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Abstract. Ad hoc teamwork is the research problem of designing agents that can
collaborate with new teammates without prior coordination. This survey makes a
two-fold contribution: First, it provides a structured description of the different
facets of the ad hoc teamwork problem. Second, it discusses the progress that has
been made in the field so far, and identifies the immediate and long-term open
problems that need to be addressed in ad hoc teamwork.
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1 Introduction

Ad hoc teamwork (AHT) is defined as the problem of developing agents capable of
cooperating on the fly with other agents without prior coordination methods, such a
shared task and communication protocols or joint training. Designing an AHT agent is a
complex problem, but the underlying capabilities are crucial to enabling agents to take on
their designated roles in many practical domains. From service robots and care systems
to team sports and surveillance, agents need to reason about the best way to collaborate
with other agents and people without prior coordination. Research in AHT has been
around for at least 15 years [Rovatsos and Wolf, 2002, Bowling and McCracken, 2005],
and it was proposed as a formal challenge by Stone et al. [2010]:

“To create an autonomous agent that is able to efficiently and robustly collaborate
with previously unknown teammates on tasks to which they are all individually
capable of contributing as team members.”

Since then, hundreds of papers that include the phrase “ad hoc teamwork™ have been
published (464 according to Google Scholar at the time of writing this paper) and many
more address closely related problems under names such as “zero-shot coordination”
[Bullard et al., 2020, Hu et al., 2020]. Moreover, much of the work on personalizing
agents’ interactions with humans can be viewed as instances of AHT [Li et al., 2021].
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This survey seeks to make a two-fold contribution. First, it defines the AHT problem
by describing the underlying assumptions (Section 2.1), key subtasks (Section 2.2), and
the scope of the problem as considered in this paper (Section 3). Second, it surveys the
existing work in AHT in terms of the solution methods (Section 4) and the evaluation
domains that have been developed (Section 5), and discusses the open problems in the
field of AHT (Section 6).

Related initiatives. Several initiatives over the last decade have contributed to research
progress in AHT. In particular, between 2014 and 2017, the Multi-Agent Interaction
without Prior Coordination (MIPC) workshop series® held at AAAI and AAMAS confer-
ences facilitated discussions and presentations in AHT and related topics. The MIPC
workshop series was followed by a special journal issue [Albrecht et al., 2017] which
featured a collection of new research works in AHT. Moreover, the RoboCup Drop-in
Challenge was introduced to provide a platform to develop and evaluate AHT capabilities
in the context of soccer-playing robots [Genter et al., 2017]. However, to date there is no
comprehensive survey on AHT. We seek to address this gap in the literature and help
foster further research in AHT.

2 Background

This section provides a basic formulation of the AHT problem. It takes the original
challenge proposed in Stone et al. [2010] and describes it in terms of the inputs and
outputs, and the underlying assumptions (Section 2.1). It then describes the subtasks of
the problem based on issues addressed in relevant papers (Section 2.2).

2.1 Problem Formulation

The AHT problem focuses on training an agent to coordinate with an unfamiliar group
of teammates without prior coordination. In this work, we refer to the trained agent as
the learner. The learner’s teammates are assumed to be capable of contributing to the
common teamwork task, meaning that they have a set of skills that are useful for the task
at hand. Here we describe the inputs, outputs, and the underlying assumptions of this
problem.

Input. The inputs of the AHT problem are the teamwork task to be executed, domain
knowledge comprising a description of the domain/environment in which the task is to be
executed, a (possibly incomplete) list of attributes characterizing each agent (e.g., a set
of goals, perception, and action capabilities), a description of the learner’s abilities, and a
list of teammates. The agent attributes’ values might differ between each teammate—also
see first assumption below—and some teammates might be able to communicate with
each other.
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Output. The output of the problem is the learner, represented by a policy that determines
the action this agent should execute in any given state of the domain. Depending on the
agent’s sensors, actuators, and the available communication channels, this policy can
be deterministic or stochastic, static or adaptable, and might include ontic (physical)
actions and epistemic (knowledge-producing) actions, which in turn may contain verbal
or non-verbal communication.

Assumptions. Three key assumptions (i.e., claims or postulates) characterize the AHT
problem.

1. No prior coordination. The learner is expected to cooperate with its teammates
when the task begins without any prior opportunities to establish or specify mecha-
nisms for coordination. For example, it is not possible to prespecify the agents’ roles
or to have a joint training phase for all agents. The learner might know or assume
knowledge of a subset of attributes (e.g., current policies, individual goals) of some
subset of its teammates. This knowledge might be acquired from an expert who has
had prior interactions with the learner’s current teammates, and the assumptions
might be the result of generic models or rules based on past interactions in the target
domain. The learner’s current teammates might or might not be familiar with one
another before the current interaction. For example, in drop-in soccer (a spontaneous
soccer match where some or all of the team are strangers), a teammate might be
perceived to be a good striker because they are fast and the team can work around
this assumption even if they have not played with that specific player before.

2. No control over teammates. The learner cannot change the properties of the en-
vironment, and the teammates’ policies and communication protocols; it has to
reason and act under the given conditions. We distinguish between changing the
properties of the environment (e.g. modifying observability level) and acting in the
environment to change its state (e.g. picking up a box). Similarly, the learner might
influence its teammates’ actions, but this influence will be in accordance with the
pre-defined policy of the teammates. Moreover, teammates’ policies may support
learning or adaptation, but the learner cannot modify these abilities. Continuing
with the soccer example, teammates can learn to work better together with prac-
tice, but no teammate can impose their knowledge on the team before the game starts.

3. Collaborative. All agents are assumed to have a common objective, but some
teammates might have additional, individual objectives, or even completely different
rewards. However, these additional objectives do not conflict with the common
task [Grosz and Kraus, 1999]. In the drop-in soccer example, different teammates
may have incentives in their contract that encourage them to focus on different
skills, e.g., goal-scoring rewards for forwards or assist rewards for midfielders. The
difference in the individual objectives may result in situations in which an individual
agent may seem to be acting contrary to the team reward, but each agent in the
team is always acting to achieve the common objective. For example, although
passing frequently is considered very important to a team’s performance in a soccer
game, an individual teammate may choose to dribble forward because of a perceived
opportunity to score a goal.
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2.2 Subtasks in Ad Hoc Teamwork

Based on a survey of the existing literature, we identified four main subtasks that the
learner should be able to perform, although much of the existing work only focuses on
addressing a subset of these subtasks.

ST1: Knowledge representation. The learner requires a representation of the domain
knowledge. This includes knowledge about the environment (e.g., discrete or continuous,
static or dynamic, etc.), its capabilities, and knowledge about potential teammates
(e.g., similarity to past teammates, their theory of mind, etc.). These choices influence
the solution methods for the other substasks. Most of the attributes characterizing the
environment are common to all multi-agent problems. They can be presented in the
classical PEAS system [Russell and Norvig, 2021] and are not unique to AHT, so we do
not elaborate on these here.

ST2: Modeling teammates. The learner can leverage information about its teammates
to improve its decision making. Thus, a key subtask for the learner is to model the
information pertaining to teammates’ behavior (e.g., classifying teammates by type in
order to adapt to different teammates).

ST3: Action selection. The third subtask is the design of mechanisms used by the learner
to select actions once it has an estimate of its teammates’ behavior (observed or based
on models of teammates). Example methods for this subtask include planning methods
and expert policies that are learned or based on expert knowledge.

ST4: Adapting to changes. During interaction, the learner might receive new information
about its teammates, the environment, or task objectives. Based on this information, the
learner needs to adapt its behavior to improve coordination. This adaptation also includes
merging the models provided by teammates.

3 Boundaries of Ad Hoc Teamwork

Here we further define the scope of the AHT problem by describing factors that can be
considered within the basic problem formulation presented above, and by discussing
related research problems.

3.1 Variations of the Ad Hoc Teamwork Problem

We first describe additional factors that define the scope of AHT and influence the
subtasks described earlier.

Partial observability. Under conditions of full observability, each agent is aware of the
state of the environment, including the location of other agents. Partial observability
implies a higher level of complexity in knowledge representation as it introduces uncer-
tainty in certain parts of the domain state. Changing the observability level will affect
ST1 and thus the other subtasks described above.
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Open environment. Closed environments assume a fixed number of teammates [Rahman
et al., 2021]. Relaxing this assumption increases the problem complexity, as the learner
will also have to adapt to the changing number of teammates in the environment; this
will primarily affect ST2 and ST4.

Communication. Since the exploration of how communication can be leveraged to
improve team performance is an important area of research in AHT, we make a dis-
tinction based on whether there is any communication channel between agents. When
communication exists, it is sometimes presented as predetermined and known protocols,
such as the hints allowed in the game of Hanabi [Bard et al., 2020], which affects ST1.
If these protocols are unknown in the beginning of the interaction and need to be learned
during the task execution, it has an effect on ST3 and ST4.

Adaptive teammates. We make a distinction between work where the teammates learn
alongside the learner, or use policies that stay fixed throughout the learning phase of the
learner. Unlike multi-agent reinforcement learning (see Section 3.2), which supports joint
training for all agents in the team, AHT does not assume that the deployed teammates are
the same as those the learner might have trained with. Rather, adaptive teammates learn
by reacting to the learner’s policy using methods that are not known to the learner, thus
affecting ST3 and ST4. An example of such a setup is flocking, where the teammates
have a fixed policy, but their actions are directly influenced by the learner [Genter and
Stone, 2016].

Mixed objectives. While teammates are assumed to be collaborative, they can have
mixed objectives. Two types of scenarios arise depending on the objectives of the learner
and its teammates. In the first, the learner and the teammates have a perfectly aligned
objective (e.g., the reward functions of all agents are identical). In the second, while all
team members have a common goal, each agent might also hold individual goals as long
as these are not purely adversarial to the shared one. This factor extends the original
formulation in [Stone et al., 2010], is related to the third assumption in Section 2.1, and
will primarily affect ST2 and ST3.

3.2 Related Problems

In this section, we highlight the main differences between AHT and other related research
problems.

Multi-agent reinforcement learning (MARL). It refers to the use of reinforcement learn-
ing methods for jointly training multiple agents to maximize their respective cumulative
rewards while working with each other [Busoniu et al., 2008, Devlin and Kudenko, 2016,
Papoudakis et al., 2019]. AHT, on the other hand, assumes control over a single agent
(the learner) while teammates can have their own learning mechanisms, e.g., a robot
interacting with different human. Prior work has shown that the good team performance
of MARL methods often comes at the expense of poor performance when interacting
with previously unseen teammates [Vezhnevets et al., 2020, Rahman et al., 2021, Hu
et al., 2020]. MARL methods are thus not particularly well-suited to AHT.
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Ad hoc teaming. The objective is to learn coercive measures that may allow self-
interested agents with different skills and preferences to collaborate and solve a task. For
example, existing work has trained a manager to assign subtasks to agents based on their
skills while also incentivizing agents to complete their tasks [Shu and Tian, 2019]. In
contrast, the learner in AHT might incentivize its teammates to act in a certain way, but
cannot dictate the teammates’ behavior due to the lack of prior coordination.

Agent modelling. These methods infer attributes of teammates’ behavior such as beliefs,
goals, and actions [Albrecht and Stone, 2018]. Since inferring teammates’ behavior
is important for decision making in AHT (e.g., ST3 in Section 2.2), agent modeling
methods are useful for AHT. However, they can be used for a broader class of problems
and are not limited to (or necessarily indicative of) AHT.

Human-agent interaction. The task of creating agents that interact with previously
unseen agents has also been explored in the human-agent/robot interaction community.
In human-agent interaction, agents have to achieve their goals in the presence of hu-
man decision makers. As in AHT, it is often impossible to jointly train humans and
agents to coordinate their behavior; agents must instead find a way to coordinate with
previously unseen humans, e.g., by using implicit communication or acting in a legible
manner [Breazeal et al., 2005, Dragan et al., 2013].

Zero-shot coordination (ZSC). A special case of AHT where teammates’ behavior are
assumed to arise from a reward function that always provides identical rewards for every
agent is known as ZSC [Lupu et al., 2021, Hu et al., 2021, Bullard et al., 2020, 2021].
After training different populations of agents under the same fully cooperative setup, a
ZSC agent is evaluated by measuring its performance when cooperating with agents from
a different population. While ZSC introduced techniques relevant for AHT, there are
AHT problems where the controlled agent must interact with teammates whose reward
functions are different from its own.

4 Solution Approaches

As stated earlier, while existing methods for AHT often provide a functioning learner,
each method’s key contribution can often be mapped to one or more of the four subtasks
in Section 2.2. Here we elaborate on common solution methods for each subtask and
refer to representative literature.

4.1 Knowledge Representation

The representation of domain knowledge strongly influences the solution approach used
in the other subtasks. This information can be acquired from human experts (or expert
knowledge), prior knowledge of past teammates, or using self-play.

To support adaptation based on limited information, it is common to equip agents
with preconceptions of the likely behaviors or intentions of previously unseen teammates.
These preconceptions are based on prior experience with the task; this can be the agent’s
own experience or that of a human familiar with the task. Agent modeling techniques
can be used to represent the teammates [Albrecht and Stone, 2018].
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Type-based methods. The use of type-based methods is common in the AHT literature.
These methods represent prior experience with agents (in the target domain) by a set of
hypothesized types, where each type models an action selection policy. It is assumed
that new teammates encountered by the learner have behaviors specified by one of these
types.

A range of type representations have been explored. Early work explored a nested
representation of agents’ beliefs, where agents perform Bayesian updates to maintain
beliefs over physical states of the environment and over models of other agents [Gmy-
trasiewicz and Doshi, 2005]. It was also common to use hand-coded programs to repre-
sent types [Barrett et al., 2011, Albrecht and Ramamoorthy, 2013]. For approaches that
employ a learned type set, learned decision trees were a common representation [Barrett
et al., 2017]. More recently, latent type methods have been used which learn a neural
network-based encoder to map observations of teammates to an embedding of the agent’s
type [Rabinowitz et al., 2018, Xie et al., 2020, Rahman et al., 2021, Zintgraf et al., 2021].

There are three main approaches to specifying a hypothesized type space: (1) speci-
fication by a human expert; (2) learning from data; and (3) using reinforcement learn-
ing (RL) methods and access to the environment or an environment model. Barrett
et al. [2017] collect diverse behaviors by drawing their types from the output of an
assignment presented to a large number of student. Many methods attempt to generate
diverse behaviors in a population trained via RL, requiring only access to the target
task. They do so using methods such as genetic algorithms [Albrecht et al., 2015a,b,
Canaan et al., 2020], regularisation techniques [Lupu et al., 2021], and reward-shaping
techniques [Leibo et al., 2021].

Experience replay. Rather than encoding experience in explicit behavioural models,
experience replay methods store transition data in a buffer. Transitions observed dur-
ing an interaction are compared against the stored transitions to identify the current
teammate [Chen et al., 2020].

Task recognition. In methods based on task recognition, prior experience or information
provided by an expert is encoded as a library of tasks referred to as plays, macro actions,
or options [Sutton et al., 1999]. Tasks then encode prior experience as applicability
conditions, termination conditions, and high-level specifications of a sequence of low-
level actions [Wang et al., 2021].

4.2 Identifying Current Teammates

Once a representation is set, estimating the behavior of current teammates allows the
learner to determine a suitable behavior.

Type inference. Methods that represent teammates using types infer beliefs over the
hypothesized type space using a history of interactions of the learner with each team-
mate up to the current timestep. The dominant approach is to use a Bayesian belief
update [Albrecht et al., 2016, Barrett et al., 2017]. In such methods, prior beliefs about
the teammates’ types are updated using the history of interactions and a likelihood of the
types based on the history. It is also common to assume uniform priors across types and
type parameters [Albrecht et al., 2015a].
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Experience recognition. Rather than inferring types, some approaches attempt to mea-
sure the similarity of the current observations to that from earlier experience in a more
direct manner. PLASTIC-Policy [Barrett et al., 2017] compares the most recently ob-
served state transition to previously stored data. For each team they find the stored
transition with the closest state to the current state, and consider the next state observed
in that historical transition. They then measure the distance between that state and the
observed next state, and use this to compute the likelihood of the team. AATEAM [Chen
et al., 2020] takes a more sophisticated approach which uses prior experience buffers to
train one attention-based neural network per type, to identify agents from a trajectory
rather than a single transition.

Task recognition. For methods which represent prior knowledge as tasks, the learner
attempts to infer the current task being carried out by the teammate under consideration.
Wang et al. [2021] achieved this by assuming that the teammate was attempting to
complete hypothesized tasks and computing the extent to which the teammate’s observed
behavior is sub-optimal for that task. Melo and Sardinha [2016] consider a setting in
which agents both identify the current task and identify the teammate’s strategy, with the
teammate’s behavior subject to a bounded rationality assumption.

4.3 Action Selection

Given current knowledge about task and teammates, agents must decide which action to
take to maximize team return.

Planning. Many AHT approaches use planning methods to select actions. Some, such as
Bowling and McCracken [2005] and Ravula et al. [2019], use bespoke planning methods
suited to the specific task, and chosen by a human expert. Many approaches use the
more general Monte Carlo tree search (MCTS) planning procedure [Wu et al., 2011,
Barrett et al., 2014, Alford et al., 2015, Sarratt, 2015, Albrecht and Stone, 2017, Malik
et al., 2018, Yourdshahi et al., 2018, Eck et al., 2020]. The upper confidence tree (UCT)
algorithm [Kocsis and Szepesvari, 2006] for MCTS is often used due to its ability to
perform well when the branching factor is large, as is the case when multiple agents
are present. These MCTS-based methods require that types are represented by explicit
behavioral models to sample teammate actions during rollouts.

Expert policy methods. Selecting actions by choosing a policy from a set of expert
policies, and then acting according to the chosen policy. There are many ways in which
these expert policies can be obtained prior to the ad hoc interaction: they can be provided
by an expert, learned offline, using experience data [Chen et al., 2020, Santos et al., 2021],
or by online RL training given the task [Albrecht et al., 2015b]. One of the advantages
of expert policy methods over type-based planning methods is that they can handle
large or continuous state and action spaces, where MCTS approaches may struggle
[Barrett et al., 2017]. However, type-based planning methods are more appropriate
when the ad hoc team is likely to have a previously unseen composition, as type-based
methods can reason at the level of the types of individual agents. Also, creating expert
policies may be impossible when a large variation of situations are encountered. The
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E-HBA method attempts to achieve the advantages of both type-based reasoning methods
and expert policy methods by combining the two [Albrecht et al., 2015b]. The GPL
method [Rahman et al., 2021], suitable in open AHT problems, uses an action-selection
mechanism based on E-HBA .

Leading. Some works explicitly consider adaptive teammates, where a learner’s choice
of action affects its teammates’ behaviors. Works such as Agmon et al. [2014] assume
teammates employ a known best response strategy, and that the goal is to lead these
teammates to a specific joint coordination strategy. These approaches were addressed in
simple games using dynamic programming. Xie et al. [2020] consider cases where the
learner does not know the teammate’s current behavior, nor how this behavior changes
across interactions. Thus, deep learning is used to learn an embedding of the teammate’s
strategy, and model the teammate’s behavioral dynamics and teammates’ adaptation
process.

Metalearning. Metalearning approaches use action selection policies which are trained
to facilitate the entire AHT process. The MeLIBA approach [Zintgraf et al., 2021]
trains the policy to carry out interactive Bayesian RL, intentionally taking actions which
seek to reveal information about the teammate’s type. The action selection policies
of metalearning approaches is typically conditioned on the learner’s prediction of the
teammate’s type. In this sense, such methods can be compared to expert policy methods.

4.4 Adapting to Current Teammates

During interaction, the learner receives new information, which can be used to adapt its
behavior.

Belief revision. Most methods employ belief revision protocols to maintain their belief
about the identity of other agents across time. For type-based methods, it is typical to
assume each teammate’s type does not change over time, and that a good representation
of the teammate exists in the hypothesized type space [Albrecht et al., 2016]. However,
if it is assumed that teammates’ types change over time, the learner must also adapt.
The ConvCPD method [Ravula et al., 2019] considers settings in which the type space
is known, but agents can switch types. For these settings, they employ a convolutional
neural network (CNN)-based changepoint detection approach, which uses image-like
representations of type likelihoods across time to detect changes. An alternative approach
is to modify the Bayesian belief revision process to allow beliefs to decay towards the
priors over time. This approach is useful when a teammate changes to a type which the
learner has assigned low (or zero) probability to. In this case, the learner might struggle
(or be unable) to quickly update its belief to reflect the new true teammate [Santos et al.,
2021]. Sum-based posterior definitions were also proposed to deal with changing types
[Albrecht et al., 2016].

Hypothesis space revision. Approaches exist for adapting to agents whose behavior
may not be adequately represented in the hypothesized space. TwoStageTransfer is a
transfer learning method employed by PLASTIC-Model [Barrett et al., 2017] which
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uses observations of new teammates and prior models to finetune a model for the new
teammate.

Metalearning. During the metalearning process, the action selection policy learns its
own adaptation procedures, avoiding the need to specify particular adaptation schemes
[Xie et al., 2020, Zintgraf et al., 2021].

Zero-Shot coordination techniques. The ZSC problem does not allow the learner any
behavioral adaptation during ad hoc interactions. For this reason, the focus of these
methods is on training agents which robustly coordinate with other agents trained using
the same algorithm. One approach is to avoid strategies which are not invariant under
symmetries within the underlying tasks [Hu et al., 2020, 2021]. Another approach is
based on the hypothesis that there are few strategies which perform well with a diverse
set of teammates, so ad hoc agents independently trained against diverse teammates (and
themselves) are likely arrive at similar pre-coordinated policies [Lupu et al., 2021].

Communication. The learner can quickly adapt to changes is by communicating with
its teammates. This communication can either be a query [Mirsky et al., 2020, Macke
et al., 2021], transfer knowledge or preferences [Mead and Weinberg, 2007, Barrett et al.,
2014], or providing an advice [Shvo and Mcllraith, 2020, Canaan et al., 2020].

5 Evaluation Domains

Many different approaches have been used for evaluating AHT methods. In this section,
we categorize them using the identified variations from Subsection 3.1. Some domains
might fit more than one category, but we place them according to the first ad hoc
teamwork paper they appeared in. In Table 1, we summarize each of the domains and
associated papers.

No variations. Some evaluation domains do not have any of the variations outlined in
Section 3.1. Among these AHT domains, some of the simplest are matrix games [Al-
brecht et al., 2015b, Melo and Sardinha, 2016]. These games consist of a payoff matrix
for two agents who independently choose actions and then receive a payoff based on
the actions each agent chose. The game is then repeated with the goal to maximize long
term return over repeated trials. Another common domain is predator prey [Barrett et al.,
2011, Ravula et al., 2019, Papoudakis et al., 2021]. This domain consists of several
agents (the predators) attempting to surround and capture other agents (the prey). The
predator prey domain requires both recognising a teammate’s goal (namely which prey
they are pursuing), and also collaborating with other agents to surround the prey. In
level-based foraging [Albrecht and Ramamoorthy, 2013], the goal of the agent team is
to collect food items which are spatially distributed in a grid world. Agents and items
have different skill levels which represent different capabilities in agents, requiring that
agents decide when and with whom to collaborate in order to collect the items.
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Open environments. There are several instances of open domains presented in AHT. First,
open variations of the domains mentioned above exist in Rahman et al. [2021]. Another
open AHT domain is wildfires, where agents entering and leaving the environment need
to work together to contain the spread of wildfires [Chandrasekaran et al., 2016]. Finally,
ad hoc flocking and swarming domains enable agents to enter and leave the environment
freely [Genter and Stone, 2016].

Fartial or noisy observability. Partially observable variants of the domains with no
extensions exist in Ribeiro et al. [2022]. One domain that has been prevalent in AHT
literature is robot soccer. Drop-in soccer where a group of players need to form a team
without playing with each other is common among humans in real life, so it has been
a frequented challenge by Al as well [Barrett et al., 2017, Genter et al., 2017]. The
problem typically consists of substituting one member of a team with a learner. The
performance is then measured on how robust the learner’s performance is regardless
of which team it is placed in. This domain presents an additional challenge, as each
agent can only observe its local environment. Another partially observable domains are
military simulation, which simulate various combat and search tasks using unmmaned
autonomous vehicles [Alford et al., 2015], and the collaborative card game Hanabi [Bard
et al., 2020]. Similar to the RoboCup domain, these domains also present the challenge
that agents only have access to their local observations.

Communication. Multiple domains allow communication in some form. The RoboCup
domain mentioned above allows limited communication between agents using wireless
connections. Others use communication as a more critical part of the domain. The tool
fetching domain provides an AHT domain that allows one agent to query another about
its goals [Macke et al., 2021]. Unlike other domains mentioned so far, the tool fetching
domain is specifically focused on evaluating an agent’s ability to communicate effectively.
The Hanabi domain also presents a structured communication channel. While in the
tool fetching domain the learner can query its teammates, in Hanabi the communication
channel allows the learner to provide its teammates with information unknown to them
[Bard et al., 2020, Canaan et al., 2020]. Another domain that focuses on communication
is the cops and robbers domain [Sarratt, 2015]. In this domain, teammates (cops) must
work together to capture another, adversarial agent (the robber). Each agent can query
the other to gain information about their current plans [Sarratt, 2015].

Adaptive teammates. So far all domains mentioned are focused on evaluating whether
a learner can successfully adapt their behavior to collaborate with diverse teammates.
Some domains, however, instead try to evaluate how well learner(s) can influence other
agents to achieve better performance. While the above domains can be adapted to have
learning teammates, several domains exist with this explicit purpose in mind. Some
examples of these are domains focused on incentivising the teammate to take a specific
course of action [Wang et al., 2021], or on swarming [Genter and Stone, 2014], where
the learner attempts to move in such a way as to influence the overall behavior of the
agents around it.

Mixed objectives. Works that make the assumption of coupled objectives, such as
ZSC [Hu et al., 2020], utilize an environment in which the reward received by all agents
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Table 1: Different environments used for evaluating ad hoc teamwork.
Domain |Paper Method Description
Albrecht et al. [2012] Empirically evaluates various multi-agent learning al
gorithms in ad hoc mixed teams.
Chakraborty et al. [2013] Introduces an optimal algorithm to cooperate with a
Markovian teammate.
Matrix Albrecht et al. [2015b] Combines type-based reasoning for prediction with ex-
Games pert algorithms for decision making.
Albrecht et al. [2016, 2015a]|Evaluates impact of prior beliefs in type-based reason-
ing in a range of matrix games.
Melo and Sardinha [2016] |Extends ad hoc teamwork to scenarios where the current
task is unknown in addition to the teammates.
Barrett et al. [2011] MCTS (UCT) with type-based reasoning using hand-|
crafted types in the predator prey domain.
Predator |Ravula et al. [2019] Extends ad hoc teamwork methods to work with team-
Prey mates which can switch behaviors.
Papoudakis et al. [2021] Assumes only local observations of ad hoc teamwork
agent are available to model other agents.
Albrecht et al. [2013] Develops type-based reasoning based on game theory
model to solve ad hoc teamwork problems.
Albrecht and Stone [2017] |Type-based reasoning with continuous parameterized
LBF types and MCTS (UCT).
Liemhetcharat et al. [2017] |Defines the problem of ad hoc team assignment.
Yourdshahi et al. [2018] Introduces new history-based MCTS.
Rahman et al. [2021] Uses graph-based learning to handle a dynamic number
of agents in the environment.
. Eck et al. [2020] Introduces ad hoc teamwork in open environments with
Wildfires
large numbers of agents.
Genter and Stone [2014] Introduces AHT approaches for influencing a flock’s
Flocking behavior.
Swarming |Genter et al. [2015] Determines where to place agents in a flock.
Genter and Stone [2016] Solves how to force agents to join flock in motion.
Bowling et al. [2005] Introduces two new approaches for working with ad hoc
teams in robot soccer.
Robot Barrett and Stone [2014] Introduces new method for reusing policies learned
Soccer from previous teammates to accomplish AHT.
Barrett et al. [2017] Introduces algorithms for AHT based on previously met
teammates, using either policies or models.
Military  |Alford et al. [2015] Introduces an algorithm for classifying agent behaviors
Simulation in air combat simulator.
Bard et al. [2020] Proposes the Hanabi game as a new challenge for Al
research, including ad hoc teamwork.
Canaan et al. [2020] Creates a meta-strategy for solving ad hoc teamwork in
Hanabi using a diverse set of possible teammates.
. Hu et al. [2020] An effective algorithm for learning from self-play by
Hanabi . .
attempting to seek out new behaviors.
Hu et al. [2021] Introduces improved method off-belief learning for
learning from self-play in DecPOMDPs.
Lupu et al. [2021] Creates a new optimisable metric for determining policy
diversity in Hanabi self-play.
Mirsky et al. [2020] Introduces SOMALI CAT problem and proposes solu-
Tool tion for determining when queries might be useful.
Fetching |Macke et al. [2021] Proposes a solution for what to query when multiple
Domain possible queries are available.

Suriadinata et al. [2021]

Investigates human behavior in the Tool Fetch Domain.
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is the same. Such environments include the lever environment [Hu et al., 2020] and
Hanabi [Bard et al., 2020]. Works which do not assume coupled objectives utilize
general-sum domains such as level-based foraging [Albrecht and Ramamoorthy, 2013],
in which the reward changes depending of the contribution of the agent; or the tool
fetching domain where each agent has a distinct role in the team [Mirsky et al., 2020].

6 Conclusion and Open Problems

In this survey, we presented a review of the AHT literature that has been published over
the past decade. This long period of time, along with the abundance of published work,
enabled us to draw a big picture view of this topic: setting the boundary on what is,
and what is not, AHT; identifying the subtasks that an agent needs to tackle as part of
an AHT task; and the various levels of complexity in AHT. Many open problems still
need to be addressed to achieve a robust agent that is able to interact with teammates
without prior coordination and solve real-world problems. Furthermore, AHT research
is currently suffering from a lack of standardised comparison between existing AHT
approaches, which increases the difficulty of identifying state-of-the-art methods for
solving a certain AHT problem.

Future work could address further extensions of the variations of the ad hoc teamwork
problem discussed in Section 3.1, or combinations of these variations. For example, con-
sidering the presence of teammates with complex adaptive processes, such as teammates
which learn via RL while interacting with the learner; or teammates which themselves
apply AHT techniques. Current approaches to AHT are not designed to work with
adaptive teammates (one notable exception being HBA [Albrecht et al., 2016]), whose
presence would mean that the learner needs not only to adapt to teammates’ behaviors,
but also consider how the teammates adapt to its own behavior. Another extension is the
combination of partial observability and open teams, which provides a difficult challenge
for the learner, due to this complex dual uncertainty.

In terms of potential solution methods, one of the crucial open problems is improving
the generalization to new teammates that have not yet been seen during training. Recent
continual learning [Khetarpal et al., 2020] advances showed that training on diverse tasks
can result in agents with robust performance in previously unseen tasks [Open-Ended
Learning Team et al., 2021]. In the same way, training with a diverse set of teammates
can improve the learner’s ability to collaborate with new teammates. Lupu et al. [2021]
proposed a method to generate diverse teammates for ZSC, but it was not evaluated
with collaborative teammates with objectives that might not be fully aligned with the
learner’s. Recently, Rahman et al. [2022] proposed a method for generating a diverse
set teammates specifically for ad hoc teamwork applications. However, results were
only obtained in a x5 grid world environment, more work is needed to evaluate how
this method performs in more complex environments. These works are a good starting
point when designing learners that are robust to different teams, however, they do not
specifically address the collaborative aspect of AHT. Additional work is required to
properly define the scope of the diverse set of agents a learner should be able to work
with. And while generating teammates that display different behaviours and skill levels
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can improve generalisation during execution time, this is not an easy task, especially in
more complex domains.

AHT research could also benefit from the use of more complex or realistic domains in
evaluation. Previous works tended to use simple domains (Section 5), but these solutions
might not perform well in realistic domains. We suggest that future AHT research should
consider more realistic testbeds, which can rely on robotics simulators extended to
handle multi-agent scenarios [Collins et al., 2021], or on existing scenarios such as the
DARPA “Spectrum Collaboration Challenge”, which will allow for the evaluation of
more complex tasks and algorithms. Social navigation, the problem of a robot navigating
through a crowd of people and robots, is another relevant robotics challenge [Mirsky
et al., 2021]. In this problem, the learner needs to coordinate with previously unmet
passerby humans and robots in order to avoid collisions, while allowing each other to get
to their destinations. Thus, this challenge poses a series of challenging AHT problems
where the learner need to adapt to new incoming teammates based on a highly limited
amount of interaction experience.

Another important issue that can be addressed by future work is benchmarking
current AHT approaches by providing systematic comparison between them. Existing
works in AHT often forgo comparison against other approaches designed to solve the
same variation of AHT problems, which makes it hard to identify state-of-the-art ap-
proaches in the field. A systematic benchmark between AHT approaches across different
environments could therefore be a crucial stepping stone towards further identifying the
strengths and weaknesses of different AHT methods.

To conclude, the AHT problem comprises a unique mixture of subtasks that the
learner is required to perform, which requires solutions ranging from different fields.
In this survey, we identified the existing and open problems in AHT which we hope
will contribute to the development of the field, and in turn will advance the multi-agent
research community as a whole.

7 www.darpa.mil/program/spectrum-collaboration-challenge


https://www.darpa.mil/program/spectrum-collaboration-challenge
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