DynaBARN: Benchmarking Metric Ground
Navigation in Dynamic Environments

Anirudh Nair!, Fulin Jiang!, Kang Hou', Zifan Xu', Shuozhe Li', Xuesu Xiao®3, and Peter Stone'*

Abstract— Safely avoiding dynamic obstacles while moving
toward a goal is a fundamental capability of autonomous mobile
robots. Current benchmarks for dynamic obstacle avoidance
do not provide a way to alter how obstacles move and instead
use only a single method to uniquely determine the movement
of obstacles, e.g., constant velocity, the social force model,
or Optimal Reciprocal Collision Avoidance (ORCA). Using a
single method in this way restricts the variety of scenarios in
which the robot navigation system is trained and/or evaluated,
thus limiting its robustness to dynamic obstacles of different
speeds, trajectory smoothness, acceleration/deceleration, etc.,
which we call motion profiles. In this paper, we present a
simulation testbed, DynaBARN, to evaluate a robot navigation
system’s ability to navigate in environments with obstacles with
different motion profiles, which are systematically generated
by a set of difficulty metrics. Additionally, we provide a
demonstration collection pipeline that records robot navigation
trials controlled by human users to compare with autonomous
navigation performance and to develop navigation systems using
learning from demonstration. Finally, we provide results of four
classical and learning-based navigation systems in DynaBARN,
which can serve as baselines for future studies. We release Dyn-
aBARN open source as a standardized benchmark for future
autonomous navigation research in environments with different
dynamic obstacles. The code and environments are released at
https://github.com/aninair1905/DynaBARN.

I. INTRODUCTION

With autonomous mobile robots being deployed in the real
world, such as for package delivery on crowded sidewalks,
autonomous driving in dense traffic, and intelligent ware-
houses with hundreds of moving objects, safely avoiding dy-
namic obstacles in the environment while efficiently reaching
their goal is now a fundamental robot capability. Navigation
among dynamic obstacles has been studied for decades,
especially in the domain of multi-agent path planning [1],
[2] and autonomous driving [3], [4]. More recently, machine
learning techniques for dynamic obstacle avoidance have
been applied to multi-robot systems [5], [6] and social
navigation [7]-[9].

Despite the abundance of research in navigation with
dynamic obstacle avoidance, there is no generally accepted
metric by which to compare methods against each other.

!Department of Computer Science, The University of Texas at
Austin 2Department of Computer Science, George Mason University
SEverday Robots 4SOIly Al {ani.nair, £33279, kevinhou, zfxu,
shuozhe. li}@utexas .edu, xiao@gmu.edu, pstone@cs.utexas.edu

This work has taken place in the Learning Agents Research Group
(LARG) at UT Austin. LARG research is supported in part by NSF
(CPS-1739964, 11S-1724157, NRI-1925082), ONR (N00014-18-2243), FLI
(RFP2-000), ARO (WO911NF-19-2-0333), DARPA, Lockheed Martin, GM,
and Bosch. Peter Stone serves as the Executive Director of Sony AI
America and receives financial compensation for this work. The terms of
this arrangement have been reviewed and approved by the University of
Texas at Austin in accordance with its policy on objectivity in research.

While difficulty in navigating in a static environment is
relatively easy to quantify [10], there are more factors to
consider with dynamic obstacles such as obstacles’ speed,
direction, acceleration/deceleration, smoothness, etc. How-
ever, existing simulation environments to develop and test
dynamic obstacle avoidance methods typically only contain
obstacles that move using a single method, such as constant
velocity, the social force model [11], or Optimal Reciprocal
Collision Avoidance (ORCA) [12]. As a result, the obstacles
in such simulation environments have similar motion profiles
(i.e., speed, direction, acceleration/deceleration, smoothness,
etc.) and only the navigation system’s ability to avoid such
obstacles is tested, ignoring its robustness to obstacles with
other motion profiles. Considering that dynamic obstacles in
the real world do not necessarily always follow one single
motion profile (e.g., a pedestrian and a scooter may move
differently on a sidewalk around a delivery robot), a good
dynamic obstacle avoidance method should be able to avoid
obstacles with different motion profiles.

To address the lack of a standardized method to compare
and test mobile robot navigation in dynamic environments
containing obstacles with varying motion profiles, we intro-
duce DynaBARN. DynaBARN is an extension to the Bench-
mark Autonomous Robot Navigation (BARN) dataset of 300
simulated, static, highly constrained navigation environments
[10] with 300 environments containing dynamic obstacles
with different motion profiles. These environments are gen-
erated to cover a wide variety of obstacle motion profiles
of different navigation difficulties, which are systematically
quantified by a set of difficulty metrics. We develop a data
collection pipeline that records navigation trials performed
by human teleoperators, to provide a reference of human
performance at dynamic obstacle avoidance. The resulting
training data may also be useful for developing learning-
based navigation systems. Finally, we provide results of
four classical and learning-based navigation systems in Dyn-
aBARN, including Dynamic Window Approach (DWA) [13],
Timed Elastic Band (TEB) [14], a reinforcement learning
approach [15], and a vanilla behavioral cloning method
using human demonstrations collected from the pipeline we
provide [16], which can serve as baselines for future studies.
In summary, this paper makes the following contributions.

e A benchmark dataset (DynaBARN) of 300 pre-

generated dynamic environments in simulation for met-
ric ground navigation, along with an environment gener-
ation procedure to generate new dynamic environments,

e A data collection pipeline to collect human-

demonstrated navigation trials in the simulated

https://github.com/aninair1905/DynaBARN

environments,
« Baseline results from a set of existing navigation sys-
tems in DynaBARN.
II. RELATED WORK
In this section, we discuss existing navigation methods
in dynamic environments as well as testbeds for dynamic
obstacle avoidance.

A. Navigaiton in Dynamic Environments

Robotics researchers have investigated methods for dy-
namic obstacle avoidance for decades. The social force
model [17] determines a pedestrian’s motion influenced by
the motion of other pedestrians as well as social groups. In
contrast, ORCA [12] and RVO [18] are reactive methods for
crowded navigation where each agent takes a share of the
responsibility for avoiding pairwise collisions and assumes
the other agents will reciprocate.

More recently, learning based approaches for dynamic
obstacle avoidance have emerged [19]. CADRL [20] uses
Deep Reinforcement Learning (DRL) for collision avoid-
ance; it has been extended to include socially-aware collision
avoidance [21] by inducing social norms such as passing
on the right, overtaking, and crossing. Moreover, DRL
dynamic obstacle avoidance methods have been used with
conventional waypoint generators so they can be used in
conventional navigation systems [22]. The ability to guide
or follow a human has also been incorporated into dynamic
obstacle avoidance methods for assistive robotics [23]. In
addition to DRL methods, inverse reinforcement learning has
also been used for socially compliant robot navigation among
pedestrians by modeling human behaviors in terms of a
mixture distribution that captures both the discrete navigation
decisions, such as going left or right, as well as the natural
variance of human trajectories [24].

B. Testbeds for Dynamic Obstacle Avoidance

While testbeds for navigation and obstacle avoidance [10],
[25], [26] in static environments [27]-[34] have been used
to benchmark research progress, simulation testbeds for
dynamic obstacle avoidance have recently been of interest
in the research community.

For social navigation around humans, Pedsim [35] sim-
ulates crowds of pedestrians and incorporates methods of
individual and group behaviors into an environment. Pedsim
does not incorporate social scenarios into its model. As a
result, many subsequent simulation testbeds, such as SEAN
2.0 [36], Arena-Bench [37], and SocNavBench [38], use
the social forces model along with Pedsim to simulate
social scenarios and interactions. However, all pedestrians
(obstacles) in the aforementioned simulators have similar
motion profiles. For instance, in Arena-Bench, the obstacle
speeds are set to a constant 0.3m/s, and in SEAN 2.0 when
the pedestrians move, they move at a constant 1.4m/s. These
testbeds do not incorporate obstacles that have different mo-
tion profiles, whereas in reality, a robot must be able to avoid
colliding with dynamic obstacles moving at different speeds
and with path irregularities. Consider the fact that slowly
walking pedestrians and fast swerving scooters may appear

at the same time on a sidewalk; or at a busy intersection,
cars, motorcycles, bicycles, pedestrians, or pets may move in
completely different manners. DynaBARN contains obstacles
moving not only at different speeds, but also changing speeds
between waypoints to test a navigation system’s robustness
to erratic changes. These changes in speed and trajectory are
tunable based on a set of intuitive difficulty metrics.
Multi-agent path planning testbeds are also used for
CADRL [20] and its socially aware counterpart [21]. How-
ever, these testbeds aim at testing multi-agent systems in
which each agent learns to navigate while avoiding colli-
sions with the other agents: the agents’ policies are trained
together in the same simulation to create one shared policy.
DynaBARN does not feature multi-agent path planning, in
the sense that dynamic obstacles are not treated as agents,
which will react to the robot and other obstacles. Instead,
the obstacles’ motions are predetermined by waypoints and
it is the navigation system’s responsibility to robustly avoid
collisions with obstacles of a variety of motion profiles.

III. APPROACH

In this section, we describe our method of creating
the DynaBARN environments. In Sec. III-A, we describe
the way the obstacle trajectories are generated from user-
specified metrics. In Sec. III-B, we describe how to create
environments from the generated obstacle trajectories. In Sec.
II-C, we introduce a method to quantify the difficulty of an
environment in DynaBARN. In Sec. III-D, we describe the
human demonstration collection pipeline.

A. Obstacle Trajectory Generation

Motion profiles for the obstacles are the trajectories rep-
resented by multiple waypoints, each of which contains two
values: the position and timestamp of the obstacle. Formally,
we define a trajectory for an obstacle as a sequence of
waypoints (c;), with ¢; = ((z4,v:),t:), where (z;,y;) is
the coordinate point and ¢; is the timestamp of the obstacle at
that coordinate point. We assume all obstacles are cylindrical
with the base parallel to the ground and therefore ignore their
orientation for simplicity. In this work, the environment is a
20 % 20 meter grid world. The trajectories are generated using
a polynomial function that is fit to randomly sampled points
within the grid. The number of randomly sampled points
depends on the order of the polynomial. More specifically,
n + 1 randomly sampled points determine the equation of
a polynomial of degree n. Thus, from a range of orders
given by the user, ordery, and orderp,x as the minimum
and the maximum orders respectively, the method samples a
random order n and randomly samples n + 1 points from
the [—10,10] x [—10,10] grid. A trajectory generated by
a lower degree polynomial will be smoother resembling a
straighter line than a trajectory made from a higher degree
polynomial, which will look less smooth and more erratic.
Once the polynomial is fit to the randomly-sampled points,
the method then calculates the (x;,y;) coordinate points at
every integer xz-value in [—10, 10] using the polynomial and
then puts them into an array c. The method then takes the
coordinate points where the polynomial intersects the edges

of the 20 x 20 grid and appends them to the array c. Any
points in c outside of the 20 x 20 grid as a result of the
polynomial fitting are removed. The array c is then, with
equal probabilities, sorted either descendingly or ascendingly
with respect to the x-values. This random sorting avoids the
bias towards environments that only have obstacles move
in one direction. We use a straight line to approximate the
movement between two points. Examples of trajectories 3-
degree polynomials are shown in Fig. 1.

Next, the method creates the timestamp at which the
obstacle reaches each waypoint. The first point in c¢ is
assigned the time 0 seconds since it is the starting waypoint.
For each subsequent coordinate point in ¢, the distance d
between the current point c¢; and the previous coordinate
point ¢;—; is calculated. The method then samples the
speed (meters per second) s ~ N (avg_speed, avg,stdz) from
¢i—1 to ¢;, where avg_speed ~ U{speed ., speed, .} and
avgstd ~ U{stdmin, Stdmax}- A is a normal distribution
parameterized by mean avg_speed and variance avg_std?,
and U is a continuous uniform distribution. The parameters
speed,;,, speed ., , Stdmax, and stdpi, are all given by the
user. A trajectory with a high standard deviation will cause
less predictable changes in speed from waypoint to waypoint.
Additionally, the speed is limited below by speed,;, and
above by speed,,.. Once s is sampled, the time taken by
an obstacle to travel from c;_; to ¢; can be computed as
At; = %. The timestamp of the next waypoint can, therefore,
be computed recursively by ¢; = t,_1 + At; to get the overall
time at which the obstacles will reach (x;,y;). We can then
create a trajectory for an obstacle composed of a sequence
of waypoints (c;)~ , in which each waypoint has a position
and a timestamp which the obstacle reaches said position.
The trajectory generation process is shown in Alg. 1

B. Environment Generation

To generate an environment in DynaBARN, the user inputs
obstacles,, ., and obstacles,,;, which are the maximum and
minimum numbers of obstacles, respectively, for the environ-
ment. Then for each obstacle, a trajectory of waypoints is
created using the method described in Sec. III-A. The result
is a list of trajectories, one for each obstacle.

C. Difficulty

a) Motion Profile Difficulty: We provide a method to
quantify the difficulty of each environment in DynaBARN.
There are 6 parameters that can be set for each obstacle
in DynaBARN as described in Sec. III-A: the maximum
and minimum for each of speed (speed,,, and speed,;),
standard deviation of speed between waypoints (stdy.x and
stdiin), and order (ordery,x and ordery,). An obstacle with
a higher average speed will be more difficult for a robot
to react to compared to one with a lower average speed.
Similarly, it is more difficult for a navigation system to avoid
colliding with an obstacle with a larger standard deviation
rather than one with a smaller one. For instance, with a
high standard deviation, an obstacle can change between
high and low speeds from waypoint to waypoint, making
its motion relatively unpredictable for a robot navigation

10.0 10.0

7.5 7.5
5.0 5.0
2.5
0.0 »

=2.5

2.5
0.0 >

y-axis
y-axis

=25

-5.0 -5.0

75 -7.5

A T 5 10 00 %5 510

x-axis x-axis

Fig. 1: An example of the process of creating coordinate
points and trajectories. The pink points in the top graph
resemble the points used to fit the 3-degree polynomial.
Then, the remaining coordinate points at every whole number
x-values from [—10, 10], as shown by the blue points in the
top graph, are calculated using the polynomial. Using these
points, the trajectory for the obstacle is created, as shown by
the blue line. Similarly, more obstacle trajectories are created
in the bottom graph.

Algorithm 1 Obstacle Trajectory Generation

Require: speed,,., orderay , orderyin,
Stdmax; Stdmin
Norder ™ u{ordermina Ordermax}
Generate norder + 1 points in [—10,10] x [—10, 10]
Fit polynomial p with nyyqer + 1 points
Calculate the (x;,y;) coordinate points at every integer
x-value in [—10,10] using p
5: Calculate where the p intersects the edges of the
[—10,10] x [—10, 10] grid and append them to {(c;)Y¥,
6: Sort ¢ from either highest to lowest or lowest to highest
x-value
7: tg = 0 seconds
8: for c; starting at + = 1 do
. d < distance from (x;_1,y;—1) to (x;,y;)
10 avg-speed ~ U{speed,,, speed
11: avg-std ~ U{stdmax, Stdmin }
122 5 ~ N(avg_speed, avg_std®)
13: t; g +ti1
14: end for
15: return (c;)Y

speed

‘min>’

LA

max }

system. Moreover, a trajectory based on a higher order
polynomial will have a less straightforward path and will also
be less predictable to a robot navigation system. Using these
parameters, we can select ranges that divide an obstacle’s
motion profiles into two categories: easy and hard. Based
on the Jackal robot which we use to conduct navigation
tasks (see Sec. IV for specifications), a categorization of the
motion profiles of the obstacles can be designed as shown
in Table I. These motion profiles can be changed based on
the user’s preferences.

b) Overall Environment Difficulty: The amount of ob-
stacles in an environment can also affect difficulty, as shown
in [37]. An increased number of obstacles will naturally
make the environment more difficult to navigate, and an
environment with many obstacles that have a hard motion
profile will be even more difficult. To determine difficulty, we

Algorithm 2 Environment Generation

Require: obstacle_number,,q., obstacle_number
1: obstacle_number ~ U{obstaclespin, obstaclesaz
2: for obstacle in obstacle_number do
3: Create trajectory with Alg. 1
4: end for
5: return List of trajectories

TABLE I: Easy and Hard Obstacle Motion Profiles

Easy Hard

[order yin, ordermax] [1, 2] [3, 4]
[speedin, speed,,,,] [0.5, 1.0] [1.0, 2.0]
[Stdmin, Stdmax [0.01,0.1] [0.1,0.2]]

first choose the number of obstacles for an environment and
then choose the motion profiles for the obstacles. A lower
number of obstacles with easy motion profiles will result in
easy difficulty while a lower number of obstacles but hard
motion profiles will result in medium difficulty. Similarly,
an environment with a high number of obstacles with easy
motion profiles will also result in medium difficulty, but an
environment with both high number of obstacles and hard
motion profiles will result in a hard environment difficulty.
Fig 2 shows a tree-diagram for determining the difficulty.

Number of
Obstacles
5t0 10 10 to 20
Easy Motion Hard Motion Easy Motion Hard Motion
Profiles Profiles Profiles Profiles
{ | |
Easy Medium Medium
Difficulty Difficulty Difficulty

Fig. 2: Diagram for determining environment difficulty.

D. Human Demonstration Collection

We develop a human demonstration data collection
pipeline for future researchers to collect human demonstra-
tions of navigation behaviors in dynamic obstacle environ-
ments.! Our open-sourced data collection pipeline automati-
cally sets up the ROS environment and installs the required
packages for running a simulated unmanned ground vehicle,
a Clearpath Jackal, in Gazebo simulation. After finishing
the setup, users will be prompted to choose an environment
number to open the corresponding dynamic environment.
After the selection, Gazebo will be launched and a Jackal will
be spawned at (0.0, 11.0), while the navigation goal is set
to (0.0, -9). The user will need to drive through the moving
obstacles (red cylinders in Fig 3) and try to reach the goal
(the green dot in Fig 3) using a joystick. When the Jackal
reaches the goal, Gazebo will stop and exit. The human
demonstration data is recorded as ROS bag files [39] saved
in the local folder. In the ROS bag file, all topics relevant

ILink to the Human Demonstration Collection pipeline repository
is at https://github.com/kevinhou912/ROS-Jackal-Data_
Collection-Local.git

to navigation have been recorded, including front/scan,
cmd_vel, and other move_base related topics, which can
be used to train an imitation learning policy. The human
demonstration pipeline can be extended to any Gazebo world,
such as the static BARN environments [10], as long as the
world has a goal object. While future researchers can use our

Fig. 3: An example of a world in DynaBARN. The Jackal
robot has a dimension of 500 x 430 x 250 mm (L x W x
H) and a maximum speed of 2 m/s while the radius of our
cylinder obstacles is 0.5 m. Jackal spawns at the bottom of
the figure and is given the objective to reach the goal at the
top shown by the green point while not colliding into the
red obstacles. The green lines indicate the trajectory of the
of the obstacles to their next respective waypoint.

pipeline to collect navigation demonstration data collection
from a wider variety of human experts, for ease of use, we
provide 60 demonstration trials for DynaBARN from two
co-authors of the paper.
IV. EXPERIMENTS AND RESULTS

In this section, we implement and benchmark four
commonly-used baselines for dynamic obstacle avoidance
tasks using DynaBARN. We sample 60 environments out
of the 300 generated worlds in DynaBARN to use for
our baselines: 20 easy, 20 medium, and 20 hard. The four
baselines are (1) Dynamic Window Approach (DWA) [13];
(2) Timed Elastic Band (TEB) [14]; (3) end-to-end Rein-
forcement learning (RL) [15]; and Behavior Cloning (BC)
[16]. The baselines’ implementations are as follows:

a) Two Classical Local Planners: We employ two
classical local planners: Dynamic Window Approach
(DWA) [13] and Timed Elastic Band (TEB) [14]. These local
planners are commonly used by the community due to their
reliability in most navigation scenarios with open-sourced
implementations that are integrated with the move_base
navigation stack [40]. The hyper-parameters of the two local
planners are manually tuned to improve their performances
in the hard environments. Then, the hyper-parameters are
fixed for all the experiments.

b) Behavior Cloning: The demonstration data is com-
posed of 60 trajectories, with each collected from sixty
dynamic environments, and another 60 trajectories collected
from randomly sampled 300 BARN environments [10]. We
learn a policy 7 := S — A to perform local motion planning.
Here, S is the state space with each state s € S represented
by a tuple (I, g5, gy), where [is the 720-dim laser scan and

https://github.com/kevinhou912/ROS-Jackal-Data_Collection-Local.git
https://github.com/kevinhou912/ROS-Jackal-Data_Collection-Local.git

(92, 9y) are the x-y coordinates of the local goal location
provided by Dijkstra’s global planner; A is the action space
with each action a = (v,w) € A, where v € [—0.5,2] and
w € [—3.14, 3.14] encode the linear and angular velocities of
the robot respectively. The ranges of v and w are limited by
the physical property of the Jackal robot. We represent such
a policy by a multi-layer perceptron (MLP) neural network.
The architecture of the neural network is shown in Fig. 4.
More specifically, the 722-dimensional input is fed into a
feature extraction network composed of three fully-connected
layers with 512, 256, and 128 hidden units respectively.
Then, the 128-dim feature embedding is fed into an actor
network that connects a 64-hidden-unit layer and a 32-
hidden-unit layer sequentially, and outputs a two-dimensional
vector as the action. All the hidden layers are followed by
the Tanh activation [41]. We collect one human-demonstrated
trajectory from each of the 60 dynamic environments in
DynaBARN and another one from each of the 60 randomly
selected static environments in BARN [10].

c) Reinforcement Learning (RL): we also include a
navigation policy learned from self-supervised reinforcement
learning. More specifically, we employ Twin-delayed Deep
Deterministic Policy Gradient (TD3) [15]. As one of the
state-of-the-art off-policy RL algorithms, TD3 is relatively
sample efficient and handles continuous actions by design.
We use the same neural network (NN) architecture as the
BC policy to represent the policy of the TD3 agent. As
seen in Fig. 4 (bottom), to represent the critic network
in the actor-critic framework, only the final layer of the
actor network is modified to output the value prediction. To
facilitate training, we also implement a parallelized training
scheme that distributes multiple actors to a computing cluster
to speed up the data collection process [30]. We train one
navigation policy for 20 million time steps for each difficulty
level with 20 training environments, and test them in the
same environments they are trained on. To benchmark the

Actor network

Critic network

Fig. 4: The architectures of the actor and critic networks.

performances of the baselines, in each environment set with
different difficulty levels (see Sec. III-C), we compare the
average success rates of navigating in the environments.
Since we care about the autonomous robot’s capability to
navigate in a completely collision-free manner, the success

rate is the only metric we reported. Further metrics in-
cluding traversal time and smoothness can be added for
future research when the navigation systems are able to
achieve very high success rates. The baselines are deployed
in each environment 10 times to compute an average success
rate. The average success rates in each environment set are
reported in Fig. 5. The RL algorithm achieves the best overall
performance, which is only slightly worse than DWA in
the easy environments. This result is understandable since
the RL agent has seen the largest amount of data points
(20M) compared to other baselines. Between the classical
local planners, DWA performs much better than TEB with
about twice the success rates of TEB in easy and medium
environments. Also, in hard environments, the success rate of
TEB drops to almost zero, while DWA still maintains about
17%. Lastly, behavior cloning has the worst performance
in all three difficulty levels, which reflects the difficulty of
learning high-accuracy collision-avoidance behaviors from
limited data.

0.8

B DWA
TEB
° 0.6 s BC
‘é B TD3
@
0 0.4
1)
1)
>
a
0.2 i
0.0 - I
Easy Medium Hard

Difficulty level

Fig. 5: Success rate of four baselines: DWA, TEB, TD3, and
BC evaluated on easy, medium, and hard environments.

V. CONCLUSIONS

We present DynaBARN, a benchmark for autonomous
robot navigation in dynamic environments where obstacles
move according to a variety of different motion profiles.
In order to test the robustness of autonomous navigation
systems against different obstacle movement, we provide
a systematic way to generate obstacle motion profiles and
dynamic environments of different difficulties. We also pro-
vide a human demonstration data collection pipeline and
the benchmarked performances of four different navigation
systems as baselines. DynaBARN is developed to encourage
further research on robust navigation in the presence of
moving obstacles, including, and especially, the development
of new, more robust algorithms than the baselines.

One limitation of the current version of DynaBARN is
that all obstacles are cylindrical, which limits the navigation
system’s robustness to obstacles with different shapes. One
interesting extension to DynaBARN is to add randomized
obstacle shapes. Another limitation is the lack of interaction
between the obstacles and the robot: obstacles in the real
world may or may not react to the obstacles, and if they do,
they may react in different ways, e.g. yielding to the robot

earlier or later. Another future extension to DynaBARN is
to add a variety of interaction types to the obstacles.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

REFERENCES

J. Yu and S. M. LaValle, “Multi-agent path planning and network
flow,” in Algorithmic foundations of robotics X. Springer, 2013, pp.
157-173.

A. Gorbenko and V. Popov, “Multi-agent path planning,” Applied
Mathematical Sciences, vol. 6, no. 135, pp. 6733-6737, 2012.

D. Ferguson, M. Darms, C. Urmson, and S. Kolski, “Detection, pre-
diction, and avoidance of dynamic obstacles in urban environments,”
in 2008 IEEE intelligent vehicles Symposium. 1EEE, 2008, pp. 1149—
1154.

H.-U. Kobialka and V. Becanovic, “Speed-dependent obstacle avoid-
ance by dynamic active regions,” in Robot Soccer World Cup.
Springer, 2003, pp. 534-542.

P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep re-
inforcement learning,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2018, pp. 6252-6259.

M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2018, pp. 3052-3059.

G. Monaci, M. Aractingi, and T. Silander, “DiPCAN: Distilling priv-
ileged information for crowd-aware navigation,” in Robotics: Science
and Systems (RSS) XVIII, 2022.

H. Karnan, A. Nair, X. Xiao, G. Warnell, S. Pirk, A. Toshev, J. Hart,
J. Biswas, and P. Stone, “Socially compliant navigation dataset (scand):
A large-scale dataset of demonstrations for social navigation,” arXiv
preprint arXiv:2203.15041, 2022.

R. Mirsky, X. Xiao, J. Hart, and P. Stone, “Prevention and res-
olution of conflicts in social navigation—a survey,” arXiv preprint
arXiv:2106.12113, 2021.

D. Perille, A. Truong, X. Xiao, and P. Stone, “Benchmarking metric
ground navigation,” in 2020 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR). 1EEE, 2020, pp. 116-121.
D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Optimal
reciprocal collision avoidance for multi-agent navigation,” in Proc.
of the IEEE International Conference on Robotics and Automation,
Anchorage (AK), USA, 2010.

D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23-33, 1997.

C. Rosmann, W. Feiten, T. Wosch, F. Hoffmann, and T. Bertram, “Tra-
jectory modification considering dynamic constraints of autonomous
robots,” in ROBOTIK 2012; 7th German Conference on Robotics.
VDE, 2012, pp. 1-6.

S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” 2018.

D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” Advances in neural information processing systems, vol. 1,
1988.

P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The international journal of robotics re-
search, vol. 17, no. 7, pp. 760-772, 1998.

J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obsta-
cles for real-time multi-agent navigation,” in 2008 IEEE international
conference on robotics and automation. leee, 2008, pp. 1928-1935.
X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion planning and
control for mobile robot navigation using machine learning: a survey,”
Autonomous Robots, pp. 1-29, 2022.

Y. F. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforce-
ment learning,” in 2017 IEEE international conference on robotics
and automation (ICRA). 1EEE, 2017, pp. 285-292.

Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 1343-1350.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]
[41]

L. Késtner, X. Zhao, T. Buiyan, J. Li, Z. Shen, J. Lambrecht,
and C. Marx, “Connecting deep-reinforcement-learning-based obstacle
avoidance with conventional global planners using waypoint gen-
erators,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2021, pp. 1213-1220.

L. Kistner, B. Fatloun, Z. Shen, D. Gawrisch, and J. Lambrecht,
“Human-following and-guiding in crowded environments using se-
mantic deep-reinforcement-learning for mobile service robots,” in
2022 International Conference on Robotics and Automation (ICRA).
IEEE, 2022, pp. 833-839.

H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
compliant mobile robot navigation via inverse reinforcement learning,”
The International Journal of Robotics Research, vol. 35, no. 11, pp.
1289-1307, 2016.

E. Heiden, L. Palmieri, L. Bruns, K. O. Arras, G. S. Sukhatme, and
S. Koenig, “Bench-mr: A motion planning benchmark for wheeled
mobile robots,” IEEE Robotics and Automation Letters, vol. 6, no. 3,
pp. 4536-4543, 2021.

I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72-82, 2012.

X. Xiao, B. Liu, G. Warnell, J. Fink, and P. Stone, “Appld: Adaptive
planner parameter learning from demonstration,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 4541-4547, 2020.

Z. Wang, X. Xiao, B. Liu, G. Warnell, and P. Stone, “APPLI:
Adaptive planner parameter learning from interventions,” in 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021.

Z. Wang, X. Xiao, G. Warnell, and P. Stone, “APPLE: Adaptive plan-
ner parameter learning from evaluative feedback,” in 202/ IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021.

Z. Xu, G. Dhamankar, A. Nair, X. Xiao, G. Warnell, B. Liu, Z. Wang,
and P. Stone, “APPLR: Adaptive planner parameter learning from
reinforcement,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA). 1EEE, 2021.

X. Xiao, Z. Wang, Z. Xu, B. Liu, G. Warnell, G. Dhamankar, A. Nair,
and P. Stone, “Appl: Adaptive planner parameter learning,” Robotics
and Autonomous Systems, vol. 154, p. 104132, 2022.

X. Xiao, B. Liu, G. Warnell, and P. Stone, “Toward agile maneuvers
in highly constrained spaces: Learning from hallucination,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 1503-1510, 2021.
X. Xiao, B. Liu, and P. Stone, “Agile robot navigation through hallu-
cinated learning and sober deployment,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). 1EEE, 2021.

Z. Wang, X. Xiao, A. J. Nettekoven, K. Umasankar, A. Singh,
S. Bommakanti, U. Topcu, and P. Stone, “From agile ground to aerial
navigation: Learning from learned hallucination,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021.

C. Gloor, “Pedsim: Pedestrian crowd simulation,” URL http://pedsim.
silmaril. org, vol. 5, no. 1, 2016.

N. Tsoi, A. Xiang, P. Yu, S. S. Sohn, G. Schwartz, S. Ramesh,
M. Hussein, A. W. Gupta, M. Kapadia, and M. Vizquez, “Sean 2.0:
Formalizing and generating social situations for robot navigation,”
IEEE Robotics and Automation Letters, pp. 1-8, 2022.

L. Kastner, T. Bhuiyan, T. A. Le, E. Treis, J. Cox, B. Meinardus,
J. Kmiecik, R. Carstens, D. Pichel, B. Fatloun, N. Khorsandi, and
J. Lambrecht, “Arena-bench: A benchmarking suite for obstacle avoid-
ance approaches in highly dynamic environments,” IEEE Robotics and
Automation Letters, pp. 1-8, 2022.

A. Biswas, A. Wang, G. Silvera, A. Steinfeld, and H. Admoni, “Soc-
navbench: A grounded simulation testing framework for evaluating
social navigation,” ACM Transactions on Human-Robot Interaction
(THRI), vol. 11, no. 3, pp. 1-24, 2022.

OSREF, “Ros wiki bags,” http://wiki.ros.org/Bags, 2018.

“Ros wiki move_base,” http://wiki.ros.org/move_base, 2018.

B. Karlik and A. V. Olgac, “Performance analysis of various activation
functions in generalized mlp architectures of neural networks,” Inter-
national Journal of Artificial Intelligence and Expert Systems, vol. 1,
no. 4, pp. 111-122, 2011.

http://wiki.ros.org/Bags
http://wiki.ros.org/move_base

	INTRODUCTION
	RELATED WORK
	Navigaiton in Dynamic Environments
	Testbeds for Dynamic Obstacle Avoidance

	APPROACH
	Obstacle Trajectory Generation
	Environment Generation
	Difficulty
	Human Demonstration Collection

	EXPERIMENTS AND RESULTS
	CONCLUSIONS
	References

