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ABSTRACT

Evolutionary algorithms are sensitive to the mutation rate (MR);
no single value of this parameter works well across domains. Self-
adaptive MR approaches have been proposed but they tend to be
brittle: Sometimes they decay the MR to zero, thus halting evo-
lution. To make self-adaptive MR robust, this paper introduces
the Group Elite Selection of Mutation Rates (GESMR) algorithm.
GESMR co-evolves a population of solutions and a population of
MRs, such that each MR is assigned to a group of solutions. The
resulting best mutational change in the group, instead of average
mutational change, is used for MR selection during evolution, thus
avoiding the vanishing MR problem. With the same number of
function evaluations and with almost no overhead, GESMR con-
verges faster and to better solutions than previous approaches on
a wide range of continuous test optimization problems. GESMR
also scales well to high-dimensional neuroevolution for supervised
image-classification tasks and for reinforcement learning control
tasks. Remarkably, GESMR produces MRs that are optimal in the
long-term, as demonstrated through a comprehensive look-ahead
grid search. Thus, GESMR and its theoretical and empirical analy-
sis demonstrate how self-adaptation can be harnessed to improve
performance in several applications of evolutionary computation.
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1 INTRODUCTION

Biological evolution has produced an incredible diversity of life
that is seen everywhere. In this process, the solutions and the
mechanisms co-evolve end-to-end, including the mutation rate
[MR; 24]. Self-adaptation of MRs (SAMR) is a technique common in
the literature of genetic algorithms (GA) that encapsulates this idea
of end-to-end evolution of the MR along with the individuals [2, 8,
25, 33]. The idea is to assign each individual its own MR, creating
a pair. The pairs are then evolved end-to-end using the assigned
MR for mutating the individual and a “meta" MR for mutating the
assigned MR.

However, this approach often runs into the problem that the
MRs produced decay to zero, causing evolution to stop at a sub-
optimal value. If instead the MR were fixed at some moderate value,
evolution would continue and find a better function value [7, 12, 29].
This premature convergence can be attributed to the fact that most
mutations hurt the fitness of an individual [7], and thus an effective
way for an individual to preserve its fitness into the next generation
is to have no mutation. Thus, SAMR ignores the long-term goal of
evolution to explore the fitness landscape and find better solutions
in future generations [7].

To counteract this effect, this paper proposes a novel GA based
on supportive co-evolution [13] of solutions and MRs, entitled
Group Elite Selection of Mutation Rates (GESMR). After assigning
each MR to a group of solutions, the solutions are evolved using
that MR, and the MRs are evolved according to the best change
in function value from the MR’s solution group, defined as the
“group elite". By targeting the MR that produces the best change in
function value, given many mutation samples, GESMR can mitigate
the vanishing MR problem. Additionally, GESMR is straightforward
to implement and requires no more function evaluations than a fixed
MR GA, and thus can be applied to a wide range of GA problems.

In prior work, a related approach using the idea of group elites
was formulated as a multi-armed bandit problem and applied to
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entire genetic operators in an ad-hoc manner [11, 38]. In contrast,
this paper demonstrates that the approach is most effective when
focused on MRs, and it also makes it possible to understand this
result both empirically and theoretically.

Evaluation of GESMR is performed on common benchmark test
optimization problems from the GA literature. To show that the
method scales well to harder problems, it is also evaluated on neu-
roevolution for image classification in the MNIST/Fashion-MNIST
domain and on reinforcement learning for control in the CartPole,
Pendulum, Acrobot, and MountainCar domains. For comparison,
results of several adaptive MR algorithms including an oracle op-
timal fixed MR, an oracle look-ahead MR (that uses foresight to
determine MR), self-adaptive MR, the multi-armed bandit method
[11], and some common heuristic methods [28] are also reported.

GESMR outperforms other algorithms in most tasks. Even when
SAMR prematurely converges, like in problems with especially
rugged fitness landscapes [7], GESMR does not. As a matter of fact,
GESMR performs as well as the oracle look-ahead MR in function
value and even matches the MR to the empirically estimated long-
term optimal MR. To explain why, the statistical distribution of the
change in function value for a spectrum of MRs for different func-
tion landscapes is empirically analyzed and visualized. This analysis
shows that SAMR is minimizing an MR objective whose optimal
MR is zero in rugged landscapes, while GESMR is minimizing an
objective whose optimal MR is nonzero.

2 RELATED WORK

Research on mutation rates (MRs) is one of the most studied sub-
fields of genetic algorithms [1, 3, 10, 17-19].

Fixed MRs: Lots of theoretical and empirical work has been done
on finding the optimal fixed MR for specific problems [4, 15], find-
ing heuristics like the MR should be proportional to 1/L where L is
the length of the genotype [9, 26]. Evolutionary bilevel optimiza-
tion tries to find the optimal evolutionary parameters, including
MR, by running an inner evolution with an outer loop searching
over parameters [21, 32]. However, it is commonly known that the
optimal MR is constantly changing during evolution [27].

Deterministic MRs: Deterministic MRs are common but these are
ad hoc functions to change the MR as a function of the number
of generations, and may not generalize to unseen problems with
different landscapes [1].

Adaptive MRs: Adaptive MRs are also common [9, 27, 31, 34, 37]
but these rely on another ad hoc system to determine how to alter
the MR given feedback from the evolution. A common technique is
to maintain a MR that produces mutations of which only one-fifth
are beneficial [18, 28], by increasing MR when the percentage of
successful mutations is greater than 1/5 (and vice versa). Although
this technique is based on empirical findings, it is ad-hoc, does not
generalize to different landscapes, requires a hardcoded threshold,
and has been shown to lead to premature convergence when elitism
is employed [29].

Self-Adaptive MRs: Perhaps the most promising and evolution-
arily plausible class of adapting MRs is that of self-adapting MRs
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[1, 2, 14, 19, 37]. This technique concatenates an MR to each in-
dividual and evolves the MRs and individuals in one end-to-end
evolutionary process. However, many previous works have shown
this process to be brittle and lead to premature convergence of evo-
lution as the MRs decay and vanish [7, 12, 25, 29]. In the instances
where self-adapting MRs succeed, the authors attribute the cause to
be from a relatively smooth fitness landscape [7, 12], or high selec-
tion pressure [23]. The cause of general premature convergence in
rugged landscapes is attributed to the fact that most mutations are
deleterious, causing self-adaptation to prefer solutions that mutate
less and preserve the fitness of each individual [7, 12]. Clune et al.
[7] mention that, in this way, evolution is short-sighted: it cannot
adapt MRs to be optimal for the long-term, only optimizing for
short-term performance.

Outlier-Based MRs: Some works have proposed looking at the
best mutation produced by a certain mutation operator to judge the
quality of the operator [11, 38], with the motivation that an operator
that produces infrequent large fitness gains is preferred to one
that produces frequent small fitness gains. However, these works
model the operator selection as a multi-armed bandit problem. This
technique is not only unnatural to evolution, it is also limited by
the expressiveness of the arms used and assumes independent arms,
thus failing to capture the continuous spectrum that the MR exists
in.

CMA-ES:. One of the most successful forms of adapting the
spread of a population during an evolutionary search is with Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES) [16]. It
relies on maintaining a covariance matrix, which requires quadratic
time and space in the solution vector length. Thus, CMA-ES does
not scale to larger problems like deep neuroevolution with millions
of parameters [35]. In contrast, GESMR and GAs in general are
linear wrt. solution length.

3 METHOD

This section first provides the formal problem definition, a discus-
sion of the general class of genetic algorithms, and then briefly
describes a previous adaptive mutation rate (MR) method and its
associated vanishing MR problem. Finally this section proposes
the Group Elite Selection of Mutation Rates (GESMR) algorithm
that addresses this problem with better performance and almost no
extra overhead.

3.1 Problem Formulation
Consider the general optimization problem where the goal is to
find the best decision variable x* € R? that minimizes a target
function f (e.g. the negative fitness function in the genetic algorithm
literature). The objective is therefore

arg min f(x). (1)

xeR4

3.2 Genetic Algorithms and the Mutation Rate

A genetic algorithm (GA) evolves a population of N + 1 candidate
solutions/individuals xy, .. ., X over time that progressively mini-
mize the objective in Eq. 1. At each evolution time step ¢, the current

population is {xi(t) }fio.
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Figure 1: Comparison of GESMR against a fixed MR GA and SAMR. Fixed MR GA only evolves the solution with a given MR.
SAMR evolves pairs of solutions and MRs. GESMR co-evolves a population of solutions and a population of MRs separately.
Each MR is assigned a group and the MRs are evolved using the best function value gain in the MR’s corresponding group.

To produce the next generation, a GA consists of 1) selection of
individuals, 2) mutation of individuals, and 3) crossover of individ-
uals.

The common truncation selection method with one elite is used
in this paper. Truncation selection creates a new set of N + 1 solu-
tions by keeping the single best “elite" solution from the population
(known as elitism) and uniformly sampling the rest of the N solu-
tions from the top 7y portion of the population with replacement
(better solution has lower f(x) value) [35].

Since it is a common way to mutate a continuous genotype x
[35], the Gaussian mutation operator M : R4 — RY is used, which
produces x” with

x' ~ M(x;0) £ x +ce, and e ~ N(0,1). (2)

where N(0,I) denotes a standard multi-variate normal distribu-
tion in R?. ¢ € Rxg represents the mutation rate (MR), which
constrains how different x” could be from x.

Crossover is used to mix information between solutions, essen-
tially allowing traits to be transferred to another solution. For the
sake of simplicity and to isolate the mutation operator, which is
the main focus of this work, no crossover operator is used since
crossover is not a necessary mechanism in GAs [35].

For conventional GA algorithms, a fixed MR is chosen a priori
based on the user’s preference or prior knowledge. Clearly, a too
small o will slow down evolution and a too large o will tend towards
random search, a tuned o is needed. It has also been shown that
the optimal o changes over the course of evolution, e.g. a small &
is often needed to “fine tune" the solutions at the end of evolution
[6]. As a result, the adaptive MR field studies how to dynamically
adapt this o for faster learning and better convergence. Among
previous adaptive MR methods, a well-known and commonly used
method is the self-adaptation of MR (SAMR) [1, 2, 14, 19, 37]. This
method attaches to each solution x; its own MR, ;. These pairs
{(xi, o)} are then evolved, by selection on the pairs and mutating
the x; using o; and mutating o; using an external fixed meta MR 7.

In practice, a well-known drawback of SAMR is that the MRs
produced could prematurely converge to zero over time [7, 12,

Algorithm 1 One step of GESMR
(0N
i Yizor
o7 _,, the selection rates 1y, 115, and the meta mutation rate, 7.

]E’)f_lth lection rates 7y, 5, and the meta mutation rat
Output: next generation of solutions {xl.(tﬂ) }fi o and mutation

(t+1)\K
rates {O'k }k—l'

Input: current solutions {x current mutation rates

1: // 1. Evolve the solutions

2 {fci(t) }ﬁo « sort {xl.(t) }?:70 with ascending f()%i(t))
3. Generate {321.([) }f\] o according to Eq. 3 {Selection}
4: Generate {xl.(tﬂ) }f\i o according to Eq. 4{Mutation}
5: // 2. Evolve the mutation rates

6: Calculate A](Ct) according to Eq. 5 {MR worth}

7 {&]Et) }Ik<:1 « sort {olit)
8: Generate {6'](:) }Ik<: 1 according to Eq. 6 {Selection}

9: Generate {(TIEHI)}K:1

10: return {xi(tﬂ)}fil and {cr](.t"'l)}f=1

}le with ascending A,(:)

according to Eq. 7{Mutation}

29], which is referred to here as the vanishing mutation rate
problem (VMRP). One might try to simply clip the MR to a lower
bound, but a single lower bound that maintains exploration early on
while still allowing for fine tuning later may not exist [6]. Therefore,
there exists a need for a better adaptive MR strategy.

3.3 Group Elite Selection of Mutation Rates

This section presents Group Elite Selection of Mutation Rates
(GESMR), to adapt MRs on the fly, along with empirical evidence
that GESMR mitigates the VMRP and outperforms previous adap-
tive MR methods. For visualization of GESMR, refer to Fig. 1.

GESMR keeps a set of K positive scalar MRs {Gk}Ik<=1’ where
N = 0 (mod K), and co-evolves them with the N + 1 candidate
solutions, so that the os do not decay to zero.
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At each optimization step t, the current population, {x;" };5, is

(t)}

first sorted in ascending order of f (xl.(t)), giving {x; f\i o- Trunca-
tion selection with one elite is applied to get the next generation

parents, {J?l.(t) }fio, with

(0 -
0 _ %o i=0
X = 3
: {~ﬂ{;e(§”,...,aef1fll i=1,...N ®

and m = N (number of solutions for parent selection).
Then, the non-elite solutions, {J?l(t) }f\i , are split into K groups
of equal size (i.e. each group has N/K solutions) and each group is

assigned a different oj.. Without loss of generality, o} corresponds

~(2) =~ (1)
oAy Nk Fenyie

)?i(t) is then mutated according to its corresponding oy, while the

elite is unaltered:

(t+1) _ J?(()t) i=0
X = (1) ‘ ©
~M(xl- ;O'LiK/NJ) i=1,...,N

}. To form the next generation, each

After the next generation of {xl.(t”) }fi o are found, GESMR
evolves the MRs, {0} }K:1 using another separate but similar GA
with one elite, truncation selection, and a different mutation opera-
tor.

For each oy, its negative fitness is calculated by considering the
best change in function value it has produced:

N/K

k
() a )y _ / (#+1) (1)
A=A = h - ; . 5
G eaeh= min () - fED) 6
First the MR population is sorted by this A I(ct)’ producing {6—][5:1 }.
Truncation selection with one elite is applied to get the next gener-
ation parent MRs {0y }le with

(0
S(t) _ ]0y k=1 6
% {~u{aft>,...,a<t)} k=2.. K ©

and I = K (number of MRs for parent selection). The mutation
operator associated with the os is

o' ~My(o;7) £ or€and e ~ U(-1,1)

where U (-1, 1) represents a continuous uniform distribution on R
and 7 represents a fixed meta mutation rate.

The next generation of MRs is produced by mutating the parent
MRs, while the elite parent is unaltered:

(t+1) _ 51“) i=1
o = - (D) . ™
~Ms(6;757) i=2,...,K

One full step of GESMR is described in Alg. 1.

The performance of GESMR depends on the number of groups,
K. When K = 1, GESMR recovers the fixed-MR method. When
K = N, each solution aside from the elite is assigned a different
MR, a method reminiscent of the SAMR method. The experiment
section shows that in practice the optimal K lies between 1 and N,
and uncovers a heuristic on how to choose such a K.

Kumar, et al.

4 EXPERIMENT

The experiments in this section are designed to answer the follow-
ing questions:

(1) How does GESMR compare to other methods in terms of
the quality of function values found and how quickly it
converges to those values?

(2) Does SAMR suffer from the Vanishing Mutation Rate Prob-
lem (VMRP)? Does GESMR solve this problem, and can it
produce MRs that are optimal in a long-term sense?

(3) What parts of GESMR are vital to its success?

(4) Why is GESMR more successful than SAMR?

(5) What is the optimal group size in GESMR and how much
does this parameter matter?

(6) Does GESMR generalize to the high-dimensional loss land-
scapes of neuroevolution?

(7) Does GESMR generalize to neuroevolution for reinforcement
learning control tasks?

4.1 Comparison Algorithms

For comparison, the following MR selection and adaptation algo-
rithms are evaluated in various optimization problems:

TOFMR: Optimal fixed MR found with a grid search;

e TLAMR-G: MR determined at every G generations by

“looking ahead," that is, by running a grid search multiple

times and picking the MR that produces the best elite in an-

other evolution run (initialized with the current population
and run for G generations);

FMR: A fixed MR of ¢ = 0.01;

e 1CMR A fixed MR of o = 1/d [26];

15MR: MR is doubled if the percentage of beneficial muta-

tions is above 1/5 in the current generation and cut in half if

not [28];

e UCB/R: The adaptive MR method proposed by Fialho et al.
[11], implemented with a multi-armed bandit with R arms
(each corresponding to a different MR), and sampling an
arm every generation using the upper confidence bound
algorithm [11];

e SAMR: Self-adaptation of MR, where each solution is as-

signed its own MR and evolved end-to-end;

GESMR: The method of Algorithm 1;

e GESMR-AVG: The method of Algorithm 1 with the min in
Eq. 5 replaced with the mean;

e GESMR-FIX: The method of Algorithm 1 with the MRs

fixed to the initial population and not evolved further.

Details for the parameters of these algorithms are provided in Ap-
pendix A. The trepresents that the algorithm is an oracle using
foresight (looking ahead of the current evolution step) to determine
the MR and should not be compared against directly. Note that
LAMR-G specifically uses foresight to determine the best MR for
the next G generations. With sufficiently large G, its MRs thus serve
as an empirical estimate of the optimal long-term MRs at any point
during evolution.
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Figure 2: Elite function value and average mutation rate
(MR) over generations of evolution by different adaptive MR
methods, applied to four test optimization problems. Notice
GESMR outperforms other methods in function value and
is able to match its MR to the one from LAMR-100.

4.2 Test Optimization Functions

All algorithms are evaluated on common test functions: Ackley,
Griewank, Rastrigin, Rosenbrock, Sphere, and Linear [36]. Defini-
tions of these test functions are provided in Appendix B.1. Each
function is evaluated for dimension d € {2, 10, 100, 1000}, with the
initial population sampled from A (0,1) and N(0, 10?I) (referenced
in table as std with values 1 and 10). These functions were chosen
because they are common in the GA literature and they span a di-
verse range of ruggedness for function landscapes [22]. All results
are averaged over five seeds.

Fig. 2 shows selected runs from this experiment, displaying the
elite function value and the average MR over generations. The
full list of final elite function values are reported in Table 1 in
Appendix B.2, serving as a statistic on how good the final solution
is. The full list of average elite function values over all evolution
iterations are reported in Table 2 in Appendix B.2, serving as a
statistic on how quickly the algorithm converges to a good solution.
Mean squared error between the log MR of an algorithm and the
log MR of LAMR-100 (averaged over generations) are reported
in Table 3 in Appendix B.2, serving as a statistic on how close
to optimal the MRs are. Additionally, all of the tables bold the
statistically significant results which are computed by a t-test.

To answer Question 1, GESMR outperforms other methods, ex-
cluding the oracles, in almost all domains both in terms of the final
function value and in terms of quickness of convergence to good
values.
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To answer Question 2, SAMR only succeeds and matches the per-
formance of LAMR when the function landscape is relatively non-
rugged, like in the Rosenbrock and Sphere functions. In the rugged
functions, SAMR consistently produces MRs that are sub-optimal
and smaller than those produced by even OFMR, and thus also lags
behind in elite function value during evolution. Thus, SAMR strug-
gles with the VMRP, as shown in previous work [7, 25, 29]. However,
GESMR overcomes this phenomenon and surprisingly consistently
matches its average MR to the long-term optimal MR produced by
LAMR-100 (i.e. red and black lines match in Fig. 2, and GESMR has
consistently the lowest error in Table 3 in Appendix B.2).

The limitations of of all methods except 15MR, SAMR, and
GESMR can be seen in the linear test function. The optimal MR for
this case is ¢ — oo, but other methods are unable to approximate
this result because they limit themselves to an upper bound (ex.
UCB-R is limited by the largest MR in its arms). On the other hand,
GESMR quickly keeps scaling up the MR until reaching a very large
MR. GESMR is also arbitrarily precise, fine tuning MRs with an evo-
lutionary process. In contrast, UCB-R and the grid search methods
constrain the MRs to a quantized range.

To answer Question 3, GESMR-AVG and GESMR-FIX were run
as an ablation of GESMR, with the results shown in Fig. 2 and
Tables 1, 2, 3 in Appendix B.2. GESMR outperforms both of them,
suggesting that the use of the best mutation statistic and the evolu-
tion of MRs are both vital to its success.

4.3 Empirical Analysis of GESMR vs. SAMR

To answer Question 4, two objectives for o are defined based on
a change of function value, and these objectives are shown to be
related to the GESMR-AVG, GESMR, and SAMR methods. These
objectives are then analyzed empirically (in this section) and theo-
retically (in Section 4.4 to explain the behavior of the algorithms.

Consider the change in function value of a mutation given a
solution and an MR:

A(x,0) ~ f(M(x;0)) = f(x). (8)
For simplicity, this variable will be denoted as A. Let {Aq}gi/lK

represent independently and identically distributed instances of A
where g indexes an individual within its group. To minimize f(x) in
evolution, a 0 must be chosen to minimize A(x, o) in some capacity
(denoted as an “MR objective"). Consider two MR objectives

e mean objective, 0';‘, = argmin, Ey [A(x,0)] and

e outlier objective, 0" . = argmin, Ex ¢[ming Ag(x, 0)].
The expectations in the objectives are over x sampled from the cur-
rent population and the noise in the mutation operator, €. For sim-
plicity, these objectives are denoted as argmin; E[A] and
argmin; E[ming Ag], respectively. The mean objective
corresponds to the algorithm GESMR-AVG, which selects os di-
rectly to minimize a sample average of A. The outlier objective
corresponds to the algorithm GESMR, which selects os directly
to minimize the best (lowest-value) sample of {Aq}. SAMR does
not select os directly, but rather selects (x;, o) pairs to minimize
f(xi). However, because x; is produced using the parent of oj,
SAMR also selects pairs (x;, 0;) indirectly based on o;s that pro-
duce non-deleterious mutations over generations consistently. This
mechanism is intuitively associated with the mean objective.
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Figure 3: Visualization of mutations and the distribution of
the change in function value from the mutations, A(x, o) (de-
fined in Eq. 8), for nine labeled mutation rates, o, at one
point, x, on the 2-D Ackley function. The left plots show an
image representation of the 2-D function landscape where
lighter colors are higher values and annotates the original
solution and some mutated solutions. The right plots show
the empirical histogram of A(x, ) and annotates the mean
and minimum samples of this histogram. Only moderate os
are able to mutate to the global minimum.
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Figure 4: A representation of ¢ versus A(x, o) (defined in
Eq. 8) colored by the empirical probability density function,
pA(8;0) and the respective log distribution for the 2-D Ack-
ley function. Many samples of A(x,c) are generated from
x ~ N(0,I), and a logarithmic range of os, and put into
bins of a o-A grid, colored by the number of samples the
bin has. Annotated are the o versus E[A; o] (mean of As) and
E[ming Ag; o] (min of As) curves, and the os that minimize
them. Importantly, notice that 5;, =0 and o, > 0.

To analyze general function landscapes outside of evolution,
x is either fixed to a point or sampled from a distribution, and
many more samples for {A4} are used. Fig. 3 shows a histogram
of samples from A and visualizes their respective mutations across
values of ¢ for a single x in the Ackley 2-D function, highlighting
that the best mutation comes from a o that is not too small and
not too large. Fig. 4 represents this same information, but sampling
x ~ N(0,I), for a continuous range of ¢ as a visualization of the
probability density function (PDF), pa(; o). The sigma versus the
mean objective and the outlier objective curves as well as their
optimal o solutions, 0}, and o7, . are shown over the PDF. Fig. 5
displays this same plot for several other test optimization problems.

As Fig. 5 shows E[A] often increases monotonically with o. As a

result, the optimal MR tends to go to zero, i.e. o}, — 0. Interestingly,
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Figure 5: A representation of the o versus A(x, o)(defined in
Eq. 8) colored by the empirical probability density function
pa(5;0), and the respective log distribution for several differ-
ent test optimization functions of different dimensionality.
Many samples of A(x, o) are generated from x ~ N(0,I) and
a logarithmic range of os and put into bins of a ¢ versus A
2-D grid, colored by the number of samples the bin has. An-
notated are the o versus E[A; o] (mean of As), E[ming Ay; o]
(min of As), and E[maxg4 Ay; o] (max of As) curves, and the op-
timal o that minimizes the first two curves. All curves show
that o), —> 0Oand oy ; > 0.

E[ming Ag] is zero for ¢ = 0, and decreases monotonically as o
increases until o = 0'1’;1“, and then increases monotonically with o,
leading to o7 . /> 0. These behaviors hold true for all landscapes
tested, except for the non-rugged linear landscape.

These results answer Question 4 by showing empirically that
GESMR targets higher MRs than SAMR in many problems, demon-
strating that it has the capacity to mitigate the VMRP. Theoretical
analysis of GESMR and SAMR further grounds this empirical find-
ing to prove that GESMR will always avoid a fully vanishing MR.

4.4 Theoretical Analysis of GESMR vs. SAMR

In this section, the behavior of the mean and outlier MR objectives
are analyzed as ¢ — 0 and ¢ — oo during evolution. The current
population of x is assumed to be already partially optimized, i.e., bet-
ter than those of random search (which is the initialization). Partial
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optimization also means that the evolution has not yet converged,
and thus the gradient of the function at the solutions, Vf(x), is
nonzero.

Assume 0 — oo, fully and randomly exploring the solution space
without  exploiting  the  current  solutions.  Then,
E[A] = Ex [f(x)] — Ex[f(x)] (first expectation is over all mu-
tants, x”) becomes a constant only based on the function landscape
and the distribution of x. E[ming A4] becomes, by definition, ran-
dom search of the function landscape. Since x is already partially
optimized, random search must yield a strictly worse expected
solution than x. So, E[A] > E[ming A4] > 0, and thus both MR
objectives are positive.

Assume o = 0 (i.e. no mutation), fully exploiting the current solu-
tion without exploring the solution space. Then, both MR objectives
vanish as E[A] = E[ming Ag] = 0.

The most interesting case is when o is small but not zero, i.e.
0 < o < oc. For a sufficiently small o, the function landscape can be
approximated as linear with f(M(x;0)) ~ f(x) +ceT Vf(x). Then,
A(x,0) = f(M(x;0)) — f(x) = cgel Vf(x). Since e ~ N(0,I), it
follows that A(x, o) ~ N (0, 52||Vf(x)||?), which leads to E[A] = 0.
A further useful constraint is provided by Theorem 1:

Trrorem 1. Let ZV, ..., Z! < iid N (0, 62).

If Yo =min(ZY, ..., Z\?), then E[Yy] = 0 E[Yoe1] with

E[Ys=1] <O.

ProoF. By definition, f;(z) = ¢(z/0) and F;(z) = ®(z/0). Then,

PYy<y)=1-P(Ye2y)=1-P(Z >y,....20 > )
=1-(1-2(y/0)?

fro ) = 241 = B(y/2) T 95/ )

21,1 = [ Lq01-aw/o)t p(ulo)
y

o / ya(1 - &) $(y)
Yy
= 0 E[Yo=1].

In addition, E[Ys=1] < 0 because Ys=; is the minimum of g > 1
zero-mean standard normal random variables. |

By Theorem 1, E[ming Ag] o« o||Vf(x)|| < 0. Thus, in this range
of o, the outlier objective decreases linearly as o increases, while the
mean objective still vanishes.

Using these three cases, consider the MR objectives as o varies
from 0 to co. E[A] starts at 0 and takes a theoretically unknown (but
empirically monotonic) path to a positive value. E[ming A4] starts
at 0, decreases to below 0 until a certain o, then takes a theoretically
unknown (but empirically monotonic) path to a positive value. This
theoretical analysis guarantees that o7 . > 0, a condition that
cannot be put on o;;.

Thus, this section and Section 4.3 empirically and theoretically
answer Question 4, i.e. explain why GESMR-AVG and SAMR often
suffer from the VMRP in rugged landscapes, and how GESMR over-
comes this limitation. In short, GESMR-AVG and SAMR assume that
o produce non-deleterious mutations consistently, whereas most
mutations are actually deleterious [7]. This condition is possible
only if o — 0, which GESMR incorporates into the algorithm itself.
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Figure 7: Elite function value and average mutation rate
(for different mutation rate control strategies) versus gen-
erations of neuroevolution applied to image classification
in MNIST and Fashion-MNIST. GESMR outperforms most
methods except 15MR, which appears to be an especially
good fit for this problem.

4.5 Ablation on the Group Size Parameter

To answer Question 5, and to evaluate the optimal number of
groups, K, evolution was run on the Ackley, Griewank, Rosenbrock,
and Sphere functions with d = 100 and K equal to all factors of N
for various values of N. It turns out that if the number of groups
is too small, i.e. K — 1, or too big, i.e. K — N, the performance
drops very fast (Fig. 6). In general, K = VN is a reasonable value,
but as N — oo, the optimal K — N3/ This finding suggests that
the number-of-groups hyperparameter can be set according to N
and does not need tuning.

4.6 Neuroevolution for Image Classification

To answer Question 6, the algorithms were run on the high dimen-
sional loss landscapes of neuroevolution for image classification
with the common MNIST and Fashion-MNIST datasets [20, 39]. The
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details of the datasets, the NN architecture evolved, and the experi-
mental setup are provided in Appendix C. Each algorithm was run
independently five times and the mean loss and the standard error
measured.

GESMR outperforms all other methods, including FMR and
SAMR, but does not beat 15MR (Fig. 7). Presumably, 15MR’s hyper-
parameter of 1/5 is especially suited to the MNIST loss landscapes
but might have trouble generalizing to other problems, like the
test optimization problems and the reinforcement learning control
problems.

4.7 Neuroevolution for Reinforcement
Learning

Reinforcement learning (RL) tasks are amenable to the neuroevo-
lution approach because the approach tolerates long time-horizon
rewards well [30, 35]. To answer Question 7, the algorithms were
evaluated on four common RL control tasks: CartPole, Pendulum,
Acrobot, and MountainCar [5]. In all these tasks, a controller maps
the robot’s input observations to either continuous or discrete ac-
tions to maximize a cumulative reward. The details of these environ-
ments, the neural architecture evolved, and the experimental setup
are provided in the Appendix D. Each algorithm was run indepen-
dently five times and the mean and standard error of performance
was measured.

The results are shown in Fig. 9 in the Appendix D. GESMR
generally outperformed other methods including the baseline fixed
MR and SAMR. Presumably, GESMR fails in MountainCar because
the reward signal is very sparse (zero rewards provide no way to
appropriately select for MRs).

4.8 Comparison against CMA-ES

CMA-ES is not a pure adaptive MR GA method: It stores a co-
variance matrix to control the spread of the population, rather
than storing a single MR [16]. This matrix grows quadratically
with the solution vector length. However, CMA-ES still provides
an interesting comparison given a fixed computational budget.
Fig. 8 shows that GESMR outperforms CMA-ES significantly in
four of the most challenging test optimization problems, even
though CMA-ES uses much more memory (quadratic in the solution
space). Thus, not only does GESMR scale to higher dimensional
problems, it also outperforms CMA-ES when both are given the
same running time.

5 CONCLUSION

In this paper, a novel and simple adaptive mutation rate (MR)
method, group elite selection mutation rate (GESMR), was pro-
posed to mitigate the vanishing mutation rate problem (VMRP),
along with empirical analysis that grounds its success over self-
adaptation of mutation rates (SAMR). Comprehensive experiment
results showed that GESMR outperforms previous adaptive MR
methods in final value and convergence speed. GESMR also con-
sistently matches its MRs to the empirically estimated long-term
optimal MR. Thus, this work provides the next step in designing
self-adaptive machine learning algorithms.
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A GENERAL EXPERIMENT SETUP

All algorithms for all experiments (except the group size ablation
experiment) are run with a population size of N + 1 = 101. The
test optimization problems are run for T € {100,300, 1000, 2500}
generations with problem dimensionality d € {2,30,100, 1000},
respectively. The Linear function is always only run for T = 100
generations. The MNIST/Fashion-MNIST experiments are run for
T = 1000 generations. All reinforcement learning experiments are
run for T = 100 generations.

OFMR finds the optimal fixed MR using a grid search over a
logarithmic range of ten MRs ranging from 1 x 1073 to 1. For each
MR in the grid search, an entire evolution is run to evaluate it. The
MR whose evolution provides the best final elite function value is
picked as the optimal fixed MR, and another fixed MR evolution is
run with this MR value.

LAMR-G changes the MR every G generations, and picks the
MR according to a grid search over a logarithmic range of 10 MRs
ranging from 1 x 1073 to 1. For each MR in the grid search, the
current population is used to initialize another evolution run that
ooks ahead for G generations. The MR whose evolution provides
the best final elite is used for the next G generations in the main
evolution run. In this way, LAMR-G is able to adapt MRs for the
long-term by directly looking ahead G generations and picking an
that MR performs the best.

FMR sets the MR to a fixed 1 X 1072, as is commonly done when
the user is left to define an MR.

1CMR sets the MR to a fixed 1/d where d is the dimensionality
of the solution space [26]. The goal is to search carefully in problems
with high dimensionality and explore more in problems with low
dimensionality.

15MR starts with the MR equal to 1 x 1072 and adapts MRs based
on the percentage of beneficial mutations in the current generation
(i.e. those that result in a negative function value change) If the
percentage is greater than 1/5, the MR is doubled, else it is cut
in half. This factor of two is chosen to match the meta-MRs in
SAMR and GESMR in order to compare adaptability fairly between
methods.

UCB/R creates a multi-armed bandit problem with R arms corre-
sponding to MRs that are spaced logarithmically between
1% 1073 and 1. The upper confidence bound (UCB) algorithm is
utilized to solve the problem. At each generation, an MR is sam-
pled from UCB; the reward that is reported back is the best (lowest)
change in function value from mutations for the current generation.

With SAMR, solutions are paired up with MRs spaced logarith-
mically between 1 X 1073 and 1 X 103. The solutions are mutated
according to their assigned MR and the MRs are mutated with the
same equation as with GESMR, using the meta-MR 7 = 2.

With GESMR, the population of MRs are initialized by spac-
ing them logarithmically between 1 x 1073 and 1 x 103. They are
mutated using the meta-MR 7 = 2.

B DETAILS OF THE FUNCTION
OPTIMIZATION EXPERIMENT

Detailed definitions of the test functions are given in this Appendix,
followed by detailed results.
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B.1 Test Function Definitions

Ackley:

d
1
—exp (3 ;COS (cxi)) +a+exp (1), (10)
with a =20,b =0.2,¢c = 2.

Griewank:
i x? i - "
flx) = — - cos(—l_)+1. 11
= 4000 G Vi
Rastrigin:
d
f(x) =10d + Z [xl2 —10cos (2nxl-)] . (12)
i=1
Rosenbrock‘:i
-1
f(x) = Z [100(xis1 — x2)? + (x; - 1)?] . (13)
i=1
Sphere:
d
flxy=)"xk. (14)
i=1
Linear:
d
fx) = in. (15)
i=1

B.2 Function Optimization Results

The full results of the test optimization functions are shown in
Tables 1, 2, 3. Table 1 summarizes the final elite function value
achieved by each algorithm in all the test function optimization
runs. Table 2 summarizes the average elite function value over gen-
erations from each algorithm in all the test function optimization
runs. Table 3 summarizes the mean squared error between the aver-
age log MR of a given algorithm with the log MR of LAMR-100 (the
oracle long-term MR). These result show that GESMR outperforms
other methods in the high dimensional and rugged function land-
scapes. GESMR also produces MRs that match the oracle long-term
optimal MR, showing that GESMR empirically produces MRs suited
for the long-term. GESMR also scales well to the high dimensions
of neuroevolution.
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‘ Dim std TOFMR fLAMR-100 FMR 1CMR 15MR UCB/5 UCB/10 SAMR GESMR GESMR-AVG GESMR-FIX

2 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.5 0.5 1.5 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0

o 30 1 1.2 0.0 2.8 2.7 0.2 2.2 2.7 2.4 0.8 3.2 3.0
2 10 2.7 1.4 15.2 15.3 3.1 4.9 35 11.0 *1.0 15.6 6.6
? 100 1 3.0 2.5 3.1 3.1 2.4 3.1 2.9 2.9 2.7 3.9 3.5
10 4.1 2.3 16.3 16.3 *2.8 6.2 4.0 16.3 3.6 17.2 12.0

1000 1 3.6 3.5 3.7 4.6 35 3.9 4.0 3.6 3.5 4.9 4.6

10 12.0 15.9 17.4 18.2 17.6 17.8 17.3 17.3 17.1 18.3 18.1

2 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

= 30 1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 *0.0 0.2 0.1
; 10 0.1 0.0 13 1.2 0.2 0.2 0.2 0.0 0.0 1.1 0.7
& 100 1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 *0.0 0.3 0.2
O 10 0.2 0.0 23 2.3 0.0 0.3 0.3 0.0 *0.0 1.5 1.0
1000 1 0.2 0.2 0.2 1.0 0.2 0.6 0.6 0.3 0.2 0.9 0.8

10 2.4 1.8 19.3 22.8 2.4 6.5 5.2 2.6 2.2 20.3 10.5

2 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.2 6.2 0.1 1.0 0.2 0.1 1.3 0.2 2.8 0.2

= 30 1 27.8 26.3 27.6 34.7 273 173.2 166.3 26.9 283 90.4 62.2
2 10 210.4 1135 1544.5 1539.1 320.9 302.1 306.3 1108.8 *150.0 1517.0 368.3
‘%’ 100 1 109.1 104.0 113.7 113.3 118.3 782.9 760.4 94.0 111.1 348.6 263.8
~ 10 984.0 839.7  6949.1  6934.4 1612.9 1793.1 1229.1 4918.4 1149.7 7240.4 2590.7
1000 1 2001.4 1689.2 27814  6748.2 2113.8 4798.8 9735.7 2153.1 *1878.5 7107.0 6576.5

10 | 2.6e+04 2.9e+04 8.9e+04 9.5e+04 4.1e+04 7.8e+04 4.8e+04 8.9e+04  6.0e+04 9.6e+04 9.3e+04

2 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0

10 0.0 0.0 1.0 0.0 0.1 0.0 0.0 0.2 0.0 14 0.0

"Qg 30 1 40.5 39.0 157.2 43.3 30.2 1027.3 1485.6 28.1 39.5 589.2 303.3
5 10 383.3 183.9 1.2e+07 4.4e+06 813.3 4371.1 7423 581.5 199.0 1.6e+06 3.9e+04
§ 100 1 146.8 113.1 179.6 184.9 112.9 191.0 6830.5 157.2 117.9 2817.8 1484.5
2 10 3171.6 2903 6.5e+07 6.5e+07 517.8  6.2e+05  9.7e+04 945.9 943.1 1.5e+07 3.5e+05
1000 1 1.2e+04 8931.6 1.2e+04 2.1e+05 1.1le+04  2.9e+04  2.1e+04  1.3e+04 9698.8 1.7e+05 1.3e+05

10 | 2.0e+07 1.1e+07 1.4e+09 2.2e+09 1.8e+07  2.5e+08  9.6e+07  3.1e+07 1.4e+07 1.0e+09 4.9e+08

2 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

o 30 1 0.0 0.0 0.7 0.0 0.0 0.3 4.6 0.0 0.0 4.2 1.6
3 10 2.1 0.0  1297.7 797.9 0.3 35.8 15.4 0.0 0.0 500.6 30.9
F;‘f 100 1 0.1 0.0 0.1 0.1 0.0 0.0 0.3 0.0 0.0 17.6 7.7
10 9.6 0.0 52344 52345 0.2 409.6 37.2 0.2 0.0 1610.9 222.3

1000 1 57.1 31.8 74.8 731.6 55.3 93.5 86.1 65.9 45.1 665.5 555.1

10 5484.4 3158.5 7.3e+04 8.7e+04 5481.0 5.2e+04  2.4e+04 6540.3 4459.2 6.7e+04 3.8e+04

2 1 -1614.0 -1654.6 -53.4 -842.3 -3.1e+29  -1547.5  -1497.4 -2.7e+16 -8.7e+18 -1.6e+08 -6.9e+05

10 -1930.6 -1969.2 -393.6 -1172.9 -3.1e+29  -1887.1 -1837.6 -1.7e+16 -8.7e+18 -1.6e+08 -6.9e+05

h 30 1 -6173.2 -6274.7 -202.7 -343.7 -1.2e+30  -59953  -5620.6 -1.8e+18 -2.8e+19 -1.1e+08 -2.7e+06
s 10 -7389.3 -7446.0  -1485.7 -1626.6 -1.2e+30  -7277.5  -6903.6 -1.3e+18 -2.8e+19 -1.1e+08 -2.7e+06
E 100 1| -1.1e+04 -1.1e+04 -332.1 -330.2 -2.5e+30 -1.1e+04 -1.0e+04 -8.2e+17 -1.2e+20 -1.1e+10 -4.9e+06
10 | -1.3e+04 -1.3e+04  -2346.8 -2345.0 -2.5e+30 -1.3e+04 -1.2e+04 -6.9e+18 -1.2e+20 -1.1e+10 -5.0e+06

1000 1| -2.6e+04 -2.5e+04 -759.0 -536.5 -4.7e+30 -2.4e+04 -2.4e+04 -2.2e+18 -2.0e+20 -1.2e+11 -1.1e+07

10 | -3.0e+04 -2.9e+04  -5369.0 -5146.5 -4.7e+30 -2.9e+04 -2.8e+04 -2.4e+18 -2.0e+20 -1.2e+11 -1.1e+07

Table 1: A genetic algorithm’s final elite function value, on various functions and population initializations using different
mutation rate control strategies. This metric quantifies good the final solution found by the GA is. The results are averaged
over 40 seeds. The best value is shown in bold. A statistical t-test is performed on the best method and if the resulting p-value
is less than 0.05 versus all other methods, the result is considered significant and shown with an asterisk (*) in front of it.
Methods marked with § are oracles for benchmark and are not compared against because they use foresight during evolution.
GESMR outperforms previous methods on most tasks, often significantly.
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‘ Dim std TOFMR fLAMR-100 FMR 1CMR 15MR UCB/5 UCB/10 SAMR GESMR GESMR-AVG GESMR-FIX

2 1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 1.2 1.2 2.2 0.2 0.3 0.3 0.4 0.3 0.5 0.3 0.4

o 30 1 1.9 1.3 3.1 2.9 1.7 2.6 3.1 2.7 1.7 3.6 35
2 10 8.7 5.9 15.7 15.4 7.4 8.2 7.8 12.4 *4.9 16.0 10.8
? 100 1 33 2.8 34 3.4 2.8 3.4 35 3.1 2.9 4.1 3.9
10 8.5 5.8 16.5 16.6 7.9 9.5 9.0 16.5 6.8 17.4 143

1000 1 4.2 4.0 4.1 4.9 4.1 4.4 4.5 4.2 4.0 5.0 4.8

10 15.3 17.0 17.7 18.5 18.1 18.2 18.1 17.7 *17.6 18.4 18.3

2 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

= 30 1 0.1 0.1 0.3 0.1 0.1 0.2 0.2 0.1 0.1 0.4 0.3
; 10 0.7 0.5 14 1.3 0.8 0.7 0.8 0.6 0.5 1.2 1.0
& 100 1 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.5 0.4
O 10 13 0.6 25 2.5 0.7 0.9 1.0 0.8 0.6 1.9 1.4
1000 1 0.5 0.5 0.6 11 0.6 0.8 0.8 0.6 0.5 1.0 1.0

10 7.8 7.5 21.2 23.0 8.5 12.9 11.0 9.1 8.2 21.2 15.9

2 1 0.3 0.3 0.0 0.2 0.0 0.0 0.1 0.0 0.1 0.0 0.1

10 0.6 0.9 6.9 0.5 1.8 1.0 1.6 1.8 0.8 3.2 1.1

= 30 1 71.3 47.9 59.1 50.9 67.0 178.1 168.9 52.6 60.0 130.1 116.2
2 10 597.1 358.2 1606.6 1566.1 5483 436.8 458.0 1204.7 *356.6 1575.0 671.7
] 100 1 301.5 182.1 2189 215.0 227.6 796.5 772.1 181.3 198.4 543.1 483.8
~ 10 2199.1 1500.1  7090.7  7080.6 2341.7 2303.2 1911.9 5164.7 1748.6 7433.1 3636.0
1000 1 4864.2 39183  4507.4  8541.2 4501.6 6713.5 9800.1 4520.6  *4187.1 8215.6 7901.7

10 | 4.5e+04 4.6e+04  9.1e+04 9.7e+04 5.7e+04 8.6e+04  6.4e+04  9.2e+04  6.7e+04 9.6e+04 9.4e+04

2 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0

10 0.9 11 5.8 0.5 1.1 1.3 2.0 17 0.7 2.0 1.0

"é 30 1 485.7 262.3 971.9 386.4 323.8 1179.8 1643.0 339.9 243.9 1325.0 1064.5
A 10 | 2.1e+06 1.1e+06  1.5e+07 1.0e+07 1.1e+06 8.8e+05  1.2e+06  1.6e+06  9.1e+05 7.3e+06 2.2e+06
§ 100 1 2685.3 1206.5  3769.2 37357 1390.2 1590.9 8349.1 1686.2 1360.1 7236.0 5483.7
2 10 | 1.9e+07 5.3e+06 9.3e+07 9.3e+07 6.4e+06  6.1e+06 5.6e+06  7.7e+06  5.8e+06 4.6e+07 1.7e+07
1000 1| 6.2e+04 6.0e+04 8.9e+04 2.6e+05 7.3e+04  1.1e+05 8.8e+04 7.8e+04 6.6e+04 2.2e+05 2.0e+05

10 | 3.7e+08 3.7e+08 1.8e+09 2.2e+09 4.3e+08  1.2e+09  7.3e+08 4.7e+08 4.0e+08 1.5e+09 1.1e+09

2 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

o 30 1 3.2 1.8 6.3 2.2 1.8 3.1 5.9 1.8 1.5 8.6 5.9
3 10 318.7 180.9 14208 1153.4 182.3 162.9 163.5 212.7 142.9 1027.2 327.3
é 100 1 18.9 5.1 18.8 18.7 6.3 9.7 15.9 7.0 6.3 37.4 27.2
10 1892.3 512.6  6089.4  6088.1 668.8 1019.9 779.4 755.9 604.3 3600.2 1758.3

1000 1 270.4 259.4 382.4 809.3 304.2 314.0 319.9 327.1 286.3 772.1 711.8

10 | 2.7e+04 2.6e+04 8.1e+04 8.8e+04 3.0e+04 6.8e+04 4.6e+04 3.3e+04 2.9e+04 7.8e+04 6.0e+04

2 1 -836.1 -835.5 -45.4 -434.1 -6.0e+27 -766.9 -710.5 -1.2e+15 -3.0e+17 -1.2e+07 -3.5e+05

10 -1153.3 -1150.8 -385.6 -764.9 -6.0e+27  -1106.6  -1050.8 -7.8e+14 -3.0e+17 -1.2e+07 -3.5e+05

k 30 1 -3190.9 -3238.2 -171.9 -240.2 -2.4e+28  -2967.6  -2671.8 -5.5e+16 -9.5e+17 -1.1e+07 -1.4e+06
s 10 -4409.1 -4413.7  -1454.9 -1523.2 -2.4e+28  -4249.9  -3954.8 -3.9e+16 -9.5e+17 -1.2e+07 -1.4e+06
E 100 1 -5758.9 -5665.5 -277.3 -275.9 -4.7e+28  -5314.8  -4956.6 -2.9e+16 -5.0e+18 -1.4e+09 -2.6e+06
10 -7593.1 -7473.6  -2292.1 -2290.6 -4.7e+28  -73238  -6971.4 -2.2e+17 -5.0e+18 -1.4e+09 -2.6e+06

1000 1| -1.3e+04 -1.3e+04 -634.3 -524.3 -9.3e+28 -1.2e+04 -1.1e+04 -7.4e+16 -6.3e+18 -1.8e+10 -5.7e+06

10 | -1.7e+04 -1.7e+04  -5244.2 -5134.2 -9.3e+28 -1.7e+04 -1.6e+04 -8.7e+16 -6.3e+18 -1.8e+10 -5.7e+06

Kumar, et al.

Table 2: A genetic algorithm’s average (over generations) elite function value, on various functions and population initializa-
tions using different mutation rate control strategies. This metric quantifies how quickly the GA converged to good solutions.
The results are averaged over 40 seeds. The best value is shown in bold. A statistical t-test is performed on the best method
and if the resulting p-value is less than 0.05 versus all other methods, the result is considered significant and shown with
an asterisk (*) in front of it. Methods marked with ¥ are oracles for benchmark and are not compared against because they
use foresight during evolution. GESMR outperforms previous methods on most tasks, often significantly. 15MR outperforms
GESMR in the Linear function landscapes because 15MR directly doubles the MR every generation while GESMR relies on a
mutation that may double the MRs every generation.
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‘Dim std TOFMR fLAMR-100 FMR 1CMR 15MR UCB/5 UCB/10 SAMR GESMR GESMR-AVG GESMR-FIX

2 1 0.2 0.0 *5.3 38.6 29.0 315 44.2 44.8 15.5 65.1 47.3

10 0.7 0.0 *1.4 9.5 20.0 13.7 12.0 61.0 10.2 95.3 14.0

. 30 1 4.1 0.0 2.3 19 1.9 9.9 8.6 4.4 1.2 14.2 16.3
2 10 1.1 0.0 8.3 3.2 23 7.0 6.3 12.6 14 29.4 4.5
3 100 1 9.4 0.0 3.2 3.2 4.8 9.9 12.7 14 0.9 29.1 34.1
10 7.1 0.0 6.0 6.0 3.7 9.0 8.5 139 0.4 77.1 14.7

1000 1 0.5 0.0 1.0 3.0 0.5 3.2 4.1 0.7 0.2 105.4 28.7

10 11.7 0.0 3.1 9.0 14.5 16.5 11.7 5.1 3.0 89.9 23.1

2 1 0.0 0.0 5.3 38.6 58.5 17.3 16.4 16.0 20.3 15.5 47.6

10 0.5 0.0 7.9 2.8 8.1 9.5 7.9 76.5 5.1 76.0 5.0

% 30 1 12 0.0 13 1.7 3.1 7.9 7.7 0.8 0.6 8.4 18.6
; 10 2.2 0.0 6.9 2.8 4.1 8.6 7.7 0.9 0.5 8.8 6.8
& 100 1 1.9 0.0 15 15 0.8 8.9 8.1 0.7 0.2 9.0 23.1
o 10 2.6 0.0 5.6 5.6 0.9 7.8 8.0 0.7 0.2 6.3 10.2
1000 1 0.3 0.0 0.4 7.4 0.4 4.2 3.7 1.0 0.2 37.1 18.0

10 0.4 0.0 8.0 26.0 0.5 7.7 7.3 0.7 0.2 151.9 3.7

2 1 0.0 0.0 *5.3 38.6 39.7 30.1 44.2 21.9 12.6 25.4 47.5

10 0.8 0.0 9.7 0.9 11.7 3.2 31 80.6 6.0 99.4 2.6

= 30 1 2.1 0.0 2.4 6.0 2.8 22.1 24.4 14 1.2 7.0 319
éﬂ 10 8.6 0.0 6.4 4.7 16.9 16.0 16.2 6.1 0.8 19.2 15.6
*@ 100 1 1.6 0.0 3.1 3.1 0.9 22,5 22.0 1.6 0.8 6.9 36.5
~ 10 15.8 0.0 58 5.8 25.6 28.0 23.2 4.0 0.9 27.4 27.9
1000 1 0.4 0.0 11 2.6 0.5 33 18.5 0.7 0.2 32.4 29.9

10 6.1 0.0 5.4 17.2 8.4 13.6 10.0 9.5 2.9 118.7 13.5

2 1 0.5 0.0 1.9 19.6 19.8 10.2 24.0 5.7 12.2 36.4 25.8

10 1.6 0.0 8.8 3.7 16.3 7.9 10.5 19.2 12.6 54.5 6.0

é 30 1 2.2 0.0 2.0 2.5 23 12.7 17.1 1.0 0.6 10.0 19.3
= 10 15 0.0 8.2 33 2.5 5.5 4.7 13 0.8 10.3 5.3
§ 100 1 23 0.0 1.8 1.8 0.8 3.2 13.8 0.8 0.5 8.5 235
2 10 2.2 0.0 55 5.5 0.9 9.3 4.2 0.7 0.3 10.3 9.4
1000 1 0.5 0.0 0.4 7.2 0.4 1.0 0.9 0.7 0.2 35.0 18.6

10 0.4 0.0 7.6 25.3 0.4 2.5 1.5 0.8 *0.2 15.0 3.8

2 1 0.5 0.0 4.1 35.0 359 311 17.8 65.9 11.0 205.5 433

10 0.4 0.0 0.4 12.1 19.0 14.0 7.9 53.7 9.7 106.2 17.2

° 30 1 3.0 0.0 2.2 4.0 2.6 7.0 15.7 0.6 0.7 8.8 24.6
b} 10 2.7 0.0 6.8 3.0 2.1 8.0 6.9 1.0 0.7 10.2 7.7
'5%4 100 1 3.2 0.0 3.2 3.2 1.2 2.5 4.7 0.6 *0.5 7.2 30.8
10 4.8 0.0 5.7 5.7 15 14.6 5.5 0.6 0.5 7.5 14.4

1000 1 0.4 0.0 0.5 79 0.4 1.0 1.0 0.7 0.2 54.6 17.4

10 0.4 0.0 8.1 26.2 0.4 3.5 1.8 0.7 0.2 61.1 3.6

Table 3: A genetic algorithm’s mean squared error log MR compared to empirical estimate of the long-term optimal log MR (the
log MR from LAMR-100), on various functions and population initializations using different mutation rate control strategies.
This metric quantifies how optimal (lower is better) the MRs produced are for the long-term. The results are averaged over
40 seeds. The best value is shown in bold. A statistical t-test is performed on the best method and if the resulting p-value
is less than 0.05 versus all other methods, the result is considered significant and shown with an asterisk (*) in front of it.
Methods marked with ¥} are oracles for benchmark and are not compared against because they use foresight during evolution.
GESMR consistently outperforms other methods, showing that GESMR is producing MRs optimal for the long-term. The
Linear function is not shown because LAMR-100 is not able to produce the true optimal MR (goes to infinity), so comparisons
to LAMR-100 in a Linear function does not make sense.
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Figure 9: Elite function value and average mutation rate
(MR) over generations of neuroevolution using different MR
control strategies applied to the reinforcement learning con-
trol tasks of CartPole, Pendulum, Acrobot, and Mountain-
Car. GESMR outperforms most other methods in CartPole,
Pendulum, and Acrobot, but fails in MountainCar.

Kumar, et al.

C DETAILS OF THE IMAGE CLASSIFICATION
EXPERIMENT

MNIST and Fashion-MNIST are common image classification
datasets of hand written digits and clothes, respectively [20, 39].
The inputs are 28xx28 grayscale images and the output is one of
ten classification labels. Both datasets consists of 60,000 training im-
ages 10,000 evaluation images. For these problems, f is the negative
log-likelihood function (i.e. the cross-entropy loss) as is common
in supervised learning.

The evolved neural-network architecture contains three 3x3
Conv2D layers with 10 channels, each one followed by a 2x2 Max-
Pooling layer and a ReLU nonlinearity. The resulting feature maps
are collapsed into a vector and fed into a 10x10 Dense layer fol-
lowed by a ReLU and another 10x10 Dense layer. after which they
are fed into a Softmax function to output ten class probabilities.

D DETAILS OF THE REINFORCEMENT
LEARNING EXPERIMENT

CartPole, Pendulum, Acrobot, and MountainCar are common re-
inforcement learning control tasks. In each of these tasks, the per-
formance of a robot controller is evaluated in a simulated environ-
ment [5]. CartPole consists of balancing a single pole on a one-
dimensional cart for as long as possible or until 200 timesteps have
passed, rewarded for how long the pole stays up. Pendulum consists
of a robot trying to swing up a pendulum, rewarded for maintaining
as much of an upward angle as possible. Acrobot consists of moving
a joint with two links such that the bottom link swings to as high
as possible. MountainCar consists of a car with a weak engine in
valley between two hills; it must be moved back and forth between
the hills to gain enough energy to reach the top of the target hill. In
all environments, f is the negative cumulative reward of an episode
(averaged over five episodes).

The evolved neural-network architecture contains a dense layer
to map the number of observations to 128 hidden neurons with a
ReLU activation function, and another dense layer mapping the 128
neurons to the number of actions. If the action space is discrete, a
Softmax function is applied to output action probabilities.

The detailed results are shown in Figure 9.
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