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Abstract
Graph Neural Networks (GNNs) extend the success of neural networks to graph-
structured data by accounting for their intrinsic geometry. While extensive research
has been done on developing GNN models with superior performance according to
a collection of graph representation learning benchmarks, it is currently not well
understood what aspects of a given model are probed by them. For example, to
what extent do they test the ability of a model to leverage graph structure vs. node
features? Here, we develop a principled approach to taxonomize benchmarking
datasets according to a sensitivity profile that is based on how much GNN perfor-
mance changes due to a collection of graph perturbations. Our data-driven analysis
provides a deeper understanding of which benchmarking data characteristics are
leveraged by GNNs. Consequently, our taxonomy can aid in selection and devel-
opment of adequate graph benchmarks, and better informed evaluation of future
GNN methods. Finally, our approach and implementation in GTaxoGym package1

are extendable to multiple graph prediction task types and future datasets.

1 Introduction
Machine learning for graph representation learning (GRL) has seen rapid development in recent
years [29]. Originally inspired by the success of convolutional neural networks in regular Euclidean
domains, thanks to their ability to leverage data-intrinsic geometries, classical graph neural network
(GNN) models [16, 38, 60] extend those principles to irregular graph domain. Further advances in
the field have led to a wide selection of complex and powerful GNN architectures. Some models are
provably more expressive than others [46, 67], can leverage multi-resolution views of graphs [44],
or can account for implicit symmetries in graph data [9]. Comprehensive surveys of graph neural
networks can be found in Bronstein et al. [8], Wu et al. [65], Zhou et al. [71].

Most graph-structured data encode information in graph structures and node features. The structure
of each graph represents relationships (i.e., edges) between different nodes, while the node features
represent quantities of interest at each node. For example, in citation networks, nodes represent
∗Equal contribution.
†Equal senior author contributions.
1https://github.com/G-Taxonomy-Workgroup/GTaxoGym
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Figure 1: Overview of our pipeline to taxonomize graph learning datasets.

papers, and edges represent citations between the papers. On such networks, node features often
capture the presence or absence of certain keywords in each paper, encoded in binary feature vectors.
In graphs modeling social networks, each node represents a user, and the corresponding node features
often include user statistics like gender, age, or binary encodings of personal interests.

Intuitively, the power of GNNs lies in relating local node-feature information to global graph structure
information, typically achieved by applying a cascade of feature aggregation and transformation steps.
In aggregation steps, information is exchanged between neighboring nodes, while transformation
steps apply a (multi-layer) perceptron to feature vectors of each node individually. Such architectures
are commonly referred to as Message Passing Neural Networks (MPNN) [25].

Historically, GNN methods have been evaluated on a small collection of datasets [47], many of which
originated from the development of graph kernels. The limited quantity, size and variety of these
datasets have rendered them insufficient to serve as distinguishing benchmarks [18, 49]. Therefore,
recent work has focused on compiling a set of large(r) benchmarking datasets across diverse graph
domains [18, 33]. Despite these efforts and the introduction of new datasets, it is still not well
understood what aspects of a dataset most influence the performance of GNNs. Which is more
important, the geometric structure of the graph or the node features? Are long-range interactions
crucial, or are short-range interactions sufficient for most tasks? This lack of understanding of the
dataset properties and of their similarities makes it difficult to select a benchmarking suit that would
enable comprehensive evaluation of GNN models. Even when an array of seemingly different datasets
is used, they may probe similar aspects of graph representation learning.

Leveraging symmetries and other geometric priors in graph data is crucial for generalizable learn-
ing [9]. While invariance or equivariance to some transformations is inherent, invariance to others
may only be empirically or partially apparent. Motivated by this observation, we propose to use the
lens of empirical transformation sensitivity to gauge how task-related information is encoded in graph
datasets and subsequently taxonomize their use as benchmarks in graph representation learning. Our
approach is illustrated in Figure 1. Namely, we list our contributions in this study as:

1. We develop a graph dataset taxonomization framework that is extendable to both new datasets
and evaluation of additional graph/task properties.

2. Using this framework, we provide the first taxonomization of GNN (and GRL) benchmarking
datasets, collected from TUDatasets [47], OGB [33] and other sources.

3. Through the resulting taxonomy, we provide insights about existing datasets and guide better
dataset selection in future benchmarking of GNN models.

2 Methods
As a proxy for invariance or sensitivity to graph perturbations, we study the changes in GNN
performance on perturbed versions of each dataset. These perturbations are designed to eliminate
or emphasize particular types of information embedded in the graphs. We define an empirical
sensitivity profile of a dataset as a vector where each element is the performance of a GNN after a
given perturbation, reported as a percentage of the network’s performance on the original dataset.
In particular, we use a set of 13 perturbations, visualized in Figure 2. Of these perturbations, 6 are
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(a) original (b) LowPass (c) MidPass (d) HighPass (e) NoNodeFtrs (f) NodeDeg (g) RandFtrs

(h) RandRewire (i) NoEdges (j) FullyConn (k) Frag. k=1 (l) Frag. k=2 (m) Frag. k=3 (n) FiedlerFrag

Figure 2: Node feature and graph structure perturbations of the first graph in ENZYMES. The color
coding of nodes illustrates their feature values, except (k-n) where the fragment assignment is shown.

designed to perturb node features, while keeping the graph structure intact, whereas the remaining 7
keep the node attributes the same, but manipulate the graph structure.

For the purpose of these perturbations, we consider all graphs to be undirected and unweighted, and
assume they all have node features, but not edge features. These assumptions hold for most datasets
we use in this study. However, if necessary, we preprocess the data by symmetrizing each graph’s
adjacency matrix and dropping any edge attributes. Formally, let G = (V,E,X) be an undirected,
unweighted, attributed graph with node set V of cardinality �V � = n, edge set E ⊂ V × V , and a
matrix of d-dimensional node features X ∈ Rn×d. We let M ∈ Rn×n denote the adjacency matrix of
each graph, where M(u, v) = 1 if (u, v) ∈ E and zero otherwise.

Several of our perturbations are based on spectral graph theory, which represents graph signals in a
spectral domain analogous to classical Fourier analysis. We define the graph Laplacian L ∶=D −M
and the symmetric normalized graph Laplacian N ∶= D− 1

2 LD− 1
2 = I −D− 1

2 MD− 1
2 , where D is

the diagonal degree matrix. Both L and N are positive semi-definite and have an orthonormal
eigendecompositions L = �⇤�� and N = �̃⇤̃�̃�. By convention, we order the eigenvalues
and corresponding eigenvectors {(�i,�i)}0≤i≤n−1 of L (and similarly for N) in ascending order
0 = �0 ≤ �1 ≤ ⋅ ⋅ ⋅ ≤ �n−1. The eigenvectors {�i}0≤i≤n−1 constitute a basis of the space of graph
signals and can be considered as generalized Fourier modes. The eigenvalues {�i}0≤i≤n−1 characterize
the variation of these Fourier modes over the graph and can be interpreted as (squared) frequencies.

2.1 Node Feature Perturbations

We first consider two perturbations that alter local node features, setting them either to a fixed
constant (w.l.o.g., one) for all nodes, or to a one-hot encoding of the degree of the node. We refer to
these perturbations as NoNodeFtrs (as constant node features carry no additional information) and
NodeDeg, respectively. Sensitivity to these perturbations, exhibited by a large decrease in predictive
performance, may indicate that a task is dominated by highly informative node features. Further, we
consider a random node feature perturbation (RandFtrs) by sampling a one-dimensional feature for
each node from U[−1,1], which has been shown to improve the WL expressiveness of MPNNs [1, 54].

We also develop spectral node feature perturbations. As in Euclidean settings, the Fourier decomposi-
tion can be used to decompose graph signals into a set of canonical signals, called Fourier modes,
which are organized according to increasing variation (or frequency). In Euclidean Fourier analysis,
these modes are sinusoidal waves oscillating at different frequencies. A standard practice in audio
signal processing is to remove noise from a signal by identifying and removing certain Fourier modes
or frequency bands. We generalize this technique to graph datasets and systematically remove certain
graph Fourier modes to probe the importance of the corresponding frequency bands.

In this perturbation, we use the frequencies derived from the symmetric normalized graph Laplacian
N and split them into three roughly equal-sized frequency bands (low, mid, high), i.e., bins of
subsequent eigenvalues. To assess the importance of each of the frequency bands, we then apply
hard band-pass filtering to the graph signals (node feature vectors), i.e., we project the signals on
the span of the selected Fourier modes. More specifically, for each band, we let Iband be a diagonal
matrix with diagonal elements equal to one if the corresponding eigenvalue is in the band, and zero
otherwise. Then, the hard band-pass filtered signal is computed as
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Xband = �̃Iband�̃
�X. (1)

The above band-pass filtering perturbation enables a precise selection of the frequency bands. How-
ever, it requires a full eigendecomposition of the normalized graph Laplacian, which is impractical
for large graphs. We therefore provide an alternative approach based on wavelet bank filtering [13].
This leverages the fact that polynomial filters h of the normalized graph Laplacian directly transform
the spectrum via h(N) = �̃h(⇤̃)�̃�, yielding the frequency response h(�) for any eigenvalue � of
N. This is usually done by taking the symmetrized diffusion matrix

T = 1

2
(I +D− 1

2 MD− 1
2 ) = 1

2
(2I −N) . (2)

By construction, T admits the same eigenbasis as N but its eigenvalues are mapped from [0,2]
to [0,1] via the frequency response h(�) = 1 − ��2. As a result, large eigenvalues are mapped to
small values (and vice versa). Next, we construct diffusion wavelets [16] that consist of differences of
dyadic powers 2k, k ∈ N0 of T, i.e.,  k = T2k−1 −T2k

, which act as bandpass filters on the signal.
Intuitively, this operator “compares” two neighborhoods of different sizes (radius 2k−1 and 2k) at
each node. Diffusion wavelets are usually maintained in a wavelet bankWK = { k,�K}Kk=0, which
contains additional highpass  0 = I −T and lowpass  K = TK filters. In our experiments, we
choose K = 1, resulting in the following low, mid, and highpass filtered node features:

Xhigh = (I −T)X, Xmid = (T −T2)X, Xlow = T2X. (3)

These filters correspond to frequency responses hhigh(�) = ��2, hmid(�) = (1 − ��2) − (1 − ��2)2
and hlow(�) = (1 − ��2)2. Therefore, the low-pass filtering preserves low-frequency information
while suppressing high-frequency information, whereas high-pass filtering does the opposite. The
mid-pass filtering suppresses all frequencies. However, it preserves much more middle-frequency
information than it does high- or low-frequency information.

Therefore, this filtering may be interpreted as an approximation of the hard band-pass filtering
discussed above. From the spatial message passing perspective, low-pass filtering is equivalent to
local averaging of the node features, which has a profound implication on homophilic and heterophilic
characteristics of the datasets (Sec. 3.2). Finally, since the computations needed in (3) can be carried
out via sparse matrix multiplications, they scale much better to large graphs. Therefore, we utilize the
wavelet bank filtering for the datasets with larger graphs considered in Sec. 3.2, while for the smaller
graphs, considered in Sec. 3.1, we employ the direct band-pass filtering approach.

2.2 Graph Structure Perturbations
The following perturbations act on the graph structure by altering the adjacency matrix. By removing
all edges (NoEdges) or making the graph fully-connected (FullyConn), we can eliminate the structural
information completely and essentially turn the graph into a set. The difference between the two
perturbations lies in whether all nodes are processed independently or together. However, FullyConn
is only applied to inductive datasets in Sec. 3.1 due to computational limitations. Furthermore, we
consider a degree-preserving random edge rewiring perturbation (RandRewire). In each step, we
randomly sample a pair of edges and randomly exchange their end nodes. We then repeat this process
without replacement until 50% of the edges have been randomly rewired.

To inspect the importance of local vs. global graph structure, we designed the Frag-k perturbations,
which randomly partition the graph into connected components consisting of nodes whose distance
to a seed node is less than k. Specifically, we randomly draw one seed node at a time and extract its
k-hop neighborhood by eliminating all edges between this new fragment and the rest of the graph; we
repeat this process on the remaining graph until the whole graph is processed. A smaller k implies
smaller components, and hence discards the global structure and long-range interactions.

Graph fragmentations can also be constructed using spectral graph theory. In our taxonomization,
we adopt one such method, which we refer to as Fiedler fragmentation (FiedlerFrag) (see [36] and
the references therein). In the case when the graph G is connected, �0, the eigenvector of the graph
Laplacian L corresponding to �0 = 0, is constant. The eigenvector �1 corresponding to the next
smallest eigenvalue, �1, is known as the Fiedler vector [22]. Since �0 is constant, it follows that �1

has zero average. This motivates partitioning the graph into two sets of vertices, one where �1 is
positive and the other where �1 is negative. We refer to this process as binary Fiedler fragmentation.
This heuristic is used to construct the ratio cut for a connected graph [28]. The ratio cut partitions
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a connected graph into two disjoint connected components V = U �W , such that the objective�E(U,W )��(�U � ⋅ �W �) is minimized, where E(U,W ) ∶= {(u,w) ∈ E ∶ u ∈ U,w ∈W} is the set of
removed edges when fragmenting G accordingly. This can be seen as a combination of the min-cut
objective (numerator), while encouraging a balanced partition (denominator).

FiedlerFrag is based on iteratively applying binary Fiedler fragmentation. In each step, we separate the
graph into its connected components and apply binary Fiedler fragmentation to the largest component.
We repeat this process until either we reach 200 iterations, or the size of the largest connected
component falls below 20. In contrast to the random fragmentation Frag-k, this perturbation preserves
densely connected regions of the graph and eliminates connections between them. Thus, FiedlerFrag
tests the importance of inter community message flow. Due to computational limits, we only apply
FiedlerFrag to inductive datasets in Sec. 3.1 for which this computation is feasible.

2.3 Data-driven Taxonomization by Hierarchical Clustering
To study a systematic classification of the graph datasets, we use Ward’s method [62] for hierarchical
clustering analysis on their sensitivity profiles. The sensitivity profiles are established empirically by
contrasting the performance of a GNN model on a perturbed dataset and on the original dataset. To
quantify this performance change, we use log2-transformed ratio of test AUROC (area under the ROC
curve). Thus a sensitivity profile is a 1-D vector with as many elements as we have in perturbation
experiments. See Figure 1 and Appendix A for further details.

In order to generate sensitivity profiles, we must select suitable GNN models based on several
practical considerations: (i) The model has to be expressive enough to efficiently leverage aspects
of the node features and graph structure that we perturb. Otherwise, our analysis will not be able to
uncover reliance on these properties. (ii) The model needs to be general enough to be applicable to
a wide variety of datasets, avoiding dataset-specific adjustments that may lead to profiling that is
not comparable between datasets. Therefore, we did not aim for specialized models that maximize
performance, but rather models that (i) achieve at least baseline performance comparable to published
works over all datasets, (ii) have manageable computational complexity to facilitate large-scale
experimentation, and (iii) use well-established and theoretically well-understood architectures.

With these criteria in mind, we focused on two popular MPNN models in our analysis: GCN [38]
and GIN [67]. The original GCN serves as an ideal starting point as its abilities and limitations are
well understood. However, we also wanted to perform taxonomization through a provably more
expressive and recent method, which motivated our selection of GIN as the second architecture.
We emphasize that the main focus here is not to provide a benchmarking of GNN models per se,
but rather to address the taxonomization of graph datasets (and accompanying tasks) used in such
benchmarks. Nevertheless, we have also generated sensitivity profiles by additional models in
order to comparatively demonstrate the robustness of our approach: 2-Layer GIN, ChebNet [16],
GatedGCN [7] and GCN II [11]; see Figure 5.

3 Results
Each of the 49 datasets we consider is equipped with either a node classification or graph classification
task. In the case of node classification, we further differentiate between the inductive setting, in which
learning is done on a set of graphs and the generalization occurs from a training set of graphs to a test
set, and the transductive setting, in which learning is done in one (large) graph and the generalization
occurs between subsets of nodes in this graph. Graph classification tasks, by contrast, always appear
in an inductive setting. The only major difference between graph classification and inductive node
classification is that prior to final prediction, the hidden representations of all nodes are pooled into a
single graph-level representation. In the following two subsections, we provide an analysis of the
sensitivity profiles for datasets with inductive and transductive tasks.

3.1 Taxonomy of Inductive Benchmarks
Datasets. We examine a total of 24 datasets, 21 of which are equipped with a graph-classification
task (inductive by nature) and the other three are equipped with an inductive node-classification task.
Of these datasets, 18 are derived from real-world data, while the other six are synthetically generated.

For real-world data, we consider several domains. Biochemistry tasks are the most ubiquitous,
including compound classification based on effects on cancer or HIV inhibition (NCI1 & NCI109 [61],
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Figure 3: Visualization of (a) inductive and (b) transductive datasets based on PCA of their pertur-
bation sensitivity profiles according to a GCN model. The datasets are labeled according to their
taxonomization by hierarchical clustering, shown in Figure 4 and 6, which corroborates with the
emerging clustering in the PCA plots. In the bottom part are shown the loadings of the first two
principal components and (in parenthesis) the percentage of variance explained by each of them.

ogbg-molhiv [33]), protein-protein interaction PPI [30, 72], multilabel compound classification
based on toxicity on biological targets (ogbg-moltox21 [33]), and multiclass classification of
enzymes (ENZYMES [33]). We also consider superpixel-based graph classification as an extension
of image classification (MNIST & CIFAR10 [18]), collaboration datasets (IMDB-BINARY & COLLAB
[68]), and social graphs (REDDIT-BINARY & REDDIT-MULTI-5K [68]).

For synthetic data, we have a concrete understanding of their graph domain properties and how these
properties relate to their respective prediction tasks. This allows us to derive a deeper understanding
of their sensitivity profiles. The six synthetic datasets in our study make use of a varied set of graph
generation algorithms. Small-world [69] is based on graph generation with the Watz-Strogatz
(WS) model; the task is to classify graphs based on average path length. Scale-free [69] retains
the same task definition, but the graph generation algorithm is an extension of the Barabási-Albert
(BA) model proposed by Holme and Kim [32]. PATTERN and CLUSTER are node-level classification
tasks generated with stochastic block models (SBM) [31]. Synthie [45] graphs are derived by first
sampling graphs from the well-known Erdös-Rényi (ER) model, then deriving each class of graphs
by a specific graph surgery and sampling of node features from a distinct distribution per each class.
Similarly, SYNTHETICnew [19] graphs are generated from a random graph, where different classes
are formed by specific modifications to the original graph structure and node features. Further details
of dataset definitions and synthetic graph generation algorithms are provided in Appendix C.

Insights. Here we itemize the main insights into inductive datasets. Our full taxonomy is shown in
Figures 4 and 3a, with a detailed analysis of individual clusters given in Appendix B.1.
• Three distinct groups of datasets. We identify a categorization into three dataset clusters
I-{1,2,3} that emerge from both the hierarchical clustering and PCA. The datasets in I-{1,2}
exhibit stronger node feature dependency and do not encode crucial information in the graph
structure. The main differentiating factor between I-1 and I-2 is their relative sensitivity to node
feature perturbations – in particular, how well NodeDeg can substitute the original node features.
On the other hand, datasets in I-3 rely considerably more on graph structure for correct task
prediction. This is also reflected by the first two principal components (Figure 3a), where PC1
approximately corresponds to structural perturbations and PC2 to node feature perturbations.
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I-1

I-2

I-3

Figure 4: Taxonomy of inductive graph learning datasets via graph perturbations. For each dataset
and perturbation combination, we show the GCN model performance relative to its performance on
the unmodified dataset.

• No clear clustering by dataset domain. While datasets that are derived in a similar fashion cluster
together (e.g., REDDIT-* datasets), in general, each of the three clusters contains datasets from a
variety of application domains. Not all molecular datasets behave alike; e.g., ogbg-mol* datasets
in I-2 considerably differ from NCI* datasets in I-3.

• Synthetic datasets do not fully represent real-world scenarios. CLUSTER, SYNTHETICnew,
and PATTERN lie at the periphery of the PCA embeddings, suggesting that existing synthetic
datasets do not resemble the type of complexity encountered in real-world data. Hence, one should
use synthetic datasets in conjunction with real-world datasets to comprehensively evaluate GNN
performance rather than solely relying on synthetic ones. We also note that the sensitivity profiles
of all synthetic datasets are well-accounted for w.r.t. their respective design criteria which validate
our approach; we refer the reader to Appendix B.1 for a more detailed analysis.

• Representative set. One can now select a representative subset of all datasets to cover the observed
heterogeneity among the datasets. Our recommendation: PCQM4Mv2-subset, CIFAR10 from I-1;
D&D, ogbg-molpcba from I-2; NCI1, COLLAB, REDDIT-MULTI-5K, CLUSTER from I-3.

•

Figure 5: Pearson correlation between
profiles derived by six GNN models.

Robustness w.r.t. GNN choice. In addition to GCN,
we have performed our perturbation analysis w.r.t.
GIN [67], 2-Layer GIN, ChebNet [16], GatedGCN [7]
and GCN II [11]. These models were selected to cover
a variety of inductive model biases: GIN is provably
1-WL expressive, ChebNet uses a higher-order approx-
imation of the Laplacian, GatedGCN employs gating
akin to attention, and GCN II leverages skip connections
and identity mapping to alleviate oversmoothing. We
have also tested a 2-layer GIN to probe the robustness to
the number of message-passing layers. The taxonomies
w.r.t. other models (Figure B.1) are congruent with that
of GCN. Given the differing inductive biases and repre-
sentational capacity, some differences in the sensitivity
profiles are not only expected but desired to validate their functions in benchmarking. The resulting
profiles can be used for a detailed comparative analysis of these models, but the overall conclusions
remain consistent. This consistency is further validated by our correlation analysis amongst these
models, shown in Figure 5. The Pearson correlation coefficients of all pairs are above 90%,
implying that our taxonomy is sufficiently robust w.r.t. different GNNs and the number of layers.
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T-3

T-2

T-1

Figure 6: Taxonomization of transductive datasets based on sensitivity profiles w.r.t. a GCN model.

3.2 Taxonomy of Transductive Benchmarks

Datasets. We selected a wide variety of 25 transductive datasets with node classification tasks,
including citation networks, social networks, and other web page derived networks (see Appendix C).
In citation networks, such as CitationFull (CF) [5], nodes and edges correspond to papers that are
linked via citation. In web page derived networks, like WikiNet [51], Actor [51], and WikiCS
[43], they correspond to hyperlinks between pages. In social networks, like Deezer (DzEu) [53],
LastFM (LFMA) [53], Twitch [52], Facebook (FBPP) [52], Github [52], and Coau [56], nodes and
edges are based on a type of relationship, such as mutual-friendship and co-authorship. Flickr
[70] and Amazon [56] are constructed based on other notions of similarity between entities, such as
co-purchasing and image property similarities. WebKB [51] contains networks of university web pages
connected via hyperlinks. It is an example of a heterophilic dataset [48], since immediate neighbor
nodes do not necessarily share the same labels (which correspond to a user’s role, such as faculty or
graduate student). By contrast, Cora, CiteSeer, and PubMed are known to be homophilic datasets
where nodes within a neighborhood are likely to share the same label. In fact, no less than 60% of
nodes in these networks have neighborhoods that share the same node label as the central node [43].

Insights. Below we list the main insights into transductive graph datasets and their taxonomy
(Figures 6 and 3b). We refer the reader to Appendix B.2 for the analysis of individual clusters.

• Transductive datasets are uniformly insensitive to structural perturbations. Sensitivity profiles
of all transductive datasets show high robustness to all graph structure perturbations. This is in
stark contrast with the inductive datasets, where the largest cluster I-3 is defined by high sensitivity
to structural perturbations. The graph connectivity may not be vital to every dataset/task, e.g.,
in WikiCS word embeddings of Wikipedia pages may be sufficient for categorization without
hyperlinks. While the observation that no dataset significantly depends on structural information is
startling, it corroborates with the reported strong performance of MLP or similar models augmented
with label propagation to outperform GNNs in several of these transductive datasets [24, 35].

• Three distinct groups of datasets. The transductive datasets are also categorized into three clusters
as T-{1,2,3}. T-1 consists of heterophilic datasets, such as WebKB and Actor [42, 48]. These are
well-separated from others, as seen in the right half of the PCA plot (Figure 3b), primarily via PC1
and characterized by performance drop due to removal of the original node features (NoNodeFtrs,
RandFtrs) and their replacement by node degrees (NodeDeg). T-3 is indifferent to both node and
structure removal, implying redundancies between node features and graph structure for their tasks.
T-2 datasets, on the other hand, experience significant performance degradation on NoNodeFtrs
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and RandFtrs, yet these drops are recovered in NodeDeg. This indicates that T-2 datasets have
tasks for which structural summary information is sufficient, perhaps due to homophily.

• Representative set. Many datasets have very close sensitivity profiles, thus factoring in also
the graph size and original AUROC (avoiding saturated datasets), we make the following
recommendation: WebKB-Wis, Actor from T-1; WikiNet-cham, WikiCS, Flickr from T-2;
WikiNet-squir, Twitch-EN, GitHub from T-3.

4 Discussion
Our results quantify the extent to which graph features or structures are more important for the
downstream tasks; a vital question brought up in classical works on graph kernels [40, 55]. We
observed that more than half of the datasets contain rich node features. On average, excluding
these features reduces GNN prediction performance more than excluding the entire graph structures,
especially for transductive node-level tasks. Furthermore, low-frequency information in node features
appears to be essential in most datasets that rely on node features. Historically, most graph data
aimed to capture closeness among entities, which has prompted the development of local aggregation
approaches, such as label propagation, personalized page rank, and diffusion kernels [14, 39], all of
which share a common principle of low pass filtering. High-frequency information, on the other hand,
may be important in recently emerging application areas, such as combinatorial optimization, logical
reasoning or biochemical property prediction, which require complex non-local representations.

Further, despite the recent interest in the development of new methods that could leverage long-
range dependencies and heterophily, the availability of adequate benchmarking datasets remains
lacking or less readily accessible. Meanwhile, some recent efforts, such as GraphWorld [49], aim to
comprehensively profile a GNN’s performance using a collection of synthetic datasets that cover an
entire parametric space. Notably, our analysis demonstrates that synthetic tasks do not fully resemble
the complexity of real-world applications. Hence, benchmarking made purely by synthetic datasets
should be taken with caution, as the behavior might not be representative of real-world scenarios.

As a comprehensive benchmarking framework, our work provides several potential use cases beyond
the taxonomy analysis presented here. One such usage is understanding the characteristics of any new
datasets and how they are related to existing ones. For example, DeezerEurope (DzEu) is a relatively
new dataset [53] that is less commonly benchmarked and studied than the other datasets we consider.
The inclusion of DzEu in T-1 suggested its heterophilic nature, which indeed has been recently
demonstrated [41]. On the other hand, since the sensitivity profiles naturally suggest the invariances
that are important for different datasets from a practical standpoint, they could provide valuable
guidance to the development of self-supervised learning and data augmentations for GNNs [66].

Finally, we observed that overall patterns in sensitivity profiles remain similar regardless of whether
we used GCN, GIN, or the other 4 models to derive them. Subtle differences in sensitivity profiles
w.r.t. different GNN models are not only expected but also desired when comparing models that have
distinct levels of expressivity. While we expect overall patterns to be similar, more expressive models
should provide enhanced resolution. One could then contrast taxonomization w.r.t. first-order GNNs
(such as those we used) with more expressive higher-order GNNs, Transformer-based models with
global attention, and others. We hope our work will also inspire future work to empirically validate
the expressivity of new graph learning methods in this vein beyond classical benchmarking.

Limitations and Future Work. Our perturbation-based approach is fundamentally limited in that
we cannot test the significance of a property that we cannot perturb or that the reference GNN model
cannot capture. Therefore, designing more sophisticated perturbation strategies to gauge specific
relations could bring further insight into the datasets and GNN models alike. New perturbations may
gauge the usefulness of geometric substructures such as cycles [3] or the effects of graph bottlenecks,
e.g., by rewiring graphs to modify their “curvatures” [59]. Other perturbations could include graph
sparsification (edge removal) [57] and graph coarsening (edge contraction) [4, 10].

A number of OGB node-level datasets are not included in this study due to the memory cost of typical
MPNNs. Conducting an analysis based on recent scalable GNN models [21] would be an interesting
avenue of future research. Further, we only considered classification tasks, omitting regression tasks,
as their evaluation metrics are not easily comparable. One way to circumvent this issue would be to
quantize regression tasks into classification tasks by binning their continuous targets. Additionally,
we disregarded edge features in two OGB molecular datasets we used. In a future work, edge
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features could be leveraged by an edge-feature-aware generalization of MPNNs. The importance of
edge features can then be analyzed by introducing new edge-feature perturbations. We also limited
our analysis to node-level and graph-level tasks, but this framework could be further extended to
link-prediction or edge-level tasks. While our perturbations could be used in this new scenario as well,
new perturbations, such as graph sparsification, would need to be considered. Similarly, hallmark
models for link and relation predictions, outside MPNNs, should be considered.

5 Conclusion
We provide a systematic data-driven approach for taxonomizing a large collection of graph datasets –
the first study of its kind. The core principle of our approach is to gauge the essential characteristics of
a given dataset with respect to its accompanying prediction task by inspecting the downstream effects
caused by perturbing its graph data. The resulting sensitivities to the diverse set of perturbations
serve as “fingerprints” that allow identifying datasets with similar characteristics. We derive several
insights into the current common benchmarks used in the field of graph representation learning and
make recommendations on the selection of representative benchmarking suits. Our analysis also puts
forward a foundation for evaluating new benchmarking datasets that will likely emerge in the field.
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[60] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention
networks. In The 6th ICLR, 2018. 1

[61] N. Wale, I.A. Watson, and G. Karypis. Comparison of descriptor spaces for chemical compound
retrieval and classification. Knowledge and Information Systems, 14(3):347–375, 2008. 5, 21,
22

[62] J.H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American
statistical association, 58(301):236–244, 1963. 5, 14

[63] D.J. Watts and S.H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393
(6684):440–442, 1998. 22

[64] Z. Wu, B. Ramsundar, E.N. Feinberg, J. Gomes, C. Geniesse, A.S. Pappu, K. Leswing, and
V. Pande. MoleculeNet: a benchmark for molecular machine learning. Chemical science, 9(2):
513–530, 2018. 21

[65] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S.Y. Philip. A comprehensive survey on graph
neural networks. IEEE transactions on neural networks and learning systems, 32(1):4–24, 2020.
1

[66] Y. Xie, Z. Xu, J. Zhang, Z. Wang, and S. Ji. Self-supervised learning of graph neural networks:
A unified review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022. 9

[67] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In Proc.
of ICLR, 2019. 1, 5, 7

[68] P. Yanardag and S.V.N. Vishwanathan. Deep graph kernels. In Proc. of 21th SIGKDD, pages
1365–1374, 2015. 6, 20, 21, 22

[69] J. You, R. Ying, and J. Leskovec. Design space for graph neural networks. In NeurIPS, 2020. 6,
14, 22

[70] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna. GraphSAINT: Graph sampling
based inductive learning method. In Proc. of ICLR, 2020. 8, 19, 22, 23

[71] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph neural
networks: A review of methods and applications. AI Open, 1:57–81, 2020. 1

[72] M. Zitnik and J. Leskovec. Predicting multicellular function through multi-layer tissue networks.
Bioinformatics, 33(14):i190–i198, 2017. 6, 21, 22

13



Taxonomy of Benchmarks in Graph Representation Learning

A Extended Methods

<latexit sha1_base64="2Twv+FUxIIHcvWVmSLjKs2wX7H4="></latexit>�
x0

i

�
i�V

<latexit sha1_base64="X2iSTlTG/W43oKJJtItkRoV+iQs="></latexit>

{ei,j}(i,j)�E

<latexit sha1_base64="M26ueNqISApKUDnGvwOZ97xGSuI="></latexit>�
h0

i

�
i�V

linear (+ BN
)

(hidden dim
=128)

1. M
PN

N
 (+ BN

)
(hidden dim

=128)

5. M
PN

N
 (+ BN

)
(hidden dim

=128)

m
ean graph pool

2-layer M
LP

(hidden dim
=128)

2-layer M
LP

(hidden dim
=128)

…

node-level
prediction

graph-level
prediction

<latexit sha1_base64="kp2cqtgHhV+4pDqXVLBNesPB2f4="></latexit>

logit yG

<latexit sha1_base64="AOAwIdYH5tejVexq7ENBxQc+gKw="></latexit>

{logit yi}i�V

Figure A.1: MPNN model blueprint used for all datasets.

A.1 Taxonomization by Hierarchical Clustering

To study a systematic classification of the graph datasets, we use Ward’s method [62] for hierarchical
clustering analysis on their sensitivity profiles. Specifically, we first construct a perturbation sensitivity
matrix where each row represents a dataset and each column represents a perturbation. An entry
in this matrix is computed by taking the ratio between the test score achieved with the perturbed
dataset and the test score achieved with the original dataset. As our performance metric we use the
area under the receiver operating characteristic (AUROC) averaged over 10 random seed runs or 10
cross-validation folds, depending on whether a dataset has predefined data splits or not. Row-wise
hierarchical clustering provides us a data-driven taxonomization of the datasets.

Using AUROC as our metric, the values of the perturbation sensitivity matrix range from 0.5 to
1 when a perturbation causes a loss in predictive performance, and from 1 to 2 when it improves
it. Therefore we element-wise log2-transform the matrix to balance the two ranges and map the
values onto [−1,1] before hierarchical clustering. Yet, for a more intuitive presentation, we show the
original ratio values as percentages throughout this paper.

A.2 MPNN Hyperparameter Selection

We keep the model hyperparameters, illustrated in Figure A.1, identical for each dataset and per-
turbation combination. We use a linear node embedding layer, 5 graph convolutional layers with
residual connections and batch normalization (only for inductive datasets), followed by global mean
pooling (in case of graph-level prediction tasks), and finally a 2-layer MLP classifier. For training we
use Adam optimizer [37] with learning rate reduction by 0.5 factor upon reaching a validation loss
plateau. Early stopping is done based on validation split performance.

Implementation. Our pipeline is built using PyTorch [50] and PyG [20] with GraphGym [69]
(provided under MIT License). Its modular & scalable design facilitated here one of the most
extensive experimental evaluations of graph datasets to date.

Computing environment and used resources. All experiments were run in a shared computing
cluster environment with varying CPU and GPU architectures. These involved a mix of NVidia V100
(32GB), RTX8000 (48GB), and A100 (40GB) GPUs. The resource budget for each experiment was 1
GPU, 4 CPUs, and up to 32GB system RAM.
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B Extended Results
B.1 Taxonomy of Inductive Benchmarks

I-1: Node-feature reliance. The top-most cluster I-1, while mostly indifferent to structural
perturbations, is highly sensitive to node feature perturbations that comprise the left-hand-side
columns in Figure 4. The presence of image-based datasets MNIST and CIFAR10 in this cluster is not
surprising, as for superpixel graphs the structure loosely follows a grid layout for all classes, meaning
determining class solely based on structure is difficult. Additionally, the coordinate information of
superpixels is encoded also in the node features, together with average pixel intensities. A model
with powerful enough classifier component is then sufficient for achieving high accuracy using these
node features alone. Furthermore, the sensitivity of these datasets to MidPass and HighPass indicates
that the overall shape of the signals encoded by low-frequencies is more informative for classifying
the image content than sharp superpixel transitions encoded by high-frequencies. The presence
of ENZYMES in I-1 is likely due to the fact that some of the node features are precomputed using
graph kernels, and therefore are sufficient to distinguish the enzyme classes in the dataset when
structural information is removed. Last but not least, PCQM4Mv2-subset dataset appears to have
a complex task that is dominated by the node feature information, yet the graph structure encodes
non-negligible information as well. Out of all datasets in the I-1 cluster, PCQM4Mv2-subset is the
most sensitive one to structural perturbations. This corroborates with the expectation that predicting
the HOMO-LUMO gap, which is the energy difference between the highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), is a complex task that heavily
depends on atom types, their bonds, and relative distances.

I-2: Node features contain majority of necessary structural information. For datasets in I-2,
the graph structural information is again not necessary for achieving the baseline performance if
the original node features are present, while the performance deteriorates noticably if NoNodeFtrs
is applied. However, unlike I-1, these datasets are much less affected overall by the perturbations
on node features. Many of the node features on these datasets are themselves derived from the
graph’s geometry, and it seems MPNNs are able to use either the graph structure or the node features
to compensate for the absence of the other when encountering perturbed graphs. It appears that
the low/mid/high-pass filterings in particular are able to retain a significant amount of geometric
information.

The synthetic graphs of Scale-Free and Small-world (both I-2 datasets) are generated through
different algorithms (WS and BA, respectively), but the node features and tasks are equivalent: The
features are the local clustering coefficient and PageRank score of each node and the task is to classify
graphs based on average path length. Since the encoded features are derived from graph structure
itself, MPNNs are still able to exploit them when the original graph structure is perturbed. When
the MPNNs are forced to rely on graph structure instead, they are still able to attain AUROCs above
random despite some decrease.

For many of the I-2 datasets, NodeDeg allows one to replace geometric information of original
node features with new geometric information, the degree of each vertex, to large success – for some
of them the original AUROC scores are recovered and even surpassed, possibly due to NodeDeg
reinforcing the existing structural signal. This trend is not as pronounced when the GIN-based
model is used, since GIN achieves a comparatively high level of performance even in the face of
NoNodeFtrs, likely due to the higher expressiveness of GIN compared to GCN in distinguishing of
structural patterns.

On the other hand, there are datasets of biochemical origin in this cluster, whose node features encode
chemical and physical attributes, such as atom or amino acid type. Except MUTAG, there appears to
be some information encoded in these node features that is irreplaceable by graph structure or node
degree information.

I-3: Graph-structure reliance. The I-3 cluster is characterized by strong structural dependencies,
and can be further divided into two subgroups based on their sensitivities to node feature perturbations.

The first subgroup, which consists of PATTERN, COLLAB, IMDB-BINARY and REDDIT, is not affected
by node feature perturbations. These datasets do not have any original informative node features
and their tasks appear to be purely structure-based. Indeed, in the case of PATTERN the task is to
detect structural patterns in graphs, rendering node features irrelevant for the task. On the other
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hand, structural perturbations such as NoEdges and FullyConn cause drastic performance drops
in this group, since most of its task signals are sourced from graph structures. This group also
exhibits limited to no sensitivity towards Frag-k2 and Frag-k3 perturbations, which test for degrees
of reliance on longer range interactions by limiting information propagation to {2,3} hops. We
still see prominent sensitivity to Frag-k1, though, implying reliance on information from immediate
neighbors. We can attribute the insensitivity for k > 1 to inherent graph properties for some of these
datasets: For dense networks like PATTERN or ego-nets such as IMDB-BINARY and COLLAB, just 1 or
2 hops recover the original graph – for these graphs, the notion of long-range information does not
exist.

The second I-3 subgroup, formed by NCI datasets and Synthie, are the datasets that are notably
affected by all perturbations. For Synthie, this sensitivity stems from its construction. The four
synthetic classes in Synthie are formed by combinations of two distributions of graph structures
and two distributions of node features – elimination of either leads to a partial collapse in the
distinguishability of two classes. The NCI classification tasks, similarly to related bioinformatics
datasets in I-2, show a degree of reliance on the high-dimensional node features, but additionally,
they are also dependent on non-local structure as they are among the datasets most adversely affected
by Frag-k2 and Frag-k3.

Synthetic datasets CLUSTER and SYNTHETICnew are also adversely affected by both structural and
node feature perturbations. However, they stand out due to the magnitude of this effect. Many
of the perturbations lead to a major decrease in AUROC and close-to-random performance. A
closer inspection can provide an explanation. The task of CLUSTER is semi-supervised clustering
of unlabeled nodes into six clusters, and the true cluster labels are given as node features in only
a single node per cluster. NoEdges and FullyConn remove the cluster structure altogether, while
NoNodeFtrs and NodeDeg remove the given cluster labels, rendering the task unsolvable in either case.
In SYNTHETICnew, the two classes are derived from a “base” graph by a class-specific edge rewiring
and node feature permutation, hence either graph structure or node features should differentiate the
classes. Despite such expectation, we observe that the original node features alone are not sufficient,
as structure perturbations have detrimental impact on the prediction performance. On the other hand
GIN and GCN with NodeDeg can learn to distinguish the two classes even without the original node
features. Thus, the original node features appear to be unnecessary, while after bandpass-filtering
even provide misleading signal.
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(a) Sensitivity profiles by GCN model (reprint of Figure 3a and 4).

(b) Sensitivity profiles by GIN model; annotated by cluster assignment w.r.t. GCN model.

(c) Sensitivity profiles by 2-Layer GIN model; annotated by cluster assignment w.r.t. GCN model.
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(d) Sensitivity profiles by ChebNet model; annotated by cluster assignment w.r.t. GCN model.

(e) Sensitivity profiles by GatedGCN model; annotated by cluster assignment w.r.t. GCN model.

(f) Sensitivity profiles by GCNII model; annotated by cluster assignment w.r.t. GCN model.

Figure B.1: Taxonomy of inductive graph learning datasets via graph perturbations. The categorization into 3
dataset clusters is stable across the following models with only minor deviations: (a) GCN, (b) GIN, (c) 2-Layer
GIN, (d) ChebNet, (e) GatedGCN, (f) GCNII. Panel (a) left and right is as shown in Figure 3a and 4, respectively,
shown here for ease of comparison. Missing performance ratios (due to out-of-memory error) are shown in gray.
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B.2 Taxonomy of Transductive Benchmarks

All transductive datasets are relatively insensitive to structural perturbations. Unlike many of the
inductive datasets that show significant reliance on the graph structure (I-3), the lowest performance
achieved for a transductive dataset due to graph structure removal is still as high as 92% (Flickr),
suggesting a weak dependence on the full graph structure. Furthermore, on average, considering only
the neighborhoods of up to 3-hops (Frag-k3) nearly retains the full potential of the model (99% ±
1.6%), revealing the lack of long-range dependencies in these node-level datasets. Such negligence of
the full graph structure might be attributed to the limitations of the GCN expressivity and issues such
as oversquashing [59]. While these limitations are fundamentally true, our observation of long-range
dependencies on some graph-level tasks like NCI, coupled with our architecture being 5 layers deep
with residual connections, indicate that our GCN model is capable of capturing non-local information
in the 3-hop neighborhoods. Furthermore, our observed long-range independence in transductive
node-level datasets is consistent with the promising results presented by recent development of
scalable GNNs that operate on subgraphs [12, 21, 70], breaking or limiting long-range connections.

T-3: Indifference to node and structure removal. The datasets in T-3 are relatively insensitive to
perturbations of graph structure and also to the removal of node features (NoNodeFtrs and NodeDeg).
For example, the Amazon datasets (Am-Phot and Am-Comp) always achieve near perfect classification
performance regardless of the perturbations applied, suggesting redundancy between node features
and graph structure for the corresponding tasks. For these datasets, in particular, GitHub, Am, and
Twitch, more sophisticated, or combinations of, perturbations might be needed to gauge their
essential characteristics.

T-2: Rich node features but substitutable for structural (summary) information. T-2 contains
a broad spectrum of datasets from citation networks (CF), social networks (Coau, FBPP, LFMA), to
web pages (WikiNet, WikiCS). The considerable performance decrease due to node feature removal
suggests the relevance of the node features for their tasks. For example, it is not surprising that
the binary bag-of-words features of CF datasets provide relevant information to classify papers into
different fields of research, as one might expect some keywords to appear more likely in one field
than in another. Furthermore, using the one-hot encoded node degrees (NodeDeg) always results in
better performance over NoNodeFtrs. And in many cases such as Facebook (FBPP), NodeDeg nearly
retains the baseline performance, suggesting the relevance of node degree information, as a form of
structural summary, for the respective tasks.

WebKB-Tex, although clustered into T-2 is more of an outlier that does not clearly fit into any of the
existing clusters. As we will discuss more in T-1, WebKB-Tex considerably benefits from HighPass,
while LowPass and MidPass severely decrease its performance.

T-1: Heterophilic datasets. Three of the four datasets in T-1 (Actor, WebKB-Cor, and WebKB-Wis)
are commonly referred to as heterophilic datasets [42, 48]. While WebKB-Tex (T-2) is also known
to be heterophilic, it is isolated from T-1 mainly due to its insensitivity to node feature removal,
suggesting the structure alone is sufficient for its prediction task.

Our results show that in heterophilic datasets such as T-1 and WebKB-Tex, LowPass node feature
filtering, realized by local aggregation (Eq. 3), significantly degrades the performance, unlike other
homophilic datasets. By contrast, HighPass results in better performance than LowPass. In the case of
WekbKB-Tex, HighPass significantly improves the performance over the baseline. This observation
is related to recent findings [42] that in the case of extreme heterophily, local information, this time
in form of the neighborhood patterns, may suffice to infer the correct node labels.

Finally, despite heterophilic datasets [2, 42, 48, 59] attracting much recent attention, this type of
datasets (T-1 and WebKB-Tex) is lacking in availability compared to the others (T-{2,3}), which
exhibit homophily but with different levels of reliance on node features. Thus, there is a need to
collect and generate more real-world heterophilic datasets.
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B.3 Correlations of Perturbations

(a) Inductive benchmarks (b) Transductive benchmarks

Figure B.2: Pearson correlation coefficients of the log2 performance fold change between different
perturbations (w.r.t. a GCN model).

We compute the Pearson correlation between all pairs of perturbations based on the log2 performance
fold change. The results in Figure B.2 indicate that many perturbations correlate with each other to
some extend. For both transductive and inductive benchmarks, the perturbations roughly cluster into
two groups, separating node feature perturbations (see Section 2.1) and graph structure perturbations
(see Section 2.2). In particular, perturbations that replace the original node features with other less
informative features, including RandFtrs, NoNodeFtrs, and NodeDeg, highly correlate with one
another (Pearson r ≥ 0.6). Similarly, perturbations that severely break the graphs apart, including
NoEdges, Frag-k1, and FiedlerFrag, are highly correlated (Pearson r ≥ 0.8).

C Graph Learning Benchmarks
C.1 Inductive Datasets

MNIST and CIFAR10 [18] are derived from the well-known image classification datasets. The images
are converted to graphs by SLIC superpixelization; node features are the average pixel coordinates
and intensities; edges are constructed based on kNN criterion.

PATTERN and CLUSTER [18] are node-level inductive datasets generated from SBMs [31]. In PAT-
TERN, the task is to identify nodes of a structurally specific subgraph; CLUSTER has a semi-
supervised clustering task of predicting the true cluster assignment of nodes while observing only
one labelled node per cluster.

IMDB-BINARY [68] is a dataset of ego-networks, where nodes represent actors/actresses and an edge
between two nodes means that the two artists played in a movie together. The task is to determine
which genre (action or romance) each ego-network belongs to.

D&D [17] is a protein dataset where each protein is represented by a graph with rich node feature set.
The task is to classify proteins as enzymes or non-enzymes.

ENZYMES [6] is a dataset of tertiary structures from six enzymatic classes (determined by Enzyme
Commission numbers). Each node represents a secondary structure element (SSE), and has an edge
between its three spatially closest nodes. Node features are the type of SSE, and the physical and
chemical information.

PROTEINS [6] is a modification of the D&D [17]; the task is the same but the protein graphs are
generated as in ENZYMES.
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NCI1 and NCI109 [61] consist of graph representations of chemical compounds; each graph repre-
sents a molecule in which nodes represent atoms and edges represent atomic bonds. Atom types are
one-hot encoded as node features. The tasks are to determine whether a given compound is active or
inactive in inhibiting non-small cell lung cancer (NCI1) or ovarian cancer (NCI109).

COLLAB [68] is an ego-network dataset of researchers in three different fields of physics. Each graph
is a researcher’s ego-network, where nodes are researchers and an edge between two nodes means the
two researchers have collaborated on a paper. The task is to determine which field a given researcher
ego-network belongs to.

REDDIT-BINARY and REDDIT-MULTI-5K [68] graphs are derived from Reddit communities (sub-
reddits). These subreddits are Q&A based or discussion-based. Each graph represents a set of
interactions between users through posts and comments; nodes represent users while an edge implies
an interaction between two users. The task for REDDIT-BINARY is to determine whether the given
interaction graph belongs to a Q&A or discussion subreddit. In REDDIT-MULTI-5K, the graphs are
drawn from 5 specific subreddits instead, and the task is to predict the subreddit a graph belongs to.

MUTAG [15] is a dataset of Nitroaromatic compounds. Each compound is represented by a graph
in which nodes represent atoms with their types one-hot encoded as node features, and edges
represent atomic bonds. The task is to determine whether a given compound has mutagenic effects
on Salmonella typhimurium bacteria.

MalNet-Tiny [23] is a smaller version of MalNet dataset, consisting of function call graphs of
various malware on Android systems using Local Degree Profiles as node features. In MalNet-Tiny,
the task is constrained to classification into 5 different types of malware.

ogbg-molhiv, ogbg-molpcba, ogbg-moltox21 [33] datasets, adopted from MoleculeNet [64], are
composed of molecular graphs, where nodes represent atoms and edges represent atomic bonds
in-between. Node features include atom type and physical/chemical information such chirality and
charge. The task is to classify molecules on whether they inhibit HIV replication (ogbg-molhiv) or
their toxicity on on 12 different targets such as receptors and stress response pathways in a multilabel
classification setting (ogbg-moltox21). In ogbg-molpcba the task is 128-way multi-task binary
classification derived from 128 bioassays from PubChem BioAssay.

PCQM4Mv2-subset is our derivative of the OGB-LSC PCQM4Mv2 [34] molecular dataset. The orig-
inal task is a regression of a quantum physical property – the HOMO-LUMO gap. For compatibility
with our analysis, we quantized the regression task into 20-way classification task based on quantils
of the training set. As true labels of the original “test-dev” and “test-challange” dataset splits are
kept private by the OGB-LSC challenge organizers, and for efficiency of our analysis, we created
a custom reduced splits as follows: train set: random 10% of the original train set; validation set:
another random 50,000 graphs from the original train set; test set: the original validation set. The
molecular graphs are featurized the same way as in ogbg-mol* datasets.

PPI [30, 72] dataset contains a collection of 24 tissue-specific protein-protein interaction networks
derived from the STRING database [58] using tissue-specific gold-standards from [26]. 20 of the
networks are used for training, 2 used for validation, and 2 used for testing. In each network, each
protein (node) is associated with 50 different gene signatures as node features. The multi-label node
classification task was to classify each gene (node) in a graph based on its gene ontology terms.

SYNTHETICnew [19] is a dataset where each graph is based on a random graph G with scalar node
features drawn from the normal distribution. Two classes of graphs are generated from G by randomly
rewiring edges and permuting node attributes; the number of rewirings and permuted attributes are
distinct for the two classes. Noise is added to the node features to make the tasks more difficult. The
task is to determine which class a given graph belongs to.

Synthie [45] dataset is generated from two Erdös-Rényi graphs G1,2: Two sets of graphs S1,2 are
then generated by randomly adding and removing edges from G1,2. Then, 10 graphs were sampled
from these sets and connected by randomly adding edges, resulting in a single graph. Two classes of
these graphs, C1,2 are generated by using distinct sampling probabilities for the two sets. The two
classes are then in turn split into two by generating two sets of vectors A and B; nodes from a given
graph were appended a vector from A as node features if they were sampled from S1, and B for S2

for one class, and vice versa for the other. The task is to classify which of these four classes a given
graph belongs to.
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Table C.1: Inductive benchmarks. All datasets are equipped with graph-level classification tasks,
except PATTERN and CLUSTER that are equipped with inductive node-level classification tasks.

Dataset # Graphs Avg # Nodes Avg # Edges # Features # Classes Predef. split Ref.

MNIST 70,000 70.57 564.53 3 10 Yes [18]
CIFAR10 60,000 117.63 941.07 5 10 Yes [18]
PATTERN 14,000 118.89 6,078.57 3 2 Yes [18]
CLUSTER 12,000 117.20 4,301.72 7 6 Yes [18]
IMDB-BINARY 1,000 19.77 96.53 – 2 No [68]
D&D 1,178 284.32 715.66 89 2 No [17]
ENZYMES 600 32.63 62.14 21 6 No [6]
PROTEINS 1,113 39.06 72.82 4 2 No [6]
NCI1 4,110 29.87 32.3 37 2 No [61]
NCI109 4,127 29.68 32.13 38 2 No [61]
COLLAB 5,000 74.49 2,457.78 – 3 No [68]
REDDIT-BINARY 2,000 429.63 497.75 – 2 No [68]
REDDIT-MULTI-5K 4,999 508.52 594.87 – 5 No [68]
MUTAG 188 17.93 19.79 7 2 No [15]
MalNet-Tiny 5,000 1,410.3 2,859.94 5 5 No [23]
ogbg-molhiv 41,127 25.5 27.5 9 sets 2 Yes [33]
ogbg-molpcba 437,929 26.0 28.1 9 sets 128x binary Yes [33]
ogbg-moltox21 7,831 18.6 19.3 9 sets 12x binary Yes [33]
PCQM4Mv2-subset 446,405 14.1 14.6 9 sets quantized to 20 Custom [34]
PPI 24 2,372.67 66,136 50 121 Yes [72]
SYNTHETICnew 300 100 196 1 2 No [19]
Synthie 400 95 196.25 15 4 No [45]
Small-world 256 64 694 2 10 No [69]
Scale-free 256 64 501.56 2 10 No [69]

Small-world and Scale-free [69] datasets are generated by tweaking graph generation parameters
for the real-world-derived small-world [63] and scale-free [32] graphs. Graphs are generated using a
range of Averaging Clustering Coefficient and Average Path Length parameters. In our experiments,
clustering coefficients and PageRank scores constitute node features while the task is to classify
graphs based on average path length, where the continuous path length variable is rendered discrete
by 10-way binning.

C.2 Transductive Node-level Datasets

WikiNet [51] contains two networks of Wikipedia pages, where edges indicate mutual links between
pages, and node features are bag-of-words (BOW) of informative nouns. The task is to classify the
web pages based on their average monthly traffic bins.

WebKB [51] contains networks of web pages from different universities, where an (directed) edge is a
hyperlink between two web pages, with BOW node features. The task is to classify the web pages
into five categories: student, project, course, staff, and faculty.

Actor [51] is a network of actors, where an edge indicate co-occurrence of two actors on a same
Wikipedia page, with node features represented by keywords about the actor on Wikipedia. The task
is to classify the actor into one of five categories.

WikiCS [43] is a network of Wikipedia articles related to Computer Science, where edges represent
hyperlinks between them, with 300-dimensional word embeddings of the articles. The task is to
classify the articles into one of ten branches of the field.

Flickr [70] is a network of images, where the edges represent common properties between images,
such as locations, gallery, and comments by the same users. The node features are BOW of image
descriptions, and the task is to predict one of 7 tags for an image.

CF (CitationFull) [5] contains citation networks where nodes are papers and edges represent citations,
with node features as BOW of papers. The task is to classify the papers based on their topics.

DzEu (DeezerEurope) [53] is a network of Deezer users from European countries where nodes are
the users and edges are mutual follower relationships. The task is to predict the gender of users.
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Table C.2: Transductive benchmarks with node-level classification tasks.

Dataset # Nodes # Edges # Node # Pred. Predef. Ref.feat. classes split

WikiNet-cham 2,277 72,202 128 5 Yes [51]
WikiNet-squir 5,201 434,146 128 5 Yes [51]
WebKB-Cor 183 298 1,703 10 Yes [51]
WebKB-Wis 251 515 1,703 10 Yes [51]
WebKB-Tex 183 325 1,703 10 Yes [51]
Actor 7,600 30,019 932 10 Yes [51]
WikiCS 11,701 297,110 300 10 Yes [43]
Flickr 89,250 899,756 500 7 Yes [70]
CF-Cora 19,793 126,842 8,710 70 No [5]
CF-CoraML 2,995 16,316 2,879 7 No [5]
CF-CiteSeer 4,230 10,674 602 6 No [5]
CF-DBLP 17,716 105,734 1,639 4 No [5]
CF-PubMed 19,717 88,648 500 3 No [5]
DzEu 28,281 185,504 128 2 No [53]
LFMA 7,624 55,612 128 18 No [53]
Am-Comp 13,752 491,722 767 10 No [56]
Am-Phot 7,650 238,162 745 8 No [56]
Coau-CS 18,333 163,788 6,805 15 No [56]
Coau-Phy 34,493 495,924 8,415 5 No [56]
Twitch-EN 7,126 77,774 128 2 No [52]
Twitch-ES 4,648 123,412 128 2 No [52]
Twitch-DE 9,498 315,774 128 2 No [52]
Twitch-PT 1,912 64,510 128 2 No [52]
Github 37,700 578,006 128 2 No [52]
FBPP 22,470 342,004 128 4 No [52]

LFMA (LastFMAsia) [53] is a network of LastFM users from Asian countries where edges are mutual
follower relationships between them. The task is to predict the location of users.

Amazon [56] contains Amazon Computers and Amazon Photo. They are segments of the Amazon
co-purchase graph, where nodes represent goods, edges indicate that two goods are frequently bought
together, node features are bag-of-words encoded product reviews, and class labels are given by the
product category.

Coau (Coauthor) [56] contains Coauthor CS and Coauthor Physics. They are co-authorship graphs
based on the Microsoft Academic Graph from the KDD Cup 2016 challenge 3. Nodes are authors,
and are connected by an edge if they co-authored a paper; node features represent paper keywords for
each author’s papers, and class labels indicate most active fields of study for each author.

Twitch [52] contains Twitch user-user networks of gamers who stream in a certain language where
nodes are the users themselves and the edges are mutual friendships between them. The task is to
to predict whether a streamer uses explicit language. Due to low baseline performance even after a
thorough hyperparameter search, we excluded Twitch-RU and Twitch-FR from our main analysis.

Github [52] is a network of GitHub developers where nodes are developers who have starred at least
10 repositories and edges are mutual follower relationships between them. The task is to predict
whether the user is a web or a machine learning developer.

FBPP (FacebookPagePage) [52] is a network of verified Facebook pages that liked each other, where
nodes correspond to official Facebook pages, edges to mutual likes between sites. The task is
multi-class classification of the site category.

D Distribution of Classical Graph Properties in Benchmarking Datasets
In this work we use perturbation sensitivity profiles derived from a GNN’s prediction performance
in order to gauge how task-related information is encoded in the graph datasets. In this section we
explore an alternative approach. We analyze classical graph properties in multiple datasets and their
classes to investigate whether we can establish a meaningful taxonomy without any dependence on a
particular GNN method, while using well-established graph properties.
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Table D.1: Classical graph properties among positive and negative classes of 9 graph-classification
datasets. The difference between datasets dominates within-dataset differences between classes.

Num. Num. Density Connectivity Diameter Approx. Centrality Cluster. Num.
nodes edges max clique coeff. triangles

IMDB-BINARY (class=0) 20.11 96.78 0.559 3.828 1.838 10.30 0.559 0.943 307.73
IMDB-BINARY (class=1) 19.43 96.29 0.482 3.388 1.884 10.01 0.482 0.951 476.25
REDDIT-BINARY (class=0) 641.25 735.95 0.012 0.556 5.646 3.22 0.012 0.054 35.96
REDDIT-BINARY (class=1) 218.00 259.56 0.032 0.423 3.778 2.95 0.032 0.041 13.71
D&D (class=0) 341.88 870.23 0.019 1.110 20.843 4.95 0.019 0.479 617.07
D&D (class=1) 183.72 449.43 0.040 1.140 17.460 4.79 0.040 0.480 302.55
PROTEINS (class=0) 50.00 94.06 0.142 1.196 13.837 3.85 0.142 0.473 34.30
PROTEINS (class=1) 22.94 41.52 0.315 1.420 7.278 3.80 0.315 0.575 17.24
NCI1 (class=0) 25.65 27.65 0.100 0.924 11.265 2.02 0.100 0.002 0.03
NCI1 (class=1) 34.07 36.94 0.078 0.796 11.917 2.05 0.078 0.004 0.07
NCI109 (class=0) 25.61 27.61 0.100 0.913 11.061 2.02 0.100 0.002 0.02
NCI109 (class=1) 33.69 36.59 0.079 0.794 11.644 2.05 0.079 0.004 0.07
MUTAG (class=0) 13.94 14.62 0.169 1.000 7.016 2.00 0.169 0.000 0.00
MUTAG (class=1) 19.94 22.40 0.123 1.000 8.824 2.00 0.123 0.000 0.00
SYNTHETICnew (class=0) 100.00 196.42 0.040 0.993 7.333 3.00 0.040 0.024 5.39
SYNTHETICnew (class=1) 100.00 196.08 0.040 0.993 7.213 3.00 0.040 0.022 4.54
ogbg-molhiv (class=0) 25.20 27.13 0.104 0.931 11.016 2.02 0.104 0.002 0.03
ogbg-molhiv (class=1) 34.18 36.69 0.084 0.824 12.183 2.01 0.084 0.001 0.01

A static analysis of the graph properties alone is insufficient without taking into account the prediction
task as well. The graph domain that a dataset X is sampled from (e.g., drug-like molecules, proteins,
ego networks, citation networks) may exhibit varying range of properties (e.g., density, node degree
distribution, local/global clustering coefficients, number of triangles, graph diameter, girth, maximum
clique, etc.), however these do not take into account node features in attributed graphs, and could be
irrelevant to the prediction task Y . Therefore, we look at the difference in graph properties compared
among the individual classes of Y .
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Figure D.1: PCA plot of 9 binary graph-level
classification datasets represented by their per-
class graph properties. In the bottom, the
loadings of the first two principal components
are shown.

Particularly, we look at all 9 inductive binary-
classification datasets from our dataset selection (Ta-
ble C.1). Within each class (the negative and positive
label) of these 9 datasets we computed the average
value of 9 graph properties computed by the Net-
workX package [27]. The results are presented in
Table D.1 and Figure D.1. Primarily, the computed
graph properties vary more between datasets than be-
tween classes. The marginal graph properties of the
positive and negative class are very similar to each
other, especially for the SYNTHETICnew dataset.
The largest difference between the classes appears to
be the average size of the graphs, which is captured
by the average number of nodes and edges. There-
fore we argue that basing a taxonomy on dataset or
class-level marginal graph properties is grossly insuf-
ficient as it completely fails to capture the nature of
the prediction task.

Alternatively, one could conduct a correlation anal-
ysis between classical graph properties (averaged per
class) and the outcome Y . However, that would again
only take into account the marginal properties, as-
sume linear relationship (as correlation captures only
a linear relationship), and would rely on a fixed set
of computable graph properties. These appear to be
fundamental limitations compared to the perturbation
analysis presented in the main text, that would result
in a grossly skewed taxonomy.
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E Impact of random initialization on Frag-k perturbations
Our Frag-k perturbation is potentially sensitive to the random initializations of the initial seed nodes
used in the fragmentation procedure. To measure this sensitivity of Frag-k perturbations to node
initializations, we computed the variance of AUROC results across ten experiments with different
random seeds for both GCN and GIN models. Here, we analysed five datasets, the performance on
which was significantly altered by Frag-k in the original analysis, namely, CLUSTER, PATTERN,
PPI, Synthie, and SYNTHETICnew. The variances are within 5%, with the only exception being
SYNTHETICnew. We hypothesize that this is due to the randomness of the constructions of the
SYNTHETICnew dataset. Thus, overall, the Frag-k approach is sufficiently stable for datasets whose
constructions involve little randomness.

Table E.1: Variances of AUROC across ten different random seeds for Frag-k for GCN.

Dataset Perturbation AUROC Avg. AUROC Std. AUC Std./Avg. (%)

CLUSTER Frag-k1 0.637 0.001 0.165
CLUSTER Frag-k2 0.913 0.000 0.039
CLUSTER Frag-k3 0.913 0.000 0.037
PATTERN Frag-k1 0.769 0.001 0.095
PATTERN Frag-k2 0.933 0.000 0.016
PATTERN Frag-k3 0.933 0.000 0.021
PPI Frag-k1 0.620 0.003 0.529
PPI Frag-k2 0.647 0.012 1.807
PPI Frag-k3 0.720 0.011 1.519
SYNTHETICnew Frag-k1 0.704 0.126 17.908
SYNTHETICnew Frag-k2 0.533 0.078 14.701
SYNTHETICnew Frag-k3 0.715 0.089 12.492
Synthie Frag-k1 0.962 0.015 1.581
Synthie Frag-k2 0.870 0.029 3.334
Synthie Frag-k3 0.876 0.036 4.164

Table E.2: Variances of AUROC across ten different random seeds for Frag-k for GIN.

Dataset Perturbation AUROC Avg. AUROC Std. AUC Std./Avg. (%)

CLUSTER Frag-k1 0.643 0.001 0.162
CLUSTER Frag-k2 0.910 0.001 0.101
CLUSTER Frag-k3 0.910 0.001 0.130
PATTERN Frag-k1 0.780 0.001 0.091
PATTERN Frag-k2 0.934 0.000 0.013
PATTERN Frag-k3 0.934 0.000 0.019
PPI Frag-k1 0.617 0.002 0.376
PPI Frag-k2 0.644 0.009 1.476
PPI Frag-k3 0.704 0.013 1.843
SYNTHETICnew Frag-k1 0.708 0.081 11.407
SYNTHETICnew Frag-k2 0.532 0.071 13.276
SYNTHETICnew Frag-k3 0.757 0.064 8.411
Synthie Frag-k1 0.985 0.008 0.810
Synthie Frag-k2 0.945 0.011 1.213
Synthie Frag-k3 0.920 0.025 2.677
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