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ABSTRACT 7 
The rapid replacement of upland forest by encroaching marshland is a striking manifestation of 8 

global sea-level rise (SLR). Timely and high-resolution information on the location and extent of 9 

transition forest (the ecotone between upland forest and marsh where tree mortality due to seawater 10 

intrusion begins) is fundamental to understanding the processes and patterns of SLR-driven 11 

landscape reorganization. Despite its significance, accurate characterization of salt-impacted 12 

transition forest remains challenging due to the complexity of coastal environments, scarcity of 13 

ground-truth data, and the lack of effective mapping algorithms. Here we use the full archive of 14 

Landsat images between 1984-2021 to investigate the spectral, temporal, and phenological 15 

characteristics of transition forest, and develop a robust framework for monitoring coastal 16 

vegetation shifts in the mid-Atlantic U.S., a global SLR hotspot. We found that transition forest 17 

exhibits strong negative NDVI trends and a deviation of land surface phenology from marsh and 18 

upland forest that distinguishes itself from surrounding vegetation. By integrating temporal trends 19 

and land surface phenology, our results demonstrate superior discrimination between marsh and 20 

coastal forests to existing map products (e.g. NOAA Coastal Change Analysis Program, National 21 

Land Cover Database) that allows a reliable identification of the coastal treeline. We applied the 22 
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approach to map regional land cover in 1985, 2000 and 2020 (overall classification accuracy > 23 

92%) and found that the area of coastal forest decreased by 22.0% from 1985 to 2020, the majority 24 

of which transitioned to marshland (92.3%, 5.3 × 103 ha). Based upon fine-scale patterns of coastal 25 

transgression, we created a practical workflow for spatially explicit quantification of forest retreat 26 

rates. Concurrent with rising sea level, coastal forests migrated upslope from 0.63 (± 0.27) m above 27 

sea level in 1985 to 0.78 (± 0.32) m above sea level in 2020, and horizontal forest retreat rates 28 

accelerated from 3.1 (range of 0−36) m yr-1 during 1985-2000 to 4.7 (0−55) m yr-1 during 2001-29 

2020. As SLR continues to accelerate, our study may serve as a scalable solution for consistent 30 

tracking of coastal landscape evolution that is urgently needed for sustainable forest and wetland 31 

management. 32 

Keywords: sea-level rise, saltwater intrusion, forest degradation, marsh encroachment, coastal 33 

treeline 34 

1. INTRODUCTION  35 

Widespread vegetation shifts as a response to anthropogenic climate change have attracted global 36 

attention over recent decades (Chen et al., 2021a; Kirwan and Gedan, 2019; Kirwan and 37 

Megonigal, 2013; Osland et al., 2022). In coastal environments, climate-driven sea-level rise 38 

(SLR) has triggered massive landward marsh migration and forest retreat (Kirwan and Gedan, 39 

2019; Smith and Kirwan, 2021), with potentially large negative impacts to the delivery of essential 40 

ecosystem services (e.g. carbon sequestration, disturbance attenuation, and biodiversity 41 

conservation) to human populations (Gedan et al., 2011; Smart et al., 2020; Smith and Kirwan, 42 

2021). A refined understanding of when, where and how coastal transgression proceeds with rising 43 
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sea level is imperative to allow informed decisions for sustainable coastal development. However, 44 

current knowledge on the spatiotemporal patterns of coastal vegetation shift remains fragmented, 45 

partly constrained by the scarcity of long-term, ground-based information and the lack of effective 46 

mapping algorithms across spectrally complex coastal settings.  47 

As compared to other types of land cover/use change (e.g. forest to cropland or urban area), 48 

the conversion of upland forest to marsh induced by rising sea level is usually a gradual, subtle 49 

process without clear-cut boundaries (Kirwan and Gedan, 2019; Ury et al., 2021). Progressive salt 50 

intrusion in low-relief coastal terrains normally leads to the prevalence of transition forests (i.e. 51 

“ghost forests”) that define the ecotone between marsh and upland forest, and are characterized by 52 

a complex mixture of live and standing-dead trees with an emerging understory of intruding marsh 53 

and shrubs (Smith and Kirwan, 2021; Walters et al., 2021). The presence of this transition zone 54 

poses great challenges for coherent, automatic tracking of the coastal treeline. As a result, previous 55 

studies on SLR-driven coastal forest retreat rely heavily on visual interpretation of local, ultra 56 

high-resolution aerial imagery to delineate the marsh-forest boundary (Flester and Blum, 2020; 57 

Schieder and Kirwan, 2019; Smith, 2013). Aside from being labor-intensive and time-consuming, 58 

this approach precludes consistent application over large spatial scales. 59 

Regional studies on the distribution and trajectory of coastal forest or marsh typically rely on 60 

standardized remote-sensing products (Byrd et al., 2018; He et al., 2022; White et al., 2021). In 61 

the US, it commonly refers to the NOAA Coastal Change Analysis Program (C-CAP) dataset (i.e. 62 

the coastal expression of the National Land Cover Database, NLCD) (NOAA Office for Coastal 63 

Management, 2016). The C-CAP dataset takes advantage of the native 30 m resolution Landsat 64 

images acquired from contrasting seasons in conjunction with ancillary data to map 25 categories 65 
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of coastal land cover for conterminous US every 4-6 years. In spite of its overall success at 66 

capturing broad-scale patterns, the C-CAP dataset is not specifically designed to distinguish 67 

between marsh and forest, and it does not map salt-stressed transition forest. In fact, previous 68 

research comparing the C-CAP dataset with field observations reveals appreciable classification 69 

error at the marsh-forest interface (Weis et al., 2020). Similarly, studies using Landsat images 70 

acquired in summer and winter to quantify the extent of forest retreat in coastal North Carolina 71 

also show frequent confusion between migrating forest and surrounding marsh (Smart et al., 2020; 72 

Ury et al., 2021). Accordingly, a more advanced mapping algorithm explicitly targeted at the 73 

intricate transition forest is required to allow reliable monitoring of coastal forest at regional to 74 

global scales. 75 

Recent studies incorporating land surface phenology derived from the entire annual Landsat 76 

time-series suggest enhanced classification accuracy than those based solely upon multi-seasonal 77 

images in various spectrally challenging environments (Diao and Wang, 2016; Thomas et al., 78 

2021). For instance, by integrating a range of phenological metrics extracted from monthly Landsat 79 

dataset, studies in a riparian ecosystem successfully differentiated exotic saltcedar from native 80 

vegetation (Diao and Wang, 2018, 2016). In a fast-changing coastal wetland, the phenological-81 

based approach allowed nuanced depiction of Spartina alterniflora invasion over past decades 82 

(Tian et al., 2020). Similarly, in a mountainous region of the eastern U.S., a study leveraged the 83 

phenological deviation of thinning forest from intact forest to pinpoint areas of active management 84 

(Thomas et al., 2021). Despite success in previous application, whether land surface phenology 85 

can be exploited to map transition forest remains unknown. Literature and field survey suggest 86 

that seawater intrusion may indeed provoke a departure of land surface phenology in transition 87 



5 
 
 
 
 

forest, as reflected by muted seasonality (White and Kaplan, 2021), delayed budding, and early 88 

onset of leaf senescence (Chen and Ye, 2013; Y. Chen and Ye, 2014; Munns and Tester, 2008) – 89 

all of which may be detected by remote-sensing platforms. It is thereby desirable to explore the 90 

phenological features unique to transition forest for improved separability of coastal forest from 91 

marsh. 92 

In addition, previous studies suggest that ecosystems subjected to chronic stressor or regime 93 

shifts usually undergo predictable directional changes in structure and function, such as change of 94 

biomass and productivity (Berner et al., 2018; Smith and Kirwan, 2021), shift in tree age 95 

distribution and plant composition (Bégin, 1990; Clark, 1986), and amplification of ecosystem 96 

variance (Scheffer et al., 2015). Built upon expected temporal trajectory of forest biomass, a study 97 

was able to identify hotspots of seawater intrusion in eight coastal wetlands using MODIS time-98 

series between 2000 and 2018 (White and Kaplan, 2021). In similar fashion, recent studies in high-99 

latitudes associate multi-decadal Landsat-based NDVI trends with areas of active tundra 100 

shrubification, where native graminoid tundra is replaced by productive intruding shrubs (Berner 101 

et al., 2018; Chen et al., 2021a). Hence, promise may be held by temporal trend analyses of 102 

satellite-derived vegetation indices (e.g. NDVI, a proxy of biomass and productivity) to 103 

discriminate the ecologically-unique transition forest from the spectrally-similar surroundings. 104 

Given current information, the objectives of our study are (1) to develop a phenology- and 105 

trend-based algorithm focusing on the transition forest as a means to optimize the separation of 106 

coastal forest from marsh; and (2) to apply the algorithm and accurately map coastal vegetation in 107 

1985, 2000 and 2020 to quantify the spatiotemporal patterns of coastal transgression. As the 108 

ecological and socioeconomic impacts of SLR accelerate (Bhattachan et al., 2018; Kulp and 109 
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Strauss, 2019), our quantitative and scalable approach to characterize sea-level driven landscape 110 

reorganization may prompt new scientific understanding of complex ecological processes, and  111 

management actions that better prepare coastal ecosystems and societies for future climate change. 112 

2. MATERIALS AND METHODS 113 

2.1 Study region 114 

Our study area (1,009 km2) is located in the rapidly-changing Chesapeake Bay region of the U.S. 115 

mid-Atlantic coast (38.5o N, 76.3o W), and encompasses the iconic Blackwater National Wildlife 116 

Refuge (Fig. 1). As a pilot study, we intentionally selected this region as our study area for three 117 

reasons. First, it is among coastal ecosystems most threatened by global SLR (Fig. 2), where the 118 

SLR rate is 2 to 3 times faster than global average (Sallenger et al., 2012). Second, rapid SLR has 119 

led to expansive formation of “ghost forest” in the region spanning a gradient of coastal topography 120 

(Kirwan and Gedan, 2019; Schieder et al., 2018), which allows us to test the performance of our 121 

algorithms across complex environmental context (Fig. 3). Third, the study region is relatively 122 

rural with minimal human intervention, which serves as a natural canvas for coastal transgression 123 

to occur (Fig. 1).  124 

More than 85% of the region falls within a narrow elevation range between 0 and 3 m NAVD 125 

(North American Vertical Datum of 1988, which approximates regional mean sea level), making 126 

the ecosystem extremely vulnerable to additional SLR. We studied all areas between 0 and 5 m 127 

NAVD in the region, an elevation range that encompasses permanently flooded bays and ponds, 128 

through intertidal wetlands, to adjacent uplands that have no sign of tidal inundation. Farmland 129 

and urban development (e.g. impervious surface) combined only account for ~10% of the land 130 

surface in the study region, mostly in high elevations. Hence, the regional landscape primarily 131 



7 
 
 
 
 

consists of a natural mosaic of marshes, transition forests and upland forests, interspersed with a 132 

network of ponds and channels (Fig. 1). All elevation data refers to the high precision Coastal 133 

National Elevation Database (CoNED DEM) (Danielson et al., 2018).  134 

 135 

 136 
Fig. 1. Map showing the study region (A) which is located on the U.S. mid-Atlantic coast (B). The study 137 
region represents the mid-Atlantic sea-level rise hotspot and it encompasses the ecologically and culturally 138 
important Blackwater National Wildlife Refuge outlined in yellow. The yellow dots indicate our ground-139 
truth sites in the study region. In addition to ground-truth data, the reference sites for our land cover 140 
classification also include sites selected from contemporary drone images and high-resolution aerial photos. 141 
  142 
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 143 
Fig. 2. Accelerated sea-level rise and warming climate in the study region. The data plotted here refers to 144 
the long-term temperature and tidal observations at the nearest NOAA meteorological station in Dover, 145 
Delaware and the nearest NOAA Tides and Currents station in Cambridge, Maryland. 146 

 147 
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 148 
Fig. 3. Coastal landscape reorganization with rising sea-level. (A) Broad-scale vegetation distribution along 149 
the land-sea margin, highlighting a “ghost forest” transition zone with dead and stressed trees. (B) 150 
Landward upland forest with a closed canopy and lack of understory vegetation. (C) Transition forest 151 
undergoing active seawater intrusion, where forest die-off leads to increased light availability for shrub 152 
growth and marsh transgression. (D) Established marshland with occasional remnant standing-dead trees, 153 
signifying the completion of marsh transgression. 154 

 155 

2.2 Image acquisition and preprocessing 156 

We gathered all orthorectified, Tier-1 Landsat surface reflectance scenes covering the study region 157 

between 1984 and 2021 with cloud cover less than 60% (n = 3,130) from the USGS EarthExplorer 158 

(https://earthexplorer.usgs.gov/) collected by Landsat-5 TM, Landsat-7 ETM+ and Landsat-8 OLI. 159 

All Landsat images were delivered in a geometrically and radiometrically corrected fashion, and 160 
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each contains six spectral bands: the three visible bands (blue, green and red), the Near-Infrared 161 

band (NIR), and the two Shortwave-Infrared bands (SWIR1 and SWIR2). All images were 162 

processed using the ancillary Quality Assessment datasets to mask pixels associated with missing 163 

data, cloud, cloud shadow, and snow and ice (Ihlen and Zanter, 2019a, 2019b; Zhu et al., 2015). 164 

The multispectral NDVI index, a commonly used vegetation index, was employed in this study 165 

as a proxy of vegetation phenology (Thomas et al., 2021; Zhang et al., 2022) and ecosystem 166 

biomass and productivity (Berner et al., 2018; Chen et al., 2020; Zoffoli et al., 2020). We computed 167 

the NDVI index associated with each image using the red and NIR bands processed above. 168 

Residual cloud, haze and shadows were further filtered by thresholding the blue (surface 169 

reflectance > 0.07) and red (surface reflectance < 0.01) bands (Ju and Masek, 2016). Since the 170 

dataset spans multiple generations of Landsat sensors that slightly differ in spectral range of 171 

individual bands, cross-sensor correction of NDVI was performed to ensure temporal consistency 172 

(Berner et al., 2020; Roy et al., 2016). Additionally, intertidal ecosystems are periodically flooded 173 

with tidal water that may compromise the performance of vegetation indices for trend detection 174 

(O’Connell et al., 2017). To constrain tidal influence, we applied the Tidal Marsh Inundation Index 175 

on each image to remove pixels of partial inundation before further analysis (Campbell and Wang, 176 

2020; O’Connell et al., 2017). The resulting products were used to generate two data stacks: one 177 

for analyzing recurrent vegetation phenological patterns that contains the entre time-series of 178 

NDVI images within a year stacked annually by Day of Year (DOY) during 1984-2021; and the 179 

other for decadal trend analysis, containing only peak growing-season (July-August) NDVI dataset 180 

stacked in time series from 1984 to 2021. 181 

2.3 Field campaign and coastal vegetation inventory  182 
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In the summer of 2020 and 2021, we undertook several field campaigns to collect ground-truth 183 

data of different coastal vegetation types across the study region (Fig. 1). We recorded the location 184 

and vegetation type at each ground-truthing site throughout the region with a minimum between-185 

site distance of 150 m. We also inventoried coastal vegetation and acquired drone images across 186 

transects spanning the upland-marsh gradient at Moneystump Swamp within the Blackwater 187 

National Wildlife Refuge (Fig. 1). According to our field survey, here we define upland forest as 188 

the coastal forest free from seawater intrusion, as reflected by a closed forest canopy, sparse 189 

understory vegetation due to limited light availability, and absolute absence of marsh vegetation 190 

on the forest floor (Fig. 3B, Table 1). As expected, transition forests usually proliferate in low-191 

lying terrains at the interface between upland forest and marsh (Fig. 3A). Transition forest is 192 

characterized by a mixture of live and dead trees with intruding marsh present in forest understory 193 

(Fig. 3C, Table 1). The transition forest is highly heterogenous across the study region (Fig. 1), 194 

reflecting various stages of coastal forest retreat associated with rising sea level (Smith and 195 

Kirwan, 2021). To ensure that our ground truth data represent the full spectrum of transitioning 196 

forests, we selected the sites along the entire marsh-forest ecotone at Moneystump Swamp that 197 

incorporated canopy cover estimates in transition forest ranging from 10% (adjacent to marsh) to 198 

75% (adjacent to upland forest). Marsh is the most expansive coastal vegetation in the study region, 199 

showing nearly continuous distribution extending from the forest margin until far towards the sea. 200 

We collected ground truth data for different marsh types that distribute following broad 201 

biophysical gradients in the study region (Fig. 1). Specifically, here we define marsh as the 202 

intertidal habitat consisting entirely of marsh species, although fragments of dead trees are 203 
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occasionally spotted in newly formed marshlands (Fig. 3D) – a lasting indicator of rapid forest 204 

loss with the rising sea. 205 

 206 

Table 1: Definition of the land cover types mapped in this study. 207 

Land cover  Definition 
Marsh Tidal wetlands dominated by herbaceous hydrophytes like cordgrass, rushes, and sedges. 

Transition forest 
Low-lying forests between marsh and upland forests where mortality due to seawater 
intrusion has already begun. Also known as ghost forests, with marshes and/or shrubs present 
in understory. 

Upland forest Primary or long-standing secondary forests characterized by closed canopy and mature trees 
of height greater than 5 m. 

Water Open water with 20% or less of vegetation and soil cover. 

Other* 

Other (Agriculture): agricultural lands, including actively cultivated, fallow or recently 
abandoned croplands, and pasture and residential lawns. 
Other (Urban area): impervious surface, such as roads and concrete constructions for 
residential or commercial activities. 

* Other (Agriculture) and Other (Urban area) were classified as separate classes, and the results were grouped to 208 
present as a single land cover type (Other) for simplicity. 209 
  210 

2.4 Vegetation phenology and phenological metrics 211 

To represent land surface phenology in complex environments, we complemented the ground-truth 212 

data with an additional set of reference sites randomly selected (“Create Random Points” in 213 

ArcGIS v10.7) from the contemporary drone images and the latest submeter resolution National 214 

Agriculture Imagery Program (NAIP) aerial photos across the study region (between-site distance 215 

≥ 150 m). Each of the coastal vegetation types (i.e. upland forest, transition forest, and marsh) has 216 

a minimum of 600 reference sites. We assessed vegetation-specific phenological patterns (Fig. 4) 217 

in 2020 at the reference sites using a 3-yr NDVI composite following the approach of Thomas et 218 

al. (2021). The 3-yr image stack (the previous year, the year of interest, and the following year) 219 

was adopted to account for prominent cloud cover of coastal ecosystems and the extended revisit 220 
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period of Landsat satellites. All NDVI images were stacked in DOY to yield sufficient monthly 221 

data points for modeling annual phenological rhythm (Thomas et al., 2021). 222 

We first filtered the NDVI time-series (Fig. 4) with five candidate models: the asymmetric 223 

Gaussian model (White et al., 1997), the adaptive Savitzky-Golay function, the double-logistic 224 

filter (Atkinson et al., 2012; Jönsson and Eklundh, 2004), the Fourier analysis (Brooks et al., 2012), 225 

and the Whittaker filter (Eilers, 2003). The models were selected for their efficacy in smoothing 226 

time-series data and their robustness in reproducing the land surface phenological profile derived 227 

from remotely-sensed NDVI dataset (Atkinson et al., 2012; Diao and Wang, 2016; Thomas et al., 228 

2021). We computed the root mean square error (RMSE) and the coefficient of determination (R2) 229 

to evaluate model performance, and identified the double-logistic filter as the most suitable for our 230 

study in simulating land surface phenology with consistent performance across vegetation types. 231 

We extracted seven ecologically-significant phenological metrics from the smoothed double-232 

logistic curves in R (v3.6.1, the ‘phenofit’ package, (Kong, 2020)) for all reference sites. The set 233 

of phenological metrics records important events and patterns of plant growth cycle (Atkinson et 234 

al., 2012; Kong et al., 2019), referring to the Start of Growing Season, End of Growing Season, 235 

Peak of Growing Season, Length of Growing Season, Base NDVI, Peak NDVI and Annual 236 

Amplitude of NDVI. We compared each of the phenological metrics between vegetation types 237 

using one-way analysis of variance (ANOVA). All datasets were examined with the Shapiro-Wilk 238 

test for normality prior to statistical analysis. Data transformation was conducted to fulfill model 239 

assumptions, and difference is considered significant at the level of P < 0.05. All statistical 240 

analyses were performed in R (v3.6.1). 241 

 242 
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 243 
Fig. 4. Annual phenological patterns of marsh (A), transition forest (B), and upland forest (C) estimated 244 
with Landsat-based NDVI time-series. Plots show data for the most recent five years, and all results are 245 
presented as mean ± SD. 246 

 247 

2.5 Temporal-trend analysis for coastal vegetation 248 

Using the same reference sites collected above for various coastal vegetation types, we conducted 249 

another experiment to test whether trend analyses of NDVI time-series can lend additional strength 250 

to isolating the ecologically-unique transition forest from adjacent vegetation (Fig. 5). In 251 

particular, to explore how temporal length may influence the discriminatory power of trend 252 

analysis and whether an optimal time-span exists for trend detection, we performed three trend 253 

analyses with varying time-spans (Fig. 5). The first analysis leverages the full length of Landsat 254 

time-series between 1984 and 2020 (36 years, the long time-span test), the second test stretches an 255 

intermediate time-span from 1996 to 2020 (24 years, the intermediate time-span test), and the third 256 

test spans the latest 12 years between 2008 and 2020 (the short time-span test) (Fig. 5). 257 

For each test, we analyzed peak-growing season NDVI time-series for a monotonic temporal-258 

trend (Fig. 5) on each reference site using the rank-based Mann-Kendall trend test (Wang et al., 259 

2020). The slope of the NDVI trend was computed using the non-parametric Theil–Sen slope 260 
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estimator (Theil, 1950). All analyses were conducted in R (v3.6.1) with the ‘zyp’ package 261 

(Bronaugh and Werner, 2019). The statistical metrics (R2adj, P-value, and slope) of different time-262 

span tests were compared between vegetation types to evaluate the performance of the tests in 263 

differentiating between coastal vegetation (Fig. 5). For improved confidence in the best time-span 264 

scenario, we also formulated a simplistic decision tree model according to vegetation-specific 265 

NDVI trend (slope, 𝑆𝑙𝑜𝑝𝑒𝑁𝐷𝑉𝐼 𝑡𝑟𝑒𝑛𝑑; significance, 𝑃𝑁𝐷𝑉𝐼 𝑡𝑟𝑒𝑛𝑑) and the NDVI value by the end of 266 

the trend analysis (𝑁𝐷𝑉𝐼𝑒𝑛𝑑) (Fig. 5) as below: 267 

 268 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑒𝑠𝑡 =  {
1 (𝑆𝑙𝑜𝑝𝑒𝑁𝐷𝑉𝐼 𝑡𝑟𝑒𝑛𝑑 <  0; 𝑃𝑁𝐷𝑉𝐼 𝑡𝑟𝑒𝑛𝑑 <  0.1; 𝑁𝐷𝑉𝐼𝑒𝑛𝑑  ≥  0.64)
0 (𝑂𝑡ℎ𝑒𝑟 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛)                                                                             

                         (1) 269 

 270 

Using this empirical model, we assessed the efficacy of each time-span test in differentiating 271 

between transition forest and others on all reference sites. The best time-span scenario was 272 

identified as the one generating maximal separation between coastal vegetation, and it was then 273 

used for regional trend analysis in our land cover mapping. 274 

  275 
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 276 
Fig. 5. Temporal-trend of peak growing-season NDVI for different coastal vegetation types, estimated 277 
using 36 years of data (1984-2020) – the long time-span test (A), 24 years of data (1996-2020) – the 278 
intermediate time-span test (B), and 12 years of data (2008-2020) – the short time-span test (C). The linear 279 
regression trend line is bounded by the 95% confidence interval. Dotted lines refer to marginally significant 280 
trends (0.05 ≤ P < 0.1) whereas solid lines represent significant trends at the level of P < 0.05. 281 

 282 

2.6 Land cover classification and comparison between scenarios 283 

To investigate whether land surface phenology and temporal-trend information can be capitalized 284 

on to improve coastal forest mapping, we mapped regional land cover in 2020 with four competing 285 

scenarios by incorporating and not incorporating phenological or temporal-trend metrics as model 286 

input. The land cover mapped refers to upland forest, transition forest, marsh, open water and other 287 

(i.e. agriculture and urban area) (Table 1). 288 

The first scenario (S1) follows a traditional classification algorithm for coastal forest mapping, 289 

using clear sky Landsat images obtained during low tides from contrasting seasons, one in spring-290 

summer (the greening, warm season) and the other during fall-winter (the browning, cold season) 291 

(Homer et al., 2015; Smart et al., 2020; Ury et al., 2021). To be consistent, we acquired the two 292 

images for S1 following our annual phenological patterns assessed above (Fig. 4): one in July-293 
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August (warm season) and the other in January-February (cold season) – the timing when inter-294 

vegetation contrast is maximized. On top of the original Landsat spectral bands, the inputs of S1 295 

also include thirteen ancillary layers found desirable in previous studies (Belgiu and Csillik, 2018; 296 

Gong et al., 2019; Zhang and Yang, 2020), referring to nine multispectral indices computed from 297 

Landsat bands and four biophysical metrics derived from the CoNED DEM (Table 2). 298 

The input of the second scenario (S2) is identical to that of S1 except that it incorporates an 299 

additional set of phenological metrics described in Section 2.4. Similarly, the input of the third 300 

scenario (S3) includes the full set of the S1 inputs and the statistical metrics derived from temporal-301 

trend analysis using the best time-span scenario identified in Section 2.5. As a comparison, the 302 

fourth map (S4) was generated using all the information above as input, which comprises the S1 303 

input plus all phenological metrics of S2 and all statistical metrics of S3. 304 

We selected the random forest (RF) classifier (Breiman, 2001) implemented in R (v3.6.1, the 305 

‘caret’ and ‘randomForest’ packages (Kuhn et al., 2021; Liaw and Wiener, 2002)) to create all 306 

land cover maps. As compared to conventional classification algorithms (e.g. Decision Tree, 307 

Maximum Likelihood Classifier, and Support Vector Machines), the RF classifier possesses 308 

several advantages that make it well suited for our study. Aside from being computationally 309 

efficient and sophisticated at handling high dimensionality of input data, the RF demonstrates high 310 

classification accuracy across a wide range of terrestrial and wetland ecosystems (Belgiu and 311 

Csillik, 2018; Belgiu and Drăgu, 2016; Diao and Wang, 2016; Gong et al., 2019). Recent products 312 

generated by RF using land surface phenology have proven successful in differentiating spectrally-313 

similar land cover types (Diao and Wang, 2018, 2016; Thomas et al., 2021). Furthermore, the RF 314 

classifier is relatively robust to training errors (up to 20% misinterpretation of training sample, 315 
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(Gong et al., 2019)) – an important asset for mapping landscapes undergoing rapid reorganization 316 

but lacking timely reference. 317 

All the classification algorithms (S1-S4) were trained and validated with the same reference 318 

data. As mentioned earlier, we selected ~600 reference sites for each land cover throughout the 319 

study region based on field campaign, drone images, and the NAIP aerial photos. The dataset was 320 

randomly divided in the ratio of 50% to 50% for each land cover as training and validation. We 321 

set the number of decision trees to 500 for unbiased estimate of generalization error, and used the 322 

default number of variables to be tested for split (i.e. square root of the number of input features) 323 

for all scenarios (Belgiu and Drăgu, 2016). The classification results were evaluated by confusion 324 

matrices and the associated four measures of accuracy (Kappa coefficient, overall accuracy, and 325 

Producer's and User's accuracy). To statistically determine whether incorporating phenological 326 

and/or temporal-trend information improves land cover mapping, we compared the results between 327 

scenarios using the McNemar's chi-squared test (Belgiu and Csillik, 2018; Diao and Wang, 2016) 328 

at the significance level of P < 0.05. 329 

  330 
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Table 2. Selected inputs for the S1 classification. The Landsat images were obtained from contrasting 331 
seasons of summer (July-August) and winter (January-February) when inter-vegetation contrast is 332 
maximized in 2020. All images were acquired during low tide in clear sky. 333 
Categories Predictors* Formula/Description References 

Spectral 
Bands 

BLUE Surface reflectance of the blue band (Diao and 
Wang, 2018, 
2016; Gong et 
al., 2019; Tian 
et al., 2020) 

GREEN Surface reflectance of the green band 
RED Surface reflectance of the red band 
NIR Surface reflectance of the NIR band 
SWIR1 Surface reflectance of the SWIR band1 
SWIR2 Surface reflectance of the SWIR band2 

Multispectral 
Indices 

NDVI  𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
  (Belgiu and 

Csillik, 2018; 
Belgiu and 
Drăgu, 2016; 
Byrd et al., 
2018; Smart et 
al., 2020; 
Thomas et al., 
2021; Zhang 
and Yang, 
2020) 

EVI  𝐸𝑉𝐼 =
2.5∗(𝑁𝐼𝑅−𝑅𝐸𝐷)

𝑁𝐼𝑅+ 6∗𝑅𝐸𝐷−7.5∗𝐵𝐿𝑈𝐸+1
  

SAVI  𝑆𝐴𝑉𝐼 =
1.5∗(𝑁𝐼𝑅−𝑅𝐸𝐷)

𝑁𝐼𝑅+𝑅𝐸𝐷+0.5
  

MSAVI  𝑀𝑆𝐴𝑉𝐼 = 0.5 ∗ (2 ∗ 𝑁𝐼𝑅 + 1 − √(2 ∗ 𝑁𝐼𝑅 + 1)2 − 8 ∗ (𝑁𝐼𝑅 − 𝑅𝐸𝐷))  
NDWI  𝑁𝐷𝑊𝐼 =

𝑁𝐼𝑅−𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅1
  

mNDWI 𝑚𝑁𝐷𝑊𝐼 =
𝐺𝑟𝑒𝑒𝑛−𝑆𝑊𝐼𝑅1

𝐺𝑟𝑒𝑒𝑛+𝑆𝑊𝐼𝑅1
  

TCP-brightness Tasseled Cap Transformation computed from surface 
reflectance of all six spectral bands. Coefficients differ 
between Landsat TM, Landsat ETM+ and Landsat OLI. 

TCP-greenness 
TCP-wetness 

Ancillary 
data 

Elevation Computed from the 1 m resolution Coastal National Elevation 
Database (CoNED) DEM, and resampled to 30 m resolution 
using bilinear interpolation.  

(Belgiu and 
Drăgu, 2016; 
Homer et al., 
2015) 

Slope 
Aspect 
TPI 

* NIR: Near-Infrared; SWIR: Shor-wave Infrared; NDVI: Normalized Difference Vegetation Index; EVI: Enhanced 334 
Vegetation Index; SAVI: Soil-Adjusted Vegetation Index; MSAVI: Modified SAVI; NDWI: Normalized Difference 335 
Water Index; mNDWI: modified NDWI; TCP: Tasseled Cap transformation; TPI: Topographic Position Index. 336 

 337 

2.7 Historical mapping and comparison with existing products 338 

Using the classification algorithm identified as the most suitable in Section 2.6, we then created 339 

two historical land cover maps (in 1985 and 2000) for the study region following the same 340 

procedure as that of 2020 described above. All high-resolution (< 2 m) images used for historical 341 

reference were acquired within ± 2 years of the intended year of mapping, referring to the black-342 

white or color-infrared aerial photography of NAIP, and the National High-Altitude Photography. 343 

We computed the mean elevation of all pixels from the same vegetation type according to the 344 
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CoNED DEM at each mapping step (1985, 2000, and 2020) to explore whether the distribution of 345 

coastal vegetation shifts towards higher elevations with SLR over time. 346 

We compared our multi-period maps (1985-2000-2020) with other widely-used time-series 347 

products, namely the NOAA C-CAP maps and the NLCD database to evaluate coastal forest cover 348 

change over past decades. To minimize temporal mismatch between existing products and ours, 349 

we acquired the C-CAP maps in 2001 and 2016, as a counterpart to our maps in 2000 and 2020. 350 

Similarly, the earliest (in 2001) and the latest (2019) NLCD maps were obtained to ensure maximal 351 

comparability with our time of interest.  352 

Next, we computed the differenced maps for all time-series products to quantify net change of 353 

coastal forest over the past two decades (the C-CAP maps between 2001-2016; the NLCD maps 354 

between 2001-2019; our own maps between 2000-2020). To allow cross-product comparison of 355 

coastal forest, we reclassified forest area in the C-CAP/NLCD products, and in our own maps. 356 

Specifically, all pixels labeled as deciduous forest, evergreen forest, mixed forest, scrub/shrub, 357 

forested wetland and scrub/shrub wetland in the C-CAP maps were reclassified as forest. Similarly, 358 

all areas classified as deciduous forest, evergreen forest, mixed forest, scrub/shrub, and woody 359 

wetland in the NLCD products were reclassified as forest. In our own maps, forest refers to all 360 

areas mapped as upland forest and transition forest. Similarly, the land cover of marsh termed in 361 

our maps corresponds to areas represented by palustrine and estuarine emergent wetland in the C-362 

CAP products, and by emergent herbaceous wetlands in the NLCD maps. 363 

2.8 Spatially explicit quantification of forest retreat rate  364 

We analyzed our time-series land cover maps to shed light on the spatiotemporal patterns of SLR-365 

driven coastal forest retreat. Specifically, we created three spatially explicit forest retreat maps 366 
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(from 1985 to 2000, from 2000 to 2020, and from 1985 to 2020) to explore whether and to what 367 

extent forest retreat rate has changed over time. Below we describe our step by step workflow for 368 

quantifying forest retreat rate during any two time periods in more detail. 369 

First, we computed the differenced map between Time 1 (T1) and Time 2 (T2) to identify areas 370 

of forest loss. The map was then converted to smoothed vector features where areas of forest loss 371 

were represented by discrete polygons (‘Smooth Polygon’ tools in ArcGIS v10.7). We studied 372 

unique patterns of forest loss, and assigned each of the polygons into one of the four patterns it 373 

represents (Fig. 6): Interior Loss (IL: forest interior replaced by emerging marsh, in which area of 374 

forest loss is outlined in T2), Entire Loss (EL: complete conversion of forest to marsh, in which 375 

area of forest loss is outlined in T1), Linear Retreat (LR: parallel forest retreat with the area lost 376 

outlined by open forest boundaries in T1 and T2), and Radial Retreat (RR: concentric forest retreat, 377 

where area of forest loss is delineated by closed boundaries in T1 and T2). 378 

Second, we divided the four patterns of polygons (i.e. areas of forest loss) into two groups 379 

(Type1 and Type2) depending on the configuration of its boundary (Fig. 6). The Type1 polygons 380 

represent forest loss with no pre-defined baseline (no reference) for specific direction of forest loss, 381 

including all IL and EL polygons (Fig. 6), whereas the Type2 polygons consist of all LR and RR 382 

polygons, referring to forest loss with clearly defined baseline (with reference) to indicate 383 

directional forest change from T1 to T2 (Fig. 6).  384 

Third, we quantified forest retreat rate, separately, for the two types of polygons. To compute 385 

forest retreat rate within the Type1 polygons, we created points along all polygon boundaries 386 

(‘Generate Points Along Line’, ArcGIS v10.7) at regular distances (30 m, one Landsat pixel). Then, 387 

we created perpendicular lines at each point (‘Create Perpendicular Lines’, ArcGIS v10.7) that cut 388 
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through the polygon in all directions (Fig. 6). These perpendicular lines stand for potential paths 389 

of forest retreat from T1 to T2, and their length thereby represents distance of forest retreat. We 390 

divided the length of the perpendicular lines by the number of years between T1 and T2 to estimate 391 

the rate of forest retreat along each path (Fig. 6).  392 

Next, we computed forest retreat rates within areas represented by the Type2 polygons. The 393 

procedure is identical to that of Type1 polygons except that the perpendicular lines have to intersect 394 

with both the T1 and T2 boundaries to represent the directed path of forest retreat (Fig. 6). Instead 395 

of placing points along all polygon boundaries as we did for Type1 polygons, we generated points 396 

only on the T1 boundary of the Type2 polygon, from where the perpendicular lines extend to 397 

intersect with the T2 boundary (‘Create Perpendicular Lines’, ArcGIS v10.7). In the same way, we 398 

generated points on the T2 boundary to draw perpendicular lines intersecting the T1 boundary (Fig. 399 

6). The rate of forest retreat represented by each perpendicular line was calculated in the same way 400 

as described above for the Type1 polygons. 401 

Finally, we sampled forest retreat rates across all areas of forest loss represented by the Type1 402 

and Type2 polygons, and the results were rasterized to produce the spatially-explicit map of forest 403 

retreat rate (‘Generate Tessellation’, ArcGIS v10.7) (Fig. 6). In brief, we sampled points along all 404 

perpendicular lines every 30 m (one Landsat pixel), and extracted the rate of forest retreat at each 405 

point for all Type1 and Type2 polygons. We rasterized the rate samples across the region, in which 406 

the value of each grid was computed as the mean of all samples within the grid. Grids outside of 407 

polygons represent areas of no forest loss, and their values were assigned to 0. For grids inside 408 

polygons but having no rate samples, their values were interpolated as the average of surrounding 409 

grids (Fig. 6).   410 
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 411 

 412 
Fig. 6. Flowchart for spatially-explicit assessment of forest retreat rate. See text for acronym definition and 413 
detailed description of the step by step procedure. 414 

 415 

3. RESULTS 416 

3.1 Land surface phenology and temporal-trend analysis 417 

Patterns of land surface phenology differ vastly between coastal vegetation types (Fig. 4 and Table 418 

3). Specifically, six of the seven phenological metrics computed by the double-logistic filter 419 

demonstrate significant differences between vegetation types (Table 3). For example, the Start of 420 

Growing Season is estimated to be on 114 ± 5 day of year for upland forest, which is ~10 days 421 

earlier than marsh (125 ± 5) and ~20 days earlier than transition forest (135 ± 6) (Table 3). 422 
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Similarly, the Peak NDVI value reaches 0.82 ± 0.11 in upland forest, significantly higher than 423 

surrounding vegetation of marsh (0.59 ± 0.09) and transition forest (0.71 ± 0.13) (Table 3).  424 

The comparison of vegetation-specific NDVI trends between time-span scenarios (Fig. 5) 425 

reveals that maximal inter-vegetation contrast was achieved at 24 years (i.e. the intermediate time-426 

span scenario, Table 4), as indicated by the strong, significantly negative NDVI trends (P < 0.0001) 427 

in transition forest, contrasted with marginally significant (P = 0.06) trends in marsh and no trend 428 

at all (P = 0.84) in upland forest (Table 4). Tests of the simplistic decision tree model (Eq. (1)) 429 

offer additional confirmation favoring the 24-year scenario, as the outputs of intermediate test 430 

yielded the best separation of transition forest from others with an overall accuracy of 83.7%, 431 

followed by 81.8% and 62.3% for the long (36 years) and short (12 years) time-span tests, 432 

respectively. 433 

  434 
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Table 3. Comparison of phenological metrics between coastal vegetation. All metrics are extracted from 435 
the phenology function fitted with a double-logistic filter. Differences are tested with one-way ANOVA, 436 
and statistical significance is denoted as * (0.01 ≤ P < 0.05), ** (0.001 ≤ P < 0.01), *** (P < 0.001), and NS 437 
(not significant). RMSE: root mean square error. 438 

Phenological metrics (unit) † 
Land cover (mean ± SD) 

Marsh Transition forest Upland forest 
Start of Growing Season (day of year) *** 125 ± 5 135 ± 6 114 ± 5 
End of Growing Season (day of year) NS 297 ± 12 300 ± 11 313 ± 8 
Peak of Growing Season (day of year) ** 165 ± 10 189 ± 11 189 ± 9 
Length of Growing Season (number of days) * 172 ± 10 165 ± 12 199 ± 10 
Base NDVI (unitless) ** 0.34 ± 0.07 0.54 ± 0.11 0.59 ± 0.11 
Peak NDVI (unitless) * 0.59 ± 0.09 0.71 ± 0.13 0.82 ± 0.11 
Annual Amplitude of NDVI (unitless) * 0.25 ± 0.04 0.17 ± 0.04 0.23 ± 0.03 
RMSE (N/A) NS 0.05 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 
R2 (N/A) * 0.83 ± 0.10 0.72 ± 0.08 0.90 ± 0.11 

† Definition of the metrics. Start of Growing Season: the day when the left edge of the fitted curve increases 439 
to 20% of the difference between the left minimum and peak NDVI; End of Growing Season: the day when 440 
the right edge of the fitted curve decreases to 20% of the difference between the right minimum and peak 441 
NDVI; Peak of Growing Season: the day when NDVI of the fitted curve reaches the maximum; Length of 442 
Growing Season: time span between the start and the end of the growing season; Base NDVI: average of 443 
the left and right minimal NDVI values of the fitted curve; Peak NDVI: maximal NDVI value of the fitted 444 
curve; Annual Amplitude of NDVI: difference between the peak and the base NDVI values. 445 
  446 
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Table 4. Comparison of trend analyses between different time-span tests. All statistics are derived from the 447 
model fitted with peak growing-season NDVI time-series. Significance is denoted as * (0.01 ≤ P < 0.05), ** 448 
(0.001 ≤ P < 0.01), *** (P < 0.001), and NS (not significant). 449 

Time-span Statistical metrics 
Land cover 

Marsh Transition forest Upland forest 

36 years 
(1984-2020) 

Slope (× 10-3) -1.3 -4.1 0.5 
R2

adj
  0.32 0.78 0.10 

P 3E-04 *** 3E-13 *** 0.06 NS 

24 years 
(1996-2020) 

Slope (× 10-3) -1.1 -5.7 0.1 
R2

adj 0.14  0.83 0.002 
P 0.06 NS 2E-14 *** 0.84 NS 

12 years 
(2008-2020) 

Slope (× 10-3) 1.8 -5.1 -0.08 
R2

adj 0.16 0.44 0.0005 
P 0.18 NS 0.013 * 0.94 NS 

NDVI by the end of observation (2020) ** 0.57 ± 0.06 0.64 ± 0.07  0.81 ± 0.05  
 450 

3.2 Accuracy assessment of different classification scenarios  451 

We assessed the land cover map generated in 2020 by the S1 algorithm – the conventional bi-452 

seasonal approach – as the baseline to benchmark the performance of our phenological- and/or 453 

trend-based algorithms (S2-S4). The product of S1 has an overall classification accuracy of 86.4% 454 

and Kappa coefficient of 0.83 (Table 5). The corresponding mean Producer's Accuracy (PA) and 455 

User's Accuracy (UA) are 87.2% and 88.1%, respectively. Close examination of the confusion 456 

matrices (Table 5) reveals large discrepancy in classification accuracy between land cover types. 457 

In particular, commission and omission errors are large for transition forest (UA of 78.5%, PA of 458 

77.3%) due to spectral confusion with marsh and upland forest (Table 5). Overall, the S1 algorithm 459 

underestimates the area of transition forest, in which ~15% of transition forest is misclassified as 460 

marsh. Correspondingly, the area colonized by marsh was notably overestimated by S1. 461 

The comparison between S1 and the other three algorithms (S2-S4) offers compelling evidence 462 

that incorporating phenological metrics and/or temporal-trend information significantly improves 463 
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the overall as well as vegetation-specific classification accuracy (Tables 5-6). The phenological-464 

based algorithm of S2 yields an overall classification accuracy of 93.2% and Kappa coefficient of 465 

0.91 – a sizeable increase by 8% and 10% from that of S1 (Table 5). The improvement was mainly 466 

achieved by constraining the spectral confusion between transition forest and its surrounding 467 

vegetation of marsh and upland forest (Table 5). Specifically, the UA of transition forest increases 468 

from less than 80% in S1 to 91.2% in S2, and the PA increases by a similar margin from 77.3% in 469 

S1 to 90% in S2 (Table 5). To a lesser extent, the UA and PA of upland forest and marsh also grow 470 

appreciably from S1 between 82.6% and 88.9% to S2 between 91.6 and 95.6% (Table 5).  471 

As compared to the phenological-based algorithm of S2, the trend-based algorithm of S3 is less 472 

effective in differentiating between land cover types (Table 5) although no statistical difference is 473 

found between the two algorithms (Table 6). The overall classification accuracy and Kappa 474 

coefficient of S3 are respectively 5% and 7% higher than S1, but 2% and 3% lower than S2 (Table 475 

5). Similar to S1, the spectral confusion with marsh remains the largest source of omission and 476 

commission errors for transition forest in S3 (Table 5). Nonetheless, the UA and PA of transition 477 

forest in S3 increase considerably from S1 by 11% and 14% – a result only 4% (UA) and 2% (PA) 478 

lower than that of S2 (Table 5). Similarly, the UA and PA of upland forest and marsh in S3 also 479 

show a noticeable increase by 3-9% from S1 (Table 5). 480 

Consistent with our expectation, the phenological- and trend-based algorithm of S4 has the best 481 

performance among all. The S4 algorithm achieves an overall classification accuracy of 94.1% and 482 

Kappa coefficient of 0.93 (Table 5). Although the result of S4 is not statistically different from that 483 

of S2, it significantly improves from that of S3 (Table 6). Moreover, S4 demonstrates consistently 484 

high classification accuracy among land cover types with a mean UA of 94.2% and mean PA of 485 
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93.5% (Table 5). Albeit small, S4 offers additional improvement in the UA (91.6%) and PA (91.3%) 486 

of transition forest from that of S2 (UA of 91.2%, PA of 90.0%) (Table 5). Concurrently, the UA 487 

and PA of upland forest and marsh (92.8-95.7%) also exhibit slight enhancement from that of S2 488 

(91.6-95.6%) (Table 5). 489 

 490 
Table 5. Confusion matrix comparing classification accuracy between land cover maps generated by 491 
different algorithms/scenarios in 2020. 492 

Mapping 
Scenarios Land cover 

Reference data User’s 
accuracy Upland 

forest 
Transition 

forest Marsh Water Other 
(Agriculture) 

Other 
(Urban area) 

S1: Bi-
seasonal 
approach 

Upland forest 273 20 2 0 11 1 88.9% 
Transition forest 30 245 23 2 10 2 78.5% 

Marsh 1 45 270 5 4 2 82.6% 
Water 0 3 6 220 1 1 95.2% 

Other (Agriculture) 11 3 3 6 182 1 88.3% 
Other (Urban area) 1 1 1 0 0 56 94.9% 

Producer’s accuracy 86.4% 77.3% 88.5% 94.4% 87.5% 88.9%  
 Overall accuracy = 86.4%; Kappa coefficient = 0.83  

S2: S1 + 
phenological 
metrics 

Upland forest 285 9 2 0 8 1 93.4% 
Transition forest 10 271 8 2 6 0 91.2% 

Marsh 0 15 296 7 4 1 91.6% 
Water 1 4 3 233 2 1 95.5% 

Other (Agriculture) 2 1 3 2 167 0 95.4% 
Other (Urban area) 0 1 0 2 0 47 94.0% 

Producer’s accuracy 95.6% 90.0% 94.9% 94.7% 89.3% 94.0%  
 Overall accuracy = 93.2%; Kappa coefficient = 0.91  

S3: S1 + 
trend 
analysis 

Upland forest 278 11 2 0 12 1 91.4% 
Transition forest 12 266 14 1 9 2 87.5% 

Marsh 2 21 283 6 3 0 89.8% 
Water 0 2 6 198 2 1 94.7% 

Other (Agriculture) 2 2 3 5 199 0 94.3% 
Other (Urban area) 1 0 3 2 0 48 88.9% 

Producer’s accuracy 94.2% 88.1% 91.0% 93.4% 88.4% 92.3%  
 Overall accuracy = 91.1%; Kappa coefficient = 0.88  

S4: S1 + 
phenological 
metrics + 
trend 
analysis 

Upland forest 267 9 0 0 6 3 93.7% 
Transition forest 9 283 7 0 9 1 91.6% 

Marsh 2 13 282 4 1 2 92.8% 
Water 0 2 3 209 0 0 97.7% 

Other (Agriculture) 1 2 2 1 194 0 97.0% 
Other (Urban area) 0 1 2 0 1 50 92.6% 

Producer’s accuracy 95.7% 91.3% 95.3% 97.7% 91.9% 89.3%  
 Overall accuracy = 94.1%; Kappa coefficient =0.93  

  493 
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Table 6. Comparison of different classification scenarios using the McNemar's Chi-squared test. Refer to 494 
the text for detailed definition of the four classification scenarios (S1, S2, S3 and S4). Significance is denoted 495 
as * (0.01 ≤ P < 0.05), ** (0.001 ≤ P < 0.01), *** (P < 0.001), and NS (not significant). 496 

Pairwise comparison McNemar's Chi-squared test 
Degree of freedom χ2 P 

S1 S2 1 12.37 0.0004 *** 
S3 1 9.66 0.002 ** 
S4 1 18.18 2.0e-05 *** 

S2 S3 1 3.82 0.051 
S4 1 0.74 0.390 

S3 S4 1 5.07 0.024 * 
 497 

3.3 Multi-period maps and comparison with existing products 498 

In spite of extra benefits conferred by temporal-tend information to coastal forest mapping (S4), 499 

we selected the phenological-based algorithm of S2 as the most suitable approach for our time-500 

series mapping, considering that (1) the results of S2 achieve remarkable classification accuracy 501 

with no statistical difference from that of S4 (Tables 5-6), and (2) more critically, trend analysis 502 

required for S4 is not applicable (24 years NDVI time-series, Table 4) for historical mapping in 503 

1985 and 2000. 504 

We mapped regional land cover in 1985, 2000 and 2020 using the S2 algorithm and compared 505 

the results between time steps (Fig. 7). Similar to the results in 2020 (Table 5), the maps generated 506 

in 1985 and 2000 attain comparably high overall classification accuracy (92.1% in 1985, 94.0% in 507 

2000) and Kappa coefficient (0.89 in 1985, 0.92 in 2000) (Fig. 7). The mean UA and PA of the 508 

map in 1985 (92.3%, 92.2%) and 2000 (94.1%, 94.0%) rival that in 2020 (93.5%, 93.1%) (Fig. 7).  509 

As illustrated by the zoomed-in sites in Figs. 8-10 (Site 1 and Site 2), our maps of coastal land 510 

cover in 2000 and 2020 agree well with the spatial pattern revealed by high-resolution aerial photos 511 

(0.6 m) acquired in the region. More importantly, the temporal pattern of coastal vegetation change 512 
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demonstrated by the differenced maps (Figs. 9-10) accords closely with our field observations that 513 

accelerating SLR leads to expansive mash inundation and coastal forest mortality (Figs. 2-3). In 514 

particular, we found that the marsh-forest boundary retreated as much as 1.1 km from 2000 to 2020 515 

in Site 2, equivalent to an annual retreat rate of 55 m yr-1 (Fig. 8). 516 

Our results strikingly contrast with those derived from existing map products (C-CAP, NLCD), 517 

which indicate opposite trajectory of coastal vegetation change (marsh converted to forest), even 518 

in areas of massive forest loss highlighted in Site 2 (Figs. 9-10). As a result, the overall 519 

classification accuracy of C-CAP and NLCD products is less than 62% in our study region. Close 520 

inspection suggests that the confusion between marsh and forest is considerable in the C-CAP and 521 

NLCD products, most pronounced in areas identified as transition forest, although the degree of 522 

confusion varies between time steps (Figs. 9-10).  523 

  524 
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 525 
Fig. 7. Accuracy assessment shown as User’s accuracy (A), Producer’s accuracy (B), and Overall and 526 
Kappa coefficient (C) for the land cover maps generated by the S2 algorithm at three time-steps (1985, 2000 527 
and 2020).  528 
  529 
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 530 
Fig. 8. Multi-period land cover maps in the study region. The inserted pie charts show the areal percentage 531 
of each land cover in the region, and the black boxes (① and ②) refer to the two zoom-in sites presented 532 
in detail by the second (Site 1) and third row (Site 2). 533 

 534 
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 535 
Fig. 9. Comparison of different land cover products in Site 1. The maps presented in the first row were 536 
derived from high-resolution (~1 m) aerial photos, serving as the reference for comparison. The marsh-537 
forest boundary (yellow lines) was manually delineated on the aerial photos, and the differenced maps show 538 
the areal changes of coastal forest from Time1 to Time2. Our own maps generated in 2000 and 2020 were 539 
plotted in the second row. The corresponding C-CAP and NLCD products were shown in the third and 540 
fourth rows, overlaid with black lines indicating areas of transition forest identified by our products. 541 

 542 
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 543 
Fig. 10. Comparison of different land cover products in Site 2. The maps presented in the first row were 544 
derived from high-resolution (~1 m) aerial photos, serving as the reference for comparison. The marsh-545 
forest boundary (yellow lines) was manually delineated on the aerial photos, and the differenced maps show 546 
the areal changes of coastal forest from Time1 to Time2. Our own maps in 2000 and 2020 were plotted in 547 
the second row. The corresponding C-CAP and NLCD products were shown in the third and fourth rows, 548 
overlaid with black lines indicating areas of transition forest identified by our products. 549 

 550 

3.4 Spatiotemporal patterns of coastal vegetation change  551 

Our time-series maps manifest that coastal vegetation change is spatially and temporally 552 

heterogenous (Figs. 8-12). From 1985 to 2000, as much as 1.23 × 103 ha of marsh was lost to open 553 

water. Meanwhile, 1.91 × 103 ha of coastal forest (1.73 × 103 ha transition forest, 1.80 × 102 ha 554 

upland forest) was converted to marsh that collectively led to an increase of marsh area by 8.75 × 555 

102 ha (Fig. 8). Concurrently, the total forest area decreased by 5.6% from 2.09 × 104 ha in 1985 556 
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(7.14 × 103 ha transition forest, 1.38 × 104 ha upland forest) to 1.97 × 104 ha in 2000 (6.15 × 103 557 

ha transition forest, 1.36 × 104 ha upland forest) (Fig. 8).  558 

The areal change of marsh and forest was accompanied by the systematic shift of coastal 559 

vegetation distribution along elevation gradient (Fig. 11). To be clear, the estimated elevation 560 

change of marsh and forest refers to the positional shift of vegetation distribution along the CoNED 561 

DEM, rather than in-situ elevation gain associated with vertical sedimentation. Specifically, the 562 

elevation of marsh, transition forest and upland forest respectively increased by 11 mm (from 0.29 563 

± 0.20 to 0.30 ± 0.19 m), 14 mm (from 0.35 ± 0.16 to 0.37 ± 0.15 m), and 40 mm (from 0.78 ± 564 

0.52 to 0.82 ± 0.52 m) from 1985 to 2000 (Fig. 11). The estimated rate of marsh-forest boundary 565 

change (or horizontal forest retreat rate) was 3.07 ± 2.79 m yr-1 between 1985 and 2000 when 566 

averaged across all areas within 2 m above sea level (Fig. 12). 567 

The comparison of vegetation change between 1985-2000 and 2000-2020 reveals that coastal 568 

landscape reorganization accelerated over time (Figs. 11-12). The area of marsh increased by 569 

15.8% (3.25 × 103 ha) and forest area decreased by 17.3% (1.16 × 103 ha loss of transition forest, 570 

2.26 × 103 ha loss of upland forest) from 2000 to 2020 (Fig. 8). The result is equivalent to an 571 

annual marsh gain of 162.7 ha and annual forest loss of 170.9 ha, an amount more than double that 572 

during 1985-2000 (marsh gain of 58.4 ha yr-1, forest loss of 78.1 ha yr-1).  Similar to that observed 573 

during 1985-2000, the average elevation of coastal vegetation also increased from 2000 to 2020, 574 

by 12 mm, 56 mm, and 85 mm for marsh, transition forest and upland forest, respectively (Fig. 575 

11). Unlike marsh that exhibited comparable rates of vertical migration between 1985-2000 (0.69 576 

mm yr-1) and 2000-2020 (0.64 mm yr-1), the rates of transition forest (from 0.87 to 2.94 mm yr-1) 577 

and upland forest (from 2.50 to 4.49 mm yr-1) largely increased from 1985-2000 to 2000-2020 578 
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(Fig. 11). Similarly, the rate of marsh-forest boundary change (i.e. horizontal forest retreat rate) 579 

increased by 52% from 1985-2000 (Fig. 12B) to 4.68 ± 3.72 m yr-1 during 2000-2020 (Fig. 12C). 580 

After studying patterns of coastal forest loss (Fig. 6), we found that it is common for new marsh 581 

to establish within forest interior (number of emerging marsh patches = 809 from 1985 to 2000, 582 

and 512 from 2000 to 2020). However, the emerging marsh patches are usually small in size (0.22 583 

± 0.17 ha between 1985-2000, 0.27 ± 0.19 ha between 2000-2020), and account only for a fraction 584 

of total forest loss to marsh (9% between 1985-2000, 4% between 2000-2020). Hence, the 585 

replacement of degrading forest by expanding marsh along forest perimeter remains the 586 

predominant pathway of coastal transgression, responsible for over 90% of all forest loss to marsh 587 

from 1985 to 2020 (Figs. 11-12).  588 

  589 
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 590 
Fig. 11. Vertical range shifts of different coastal vegetation over time. Panels on the left represent the 591 
distribution histogram of each vegetation type with elevation, and the vegetation-specific mean elevation 592 
is indicated by the dotted lines. The right panel shows the vertical migration rate estimated for each 593 
vegetation type between 1985 and 2000, and between 2000 and 2020. Coastal forest is the aggregate of 594 
transition forest and upland forest. 595 

 596 
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 597 
Fig. 12. Estimated horizontal forest retreat rates between 1985 and 2020 (A), between 1985 and 2000 (B), 598 
and between 2000 and 2020 (C) across our study region. Please refer to the text for a detailed description 599 
of the methodology (2.8 Spatially explicit quantification of forest retreat rate). 600 

 601 

4. DISCUSSION 602 

The acceleration of global SLR creates growing demand for timely and accurate monitoring of 603 

coastal landscape dynamics that is critical to sustainable ecosystem management (Hinkel et al., 604 

2015; Oppenheimer et al., 2019). Our study developed a phenology- and trend-based algorithm 605 

that uniquely targets the ecologically-distinct transition forest to enable spatially and temporally 606 

consistent tracking of coastal transgression. The approach, in combination with our spatial analysis 607 

workflow (Fig. 6), provides a practical framework that may be integrated into cloud-based 608 

platforms such as Google Earth Engine in future efforts to allow automatic, near real-time 609 

estimates of SLR-driven forest retreat on national to global scales.  610 
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Previous studies generally suggest that algorithms combining multiple sources of information 611 

boost classification accuracy over those relying solely upon spectral information (Diao and Wang, 612 

2016; Fagan et al., 2018; Thomas et al., 2021). We analyzed the spectral, phenological and 613 

temporal signatures of different coastal vegetation, and the results confirm the complementary 614 

contribution of different information to optimizing land cover mapping. In particular, six out of 615 

the seven phenological metrics show significant difference between transition forest and the 616 

spectrally-similar surroundings, implying systematical deviation of land surface phenology in salt-617 

stressed forests from adjacent marsh and intact forest. Accordingly, the approach accommodating 618 

the phenological distinctions of coastal vegetation allows superior mapping accuracy to that 619 

derived from the traditional bi-seasonal approach, a result in line with earlier findings that suggest 620 

land surface phenology playing an important role in constraining intra-class variations in spatially 621 

complex landscapes (Diao and Wang, 2018, 2016; Thomas et al., 2021).  622 

While remote sensing products can be used to facilitate a mechanistic understanding of coastal 623 

transgression (Schieder et al., 2018; Smart et al., 2020), the ecological understanding of coastal 624 

transgression in turn offers invaluable insights into advancing the remote sensing of shifting 625 

vegetation. Our temporal-trend analyses, built upon ecological theory of stressed ecosystems and 626 

ecosystems undergoing regime shifts (Carpenter et al., 2011; Chen et al., 2022; Scheffer et al., 627 

2015), corroborate field-based studies (Smith and Kirwan, 2021; Walters et al., 2021) showing 628 

directional changes of biomass/productivity in salt-stressed forests (Fig. 5). By incorporating the 629 

temporal-tend information, our algorithm (S4) further reduced the confusion between transition 630 

forest and the adjacent marsh and upland forest, yielding additional discriminatory power to the 631 

phenology-based approach. 632 
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It is worth noting that the strength of trend analysis depends on the temporal length of time-633 

series data. An intermediate time-span of 24 years is identified as optimal for isolating transition 634 

forest, and a simple decision tree model (Eq. (1)) attains an overall classification accuracy beyond 635 

80%. Given its efficacy in distinguishing transition forest, the temporal-trend analysis may be 636 

informative for other remote-sensing applications in coastal ecosystems, such as detecting early 637 

warning signals of seawater intrusion (White and Kaplan, 2021), identifying hotspots of coastal 638 

transgression, or guiding the selection of reference sites in data-limited areas for regional mapping. 639 

Moreover, as climate warming is driving worldwide intensification of press and pulse stressors 640 

(Y.-P. Chen and Ye, 2014; Chen et al., 2021b, 2020; Lara et al., 2021), similar trend-based 641 

algorithms may be applicable to other rapidly-changing ecosystems (Chen et al., 2015; Myers-642 

Smith et al., 2015, 2011) for enhanced quantification of earth system transition. 643 

Our time-series land cover maps in 1985, 2000 and 2020 reveal increasing rates of coastal 644 

transgression, concurrent with observed acceleration of global SLR over past decades (Dangendorf 645 

et al., 2019). This finding accords well with a number of observations in the US Atlantic coast, 646 

reporting escalated forest mortality and marsh encroachment in the recent past (Kirwan and Gedan, 647 

2019; Miller et al., 2021; Schieder et al., 2018). Notably, we found that forest retreat rate (or 648 

landward marsh migration rate) can reach up to 55 m yr-1 in some areas (Site 2), which is the fastest 649 

rate ever recorded (Kirwan and Gedan, 2019; Schieder et al., 2018; Schieder and Kirwan, 2019; 650 

Smith, 2013). Previous studies suggest that low-lying, gently-sloping terrain is conducive for 651 

marsh migration (Molino et al., 2022; Schieder and Kirwan, 2019). The extremely low relief 652 

terrain of Site 2 (mean elevation of 0.32 m, mean slope of 0.03) likely explains the exceptional 653 

rate of forest retreat, where slight increases of sea level can push saltwater far inland. 654 
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Moreover, the close comparison of the C-CAP/NLCD products to ours (Figs. 9-10) indicates 655 

that previous studies using existing maps (Gittman et al., 2019; Holmquist et al., 2018; White et 656 

al., 2021) might underestimate the vulnerability of coastal ecosystems to SLR. Although the C-657 

CAP/NLCD time-series have been proven effective in capturing broad-scale patterns (Byrd et al., 658 

2018; Thomas et al., 2021), these datasets may not be well suited to quantitative study of SLR-659 

driven landscape reorganization, especially considering that forest gain is suggested in areas where 660 

we observed forest loss among the most drastic on earth (Site 2). Previous work highlighted 661 

substantial omission and commission errors for other land cover types in the C-CAP/NLCD 662 

products, especially in early maps (e.g. 2001, 2006) (Danielson et al., 2016; Fagan et al., 2018). 663 

Hence, reevaluation of the risks posed by SLR to coastal ecosystems and society is needed, and 664 

our approach may serve as a reproducible solution to ensure the spatially and temporally consistent 665 

mapping required for such assessments. 666 

Finally, we analyzed unique patterns of coastal forest loss, and devised a practical workflow 667 

for semi-automatic creation of coastal forest retreat maps (Figs. 6 and 12). The maps generated 668 

from differenced land cover products allow spatially explicit comparison of forest retreat rates 669 

over time. The spatially explicit fashion of the forest retreat map also means that it can be analyzed 670 

with other geospatial datasets (e.g. DEM, gridded climate data) to link potential environmental 671 

drivers to dynamic coastal transgression. Importantly, the spatial analysis workflow developed 672 

here is not limited to studying coastal forest change, it may be generalized to tackle other 673 

environmental processes and hazards involving positional changes over time, such as coastal land 674 

loss (Hurst et al., 2016; Roy et al., 2020), northern shrubline/treeline advance (Elmendorf et al., 675 

2012; Sturm et al., 2001), or landslide progress (Balser et al., 2014; Li et al., 2022). Taken together, 676 
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our spatial analysis method may be a useful addition in a diversity of future applications in support 677 

of natural resource management, and risk assessment and mitigation. 678 

5. CONCLUSION 679 

We developed a phenology- and trend-based algorithm in this study to track coastal vegetation 680 

change with high precision and consistency. Our approach significantly improves the classification 681 

accuracy of salt-impacted coastal forest over existing map products, and the results reveal a 682 

striking rate of coastal transgression over the past four decades that was underestimated in existing 683 

remote sensing products (i.e. C-CAP, NLCD). The predicted intensification of climate change will 684 

result in a growing need for rapid and spatially explicit measures of global landscape 685 

reorganization, and our study offers a viable solution to evaluate coastal vegetation change in a 686 

regionally consistent and locally relevant fashion. With the growing power of cloud-based 687 

technology represented by Google Earth Engine, it is possible to automate our approach in future 688 

efforts to allow real-time estimates on the status and trends of SLR-driven coastal transgression 689 

worldwide.  690 

  691 
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List of Figure Captions 988 

Fig. 1. Map showing the study region (A) which is located on the U.S. mid-Atlantic coast (B). The 989 

study region represents the mid-Atlantic sea-level rise hotspot and it encompasses the ecologically 990 

and culturally important Blackwater National Wildlife Refuge outlined in yellow. The yellow dots 991 

indicate our ground-truth sites in the study region. In addition to ground-truth data, the reference 992 

sites for our land cover classification also include sites selected from contemporary drone images 993 

and high-resolution aerial photos. 994 

 995 

Fig. 2. Accelerated sea-level rise and warming climate in the study region. The data plotted here 996 

refers to the long-term temperature and tidal observations at the nearest NOAA meteorological 997 

station in Dover, Delaware and the nearest NOAA Tides and Currents station in Cambridge, 998 

Maryland. 999 

 1000 

Fig. 3. Coastal landscape reorganization with rising sea-level. (A) Broad-scale vegetation 1001 

distribution along the land-sea margin, highlighting a “ghost forest” transition zone with dead and 1002 

stressed trees. (B) Landward upland forest with a closed canopy and lack of understory vegetation. 1003 

(C) Transition forest undergoing active seawater intrusion, where forest die-off leads to increased 1004 

light availability for shrub growth and marsh transgression. (D) Established marshland with 1005 

occasional remnant standing-dead trees, signifying the completion of marsh transgression. 1006 

 1007 

Fig. 4. Annual phenological patterns of marsh (A), transition forest (B), and upland forest (C) 1008 

estimated with Landsat-based NDVI time-series. Plots show data for the most recent five years, 1009 

and all results are presented as mean ± SD. 1010 

 1011 

Fig. 5. Temporal-trend of peak growing-season NDVI for different coastal vegetation types, 1012 

estimated using 36 years of data (1984-2020) – the long time-span test (A), 24 years of data (1996-1013 

2020) – the intermediate time-span test (B), and 12 years of data (2008-2020) – the short time-1014 

span test (C). The linear regression trend line is bounded by the 95% confidence interval. Dotted 1015 
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lines refer to marginally significant trends (0.05 ≤ P < 0.1) whereas solid lines represent significant 1016 

trends at the level of P < 0.05. 1017 

 1018 

Fig. 6. Flowchart for spatially-explicit assessment of forest retreat rate. See text for acronym 1019 

definition and detailed description of the step by step procedure. 1020 

 1021 

Fig. 7. Accuracy assessment shown as User’s accuracy (A), Producer’s accuracy (B), and Overall 1022 

and Kappa coefficient (C) for the land cover maps generated by the S2 algorithm at three time-1023 

steps (1985, 2000 and 2020).  1024 

 1025 

Fig. 8. Multi-period land cover maps in the study region. The inserted pie charts show the areal 1026 

percentage of each land cover in the region, and the black boxes (① and ②) refer to the two 1027 

zoom-in sites presented in detail by the second (Site 1) and third row (Site 2). 1028 

 1029 
Fig. 9. Comparison of different land cover products in Site 1. The maps presented in the first row 1030 

were derived from high-resolution (~1 m) aerial photos, serving as the reference for comparison. 1031 

The marsh-forest boundary (yellow lines) was manually delineated on the aerial photos, and the 1032 

differenced maps show the areal changes of coastal forest from Time1 to Time2. Our own maps 1033 

generated in 2000 and 2020 were plotted in the second row. The corresponding C-CAP and NLCD 1034 

products were shown in the third and fourth rows, overlaid with black lines indicating areas of 1035 

transition forest identified by our products. 1036 

 1037 

Fig. 10. Comparison of different land cover products in Site 2. The maps presented in the first row 1038 

were derived from high-resolution (~1 m) aerial photos, serving as the reference for comparison. 1039 

The marsh-forest boundary (yellow lines) was manually delineated on the aerial photos, and the 1040 

differenced maps show the areal changes of coastal forest from Time1 to Time2. Our own maps 1041 

in 2000 and 2020 were plotted in the second row. The corresponding C-CAP and NLCD products 1042 

were shown in the third and fourth rows, overlaid with black lines indicating areas of transition 1043 

forest identified by our products. 1044 

 1045 
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Fig. 11. Vertical range shifts of different coastal vegetation over time. Panels on the left represent 1046 

the distribution histogram of each vegetation type with elevation, and the vegetation-specific mean 1047 

elevation is indicated by the dotted lines. The right panel shows the vertical migration rate 1048 

estimated for each vegetation type between 1985 and 2000, and between 2000 and 2020. Coastal 1049 

forest is the aggregate of transition forest and upland forest. 1050 

 1051 

Fig. 12. Estimated horizontal forest retreat rates between 1985 and 2020 (A), between 1985 and 1052 

2000 (B), and between 2000 and 2020 (C) across our study region. Please refer to the text for a 1053 

detailed description of the methodology (2.8 Spatially explicit quantification of forest retreat rate). 1054 

 1055 


