coded schedule. This
demonstrates the importance of task detection in LL systems in
the task-agnostic setting and also shows that the compression
of wake phase observations results in significantly higher PM.
This ablation experiment demonstrates how the metrics shed
insight on the impact of various system components during the
development of the SG-SRI LL system.

5.6. Summary of case studies of systems demonstrating LL

In this section we have reviewed five System Group case
studies, all of which operated in different environments and
employed different algorithms. Each of them used the suite of
LL Metrics to inform their system development and evaluate
whether their systems demonstrated the Conditions of Lifelong
Learning in various experiments. In Table 14 we see that across
all of the System Groups, the Lifelong Learning thresholds were
met or exceeded for 52 out of 90 metrics, with Performance
Maintenance only meeting the LL Threshold values in 3 of the 18
configurations compared to 13 configurations for Forward Trans-
fer. This is unsurprising given that Performance Maintenance and
Forward Transfer represent different aspects of the well-known
performance trade-off between stability and plasticity, which we
discuss further in Section 6.

6. Discussion

In this work, we have proposed and investigated a suite of
domain- and technique-agnostic metrics to enable a systems-
level development approach for evaluating Lifelong Learning sys-
tems. Such an approach is critical to supporting the
multi-objective nature of Lifelong Learning (LL) system devel-
opment, especially because increasingly complex solutions are
required to advance the state of the art towards LL. A strength of
our approach is that it simultaneously considers and quantifies
varied capabilities of LL systems, rather than focusing on any
single aspect of performance. By using the full suite of metrics
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Table 12
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Evolution of the SRI-led LL system guided by the proposed metrics. Pairwise scenarios are averaged

over 12 lifetimes.

Scenario Agent PM FT BT RP SE
M12 -370+25 115+ 0.06 100+ 0.13 091+ 0.13 12.22 + 4.97
Condensed M15 —5.68 +£5.04 142 +0.25 1.14 £0.28 1.18 £0.19 19.37 £ 5.76
M18 —-3.05+ 176 142 £0.11 10+ 0.03 117 £0.11 16.18 £5.19
M12 -744 +£6.19 1.18 £0.67 088 £ 0.14 0.80 + 0.14 4.74 &+ 2.27
Alternating M15 —-882 +£7.95 1.13 £ 0.57 0.80 +0.19 0.90 + 0.11 7.11 £ 3.52
M18 —-6.13 £7.31 185+ 138 087 £0.27 091 +£0.13 5.89 &+ 3.19
Table 13

Ablations comparing system components on Performance Maintenance and Backward Transfer. The
standard error is mentioned in parenthesis (4). Other metrics are omitted for brevity.

Agent Performance Maintenance Backward Transfer
Condensed Pairwise Condensed Pairwise
Single Task Learner (STL) —341 (+£1.7) —82 (+6.54)  1.17 (£0.29) 0.85 (+0.21)
Eigentask (M15) —5.68 (£2.13) —5.40 (+4.9) 1.14 (£0.12) 0.84 (£0.12)
Eigentask + Change detection —0.53 (£4.49) —1.93 (£5.46) 1.02 (£0.33) 1.08 (£0.28)
Eigentask + Compression —3.67 (£3.92) —2.23 (£2.33) 1.13 (£0.42) 0.93 (£0.22)

Table 14

P value results of a one-tailed t-test to determine whether the value is significantly greater than
the LL Threshold value for that metric; t values are provided in Table F.19 of Appendix F. The LL
threshold values were met or exceeded for 45 out of 85 metrics. Note that the UPenn META-KFO
system was designed to speed up the rate of adapting to a new task, but this does not happen
until data for that task is seen, leading to unchanged task values and a standard deviation of zero

for a jumpstart formulation of FT.

SG Config PM FT BT RP SE

UPenn DF-CNN 1.20-107%2 2.67-107' 1.58-10"2 <107® <10~
META-KFO <10-6 1.00 <10-6 <10-6 <10~
RL M12 5.65-10~2 4.01-10"' 4.07-10"' 283-103 4.31-102
RL M15 1.86-1072 3.02-107> 8.65-10"* <107 7.35-1072
RL M18 1.71-107" 7.02-1073 1.98-10"* <107° <10~

Teledyne C5 Ablated 3.68-1072 <1076 2.42-107" 1.01-1072 2.29.1073
UML 8.35-1073 <10°© 459-1073 4.96-1072 4.76-1073

HRL Condensed 5.90-10"! <1076 1.74-107* <107 432.107*
Dispersed 1.00 <107° 1.53-107* <107 <1076
SCP Ablation 4.00-10"" <107 2.00-1073 <1076 2.03-107°

Argonne  L2Explorer 1.07-107" <1076 6.31-103 1.26-10"' 1.26-107"!
Roundworld 1.48-107* 1.20-10° 8.57-1073 9.17-107* <10°¢

SRI M12 Condensed  1.00 228-107% 546-10"' 9.81-10"' 4.09-107°
M15 Condensed  1.00 <10-6 1.10-10% 6.88-10> <1076
M18 Condensed  1.00 <1076 2.73-107" 266-10"° <10°°
M12 Alternating  1.00 1.55-10"" 9.98-10"' 1.00 1.25-107°
M15 Alternating  1.00 1.32-107"  1.00 1.00 <107
M18 Alternating 9.93-10~' 2.82-1072 9.80-10"' 9.86-10"' 1.76-107*

to evaluate the System Group case studies, we were able to
identify and study the performance trade-offs inherent to LL.
Next, we discuss known performance trade-offs seen with these
metrics, propose a new trade-off, and make recommendations for
creating additional metrics for future investigations based on the
accomplishments of the DARPA Lifelong Learning Machines (L2M)
program.

6.1. LL performance trade-offs

We have argued that LL is complex and cannot be character-
ized by a single scalar value. This has motivated our development
of a suite of metrics.

Designing an LL system must consider the following trade-
offs:

1. Stability vs. Plasticity: Should a system stably maintain all
information it has encountered up to some point, even if
that results in less flexibility to adapt to changes?

. Optimal Performance vs. Computational Cost: Should a sys-
tem be optimized for maximum performance, even if that
comes at a high computational cost?
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3. Sample Efficient vs. Robust Learning: Should a system pri-
oritize a fast performance gain, even if it is less robust to
noise or changes in the environment?

The most widely discussed trade-off in LL literature is the
relationship between Stability, where a system has reliable or
low-variance performance, and Plasticity, where a system is flex-
ible and adaptable to changes (see, e.g., discussion in Grossberg,
1988; Mermillod, Bugaiska, & Bonin, 2013). Performance Mainte-
nance (PM) is a measure of stability, since it assesses how well
a system retains task knowledge gained over the course of its
lifetime; forward transfer (FT) is a measure of plasticity, as it
assesses how well a system can apply knowledge from one task
to another. In some cases, like the stiffness parameter experiment
examined in SG-HRL's case study (see Table 10), there is an ex-
plicit parameter that can be tuned, depending on the needs of the
particular application, to prioritize reliability or flexibility. This
results in somewhat expected behavior changes. In other cases,
the trade-off is seen as a byproduct of targeting improvements in
transfer, like in SG-Teledyne’s addition of a memory consolidation
component (see Table 8), which manages the system’s stored
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knowledge. This addition caused marked improvement in FT -
a measure of Plasticity - but at the cost of PM, a measure of
Stability.

It is understood that LL systems operating in diverse envi-
ronments will have varied design considerations; the availability
or restriction of computational resources is one such factor. This
can result in an intentional decision to choose system com-
ponents that are less performant but cheaper computationally.
While this discussion surfaces in the literature, particularly with
regard to deployment considerations, we chose not to measure
the computational resource expenditure for these evaluations.
Instead, we allowed system groups to make their own assess-
ments of progress in their domain. Even if an LL system is initially
very computationally intensive, it may be possible to develop
a more efficient system in the future. In non-LL, existing tech-
niques for managing model complexity include: model distilla-
tion (Gou, Yu, Maybank, & Tao, 2021; Hinton, Vinyals, & Dean,
2015), intelligently-designed model scaling strategies (Tan & Le,
2019), and investigations of broad scaling phenomena (Kaplan
et al,, 2020). These approaches could potentially be extended to
LL; in Hayes et al. (2020), SG-SRI built on a technique called
progress & compress (Schwarz et al., 2018). We see the addition
of a metric to standardize the measurement of resource utiliza-
tion as an excellent extension of this suite, and we summarize
some initial efforts in this area in Appendix G. We collect our
comments, observations and recommendations for the design and
use of such a metric in Section 6.2.

We hypothesize that, as more progress is made to develop LL
systems, more of these system design/performance trade-offs will
be discovered. One trade-off that we observed in the SG-UPenn
case study (Section 5.1) was between sample-efficient and robust
learning. The system’s robustness to task or parameter changes
was measured using the PM metric, and efficiency was measured
via the sample efficiency (SE) metric. We can imagine a situation
where a system may have an extremely robust representation of a
wide range of tasks - along the lines of a subject matter expert for
a particular problem space - but perhaps amassing that knowl-
edge required significant training data and time. Conversely, a
system may demonstrate aptitude for rapid mastery, but lack the
broader experience to capably handle the details or nuance of
edge cases.

The trade-off, then, may be that in some circumstances, op-
timizing for robustness comes at the cost of learning efficiency
and vice versa. This goal is particularly relevant in data-poor
contexts or where the cost of training is high; both of these
apply in many robotic applications (like the SG-UPenn service
robot setting). The LL system the SG-UPenn team built to address
these challenges includes modularized components and factor-
ized models, an approach that is well-suited to these conditions.
Correspondingly, we see that when modifications were made
between M15 and M18 systems to target gains in PM (Table 7),
the resulting M18 results improved in PM, but at the cost of
a lower Sample Efficiency. This demonstrates a consequence of
the opposing aims of Robust and Sample Efficient learning. We
imagine that this trade-off may not be applicable to problems
with low-cost or abundant training data. However, it is apparent
in this particular example, because SG-UPenn’s system design is
intended for eventual transfer to service robot settings.

6.2. General considerations for formulation and use of metrics

One of the challenges of measuring LL performance is eval-
uating over the space of possible task sequences. Because these
tasks may require orthogonal skills, it is an immense challenge
to quantify a priori what ideal or even ‘good’ performance looks
like for such a sequence. The standard we chose for determining
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thresholds for LL, which can certainly over-penalize an LL sys-
tem, was perfection - perfect transfer between tasks and perfect
memory of a task over the entire duration of a scenario. Over
the course of the agent’s lifetime, any interference, forgetting, or
performance not equal to or better than an STE was considered
to be below the threshold for LL. Meeting this threshold for
all lifelong learning conditions is likely to be difficult in real-
world conditions. Determining an appropriate upper bound for
performance on a sequence of tasks is a fundamental challenge -
one that requires leveraging information like task difficulty and
task similarity (and thus task transferability) - and was out of
scope for this work. Below we outline some specific recommen-
dations for metric design, some of which pose particularly unique
challenges in the LL domain.

1. Do not design metrics that rely on idealized perfor-
mance curves
Despite knowing that we lack the ability to quantify what
good performance is for a given sequence of tasks, there
were some unanticipated difficulties in using the metrics
related to some key assumptions about the nature and
behavior of LL systems:

e Assumption 1: Learning a particular sequence of tasks is

possible.
When we develop metrics to evaluate any machine
learning system, we are often doing so based on an
implicit assumption that a task is learnable by the sys-
tem or, at least, that the system is capable of demon-
strating some performance gain over the course of its
learning experiences (LXs). In the absence of baseline
approaches on the same sequence of tasks to com-
pare to, we may not even be able to say whether
a sequence of tasks is learnable at all without run-
ning a cost-prohibitive number of experiments. In
fact, the idea of learnability in the Lifelong Learn-
ing context has only recently been investigated in
works such as Geisa et al. (2021), who explores the
relationship between weak and strong learnability
for both in-distribution (i.e. non-LL) and out of dis-
tribution problems. As the theory of learnability for
Lifelong Learning is still developing, we must design
our metrics acknowledging the potential for systems
to demonstrate no learning on some tasks and, impor-
tantly, address whether or not those runs should be
considered in computing the LL metrics. The results
shown in Section 5 included all runs, independent of
whether tasks demonstrated learning.

e Assumption 2: In learning a sequence of tasks, perfor-
mance on a previously learned task may drop, but it can
and will “bounce back” when the task is shown later.
This assumption drove the design of the Performance
Recovery metric, which in theory was designed to
measure whether an LL system’s performance recov-
ers after a change is introduced to its environment.
To compute Performance Recovery, we first calculated
the number of learning experiences the system re-
quired in order to get back to the previously attained
value after a drop (recovery time), and computed the
change in this number of experiences over the course
of the system'’s lifetime (i.e., fitted a line to the re-
covery times and computed the slope of the line).
The idea was that a system demonstrating LL would
adapt more quickly to changes as it amassed more
experience.

Of note, Performance Recovery could only be assessed
for scenarios with many task repetitions. The use
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of this metric proved to be problematic, in partic-
ular because some systems would fail to “bounce
back” sufficiently. This dependency of final system
performance on initial LXs has been observed in the
broader deep reinforcement learning (RL) space (Nik-
ishin, Schwarzer, D’Oro, Bacon, & Courville, 2022),
where it was aligned with the concept of “primacy
bias” from human cognition studies (Marshall &
Werder, 1972). Beyond this binary challenge of a sys-
tem returning to previous performance or not; given
the variability in the application-specific measures, it
also remained difficult to discern when performance
has actually “bounced back” and to what should the
new performance be compared, and how should we
handle noise in these measurements? (Dror et al.,
2019) recommends the use of the Almost Stochastic
Dominance test to mitigate the variability issue we
faced, but we were unable to implement this due
to the computational expense associated with this
analysis.

e Assumption 3: We can identify when a task has been

“learned”, or at least, when the system performance has
saturated.
Computing whether a system’s performance has sat-
urated (and to what value) is not straightforward, in
part due to the heteroskedastic nature of the learning
curves. There is unpredictability to system learning,
and coupling this with noisy learning makes this com-
putation even more of a challenge. In addition, the
notion of “saturation” may be ill-defined, particularly
when the distribution of an environment within a
learning block is nonstationary. In the case of this
suite of metrics, Sample Efficiency explicitly relies
on the computation of a saturation value, and Per-
formance Maintenance compares an average of the
most recent training performance to future evalu-
ation performances - with the implicit assumption
that a system has reached a stable, if not maximal,
performance value at the end of a learning block.

In light of these challenges, we recommend designing an
assessment — even a simple performance threshold specific
to an environment - to determine whether a system has
learned and to lend insight into computed metric values.

. Do not avoid metrics that measure overlapping con-
cepts.

Due to some similarities in their formulation, we expected
some of the metrics (e.g. PM and BT, SE and RP) to be
strongly correlated. In practice, we found only weak posi-
tive correlations between those two metric pairs, as shown
in Table 15. We also found that SE and PM were weakly
negatively correlated, which supports our discovery of a
performance trade-off between these two metrics. The
strongest correlation across the metrics was between For-
ward Transfer and Relative Performance at p = 0.45. This
correlation makes sense in retrospect - a system which ex-
cels at Forward Transfer is likely to require fewer learning
experiences for a task (and thus have a higher RP score)
if it can benefit from another task’s learning experiences
as well. Even in the case of the most correlated metrics, it
was critical to have both measures since they offer an as-
sessment of a different LL condition and add an additional
perspective on assessing the whole system’s performance.
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two intentional choices when formulating and interpreting
the metrics. In their formulation, the LL thresholds for
the metrics are clearly delineated, giving a straightforward
interpretation — values above the threshold demonstrate
the corresponding condition of LL, and values below do not.
This was extremely useful for interpreting values and de-
termining whether a system demonstrated lifelong learn-
ing. Though we formulated the metrics such that larger
scores are better, this binary interpretation of each of the
metrics allowed for a systems level analysis of performance
rather than a specific focus on any one measure.

. Compare performance to an STE when possible

Overall, our most robust measure of LL was the metric that
baselined performance to a single task expert — Relative
Performance. Relative Performance offered insight into the
question of whether a system is demonstrating an im-
provement over previous attempts to do lifelong learning
versus simply assessing whether a system demonstrates
lifelong learning. This comparison to a benchmark can also
be used to indicate progress over previous approaches -
similar to an ablation experiment - but functions primarily
as a proxy for establishing an upper bound of performance
on any given task.

. Be cautious in estimating properties of data from noisy

reward function distributions

As discussed in Section 3.3, Reinforcement Learning sys-
tems can be especially noisy. To remediate some issues
that arise from computing values on noisy data, we prepro-
cessed the data by smoothing it and shifting the range to
exclude zero to avoid the vanishing denominator issue. In
light of the noise intrinsic to these environments described
by Agarwal et al. (2021), we recommend keeping metric
formulations simple. We also recommend being especially
wary of second order metrics, like Performance Recovery,
where noise can be compounded to the point of ineffec-
tiveness. We hope to reformulate Performance Recovery in
the future.

. Be cautious about application specific metric ranges and

their potential effect on ratios In initial formulations of
Forward and Backward Transfer, we compared the perfor-
mance before and after relevant task learning as a standard
ratio under the assumption that it was unlikely for a system
to achieve zero (or very small values) as an application
specific measure of performance. This assumption, unfortu-
nately, did not hold to be true. To address robustness issues
that arose in those circumstances from an infinitesimal
denominator, we added an alternative formulation of both
forward and backward transfer using the contrast function:

a—>b
a+b

where a and b represent a particular task performance ei-
ther before or after learning a new task. While qualitatively
similar to the ratio function, Ratio(a, b) = {, contrasts dif-
fer in that they are defined when b = 0. This ensures they
are well-defined in situations where application-specific
measures are or approach zero; while the stability is a
benefit, it can be less intuitive and therefore more compli-
cated to interpret. Due to this difficulty in interpretation,
we reported the ratio values in Section 5.

Contrast(a, b) =

3. Design metrics with clear interpretations based on the 7. Conclusion
LL thresholds.
In light of the difficulty of determining an upper bound for In this work, we argued that evaluating advances in Lifelong
an agent’s performance on a sequence of tasks, we made Learning is a complex challenge that requires a systems approach
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Table 15

Correlation analysis of values of different metrics. Despite expecting strong
correlations between PM and BT as well as SE and RP, these metric pairs were
only weakly correlated. We found that SE and PM were weakly negatively
correlated, which supports our discovery of a performance trade-off between
these two metrics.

Metric 1 Metric 2 Spearman Corr. p-value
Perf. Maintenance Forward Transfer 0.06 0.60
Backward Transfer 0.33 0.003
Relative Perf. -0.20 0.07
Sample Efficiency —0.25 0.03
Forward Transfer Backward Transfer —-0.09 0.44
Relative Perf. 0.45 0.00003
Sample Efficiency 0.01 0.93
Backward Transfer Relative Perf. —0.15 0.19
Sample Efficiency —0.16 0.14
Relative Perf. Sample Efficiency 0.36 0.001

to assessing performance and quantifying trade-offs, especially
since there are currently no universally accepted metrics for
Lifelong Learning. We presented the Conditions that an LL sys-
tem should demonstrate as a Lifelong Learner, and developed
a suite of metrics to assess those Conditions. We outlined a
method for calculating the metrics in a scenario, domain, envi-
ronment, and task-agnostic fashion to characterize capabilities
of LL systems. We demonstrated the use of the suite of metrics
via five case studies that used varied environments, illustrating
the strengths and weaknesses of each system using the metrics.
We discussed the quantification of three key performance trade-
offs present in the development of many LL systems, and made
recommendations for future metric development for LL systems.

Though the field of LL is nascent, methods and metrics for
comprehensive evaluation are a critical piece in realizing a future
with operationalized machine learning (ML) systems. As these
LL systems increase in complexity to address current limitations,
the challenge of evaluating performance and identifying strengths
and weaknesses will become both more difficult and more crucial,
especially in domains such as military operations or healthcare.
Using a consistent suite of metrics for evaluation of complex
systems in a domain- and technique-agnostic way enables a
complete tracking of progress across the entire field of LL.

Many challenges remain in evaluating LL systems, including
extending the computation of metrics across all lifetimes of a
system, adding additional metrics to consistently quantify the
computational cost trade-off, and formulating metrics that mea-
sure or account for relationships or properties of various tasks.
Our suite of metrics provides a basis for extensions that can
address these and other newly-discovered gaps.
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Appendix A. Terminology

Term Definition

Task Some non-trivial capability that the agent
must learn, and on which performance is
directly measured. A task should have
parameters for stochastic and structured
variation (sufficient to pose a challenging
learning problem), and should have some
notion of generalization. For example, in the
domain of sports, “Tennis” and “Badminton”
would be tasks.

Variants of a task are substantially different
versions of a task — different enough to pose
a significant learning challenge, and outside
of the range of stochastic variation. For
example, “Tennis on grass court during day”
and “Tennis on clay court at night” may be
considered variants.

A specific occurrence of a task that an agent
encounters. In the sports domain, “Tennis” is
a task, and an instance of Tennis would be a
single game of tennis, on a specific kind of
court, at a specific time of day and weather,
with specific initial conditions, and so on.

Task Variants

Task Instance

Learning A minimum amount of experience with a task

experience that enables some learning activity on the

(LX) part of the agent. A task instance can be a
single LX, or it might consist of multiple LXs.

Evaluation A minimum amount of experience with a task

experience that enables some demonstration of learned

(EX) activity on the part of the agent. During an
EX, the LL system is being evaluated at a
“frozen” state and no weight updates are
allowed.

Block A sequence of Experiences for a single
task/variant. May be a learning block (LB) or
an evaluation block (EB)

Lifetime A sequence of LBs and EBs encountered by

the agent once it is deployed. A lifetime starts
with the agent in a “Ready-to-deploy” state.
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Fig. B.5. Illustration of Condensed and Dispersed Scenario Types introduced in Section 3.2.

Term Definition

Lifelong A scenario characterizes a single lifetime for

Learning an agent. It consists of a set of tasks (or task

Scenario variants), any related parameterization, and
optionally, specifications on how the tasks
should be sequenced in the lifetime.

Evaluation An evaluation protocol is a complete

Protocol specification for getting statistically reliable

Lifelong Learning (LL) metrics. It consists of a

specification of pre-deployment training, one

or more scenarios, and how multiple lifetimes
(runs) are generated for each scenario.

Appendix B. Supplementary information about scenarios

B.1. Condensed and dispersed scenarios

We consider two key types of evaluation scenarios. Both con-
sist of an interleaving sequence of learning blocks (LBs) and
evaluation blocks (EBs) (see Fig. B.5). In the former, the Lifelong
Learning (LL) system encounters learning experiences (LXs) from
a specific task and improves itself. In the latter, the LL system en-
counters evaluation experiences (EXs) and is tested on how well
it has mastered tasks. Beyond the two types here, many other
variations are also devisable. The condensed scenario assesses
how well a system can retain performance on a wide variety of
tasks. In it, LBs for a given task variant occur only once in the
scenario, and LBs are chosen to be sufficiently long for the system
to attain mastery on that block’s task.

In contrast, the dispersed scenario evaluates how well a sys-
tem performs when the tasks it is exposed to change frequently.
In this scenario, there are three “superblocks” (defined as a single
permutation of task variants with shorter learning blocks, typi-
cally 1/3 the length of an LB in a condensed scenario). A given
task variant occurs exactly once during each superblock and each
superblock uses a different random permutation of task variants.

B.2. Example evaluation scenario

In Table B.16, we show how tasks and task variants can
be defined for two environments-SplitMNIST (Nguyen, Li, Bui, &
Turner, 2018; Shin, Lee, Kim, & Kim, 2017; Zenke, Poole, & Gan-
guli, 2017), and CARLA (Dosovitskiy et al., 2017) environments,
and in Table B.17, we define the application-specific measures
that assess LL system performance on these tasks. Our framework
of LBs and EBs is sufficiently general that we can represent
two diverse scenario structures (condensed and dispersed scenar-
ios), as well as two types of learning problems-classification for
SplitMNIST and reinforcement learning for CARLA. Task variants
can be defined by random (e.g., random brightness perturbations
for Variant-2 of SplitMNIST’s Task-1) or deterministic (e.g., fixed
rotations for Variant-2 or SplitMNIST’s Task-2) transformations.
In addition, experiences can be subsampled from a finite dataset
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Table B.16

as Condensed scenario)

An example of how to construct two tasks and associated variants from the
SplitMNIST and CARLA environments.

SplitMNIST CARLA

Task-1 Classify images as being either ~Task-1: Navigate from one
Oor1 point to another
e One LX is a minibatch of e One LX or EX is one
sixteen images sampled from a end-to-end navigation
training set sequence
e One EX is a minibatch of e Variant-1: There is little
sixteen images sampled from a traffic
test set e Variant-2: There is heavy
e Variant-1: Images are left traffic
unaltered e Variant-3: Navigation
e Variant-2: Images have their sequences take place at
brightness randomly perturbed nighttime
e Variant-3: Images have their
contrasts randomly perturbed

Task-2 Classify images as being either Follow a sedan for a specified
1or?2 period of time
e One LX is a minibatch of e One LX or EX is one
sixteen images sampled from a end-to-end navigation
training set sequence
e One EX is a minibatch of e Variant-1: It is raining
sixteen images sampled from a during navigation sequences
test set e Variant-2: The vehicle to be
e Variant-1: Images are left followed drives very quickly
unaltered e Variant-3: The vehicle to be
e Variant-2: Images are rotated followed is a semi-truck
90°
e Variant-3: Images are rotated
270°

Table B.17

An example of how to construct application-specific measures for tasks from
the SplitMNIST and CARLA environments.

SplitMNIST CARLA
Application-
specific e Task-1: ACC e Task-1: Total travel time,
measures (Lopez-Paz & Ranzato,  penalized by unsafe driving

2017)
o Task-2: §2, (Hayes,
Kemker, et al., 2018)

e Task-2: Average distance to
target vehicle during the
navigation sequence, penalized
by unsafe driving

(SplitMNIST) or from a more complex generator (CARLA). If de-
sired, similar tasks can use different application-specific mea-
sures (e.g., SplitMNIST’s tasks using both average task accuracy
(ACC) (Lopez-Paz & Ranzato, 2017) and £24; (Hayes, Kemker, et al.,
2018)).

Appendix C. Additional details on metrics

C.1. Notation for describing metrics and blocks

We introduce a compact set of notations to describe LL agent
lifetimes and the quantities they output, illustrated in Fig. C.6.a.
In general, a lifetime consists of N Learning Blocks. During each



M.M. Baker, A. New, M. Aguilar-Simon et al.

Neural Networks 160 (2023) 274-296

1-low_2-medium_example-1632933139-9850311

== —-/- / I
_— \ / I
w ! v I
D2/ \ I
/
g =B / | I
S 6o 7
£ 7\ I
8 / /7 \
|
9 4 / \
a0 G \ |
ik 4\ / \
/1, 4 \ 1
2 ’ y 4 \ I
[I 1 b : —— Task B
° BO GO yi P 4 \‘ = Task G
(a) 0 200, /' 400 ) 6(')0 ‘ i 800
/ / Experiences \
|
/ / Performance,Relative to STE \
1—10\*2—medlum_example—1632933139—9850311 \ ‘
100 f— **;‘l —— 100 f——= =
||[—— TaskB | i / — Task G ’_/_--
\ STE | ! STE | |
| E ]
80 4 ; H
‘ : 1 : 1
g | : : : :
Q ) 1 1 1
5 | H i H i
E wf ; ! i
g | : g | :
g | | ; | |
| : . | :
o1 : : :
\ i H 1
i ? | :
| E i |
20 T ; 20 5 i
[ i i i i
H I H H
1] S0 100 150 200 250 300 350 0 50 100 150 260 250 300 350

Experiences

Experiences

Fig. C.6. A notional lifetime containing two tasks, blue (B) and green (G). (a) The tasks alternate, and both are tested during evaluation blocks. The y-axis shows the
agent’s performance on tasks at each point during its lifetime. The x-axis counts the experiences of the lifetime. White shading corresponds to Learning Blocks, and

gray shading corresponds to Evaluation Blocks.

(b) Comparing the LL agent to single-task experts for the blue and green tasks (orange). Learning Blocks from the full lifetime are grouped by task and stitched

together to form a task-specific learning curve.
Source: Figure adapted from New et al. (2022).

learning block n, the agent is exposed to experiences from a single
task t(n) drawn from some larger set of possible tasks 7. Tasks
may reoccur within a lifetime, or they may appear only once or
not at all. After each Learning Block, an Evaluation Block occurs
in which the agent is tested on all tasks in 7.

A Block consists of a sequence of (Learning or Evaluation)
Experiences, and each Experience generates a single task-specific
metric (e.g., a classification accuracy, reward function value, or
binary outcome). These values must be preprocessed prior to cal-
culation of LL metrics — we recommend following the procedure
described in Appendix A of New et al. (2022), which is available
in Nguyen (2022b).

Ultimately, each Task t's performance in Learning Block n is
summarized by a sequence of values P;(n,t) = (P/(n,t, 1),...,
P;(n, t, £(n))), and each Task t's performance in the Evaluation
Block after Learning Block n is summarized by a scalar Pg(n, t).
Lifetimes are assumed to start with an Evaluation Block, yielding
initial performance scores Pg(0, t) for all t € T.

Baseline performance on a Task may be assessed by train-
ing a Single-Task Expert and an LL agent exposed to only one
task. Relative Performance and Sample Efficiency metrics com-
pare Learning Block performance of LL agents to STEs. We use
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Psre(n, t) = (Psre(n, t, 1), ..., Psi(n, t, £(n))) to denote the per-
formance in LX ¢ of the nth Learning Block of an STE trained on
task t.

C.2. Metric formulations

In this section, we present pseudo-code implementations of
each of the metrics described in Section 4. Our transfer metrics
(Algorithm 1 and Algorithm 2) use Ratios, but Contrasts may also
be used in their place (see discussion in Sections 4.3 and 6.2).

Our algorithms for metrics that consider data from single-
task experts — Relative Performance (Algorithm 3) and Sample
Efficiency (Algorithm 4) - consider a simplified setting. Specif-
ically, we assume that (1) for a given task, we have data from
only a single STE, and (2) for a given task, the learning block
lengths are the same across LL agents and STEs. The 12metrics
package (Nguyen, 2022b) offers options for handling data when
these assumptions are violated.
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Algorithm 1 Calculation of Forward Transfer.

Algorithm 4 Calculation of Sample Efficiency.

Require: Task set 7

Require: Evaluation Block Performances {P:(n,t)} for n
0,.,.N, teT

Ensure: ForwardTransfer

FTs = LearnedTasks = LearnedTaskPairs = ()
for Learning Blocks n =1, ..., N do
if t(n) & LearnedTasks then
LearnedTasks < LearnedTasks U {t(n)}
for Tasks t € T \ LearnedTasks do
if (t(n), t) & LearnedTaskPairs then
(t(n), t) < LearnedTaskPairs U {(t(n), t)}
Py, Py = PE(TI, t), PE(TI -1, t)
FTs < FTs U {Contrast(Py, P;)}
end if
end for
end if
end for
ForwardTransfer <— mean{FTs}

Algorithm 2 Calculation of Backward Transfer.

Require: Task set 7

Require: Evaluation Block Performances {P:(n,t)} for n
1,..,N, teT

Ensure: BackwardTransfer

BTs = LearnedTasks = LearnedTaskPairs =
for Learning Blocks n = 2, ..., N do
if t(n) & LearnedTasks then
LearnedTasks < LearnedTasks U {t(n)}
end if
for Tasks t € 7\ {t} do
if {t(n), t} & LearnedTaskPairs and t € LearnedTasks then
LearnedTaskPairs <— LearnedTaskPairs U {{t(n), t}}
Pn—l»Pn = PE(n -1, t)7 PE(nv t)
BTs < BTs U {Contrast(Py, P,_1)}
end if
end for
end for
BackwardTransfer <— mean{BTs}

Algorithm 3 Calculation of Performance Relative to a Single Task

Expert.

Require: Task set 7

Require: Learning Block Performances {P.(n,t,¢)} for ¢
1,..,¢4n),n=0,.,N, teT

Require: STE Performances {Psi(n, t, £)} for £ = 1, ..., £¢(n), n
0,.,N, teT

Ensure: RelativePerformance

RPs = ()

for Tasks t € 7N’ do o)
n

Dt e P10 €, 0)

PO Zf(:% Psre(n, t, £)

RPs < RPs U {RP,}

end for
RelativePerformance <— mean{RPs}

> Relative performances for each task

RP; <«

Appendix D. Statistical reliability

Statistical analyses can fail to recognize when two algorithms
evaluated on the same benchmark are the same algorithm (Colas
et al,, 2018). Varying approaches have been recommended to
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Require: Task set 7

Require: Learning Block Performances {P.(n,t,¢)} for ¢
1,..,¢n),n=0,...,.N,teT

Require: STE Performances {Psiz(n, t, £)} for £ = 1, ..., £(n), n
0,...N, teT

Require: Smoothing function Smooth, Window length w

Ensure: SampleEfficiency

SEs=0
for Task t € T do
> Concatenate all learning blocks for the current task t

> Sample efficiency scores for each task

Py car,r = concat(Py(n, t) : t(n) = t)
PstE car,r = concat(Pszg(n, t) : t(n) =t)
IsL,cat,tv IBSTE,cat,t = SmOOth(PL,cat,t)» SmOOth(PSTE.cat,t)

> Find saturation performance values and experience locations
SatVal(L, t), SatExp(L, t) = max P cat.¢, arg Max Py car t

SatVal(STE, t), SatExp(STE, t)
Max Pt cat ¢, arg Max Pse cat.c
SatVal(L, t) SatExp(STE, t)
SatVal(STE, t) SatExp(P, t) }

SEs < SEs U {

end for
SampleEfficiency < mean{SEs}

Algorithm 5 Calculation of Performance Maintenance.

Require: Task set 7

Require: Evaluation Block Performances {Pg(n,t, ¢)} for £
1,..,¢n),n=0,..,.N, teT

Ensure: PerformanceMaintenance

MVs(t)=@ forallt € T

> Maintenance Values

PMs =0 > Performance Maintenance scores
MRB(t) = —oco forallt € T > Most recent LB index for each
task

for Learning Blockn =1,...,N do

MRB(t(n)) =n
for Task t € 7 do
if MRB(t) > 0 and t # t(n) then
MVs(t) < MVs(t) U {Pg(n, t) — Pe(MRB(t), t)}
end if
end for
end for
for Task t € T do
PMs < PMs U {mean{MV(t)}}
end for
PerformanceMaintenance < mean{PMs}

mitigate this, including the use of the almost stochastic domi-
nance test (Dror et al, 2019) and performance profiles during
training (Agarwal et al.,, 2021).

In Fig. 1, we present a nominal LL scenario. An agent is sent
through a sequence of tasks; at the end of each lifetime, it
generates a set of LL metrics. This design suggests two questions:
(1) How should K (the number of repetitions) be chosen ahead of
time? and (2) How should metrics be aggregated across lifetimes
after the fact?

Reliably assessing the variability in the responses of the agent,
assuming the inherent variability of its inputs, requires assessing
performance of the agent over multiple lifetimes. We outline
a procedure based on guidance in NIST/SEMATECH (2012) and
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High level task descriptions used in the five case studies discussed in Section 5. Note that since
the UPenn group performed both classification and RL experiments, their tasks involved either

classifying or finding, respectively.

System Group Environment  Task Descriptions
UPenn (Section 5.1) Al Habitat Classify/Find Seating Furniture
Classify/Find Plumbing Furniture
Classify/Find Large Furniture
Teledyne (Section 5.2)  AirSim Classify Emergency Management Assets, low altitude
Drone Classify Emergency Management Assets, high altitude
Classify Dept. of Transportation Assets, low altitude
HRL (Section 5.3) CARLA Car navigation
Motorcycle navigation
Motorcycle navigation, opposite lane
ANL (Section 5.4) L2Explorer Identify targets

Navigation despite distractors
Forage specific resources

SRI (Section 5.5) StarCraft II

Collect Resources

Defeat Large Enemies
Defeat Small Enemies

similar to Colas et al. (2018) to determine the number of lifetimes
that need to be run, for a given Evaluation Protocol, to assess an
agent’s performance.

For a given evaluation protocol, let Y be the random variable of
values a metric can take, assumed to follow a normal distribution
with population mean and standard deviation ©« and o. We seek
to characterize a system’s performance by estimating . For an
estimator Y of Y (typically, the sample mean of a set of values of
the metric taken from multiple independent runs), we evaluate
the null hypothesis that the error in estimating |Y — | is no
more than some error threshold §. Our hypothesis of normality
is strong, but it is meant to enable easy and efficient estimation
of distribution properties, as well as assumptions that can be
checked in practice.

One option is to choose a threshold § based on the specific
Protocol. However, the space of potential protocols is vast, even
for a relatively small number of scenario tasks and agent con-
figurations, and there is no guarantee that the same threshold
will be informative across protocols. We follow common practice
and choose the error threshold to be defined as a multiple of the
standard deviation: § = ko. Thus, a procedure for determining
required sample size prior to training any agents is specified by
the choice of the multiple k, the type I error rate «, and the
type II error rate 8. We recommend, as a default, setting k =
1, = 0.05, and 8 = 0.1. This yields a suggested required sample
size of at least 11 runs. Evidence from works such as (Agarwal
et al.,, 2021) suggests this is likely an underestimate and so, if
computational resources and time allow, more data will be of
value.

With respect to the second question, we recommend two pro-
cedures for comparing the distribution of an agent’s metric values
to some threshold. The student t-test can be used to compare
raw distributions of metrics values. However, this approach can
be unreliable in the case that the values of a metric are highly
non-normal (from, e.g., outliers or skewness). In that case, a more
robust alternative is to binarize values by checking if they surpass
that threshold and performing a statistical test on that set of
binary values.

Appendix E. Summary of tasks used in SG case studies
See Table E.18.
Appendix F. T-test values for SG case study data

See Table F.19.
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Table F.19

T values from a one-tailed t-test to determine whether the value is significantly
greater than the LL Threshold value for that metric. Note that the UPenn META-
KFO system is designed to speed up the rate of adapting to a new task, but
this does not happen until data for that task is seen, leading to unchanged task
values and a standard deviation of zero for a jumpstart formulation of FT.

SG Config PM FT BT RP SE
Argonne  L2Explorer —131 8.65 293 1.20 1.20
Roundworld 5.20 6.93 2.80 4.08 16.63
HRL Condensed —0.23 1267 4.00 6.42 3.67
Disp —3.77 18.78 4.10 6.49 9.06
SCP Ablation 0.25 10.75 345 9.10 5.87
SRI M12 Condensed —5.13 8.31 —-0.12 -2.36 6.77
M15 Condensed —5.52 8.31 2.46 4.57 15.31
M18 Condensed —6.73 1531 0.62 5.72 10.95
M12 Alternating —4.66 1.05 —353 557 6.15
M15 Alternating —5.44 1.15 —5.09 —-4384 8.51
M18 Alternating —2.91 2.13 —-231 -252 5.09
Teledyne C5 Ablated 1.98 79.33  0.72 271 3.55
UML 2.82 72.01 3.15 1.80 3.13
UPenn DF-CNN —2.36 0.63 —2.24 22.00 29.41
META-KFO —8.20 NaN —7.99 2083 31.47
RL M12 —5.59 —0.28 026 —7.14 —2.52
RL M15 —-2.37 339 4.11 —1443 156
RL M18 0.99 297 5.21 —13.27 —18.79

Appendix G. Computational costs of lifelong learning

Different LL algorithms can potentially have different compu-
tational costs. For example, an algorithm with experience replay
might be more computationally expensive during deployment
than one that grew the network as needed. Unfortunately, it is
challenging to compare these costs across agents given differ-
ences in learning frameworks, distributed training, and environ-
ments. Instead, we attempted to get insight into CostOverhead,
the relative cost imposed by an LL system as it tries to preserve
and transfer learning across multiple tasks, compared to the same
algorithm being applied to just a single task (see Table G.20). For
instance, CostOverhead = 1.5 indicates that it takes 1.5x more
computational effort to process a single learning experience (LX)
during deployment (when learning multiple tasks) compared to
a single-task setting.

It should be noted that CostOverhead is a crude measure, with
several limitations: it does not distinguish between learning and
evaluation experiences, does not take overall performance into
account, and does not separately consider agent and environment
computation (for example, a complex 3D environment like AirSim
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Table G.20
Definition of CostOverhead. Note that RawCost and CostPerLX (both single and
multitask) are measured in seconds.

Raw Costmuln'msk

Elapsed time for a single lifetime
with multiple tasks, averaged
across the submitted runs.

RawCostsingletask Elapsed time for the single task
expert, trained to saturation.
CostPerLXmulitask — ___RawCost™Wask i cot per LX, for the
ostrer " Total Number of LXsmultitask L . P ’
multi-task lifelong learner
B ingletask "
CostPerLxsingletask — ___RawCost™ 8 Time Cost per LX for the

Total Number of LXssingletask 1
single-task expert

CostOverhead = CestPeriX™uriesk

ContPer L TEITasE Cost overhead of lifelong learning

may take more computational resources to render than StarCraft).
Even so, CostOverhead can provide useful insight. When applied
to preliminary versions of the LL algorithms developed by the
SGs, the CostOverheads ranged from 1.27 to 2.53, indicating that
some LL algorithms potentially had twice the multi-task overhead
of others. Notably, the CostOverheads are contained within a
small band of values, which is remarkable given the diversity of
environments, tasks and learning algorithms.
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