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ABSTRACT
The rapid replacement of upland forest by encroaching marshland is a striking manifestation of

global sea-level rise (SLR). Timely and high-resolution information on the location and extent of
transition forest (the ecotone between upland forest and marsh where tree mortality due to seawater
intrusion begins) is fundamental to understanding the processes and patterns of SLR-driven
landscape reorganization. Despite its significance, accurate characterization of salt-impacted
transition forest remains challenging due to the complexity of coastal environments, scarcity of
ground-truth data, and the lack of effective mapping algorithms. Here we use the full archive of
Landsat images between 1984-2021 to investigate the spectral, temporal, and phenological
characteristics of transition forest, and develop a robust framework for monitoring coastal
vegetation shifts in the mid-Atlantic U.S., a global SLR hotspot. We found that transition forest
exhibits strong negative NDVI trends and a deviation of land surface phenology from marsh and
upland forest that distinguishes itself from surrounding vegetation. By integrating temporal trends
and land surface phenology, our results demonstrate superior discrimination between marsh and
coastal forests to existing map products (e.g. NOAA Coastal Change Analysis Program, National

Land Cover Database) that allows a reliable identification of the coastal treeline. We applied the
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approach to map regional land cover in 1985, 2000 and 2020 (overall classification accuracy >
92%) and found that the area of coastal forest decreased by 22.0% from 1985 to 2020, the majority
of which transitioned to marshland (92.3%, 5.3 x 10° ha). Based upon fine-scale patterns of coastal
transgression, we created a practical workflow for spatially explicit quantification of forest retreat
rates. Concurrent with rising sea level, coastal forests migrated upslope from 0.63 (= 0.27) m above
sea level in 1985 to 0.78 (£ 0.32) m above sea level in 2020, and horizontal forest retreat rates
accelerated from 3.1 (range of 0-36) m yr'! during 1985-2000 to 4.7 (0-55) m yr"!' during 2001-
2020. As SLR continues to accelerate, our study may serve as a scalable solution for consistent
tracking of coastal landscape evolution that is urgently needed for sustainable forest and wetland

management.

Keywords: sea-level rise, saltwater intrusion, forest degradation, marsh encroachment, coastal

treeline

1. INTRODUCTION

Widespread vegetation shifts as a response to anthropogenic climate change have attracted global
attention over recent decades (Chen et al., 2021a; Kirwan and Gedan, 2019; Kirwan and
Megonigal, 2013; Osland et al., 2022). In coastal environments, climate-driven sea-level rise
(SLR) has triggered massive landward marsh migration and forest retreat (Kirwan and Gedan,
2019; Smith and Kirwan, 2021), with potentially large negative impacts to the delivery of essential
ecosystem services (e.g. carbon sequestration, disturbance attenuation, and biodiversity
conservation) to human populations (Gedan et al., 2011; Smart et al., 2020; Smith and Kirwan,

2021). A refined understanding of when, where and how coastal transgression proceeds with rising
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sea level is imperative to allow informed decisions for sustainable coastal development. However,
current knowledge on the spatiotemporal patterns of coastal vegetation shift remains fragmented,
partly constrained by the scarcity of long-term, ground-based information and the lack of effective
mapping algorithms across spectrally complex coastal settings.

As compared to other types of land cover/use change (e.g. forest to cropland or urban area),
the conversion of upland forest to marsh induced by rising sea level is usually a gradual, subtle
process without clear-cut boundaries (Kirwan and Gedan, 2019; Ury et al., 2021). Progressive salt
intrusion in low-relief coastal terrains normally leads to the prevalence of transition forests (i.e.
“ghost forests”) that define the ecotone between marsh and upland forest, and are characterized by
a complex mixture of live and standing-dead trees with an emerging understory of intruding marsh
and shrubs (Smith and Kirwan, 2021; Walters et al., 2021). The presence of this transition zone
poses great challenges for coherent, automatic tracking of the coastal treeline. As a result, previous
studies on SLR-driven coastal forest retreat rely heavily on visual interpretation of local, ultra
high-resolution aerial imagery to delineate the marsh-forest boundary (Flester and Blum, 2020;
Schieder and Kirwan, 2019; Smith, 2013). Aside from being labor-intensive and time-consuming,
this approach precludes consistent application over large spatial scales.

Regional studies on the distribution and trajectory of coastal forest or marsh typically rely on
standardized remote-sensing products (Byrd et al., 2018; He et al., 2022; White et al., 2021). In
the US, it commonly refers to the NOAA Coastal Change Analysis Program (C-CAP) dataset (i.e.
the coastal expression of the National Land Cover Database, NLCD) (NOAA Office for Coastal
Management, 2016). The C-CAP dataset takes advantage of the native 30 m resolution Landsat

images acquired from contrasting seasons in conjunction with ancillary data to map 25 categories
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of coastal land cover for conterminous US every 4-6 years. In spite of its overall success at
capturing broad-scale patterns, the C-CAP dataset is not specifically designed to distinguish
between marsh and forest, and it does not map salt-stressed transition forest. In fact, previous
research comparing the C-CAP dataset with field observations reveals appreciable classification
error at the marsh-forest interface (Weis et al., 2020). Similarly, studies using Landsat images
acquired in summer and winter to quantify the extent of forest retreat in coastal North Carolina
also show frequent confusion between migrating forest and surrounding marsh (Smart et al., 2020;
Ury et al., 2021). Accordingly, a more advanced mapping algorithm explicitly targeted at the
intricate transition forest is required to allow reliable monitoring of coastal forest at regional to
global scales.

Recent studies incorporating land surface phenology derived from the entire annual Landsat
time-series suggest enhanced classification accuracy than those based solely upon multi-seasonal
images in various spectrally challenging environments (Diao and Wang, 2016; Thomas et al.,
2021). For instance, by integrating a range of phenological metrics extracted from monthly Landsat
dataset, studies in a riparian ecosystem successfully differentiated exotic saltcedar from native
vegetation (Diao and Wang, 2018, 2016). In a fast-changing coastal wetland, the phenological-
based approach allowed nuanced depiction of Spartina alterniflora invasion over past decades
(Tian et al., 2020). Similarly, in a mountainous region of the eastern U.S., a study leveraged the
phenological deviation of thinning forest from intact forest to pinpoint areas of active management
(Thomas et al., 2021). Despite success in previous application, whether land surface phenology
can be exploited to map transition forest remains unknown. Literature and field survey suggest

that seawater intrusion may indeed provoke a departure of land surface phenology in transition
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forest, as reflected by muted seasonality (White and Kaplan, 2021), delayed budding, and early
onset of leaf senescence (Chen and Ye, 2013; Y. Chen and Ye, 2014; Munns and Tester, 2008) —
all of which may be detected by remote-sensing platforms. It is thereby desirable to explore the
phenological features unique to transition forest for improved separability of coastal forest from
marsh.

In addition, previous studies suggest that ecosystems subjected to chronic stressor or regime
shifts usually undergo predictable directional changes in structure and function, such as change of
biomass and productivity (Berner et al., 2018; Smith and Kirwan, 2021), shift in tree age
distribution and plant composition (Bégin, 1990; Clark, 1986), and amplification of ecosystem
variance (Scheffer et al., 2015). Built upon expected temporal trajectory of forest biomass, a study
was able to identify hotspots of seawater intrusion in eight coastal wetlands using MODIS time-
series between 2000 and 2018 (White and Kaplan, 2021). In similar fashion, recent studies in high-
latitudes associate multi-decadal Landsat-based NDVI trends with areas of active tundra
shrubification, where native graminoid tundra is replaced by productive intruding shrubs (Berner
et al., 2018; Chen et al., 2021a). Hence, promise may be held by temporal trend analyses of
satellite-derived vegetation indices (e.g. NDVI, a proxy of biomass and productivity) to
discriminate the ecologically-unique transition forest from the spectrally-similar surroundings.

Given current information, the objectives of our study are (1) to develop a phenology- and
trend-based algorithm focusing on the transition forest as a means to optimize the separation of
coastal forest from marsh; and (2) to apply the algorithm and accurately map coastal vegetation in
1985, 2000 and 2020 to quantify the spatiotemporal patterns of coastal transgression. As the

ecological and socioeconomic impacts of SLR accelerate (Bhattachan et al., 2018; Kulp and
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Strauss, 2019), our quantitative and scalable approach to characterize sea-level driven landscape
reorganization may prompt new scientific understanding of complex ecological processes, and

management actions that better prepare coastal ecosystems and societies for future climate change.

2. MATERIALS AND METHODS
2.1 Study region

Our study area (1,009 km?) is located in the rapidly-changing Chesapeake Bay region of the U.S.
mid-Atlantic coast (38.5° N, 76.3° W), and encompasses the iconic Blackwater National Wildlife
Refuge (Fig. 1). As a pilot study, we intentionally selected this region as our study area for three
reasons. First, it is among coastal ecosystems most threatened by global SLR (Fig. 2), where the
SLR rate is 2 to 3 times faster than global average (Sallenger et al., 2012). Second, rapid SLR has
led to expansive formation of “ghost forest” in the region spanning a gradient of coastal topography
(Kirwan and Gedan, 2019; Schieder et al., 2018), which allows us to test the performance of our
algorithms across complex environmental context (Fig. 3). Third, the study region is relatively
rural with minimal human intervention, which serves as a natural canvas for coastal transgression
to occur (Fig. 1).

More than 85% of the region falls within a narrow elevation range between 0 and 3 m NAVD
(North American Vertical Datum of 1988, which approximates regional mean sea level), making
the ecosystem extremely vulnerable to additional SLR. We studied all areas between 0 and 5 m
NAVD in the region, an elevation range that encompasses permanently flooded bays and ponds,
through intertidal wetlands, to adjacent uplands that have no sign of tidal inundation. Farmland
and urban development (e.g. impervious surface) combined only account for ~10% of the land

surface in the study region, mostly in high elevations. Hence, the regional landscape primarily
6



132 consists of a natural mosaic of marshes, transition forests and upland forests, interspersed with a
133 network of ponds and channels (Fig. 1). All elevation data refers to the high precision Coastal

134 National Elevation Database (CoNED DEM) (Danielson et al., 2018).

135
Study Region
® Ground-truth sites
-— Blackwater National
E— Wildlife Refuge
136

137  Fig. 1. Map showing the study region (A) which is located on the U.S. mid-Atlantic coast (B). The study
138  region represents the mid-Atlantic sea-level rise hotspot and it encompasses the ecologically and culturally
139 important Blackwater National Wildlife Refuge outlined in yellow. The yellow dots indicate our ground-
140  truth sites in the study region. In addition to ground-truth data, the reference sites for our land cover

141  classification also include sites selected from contemporary drone images and high-resolution aerial photos.
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144 Fig. 2. Accelerated sea-level rise and warming climate in the study region. The data plotted here refers to
145  the long-term temperature and tidal observations at the nearest NOAA meteorological station in Dover,
146  Delaware and the nearest NOAA Tides and Currents station in Cambridge, Maryland.
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Fig. 3. Coastal landscape reorganization with rising sea-level. (A) Broad-scale vegetation distribution along

the land-sea margin, highlighting a “ghost forest” transition zone with dead and stressed trees. (B)
Landward upland forest with a closed canopy and lack of understory vegetation. (C) Transition forest
undergoing active seawater intrusion, where forest die-off leads to increased light availability for shrub
growth and marsh transgression. (D) Established marshland with occasional remnant standing-dead trees,

signifying the completion of marsh transgression.

2.2 Image acquisition and preprocessing

We gathered all orthorectified, Tier-1 Landsat surface reflectance scenes covering the study region
between 1984 and 2021 with cloud cover less than 60% (n = 3,130) from the USGS EarthExplorer
(https://earthexplorer.usgs.gov/) collected by Landsat-5 TM, Landsat-7 ETM+ and Landsat-8 OLI.

All Landsat images were delivered in a geometrically and radiometrically corrected fashion, and
9
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each contains six spectral bands: the three visible bands (blue, green and red), the Near-Infrared
band (NIR), and the two Shortwave-Infrared bands (SWIR1 and SWIR2). All images were
processed using the ancillary Quality Assessment datasets to mask pixels associated with missing
data, cloud, cloud shadow, and snow and ice (Ihlen and Zanter, 2019a, 2019b; Zhu et al., 2015).
The multispectral NDVI index, a commonly used vegetation index, was employed in this study
as a proxy of vegetation phenology (Thomas et al., 2021; Zhang et al., 2022) and ecosystem
biomass and productivity (Berner et al., 2018; Chen et al., 2020; Zoffoli et al., 2020). We computed
the NDVI index associated with each image using the red and NIR bands processed above.
Residual cloud, haze and shadows were further filtered by thresholding the blue (surface
reflectance > 0.07) and red (surface reflectance < 0.01) bands (Ju and Masek, 2016). Since the
dataset spans multiple generations of Landsat sensors that slightly differ in spectral range of
individual bands, cross-sensor correction of NDVI was performed to ensure temporal consistency
(Berner et al., 2020; Roy et al., 2016). Additionally, intertidal ecosystems are periodically flooded
with tidal water that may compromise the performance of vegetation indices for trend detection
(O’Connell et al., 2017). To constrain tidal influence, we applied the Tidal Marsh Inundation Index
on each image to remove pixels of partial inundation before further analysis (Campbell and Wang,
2020; O’Connell et al., 2017). The resulting products were used to generate two data stacks: one
for analyzing recurrent vegetation phenological patterns that contains the entre time-series of
NDVI images within a year stacked annually by Day of Year (DOY) during 1984-2021; and the
other for decadal trend analysis, containing only peak growing-season (July-August) NDVI dataset

stacked in time series from 1984 to 2021.

2.3 Field campaign and coastal vegetation inventory

10
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In the summer of 2020 and 2021, we undertook several field campaigns to collect ground-truth
data of different coastal vegetation types across the study region (Fig. 1). We recorded the location
and vegetation type at each ground-truthing site throughout the region with a minimum between-
site distance of 150 m. We also inventoried coastal vegetation and acquired drone images across
transects spanning the upland-marsh gradient at Moneystump Swamp within the Blackwater
National Wildlife Refuge (Fig. 1). According to our field survey, here we define upland forest as
the coastal forest free from seawater intrusion, as reflected by a closed forest canopy, sparse
understory vegetation due to limited light availability, and absolute absence of marsh vegetation
on the forest floor (Fig. 3B, Table 1). As expected, transition forests usually proliferate in low-
lying terrains at the interface between upland forest and marsh (Fig. 3A). Transition forest is
characterized by a mixture of live and dead trees with intruding marsh present in forest understory
(Fig. 3C, Table 1). The transition forest is highly heterogenous across the study region (Fig. 1),
reflecting various stages of coastal forest retreat associated with rising sea level (Smith and
Kirwan, 2021). To ensure that our ground truth data represent the full spectrum of transitioning
forests, we selected the sites along the entire marsh-forest ecotone at Moneystump Swamp that
incorporated canopy cover estimates in transition forest ranging from 10% (adjacent to marsh) to
75% (adjacent to upland forest). Marsh is the most expansive coastal vegetation in the study region,
showing nearly continuous distribution extending from the forest margin until far towards the sea.
We collected ground truth data for different marsh types that distribute following broad
biophysical gradients in the study region (Fig. 1). Specifically, here we define marsh as the

intertidal habitat consisting entirely of marsh species, although fragments of dead trees are

11



204

205

206

207

208
209

210
211

212

213

214

215

216

217

218

219

220

occasionally spotted in newly formed marshlands (Fig. 3D) — a lasting indicator of rapid forest

loss with the rising sea.

Table 1: Definition of the land cover types mapped in this study.

Land cover Definition

Marsh Tidal wetlands dominated by herbaceous hydrophytes like cordgrass, rushes, and sedges.

Low-lying forests between marsh and upland forests where mortality due to seawater
Transition forest intrusion has already begun. Also known as ghost forests, with marshes and/or shrubs present
in understory.

Primary or long-standing secondary forests characterized by closed canopy and mature trees

Upland forest of height greater than 5 m.
Water Open water with 20% or less of vegetation and soil cover.

Other (Agriculture): agricultural lands, including actively cultivated, fallow or recently
Other" abandoned croplands, and pasture and residential lawns.

Other (Urban area): impervious surface, such as roads and concrete constructions for
residential or commercial activities.

* Other (Agriculture) and Other (Urban area) were classified as separate classes, and the results were grouped to

present as a single land cover type (Other) for simplicity.

2.4 Vegetation phenology and phenological metrics

To represent land surface phenology in complex environments, we complemented the ground-truth
data with an additional set of reference sites randomly selected (“Create Random Points” in
ArcGIS v10.7) from the contemporary drone images and the latest submeter resolution National
Agriculture Imagery Program (NAIP) aerial photos across the study region (between-site distance
> 150 m). Each of the coastal vegetation types (i.e. upland forest, transition forest, and marsh) has
a minimum of 600 reference sites. We assessed vegetation-specific phenological patterns (Fig. 4)
in 2020 at the reference sites using a 3-yr NDVI composite following the approach of Thomas et
al. (2021). The 3-yr image stack (the previous year, the year of interest, and the following year)

was adopted to account for prominent cloud cover of coastal ecosystems and the extended revisit

12
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period of Landsat satellites. All NDVI images were stacked in DOY to yield sufficient monthly
data points for modeling annual phenological rhythm (Thomas et al., 2021).

We first filtered the NDVI time-series (Fig. 4) with five candidate models: the asymmetric
Gaussian model (White et al., 1997), the adaptive Savitzky-Golay function, the double-logistic
filter (Atkinson et al., 2012; Jonsson and Eklundh, 2004), the Fourier analysis (Brooks et al., 2012),
and the Whittaker filter (Eilers, 2003). The models were selected for their efficacy in smoothing
time-series data and their robustness in reproducing the land surface phenological profile derived
from remotely-sensed NDVI dataset (Atkinson et al., 2012; Diao and Wang, 2016; Thomas et al.,
2021). We computed the root mean square error (RMSE) and the coefficient of determination (R?)
to evaluate model performance, and identified the double-logistic filter as the most suitable for our
study in simulating land surface phenology with consistent performance across vegetation types.

We extracted seven ecologically-significant phenological metrics from the smoothed double-
logistic curves in R (v3.6.1, the ‘phenofit’ package, (Kong, 2020)) for all reference sites. The set
of phenological metrics records important events and patterns of plant growth cycle (Atkinson et
al., 2012; Kong et al., 2019), referring to the Start of Growing Season, End of Growing Season,
Peak of Growing Season, Length of Growing Season, Base NDVI, Peak NDVI and Annual
Amplitude of NDVI. We compared each of the phenological metrics between vegetation types
using one-way analysis of variance (ANOVA). All datasets were examined with the Shapiro-Wilk
test for normality prior to statistical analysis. Data transformation was conducted to fulfill model
assumptions, and difference is considered significant at the level of P < 0.05. All statistical

analyses were performed in R (v3.6.1).
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Fig. 4. Annual phenological patterns of marsh (A), transition forest (B), and upland forest (C) estimated
with Landsat-based NDVI time-series. Plots show data for the most recent five years, and all results are

presented as mean + SD.

2.5 Temporal-trend analysis for coastal vegetation

Using the same reference sites collected above for various coastal vegetation types, we conducted
another experiment to test whether trend analyses of NDVI time-series can lend additional strength
to isolating the ecologically-unique transition forest from adjacent vegetation (Fig. 5). In
particular, to explore how temporal length may influence the discriminatory power of trend
analysis and whether an optimal time-span exists for trend detection, we performed three trend
analyses with varying time-spans (Fig. 5). The first analysis leverages the full length of Landsat
time-series between 1984 and 2020 (36 years, the long time-span test), the second test stretches an
intermediate time-span from 1996 to 2020 (24 years, the intermediate time-span test), and the third
test spans the latest 12 years between 2008 and 2020 (the short time-span test) (Fig. 5).

For each test, we analyzed peak-growing season NDVI time-series for a monotonic temporal-
trend (Fig. 5) on each reference site using the rank-based Mann-Kendall trend test (Wang et al.,

2020). The slope of the NDVI trend was computed using the non-parametric Theil-Sen slope
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estimator (Theil, 1950). All analyses were conducted in R (v3.6.1) with the ‘zyp’ package
(Bronaugh and Werner, 2019). The statistical metrics (R’.qj, P-value, and slope) of different time-
span tests were compared between vegetation types to evaluate the performance of the tests in
differentiating between coastal vegetation (Fig. 5). For improved confidence in the best time-span
scenario, we also formulated a simplistic decision tree model according to vegetation-specific
NDVI trend (slope, Slopeypyi trena; Significance, Pypy; trena) and the NDVI value by the end of

the trend analysis (NDV1,, ;) (Fig. 5) as below:

1 (SlopeNDVI trend < O; PNDVI trend < 0-1; NDVIend = 0-64)

0 (Other vegetation) ()

Transition forest = {

Using this empirical model, we assessed the efficacy of each time-span test in differentiating
between transition forest and others on all reference sites. The best time-span scenario was
identified as the one generating maximal separation between coastal vegetation, and it was then

used for regional trend analysis in our land cover mapping.
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Fig. 5. Temporal-trend of peak growing-season NDVI for different coastal vegetation types, estimated
using 36 years of data (1984-2020) — the long time-span test (A), 24 years of data (1996-2020) — the
intermediate time-span test (B), and 12 years of data (2008-2020) — the short time-span test (C). The linear
regression trend line is bounded by the 95% confidence interval. Dotted lines refer to marginally significant

trends (0.05 < P <0.1) whereas solid lines represent significant trends at the level of P < 0.05.

2.6 Land cover classification and comparison between scenarios

To investigate whether land surface phenology and temporal-trend information can be capitalized
on to improve coastal forest mapping, we mapped regional land cover in 2020 with four competing
scenarios by incorporating and not incorporating phenological or temporal-trend metrics as model
input. The land cover mapped refers to upland forest, transition forest, marsh, open water and other
(i.e. agriculture and urban area) (Table 1).

The first scenario (S1) follows a traditional classification algorithm for coastal forest mapping,
using clear sky Landsat images obtained during low tides from contrasting seasons, one in spring-
summer (the greening, warm season) and the other during fall-winter (the browning, cold season)
(Homer et al., 2015; Smart et al., 2020; Ury et al., 2021). To be consistent, we acquired the two

images for Si following our annual phenological patterns assessed above (Fig. 4): one in July-
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August (warm season) and the other in January-February (cold season) — the timing when inter-
vegetation contrast is maximized. On top of the original Landsat spectral bands, the inputs of Si
also include thirteen ancillary layers found desirable in previous studies (Belgiu and Csillik, 2018;
Gong et al., 2019; Zhang and Yang, 2020), referring to nine multispectral indices computed from
Landsat bands and four biophysical metrics derived from the CONED DEM (Table 2).

The input of the second scenario (S2) is identical to that of Si1 except that it incorporates an
additional set of phenological metrics described in Section 2.4. Similarly, the input of the third
scenario (S3) includes the full set of the S1 inputs and the statistical metrics derived from temporal-
trend analysis using the best time-span scenario identified in Section 2.5. As a comparison, the
fourth map (S4) was generated using all the information above as input, which comprises the Si
input plus all phenological metrics of Sz and all statistical metrics of Ss.

We selected the random forest (RF) classifier (Breiman, 2001) implemented in R (v3.6.1, the
‘caret’ and ‘randomForest’ packages (Kuhn et al., 2021; Liaw and Wiener, 2002)) to create all
land cover maps. As compared to conventional classification algorithms (e.g. Decision Tree,
Maximum Likelihood Classifier, and Support Vector Machines), the RF classifier possesses
several advantages that make it well suited for our study. Aside from being computationally
efficient and sophisticated at handling high dimensionality of input data, the RF demonstrates high
classification accuracy across a wide range of terrestrial and wetland ecosystems (Belgiu and
Csillik, 2018; Belgiu and Dragu, 2016; Diao and Wang, 2016; Gong et al., 2019). Recent products
generated by RF using land surface phenology have proven successful in differentiating spectrally-
similar land cover types (Diao and Wang, 2018, 2016; Thomas et al., 2021). Furthermore, the RF

classifier is relatively robust to training errors (up to 20% misinterpretation of training sample,
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(Gong et al., 2019)) — an important asset for mapping landscapes undergoing rapid reorganization
but lacking timely reference.

All the classification algorithms (Si-S4) were trained and validated with the same reference
data. As mentioned earlier, we selected ~600 reference sites for each land cover throughout the
study region based on field campaign, drone images, and the NAIP aerial photos. The dataset was
randomly divided in the ratio of 50% to 50% for each land cover as training and validation. We
set the number of decision trees to 500 for unbiased estimate of generalization error, and used the
default number of variables to be tested for split (i.e. square root of the number of input features)
for all scenarios (Belgiu and Dragu, 2016). The classification results were evaluated by confusion
matrices and the associated four measures of accuracy (Kappa coefficient, overall accuracy, and
Producer's and User's accuracy). To statistically determine whether incorporating phenological
and/or temporal-trend information improves land cover mapping, we compared the results between
scenarios using the McNemar's chi-squared test (Belgiu and Csillik, 2018; Diao and Wang, 2016)

at the significance level of P < 0.05.
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Table 2. Selected inputs for the S; classification. The Landsat images were obtained from contrasting

seasons of summer (July-August) and winter (January-February) when inter-vegetation contrast is

maximized in 2020. All images were acquired during low tide in clear sky.

Categories Predictors” Formula/Description References
BLUE Surface reflectance of the blue band (Diao and
GREEN Surface reflectance of the green band Wane. 2018
Spectral RED Surface reflectance of the red band 201 6‘?”Gon ’e 4
Bands NIR Surface reflectance of the NIR band al 261 9: lgian
SWIR1 Surface reflectance of the SWIR band1 s .
SWIR2 Surface reflectance of the SWIR band2 ctal., 2020)
NDVI NDVI = x;:gig (Belgiu and
EVI EV] = 2.5+(NIR—RED) Csillik, 2018;
T Belgiu and
SAVI SAVI = s grégu,t2?16;
= % (2 * — * 2 _8x — .
Multispectral (S8 V1 o G+ ENRTIP S QR-RDy)  Bydal,
Indices NIR+SWIR1 1. 2020:
mNDWI mNDW] = Green—SwirL al, ]
Green+SWIR1 Thomas et al.,
TCP-brightness  Tasseled Cap Transformation computed from surface 2021; Zhang
TCP-greenness  reflectance of all six spectral bands. Coefficients differ and Yang,
TCP-wetness between Landsat TM, Landsat ETM+ and Landsat OLI. 2020)
Ancillary lsllzgztlon Computed from the 1 m resolution Coastal National Elevation ](;i Zlggliuza(;l ld 6:
Database (CoNED) DEM, and resampled to 30 m resolution ’ ’
data Aspect using bilinear interpolation Homer etal,
TPI ) 2015)

* NIR: Near-Infrared; SWIR: Shor-wave Infrared; NDVI: Normalized Difference Vegetation Index; EVI: Enhanced
Vegetation Index; SAVI: Soil-Adjusted Vegetation Index; MSAVI: Modified SAVI; NDWI: Normalized Difference
Water Index; mNDWI: modified NDWI; TCP: Tasseled Cap transformation; TPI: Topographic Position Index.

2.7 Historical mapping and comparison with existing products

Using the classification algorithm identified as the most suitable in Section 2.6, we then created

two historical land cover maps (in 1985 and 2000) for the study region following the same

procedure as that of 2020 described above. All high-resolution (< 2 m) images used for historical

reference were acquired within = 2 years of the intended year of mapping, referring to the black-

white or color-infrared aerial photography of NAIP, and the National High-Altitude Photography.

We computed the mean elevation of all pixels from the same vegetation type according to the

19



345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

CoNED DEM at each mapping step (1985, 2000, and 2020) to explore whether the distribution of
coastal vegetation shifts towards higher elevations with SLR over time.

We compared our multi-period maps (1985-2000-2020) with other widely-used time-series
products, namely the NOAA C-CAP maps and the NLCD database to evaluate coastal forest cover
change over past decades. To minimize temporal mismatch between existing products and ours,
we acquired the C-CAP maps in 2001 and 2016, as a counterpart to our maps in 2000 and 2020.
Similarly, the earliest (in 2001) and the latest (2019) NLCD maps were obtained to ensure maximal
comparability with our time of interest.

Next, we computed the differenced maps for all time-series products to quantify net change of
coastal forest over the past two decades (the C-CAP maps between 2001-2016; the NLCD maps
between 2001-2019; our own maps between 2000-2020). To allow cross-product comparison of
coastal forest, we reclassified forest area in the C-CAP/NLCD products, and in our own maps.
Specifically, all pixels labeled as deciduous forest, evergreen forest, mixed forest, scrub/shrub,
forested wetland and scrub/shrub wetland in the C-CAP maps were reclassified as forest. Similarly,
all areas classified as deciduous forest, evergreen forest, mixed forest, scrub/shrub, and woody
wetland in the NLCD products were reclassified as forest. In our own maps, forest refers to all
areas mapped as upland forest and transition forest. Similarly, the land cover of marsh termed in
our maps corresponds to areas represented by palustrine and estuarine emergent wetland in the C-

CAP products, and by emergent herbaceous wetlands in the NLCD maps.

2.8 Spatially explicit quantification of forest retreat rate

We analyzed our time-series land cover maps to shed light on the spatiotemporal patterns of SLR-

driven coastal forest retreat. Specifically, we created three spatially explicit forest retreat maps
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(from 1985 to 2000, from 2000 to 2020, and from 1985 to 2020) to explore whether and to what
extent forest retreat rate has changed over time. Below we describe our step by step workflow for
quantifying forest retreat rate during any two time periods in more detail.

First, we computed the differenced map between Time 1 (T1) and Time 2 (T2) to identify areas
of forest loss. The map was then converted to smoothed vector features where areas of forest loss
were represented by discrete polygons (‘Smooth Polygon’ tools in ArcGIS v10.7). We studied
unique patterns of forest loss, and assigned each of the polygons into one of the four patterns it
represents (Fig. 6): Interior Loss (IL: forest interior replaced by emerging marsh, in which area of
forest loss is outlined in T2), Entire Loss (EL: complete conversion of forest to marsh, in which
area of forest loss is outlined in T1), Linear Retreat (LR: parallel forest retreat with the area lost
outlined by open forest boundaries in T1 and T2), and Radial Retreat (RR: concentric forest retreat,
where area of forest loss is delineated by closed boundaries in T1 and T2).

Second, we divided the four patterns of polygons (i.e. areas of forest loss) into two groups
(Type1 and Type2) depending on the configuration of its boundary (Fig. 6). The Type: polygons
represent forest loss with no pre-defined baseline (no reference) for specific direction of forest loss,
including all IL and EL polygons (Fig. 6), whereas the Type2 polygons consist of all LR and RR
polygons, referring to forest loss with clearly defined baseline (with reference) to indicate
directional forest change from Ti to T2 (Fig. 6).

Third, we quantified forest retreat rate, separately, for the two types of polygons. To compute
forest retreat rate within the Typei polygons, we created points along all polygon boundaries
(‘Generate Points Along Line’, ArcGIS v10.7) at regular distances (30 m, one Landsat pixel). Then,

we created perpendicular lines at each point (‘Create Perpendicular Lines’, ArcGIS v10.7) that cut
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through the polygon in all directions (Fig. 6). These perpendicular lines stand for potential paths
of forest retreat from Ti to T2, and their length thereby represents distance of forest retreat. We
divided the length of the perpendicular lines by the number of years between T1 and T2 to estimate
the rate of forest retreat along each path (Fig. 6).

Next, we computed forest retreat rates within areas represented by the Type2 polygons. The
procedure is identical to that of Type: polygons except that the perpendicular lines have to intersect
with both the T1 and T2 boundaries to represent the directed path of forest retreat (Fig. 6). Instead
of placing points along all polygon boundaries as we did for Type: polygons, we generated points
only on the T: boundary of the Type2 polygon, from where the perpendicular lines extend to
intersect with the T2 boundary (‘Create Perpendicular Lines’, ArcGIS v10.7). In the same way, we
generated points on the T2 boundary to draw perpendicular lines intersecting the T1 boundary (Fig.
6). The rate of forest retreat represented by each perpendicular line was calculated in the same way
as described above for the Type: polygons.

Finally, we sampled forest retreat rates across all areas of forest loss represented by the Type:
and Type2 polygons, and the results were rasterized to produce the spatially-explicit map of forest
retreat rate (‘Generate Tessellation’, ArcGIS v10.7) (Fig. 6). In brief, we sampled points along all
perpendicular lines every 30 m (one Landsat pixel), and extracted the rate of forest retreat at each
point for all Type: and Type: polygons. We rasterized the rate samples across the region, in which
the value of each grid was computed as the mean of all samples within the grid. Grids outside of
polygons represent areas of no forest loss, and their values were assigned to 0. For grids inside
polygons but having no rate samples, their values were interpolated as the average of surrounding

grids (Fig. 6).
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Fig. 6. Flowchart for spatially-explicit assessment of forest retreat rate. See text for acronym definition and

detailed description of the step by step procedure.

3. RESULTS

3.1 Land surface phenology and temporal-trend analysis

Patterns of land surface phenology differ vastly between coastal vegetation types (Fig. 4 and Table
3). Specifically, six of the seven phenological metrics computed by the double-logistic filter
demonstrate significant differences between vegetation types (Table 3). For example, the Start of
Growing Season is estimated to be on 114 + 5 day of year for upland forest, which is ~10 days

earlier than marsh (125 + 5) and ~20 days earlier than transition forest (135 + 6) (Table 3).
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Similarly, the Peak NDVI value reaches 0.82 + 0.11 in upland forest, significantly higher than
surrounding vegetation of marsh (0.59 + 0.09) and transition forest (0.71 + 0.13) (Table 3).

The comparison of vegetation-specific NDVI trends between time-span scenarios (Fig. 5)
reveals that maximal inter-vegetation contrast was achieved at 24 years (i.e. the intermediate time-
span scenario, Table 4), as indicated by the strong, significantly negative NDVI trends (P <0.0001)
in transition forest, contrasted with marginally significant (P = 0.06) trends in marsh and no trend
at all (P = 0.84) in upland forest (Table 4). Tests of the simplistic decision tree model (Eq. (1))
offer additional confirmation favoring the 24-year scenario, as the outputs of intermediate test
yielded the best separation of transition forest from others with an overall accuracy of 83.7%,
followed by 81.8% and 62.3% for the long (36 years) and short (12 years) time-span tests,

respectively.
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435  Table 3. Comparison of phenological metrics between coastal vegetation. All metrics are extracted from
436  the phenology function fitted with a double-logistic filter. Differences are tested with one-way ANOVA,
437  and statistical significance is denoted as * (0.01 < P < 0.05), " (0.001 <P <0.01), ™" (P < 0.001), and ™

EEE

438  (not significant). RMSE: root mean square error.

Land cover (mean + SD)

Phenological metrics (unit)

Marsh Transition forest Upland forest
Start of Growing Season (day of year) ~ 125+5 135+6 114+5
End of Growing Season (day of year) ™ 297+ 12 300+ 11 313+8
Peak of Growing Season (day of year) 165+ 10 189+ 11 189+9
Length of Growing Season (number of days) " 172+ 10 165+ 12 199 + 10
Base NDVI (unitless) ™ 0.34 +0.07 0.54+0.11 0.59+0.11
Peak NDVI (unitless) * 0.59+0.09 0.71 £0.13 0.82+0.11
Annual Amplitude of NDVI (unitless) * 0.25+£0.04 0.17 £0.04 0.23 £0.03
RMSE (N/A)NS 0.05+£0.01 0.04 £0.01 0.04 £0.01
R*(N/A)” 0.83+0.10 0.72 +0.08 0.90 +0.11

439  TDefinition of the metrics. Start of Growing Season: the day when the left edge of the fitted curve increases
440  to 20% of the difference between the left minimum and peak NDVI; End of Growing Season: the day when
441  the right edge of the fitted curve decreases to 20% of the difference between the right minimum and peak
442  NDVI; Peak of Growing Season: the day when NDVI of the fitted curve reaches the maximum; Length of
443  Growing Season: time span between the start and the end of the growing season; Base NDVI: average of
444 the left and right minimal NDVT values of the fitted curve; Peak NDVI: maximal NDVI value of the fitted
445  curve; Annual Amplitude of NDVI: difference between the peak and the base NDVI values.

446
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Table 4. Comparison of trend analyses between different time-span tests. All statistics are derived from the
model fitted with peak growing-season NDVI time-series. Significance is denoted as * (0.01 < P <0.05), ™
(0.001 <P <0.01), ™ (P <0.001), and ™ (not significant).

ko

Time-span Statistical metrics Land cover
Marsh Transition forest Upland forest
36 vears Slope (x 107) -1.3 4.1 0.5
(198}_2020) Ry 032 078 0.10N S
P 3E-04 3E-13 0.06
Slope (x 107) -1.1 -5.7 0.1
24 years R 0.14 0.83 0.002
(1996-2020) NS - NS
P 0.06 2E-14 0.84
12 years Slope gx 107) 1.8 -5.1 -0.08
(2008-2020) R gy 0.16 0.44 ) 0.0005
P 0.18™8 0.013 0.94 ™
NDVI by the end of observation (2020) ™ 0.57 £0.06 0.64 £0.07 0.81 £0.05

3.2 Accuracy assessment of different classification scenarios

We assessed the land cover map generated in 2020 by the S: algorithm — the conventional bi-
seasonal approach — as the baseline to benchmark the performance of our phenological- and/or
trend-based algorithms (S2-S4). The product of Si has an overall classification accuracy of 86.4%
and Kappa coefficient of 0.83 (Table 5). The corresponding mean Producer’s Accuracy (PA) and
User's Accuracy (UA) are 87.2% and 88.1%, respectively. Close examination of the confusion
matrices (Table 5) reveals large discrepancy in classification accuracy between land cover types.
In particular, commission and omission errors are large for transition forest (UA of 78.5%, PA of
77.3%) due to spectral confusion with marsh and upland forest (Table 5). Overall, the S algorithm
underestimates the area of transition forest, in which ~15% of transition forest is misclassified as
marsh. Correspondingly, the area colonized by marsh was notably overestimated by Si.

The comparison between Si and the other three algorithms (S2-S4) offers compelling evidence

that incorporating phenological metrics and/or temporal-trend information significantly improves
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the overall as well as vegetation-specific classification accuracy (Tables 5-6). The phenological-
based algorithm of Sz yields an overall classification accuracy of 93.2% and Kappa coefficient of
0.91 — a sizeable increase by 8% and 10% from that of Si (Table 5). The improvement was mainly
achieved by constraining the spectral confusion between transition forest and its surrounding
vegetation of marsh and upland forest (Table 5). Specifically, the UA of transition forest increases
from less than 80% in S1 to 91.2% in S2, and the PA increases by a similar margin from 77.3% in
S1to 90% in Sz (Table 5). To a lesser extent, the UA and PA of upland forest and marsh also grow
appreciably from Si between 82.6% and 88.9% to Sz between 91.6 and 95.6% (Table 5).

As compared to the phenological-based algorithm of Sz, the trend-based algorithm of Ss is less
effective in differentiating between land cover types (Table 5) although no statistical difference is
found between the two algorithms (Table 6). The overall classification accuracy and Kappa
coefficient of S3 are respectively 5% and 7% higher than Si, but 2% and 3% lower than Sz (Table
5). Similar to Si, the spectral confusion with marsh remains the largest source of omission and
commission errors for transition forest in S3 (Table 5). Nonetheless, the UA and PA of transition
forest in S3 increase considerably from Si by 11% and 14% — a result only 4% (UA) and 2% (PA)
lower than that of Sz (Table 5). Similarly, the UA and PA of upland forest and marsh in S3 also
show a noticeable increase by 3-9% from Si (Table 5).

Consistent with our expectation, the phenological- and trend-based algorithm of S4 has the best
performance among all. The S4 algorithm achieves an overall classification accuracy of 94.1% and
Kappa coefficient of 0.93 (Table 5). Although the result of S4 is not statistically different from that
of Sz, it significantly improves from that of S3 (Table 6). Moreover, S4 demonstrates consistently

high classification accuracy among land cover types with a mean UA of 94.2% and mean PA of
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93.5% (Table 5). Albeit small, S4 offers additional improvement in the UA (91.6%) and PA (91.3%)

of transition forest from that of Sz (UA of 91.2%, PA of 90.0%) (Table 5). Concurrently, the UA

and PA of upland forest and marsh (92.8-95.7%) also exhibit slight enhancement from that of Sz

(91.6-95.6%) (Table 5).

Table 5. Confusion matrix comparing classification accuracy between land cover maps generated by

different algorithms/scenarios in 2020.

Reference data

ISVc[ ::lrl::;il:)gs Land cover Upland Transition Marsh  Water Other Other uiflf:aiy
forest forest (Agriculture) (Urban area)
Upland forest 273 20 2 0 11 1 88.9%
Transition forest 30 245 23 2 10 2 78.5%
S, Bi- Marsh 1 45 270 5 4 2 82.6%
sealsonal Water 0 3 6 220 1 1 95.2%
h Other (Agriculture) 11 3 3 6 182 1 88.3%
approac Other (Urban area) 1 1 1 0 0 56 94.9%
Producer’s accuracy 86.4% 77.3% 88.5%  94.4% 87.5% 88.9%
Overall accuracy = 86.4%; Kappa coefficient = 0.83
Upland forest 285 9 2 0 8 1 93.4%
Transition forest 10 271 8 2 6 0 91.2%
Sy Sy + Marsh 0 15 296 7 4 1 91.6%
ph'enological Water 1 4 3 233 2 1 95.5%
metrics Other (Agriculture) 2 1 3 2 167 0 95.4%
Other (Urban area) 0 1 0 2 0 47 94.0%
Producer’s accuracy 95.6% 90.0% 949%  94.7% 89.3% 94.0%
Overall accuracy = 93.2%; Kappa coefficient = 0.91
Upland forest 278 11 2 0 12 1 91.4%
Transition forest 12 266 14 1 9 2 87.5%
S5 S+ Marsh 2 21 283 6 3 0 89.8%
tre;n 4 Water 0 2 6 198 2 1 94.7%
analysis Other (Agriculture) 2 2 3 5 199 0 94.3%
Other (Urban area) 1 0 3 2 0 48 88.9%
Producer’s accuracy 94.2% 88.1% 91.0%  93.4% 88.4% 92.3%
Overall accuracy = 91.1%; Kappa coefficient = 0.88
Upland forest 267 9 0 0 6 3 93.7%
Transition forest 9 283 7 0 9 1 91.6%
Se 81+ Marsh 2 13 282 4 1 2 92.8%
phenological Water 0 2 3 209 0 0 97.7%
trend Other (Agriculture) 1 2 2 1 194 0 97.0%
analysis Other (Urban area) 0 1 2 0 1 50 92.6%
Producer’s accuracy ~ 95.7% 91.3% 953%  97.7% 91.9% 89.3%

Overall accuracy = 94.1%; Kappa coefficient =0.93
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Table 6. Comparison of different classification scenarios using the McNemar's Chi-squared test. Refer to
the text for detailed definition of the four classification scenarios (Si, S2, S3 and S4). Significance is denoted

as " (0.01 <P <0.05), 7 (0.001 <P <0.01), ™ (P<0.001), and ™ (not significant).

EEE

T wrE McNemar's Chi-squared test
Degree of freedom X P

Si S 1 12.37 0.0004 ™
S3 1 9.66 0.002 ™
S 1 18.18 2.0e-05

Sz S3 1 3.82 0.051
S4 1 0.74 0.390

Ss S 1 5.07 0.024 "

3.3 Multi-period maps and comparison with existing products

In spite of extra benefits conferred by temporal-tend information to coastal forest mapping (S4),
we selected the phenological-based algorithm of Sz as the most suitable approach for our time-
series mapping, considering that (1) the results of Sz achieve remarkable classification accuracy
with no statistical difference from that of S4 (Tables 5-6), and (2) more critically, trend analysis
required for S4 is not applicable (24 years NDVI time-series, Table 4) for historical mapping in
1985 and 2000.

We mapped regional land cover in 1985, 2000 and 2020 using the Sz algorithm and compared
the results between time steps (Fig. 7). Similar to the results in 2020 (Table 5), the maps generated
in 1985 and 2000 attain comparably high overall classification accuracy (92.1% in 1985, 94.0% in
2000) and Kappa coefficient (0.89 in 1985, 0.92 in 2000) (Fig. 7). The mean UA and PA of the
map in 1985 (92.3%, 92.2%) and 2000 (94.1%, 94.0%) rival that in 2020 (93.5%, 93.1%) (Fig. 7).

As illustrated by the zoomed-in sites in Figs. 8-10 (Site 1 and Site 2), our maps of coastal land
cover in 2000 and 2020 agree well with the spatial pattern revealed by high-resolution aerial photos

(0.6 m) acquired in the region. More importantly, the temporal pattern of coastal vegetation change
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demonstrated by the differenced maps (Figs. 9-10) accords closely with our field observations that
accelerating SLR leads to expansive mash inundation and coastal forest mortality (Figs. 2-3). In
particular, we found that the marsh-forest boundary retreated as much as 1.1 km from 2000 to 2020
in Site 2, equivalent to an annual retreat rate of 55 m yr'! (Fig. 8).

Our results strikingly contrast with those derived from existing map products (C-CAP, NLCD),
which indicate opposite trajectory of coastal vegetation change (marsh converted to forest), even
in areas of massive forest loss highlighted in Site 2 (Figs. 9-10). As a result, the overall
classification accuracy of C-CAP and NLCD products is less than 62% in our study region. Close
inspection suggests that the confusion between marsh and forest is considerable in the C-CAP and
NLCD products, most pronounced in areas identified as transition forest, although the degree of

confusion varies between time steps (Figs. 9-10).
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526  Fig. 7. Accuracy assessment shown as User’s accuracy (A), Producer’s accuracy (B), and Overall and

527  Kappa coefficient (C) for the land cover maps generated by the S, algorithm at three time-steps (1985, 2000
528  and 2020).
529
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531  Fig. 8. Multi-period land cover maps in the study region. The inserted pie charts show the areal percentage
532 of each land cover in the region, and the black boxes ((1) and (2)) refer to the two zoom-in sites presented
533 in detail by the second (Site 1) and third row (Site 2).
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Fig. 9. Comparison of different land cover products in Site 1. The maps presented in the first row were

derived from high-resolution (~1 m) aerial photos, serving as the reference for comparison. The marsh-
forest boundary (yellow lines) was manually delineated on the aerial photos, and the differenced maps show
the areal changes of coastal forest from Timel to Time2. Our own maps generated in 2000 and 2020 were
plotted in the second row. The corresponding C-CAP and NLCD products were shown in the third and

fourth rows, overlaid with black lines indicating areas of transition forest identified by our products.
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Fig. 10. Comparison of different land cover products in Site 2. The maps presented in the first row were
derived from high-resolution (~1 m) aerial photos, serving as the reference for comparison. The marsh-
forest boundary (yellow lines) was manually delineated on the aerial photos, and the differenced maps show
the areal changes of coastal forest from Timel to Time2. Our own maps in 2000 and 2020 were plotted in
the second row. The corresponding C-CAP and NLCD products were shown in the third and fourth rows,

overlaid with black lines indicating areas of transition forest identified by our products.

3.4 Spatiotemporal patterns of coastal vegetation change

Our time-series maps manifest that coastal vegetation change is spatially and temporally
heterogenous (Figs. 8-12). From 1985 to 2000, as much as 1.23 x 10* ha of marsh was lost to open
water. Meanwhile, 1.91 x 10° ha of coastal forest (1.73 x 10° ha transition forest, 1.80 x 102 ha
upland forest) was converted to marsh that collectively led to an increase of marsh area by 8.75 x

107 ha (Fig. 8). Concurrently, the total forest area decreased by 5.6% from 2.09 x 10* ha in 1985
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(7.14 x 10° ha transition forest, 1.38 x 10* ha upland forest) to 1.97 x 10* ha in 2000 (6.15 x 10°
ha transition forest, 1.36 x 10* ha upland forest) (Fig. 8).

The areal change of marsh and forest was accompanied by the systematic shift of coastal
vegetation distribution along elevation gradient (Fig. 11). To be clear, the estimated elevation
change of marsh and forest refers to the positional shift of vegetation distribution along the CONED
DEM, rather than in-situ elevation gain associated with vertical sedimentation. Specifically, the
elevation of marsh, transition forest and upland forest respectively increased by 11 mm (from 0.29
+0.20 to 0.30 = 0.19 m), 14 mm (from 0.35 + 0.16 to 0.37 = 0.15 m), and 40 mm (from 0.78 +
0.52 to 0.82 + 0.52 m) from 1985 to 2000 (Fig. 11). The estimated rate of marsh-forest boundary
change (or horizontal forest retreat rate) was 3.07 £ 2.79 m yr! between 1985 and 2000 when
averaged across all areas within 2 m above sea level (Fig. 12).

The comparison of vegetation change between 1985-2000 and 2000-2020 reveals that coastal
landscape reorganization accelerated over time (Figs. 11-12). The area of marsh increased by
15.8% (3.25 x 10° ha) and forest area decreased by 17.3% (1.16 x 10° ha loss of transition forest,
2.26 x 10% ha loss of upland forest) from 2000 to 2020 (Fig. 8). The result is equivalent to an
annual marsh gain of 162.7 ha and annual forest loss of 170.9 ha, an amount more than double that
during 1985-2000 (marsh gain of 58.4 ha yr™!, forest loss of 78.1 ha yr'!). Similar to that observed
during 1985-2000, the average elevation of coastal vegetation also increased from 2000 to 2020,
by 12 mm, 56 mm, and 85 mm for marsh, transition forest and upland forest, respectively (Fig.
11). Unlike marsh that exhibited comparable rates of vertical migration between 1985-2000 (0.69
mm yr'') and 2000-2020 (0.64 mm yr'!), the rates of transition forest (from 0.87 to 2.94 mm yr!)

and upland forest (from 2.50 to 4.49 mm yr'!) largely increased from 1985-2000 to 2000-2020
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(Fig. 11). Similarly, the rate of marsh-forest boundary change (i.e. horizontal forest retreat rate)
increased by 52% from 1985-2000 (Fig. 12B) to 4.68 + 3.72 m yr'!' during 2000-2020 (Fig. 12C).

After studying patterns of coastal forest loss (Fig. 6), we found that it is common for new marsh
to establish within forest interior (number of emerging marsh patches = 809 from 1985 to 2000,
and 512 from 2000 to 2020). However, the emerging marsh patches are usually small in size (0.22
+0.17 ha between 1985-2000, 0.27 + 0.19 ha between 2000-2020), and account only for a fraction
of total forest loss to marsh (9% between 1985-2000, 4% between 2000-2020). Hence, the
replacement of degrading forest by expanding marsh along forest perimeter remains the
predominant pathway of coastal transgression, responsible for over 90% of all forest loss to marsh

from 1985 to 2020 (Figs. 11-12).
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Fig. 11. Vertical range shifts of different coastal vegetation over time. Panels on the left represent the

distribution histogram of each vegetation type with elevation, and the vegetation-specific mean elevation

is indicated by the dotted lines. The right panel shows the vertical migration rate estimated for each

vegetation type between 1985 and 2000, and between 2000 and 2020. Coastal forest is the aggregate of

transition forest and upland forest.
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and between 2000 and 2020 (C) across our study region. Please refer to the text for a detailed description

of the methodology (2.8 Spatially explicit quantification of forest retreat rate).

4. DISCUSSION

The acceleration of global SLR creates growing demand for timely and accurate monitoring of
coastal landscape dynamics that is critical to sustainable ecosystem management (Hinkel et al.,
2015; Oppenheimer et al., 2019). Our study developed a phenology- and trend-based algorithm
that uniquely targets the ecologically-distinct transition forest to enable spatially and temporally
consistent tracking of coastal transgression. The approach, in combination with our spatial analysis
workflow (Fig. 6), provides a practical framework that may be integrated into cloud-based
platforms such as Google Earth Engine in future efforts to allow automatic, near real-time

estimates of SLR-driven forest retreat on national to global scales.
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Previous studies generally suggest that algorithms combining multiple sources of information
boost classification accuracy over those relying solely upon spectral information (Diao and Wang,
2016; Fagan et al., 2018; Thomas et al., 2021). We analyzed the spectral, phenological and
temporal signatures of different coastal vegetation, and the results confirm the complementary
contribution of different information to optimizing land cover mapping. In particular, six out of
the seven phenological metrics show significant difference between transition forest and the
spectrally-similar surroundings, implying systematical deviation of land surface phenology in salt-
stressed forests from adjacent marsh and intact forest. Accordingly, the approach accommodating
the phenological distinctions of coastal vegetation allows superior mapping accuracy to that
derived from the traditional bi-seasonal approach, a result in line with earlier findings that suggest
land surface phenology playing an important role in constraining intra-class variations in spatially
complex landscapes (Diao and Wang, 2018, 2016; Thomas et al., 2021).

While remote sensing products can be used to facilitate a mechanistic understanding of coastal
transgression (Schieder et al., 2018; Smart et al., 2020), the ecological understanding of coastal
transgression in turn offers invaluable insights into advancing the remote sensing of shifting
vegetation. Our temporal-trend analyses, built upon ecological theory of stressed ecosystems and
ecosystems undergoing regime shifts (Carpenter et al., 2011; Chen et al., 2022; Scheffer et al.,
2015), corroborate field-based studies (Smith and Kirwan, 2021; Walters et al., 2021) showing
directional changes of biomass/productivity in salt-stressed forests (Fig. 5). By incorporating the
temporal-tend information, our algorithm (S4) further reduced the confusion between transition
forest and the adjacent marsh and upland forest, yielding additional discriminatory power to the

phenology-based approach.
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It is worth noting that the strength of trend analysis depends on the temporal length of time-
series data. An intermediate time-span of 24 years is identified as optimal for isolating transition
forest, and a simple decision tree model (Eq. (1)) attains an overall classification accuracy beyond
80%. Given its efficacy in distinguishing transition forest, the temporal-trend analysis may be
informative for other remote-sensing applications in coastal ecosystems, such as detecting early
warning signals of seawater intrusion (White and Kaplan, 2021), identifying hotspots of coastal
transgression, or guiding the selection of reference sites in data-limited areas for regional mapping.
Moreover, as climate warming is driving worldwide intensification of press and pulse stressors
(Y.-P. Chen and Ye, 2014; Chen et al., 2021b, 2020; Lara et al., 2021), similar trend-based
algorithms may be applicable to other rapidly-changing ecosystems (Chen et al., 2015; Myers-
Smith et al., 2015, 2011) for enhanced quantification of earth system transition.

Our time-series land cover maps in 1985, 2000 and 2020 reveal increasing rates of coastal
transgression, concurrent with observed acceleration of global SLR over past decades (Dangendorf
et al., 2019). This finding accords well with a number of observations in the US Atlantic coast,
reporting escalated forest mortality and marsh encroachment in the recent past (Kirwan and Gedan,
2019; Miller et al., 2021; Schieder et al., 2018). Notably, we found that forest retreat rate (or
landward marsh migration rate) can reach up to 55 m yr'!' in some areas (Site 2), which is the fastest
rate ever recorded (Kirwan and Gedan, 2019; Schieder et al., 2018; Schieder and Kirwan, 2019;
Smith, 2013). Previous studies suggest that low-lying, gently-sloping terrain is conducive for
marsh migration (Molino et al., 2022; Schieder and Kirwan, 2019). The extremely low relief
terrain of Site 2 (mean elevation of 0.32 m, mean slope of 0.03) likely explains the exceptional

rate of forest retreat, where slight increases of sea level can push saltwater far inland.
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Moreover, the close comparison of the C-CAP/NLCD products to ours (Figs. 9-10) indicates
that previous studies using existing maps (Gittman et al., 2019; Holmquist et al., 2018; White et
al., 2021) might underestimate the vulnerability of coastal ecosystems to SLR. Although the C-
CAP/NLCD time-series have been proven effective in capturing broad-scale patterns (Byrd et al.,
2018; Thomas et al., 2021), these datasets may not be well suited to quantitative study of SLR-
driven landscape reorganization, especially considering that forest gain is suggested in areas where
we observed forest loss among the most drastic on earth (Site 2). Previous work highlighted
substantial omission and commission errors for other land cover types in the C-CAP/NLCD
products, especially in early maps (e.g. 2001, 2006) (Danielson et al., 2016; Fagan et al., 2018).
Hence, reevaluation of the risks posed by SLR to coastal ecosystems and society is needed, and
our approach may serve as a reproducible solution to ensure the spatially and temporally consistent
mapping required for such assessments.

Finally, we analyzed unique patterns of coastal forest loss, and devised a practical workflow
for semi-automatic creation of coastal forest retreat maps (Figs. 6 and 12). The maps generated
from differenced land cover products allow spatially explicit comparison of forest retreat rates
over time. The spatially explicit fashion of the forest retreat map also means that it can be analyzed
with other geospatial datasets (e.g. DEM, gridded climate data) to link potential environmental
drivers to dynamic coastal transgression. Importantly, the spatial analysis workflow developed
here is not limited to studying coastal forest change, it may be generalized to tackle other
environmental processes and hazards involving positional changes over time, such as coastal land
loss (Hurst et al., 2016; Roy et al., 2020), northern shrubline/treeline advance (Elmendorf et al.,

2012; Sturm et al., 2001), or landslide progress (Balser et al., 2014; Li et al., 2022). Taken together,
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our spatial analysis method may be a useful addition in a diversity of future applications in support

of natural resource management, and risk assessment and mitigation.

5. CONCLUSION

We developed a phenology- and trend-based algorithm in this study to track coastal vegetation
change with high precision and consistency. Our approach significantly improves the classification
accuracy of salt-impacted coastal forest over existing map products, and the results reveal a
striking rate of coastal transgression over the past four decades that was underestimated in existing
remote sensing products (i.e. C-CAP, NLCD). The predicted intensification of climate change will
result in a growing need for rapid and spatially explicit measures of global landscape
reorganization, and our study offers a viable solution to evaluate coastal vegetation change in a
regionally consistent and locally relevant fashion. With the growing power of cloud-based
technology represented by Google Earth Engine, it is possible to automate our approach in future
efforts to allow real-time estimates on the status and trends of SLR-driven coastal transgression

worldwide.
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List of Figure Captions

Fig. 1. Map showing the study region (A) which is located on the U.S. mid-Atlantic coast (B). The
study region represents the mid-Atlantic sea-level rise hotspot and it encompasses the ecologically
and culturally important Blackwater National Wildlife Refuge outlined in yellow. The yellow dots
indicate our ground-truth sites in the study region. In addition to ground-truth data, the reference
sites for our land cover classification also include sites selected from contemporary drone images

and high-resolution aerial photos.

Fig. 2. Accelerated sea-level rise and warming climate in the study region. The data plotted here
refers to the long-term temperature and tidal observations at the nearest NOAA meteorological
station in Dover, Delaware and the nearest NOAA Tides and Currents station in Cambridge,

Maryland.

Fig. 3. Coastal landscape reorganization with rising sea-level. (A) Broad-scale vegetation
distribution along the land-sea margin, highlighting a “ghost forest” transition zone with dead and
stressed trees. (B) Landward upland forest with a closed canopy and lack of understory vegetation.
(C) Transition forest undergoing active seawater intrusion, where forest die-off leads to increased
light availability for shrub growth and marsh transgression. (D) Established marshland with

occasional remnant standing-dead trees, signifying the completion of marsh transgression.

Fig. 4. Annual phenological patterns of marsh (A), transition forest (B), and upland forest (C)
estimated with Landsat-based NDVI time-series. Plots show data for the most recent five years,

and all results are presented as mean + SD.

Fig. 5. Temporal-trend of peak growing-season NDVI for different coastal vegetation types,
estimated using 36 years of data (1984-2020) — the long time-span test (A), 24 years of data (1996-
2020) — the intermediate time-span test (B), and 12 years of data (2008-2020) — the short time-

span test (C). The linear regression trend line is bounded by the 95% confidence interval. Dotted
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lines refer to marginally significant trends (0.05 < P <0.1) whereas solid lines represent significant

trends at the level of P < 0.05.

Fig. 6. Flowchart for spatially-explicit assessment of forest retreat rate. See text for acronym

definition and detailed description of the step by step procedure.

Fig. 7. Accuracy assessment shown as User’s accuracy (A), Producer’s accuracy (B), and Overall
and Kappa coefficient (C) for the land cover maps generated by the S algorithm at three time-
steps (1985, 2000 and 2020).

Fig. 8. Multi-period land cover maps in the study region. The inserted pie charts show the areal
percentage of each land cover in the region, and the black boxes ((1) and (2)) refer to the two

zoom-in sites presented in detail by the second (Site 1) and third row (Site 2).

Fig. 9. Comparison of different land cover products in Site 1. The maps presented in the first row
were derived from high-resolution (~1 m) aerial photos, serving as the reference for comparison.
The marsh-forest boundary (yellow lines) was manually delineated on the aerial photos, and the
differenced maps show the areal changes of coastal forest from Timel to Time2. Our own maps
generated in 2000 and 2020 were plotted in the second row. The corresponding C-CAP and NLCD
products were shown in the third and fourth rows, overlaid with black lines indicating areas of

transition forest identified by our products.

Fig. 10. Comparison of different land cover products in Site 2. The maps presented in the first row
were derived from high-resolution (~1 m) aerial photos, serving as the reference for comparison.
The marsh-forest boundary (yellow lines) was manually delineated on the aerial photos, and the
differenced maps show the areal changes of coastal forest from Timel to Time2. Our own maps
in 2000 and 2020 were plotted in the second row. The corresponding C-CAP and NLCD products
were shown in the third and fourth rows, overlaid with black lines indicating areas of transition

forest identified by our products.
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Fig. 11. Vertical range shifts of different coastal vegetation over time. Panels on the left represent
the distribution histogram of each vegetation type with elevation, and the vegetation-specific mean
elevation is indicated by the dotted lines. The right panel shows the vertical migration rate
estimated for each vegetation type between 1985 and 2000, and between 2000 and 2020. Coastal

forest is the aggregate of transition forest and upland forest.
Fig. 12. Estimated horizontal forest retreat rates between 1985 and 2020 (A), between 1985 and

2000 (B), and between 2000 and 2020 (C) across our study region. Please refer to the text for a
detailed description of the methodology (2.8 Spatially explicit quantification of forest retreat rate).
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