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Abstract
In an extremal eigenvalue problem, one considers a family of eigenvalue problems, each
with discrete spectra, and extremizes a chosen eigenvalue over the family. In this chap-
ter, we consider eigenvalue problems defined on Riemannian manifolds and extremize
over the metric structure. For example, we consider the problem of maximizing the prin-
cipal Laplace–Beltrami eigenvalue over a family of closed surfaces of fixed volume.
Computational approaches to such extremal geometric eigenvalue problems present new
computational challenges and require novel numerical tools, such as the parameteriza-
tion of conformal classes and the development of accurate and efficient methods to solve
eigenvalue problems on domains with nontrivial genus and boundary. We highlight re-
cent progress on computational approaches for extremal geometric eigenvalue problems,
including (i) maximizing Laplace–Beltrami eigenvalues on closed surfaces and (ii) max-
imizing Steklov eigenvalues on surfaces with boundary.

Keywords
Laplace operator, Dirichlet-to-Neumann operator, Steklov eigenvalue, Eigenvalue opti-
mization, Free boundary minimal surface, Densest lattice sphere packing problem
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1 Introduction

Extremal eigenvalue problems originate with Lord Rayleigh’s fascinating con-
jecture that, of all two-dimensional Euclidean domains of fixed area, it is the
disk that has the smallest principal Laplace–Dirichlet eigenvalue. Over the past
120 years, this conjecture was proven and an abundance of generalizations and
related problems have been extensively studied (Henrot, 2006). Recently, there
has been much interest in generalizing these ideas to more general geometric
settings; we refer to such problems as extremal geometric eigenvalue prob-
lems. For example, rather than extremize the principal Laplacian eigenvalue
over two-dimensional Euclidean domains, we might extremize the principal
Laplace–Beltrami eigenvalue over a class of Riemannian manifolds of a fixed
volume. In this setting, many analytic tools have recently been developed that,
e.g., describe the derivative of an eigenvalue with respect to a perturbation of the
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metric (Berger, 1973; Bando and Urakawa, 1983; Soufi and Ilias, 2008) or de-
scribe the resulting spectrum when two manifolds are “glued” together at a point
(Nadirashvili and Penskoi, 2018; Karpukhin et al., 2021; Karpukhin, 2021).
Consequently, there are now several extremal geometric eigenvalue problems
for which the optimal manifold is known (Hersch, 1970; Nadirashvili, 1996,
2002; Petrides, 2014; Nadirashvili and Sire, 2017; Karpukhin et al., 2021); such
optimizers typically have very “nice” structure, e.g., the ball, the round sphere,
kissing balls, kissing round spheres, the equilateral flat torus, etc.

However, for extremal geometric eigenvalue problems where the optimal
manifold doesn’t have such structure, we have hope that numerical optimization
methods can be used to compute optimal manifolds and complement analytic
tools to gain insight into the optimal structure. Such numerical methods build
on the foundation of methods for extremal eigenvalue problems on Euclidean
domains; see, e.g., Oudet (2004); Osting (2010); Antunes and Freitas (2012);
Osting and Kao (2013, 2014); Antunes and Oudet (2017); Bogosel et al. (2017);
Akhmetgaliyev et al. (2017). However, these more general geometric problems
present new computational challenges and require novel numerical tools, such
as the parameterization of conformal classes and the development of accurate
and efficient methods to solve eigenvalue problems on manifolds with nontrivial
genus and boundary. In this chapter, we review recent progress on computational
approaches for extremal geometric eigenvalue problems. In particular, we focus
on two problems:

§2 maximizing Laplace–Beltrami eigenvalues on closed surfaces;
§3 maximizing Steklov eigenvalues on compact surfaces with boundary.

For each of problem, we describe how the geometric structure is parameterized,
the methods for computing eigenvalues, and the optimization methods used to
solve the extremal eigenvalue problem. We consider several variations of these
problems where the class of admissible surfaces consists of flat surfaces only,
surfaces where the metric is constrained to a particular conformal class, and
closed surfaces which can be embedded in three-dimensional Euclidean space.
Our aim in this chapter is to provide a glimpse of the possibilities of using com-
putational methods for extremal geometric eigenvalue problems and, as such,
we have indicated in §4 several open problems and future directions.

2 Maximizing Laplace–Beltrami eigenvalues on closed
surfaces

Let (M,g) be a connected, compact Riemannian surface and "M,g =
|g|− 1

2 ∂i |g| 1
2 gij∂j denote the Laplace–Beltrami operator. The Laplace–Beltrami

eigenproblem is to find eigenvalues λ = λ(M,g) and eigenfunctions, ψ =
ψ(x) = ψ(x;M,g), satisfying

− "M,g ψ(x) = λ ψ(x), x ∈ M. (1)
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The spectrum is discrete and we enumerate the eigenvalues, counting multi-
plicity, in the increasing order: λ0(M,g) < λ1(M,g) ≤ λ2(M,g) ≤ · · · → ∞
(Chavel, 1984). We will consider the problem of maximizing the k-th Laplace–
Beltrami eigenvalue over a class of closed surfaces with a fixed volume con-
straint. This is equivalent to maximizing the “normalized” eigenvalue

λ̄k(M,g) := λk(M,g) · vol(M,g),

which is computationally advantageous as it avoids an explicit volume con-
straint.

To describe the class of surfaces, (M,g), over which we’ll maximize
λ̄k(M,g), it is useful to recall a few definitions and results. Given a metric g0,
we say that a metric g is conformal to g0 if there exists a positive smooth func-
tion ω : M → R+ such that g = ωg0. The conformal class, [g0], consists of
all metrics conformal to g0. By the uniformization theorem, every closed Rie-
mann surface of genus γ = 0 is conformal to the Riemann sphere, i.e., there
is only one conformal class for genus γ = 0 surfaces. A generalization of the
uniformization theorem states that every closed genus γ = 1 Riemann surface

is conformal to an (a, b)-flat torus generated by the basis matrix B =
(1 a

0 b

)

where (a, b) ∈ F := {(a, b) ∈ R2 : a ∈
(
− 1

2 , 1
2

]
, b > 0, a2 + b2 ≥ 1}. Thus,

the genus γ = 1 conformal classes are parameterized by (a, b) ∈ F . With these
uniformization results in mind, for a given surface (M,g0), we could consider
perturbations to the metric only within the conformal class [g0] or also in-
clude perturbations that are nonconformal. This decomposition defines several
optimization problems depending on what type of perturbation is allowed. In
section 2.1, we consider the problem where we restrict the class of surfaces to
flat tori; the metric only varies over the conformal classes (i.e., (a, b) ∈ F ) and
not within each conformal class. Actually, here, we consider this problem not
just in two dimensions, but in higher dimensions as well and show that the op-
timization problem for the k = 1 eigenvalue is equivalent to finding the densest
lattice sphere packing. In section 2.2, we consider the problem where the metric
only varies within a fixed conformal class, [g0]. In section 2.3, we consider the
combined problem where the metric is allowed to vary over all smooth metrics
on the surface. Finally, in section 2.4 we consider a different kind of constraint
where only embedded closed surfaces are considered.

2.1 Maximizing Laplace–Beltrami eigenvalues on flat tori

Consider the d-dimensional lattice 'B := BZd generated by the basis matrix
B ∈ GL(d,R) and the d-dimensional flat torus TB := Rd/'B . The volume of
TB is given by vol(TB) = |detB|. Each eigenpair, (λ,ψ), of the Laplacian, −",
on TB corresponds to an element of the dual lattice, '∗

B = B−tZd = 'B−t :

λ = 4π2‖w‖2, ψ(x) = e2π i〈x,w〉, ∀w ∈ '∗
B.
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The multiplicity of each nonzero eigenvalue is even since w ∈ '∗
B and −w cor-

respond to the same eigenvalue. It follows that the eigenvalues of −" on TB ,
enumerated in increasing order,

0 = λ0 < λ1 = λ2 ≤ λ3 = λ4 ≤ · · · ,

are characterized by the Courant–Fischer formulae,

λk(TB) = min
E∈Zd

k+1

max
v∈E

4π2‖B−t v‖2, (2)

where Zd
k := {E ⊂ Zd : |E| = k}. For k ∈ N, define the volume-normalized

Laplacian eigenvalue, λ̄k : GL(d,R) → R, by

λ̄k,d (B) = λk(TB) · vol(TB)
2
d . (3)

The volume-normalized eigenvalues are scale invariant in the sense that
λ̄k,d (αB) = λ̄k,d (B) for all α ∈ R \ {0}.

Here, for fixed k, d ∈ N, we consider the extremal eigenvalue problem

*k,d = max
B∈GL(d,R)

λ̄k,d (B). (4)

A proof that there exists of a matrix B+ attaining the maximum in (4) can be
found in Lagacé (2019, Theorem 1.1). Two tori, TA and TB , are isometric if and
only if A and B are equivalent in O(d,R)\GL(d,R)/GL(d,Z). Here, O(d,R)
is the group of orthogonal matrices and GL(d,Z) is the group of unimodular
matrices. Since the Laplacian spectrum is preserved by isometry, it follows that
the solution to the optimization problem in (4) is not unique. The uniqueness
result up to isometry has been proved only for certain dimension d , e.g. 1,2,3,8,
and 24. It remains an open problem for other dimensions.

For general d and k, a maximizer for (4) is unknown. In dimension d = 1,
it is easy to see that *k,1 = 4π2 ⌈

k
2

⌉2
. In dimension d = 2, it was shown by M.

Berger that *1,2 = 8π2√
3

is attained by the basis B+
1,2 =



1 1
2

0
√

3
2



, which gener-

ates the equilateral torus (Berger, 1973). It was shown in Kao et al. (2017) that

for k ≥ 1, there is a local maximum with value *k,2 = 4π2 ⌈
k
2

⌉2
(⌈

k
2

⌉2 − 1
4

)− 1
2

and that this is the global maximum for k = 1,2,3,4. For each k, the cor-
responding eigenvalue has multiplicity 6 and value is attained by a flat torus

generated by the lattice with basis B+
k,2 =




1 1

2

0
(⌈

k
2

⌉2 − 1
4

) 1
2



.

In higher dimensions, the following proposition shows that there is a re-
lationship between the principal volume-normalized eigenvalue, λ̄1,d , and the
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densest lattice sphere packing problem (Conway and Sloane, 1999). Recall that
for a given lattice, 'A, the density of a sphere packing with centers at 'A is
given by

P = proportion of space that is occupied by the spheres.

The kissing number, τ , associated with the sphere packing is the number of other
spheres each sphere touches.

Proposition 2.1. Let B ∈ GL(d,R) and let λ̄1,d (B) = λ1(TB) ·vol(TB)
2
d be the

corresponding principal volume-normalized eigenvalue of the flat torus TB :=
Rd/'B . Let P be the packing density for the arrangement of balls with centers
on the dual lattice, '∗

B = B−tZd . Then

λ̄1,d (B) = 16π2ω
− 2

d
d P

2
d , (5)

where ωd denotes the volume of a d-dimensional ball. Furthermore, the kissing
number, τ , of the packing is the multiplicity of λ1(TB).

Proof. Using the Courant–Fischer formulae (2) with k = 1, λ1(TB) =
minE∈Zd\{0} 4π2‖B−t v‖2, we see that

√
λ1

4π2 is the length of the shortest vector
in the lattice '∗

B . The density of a packing of balls with centers on the dual
lattice, '∗

B is

P = volume of ball
volume of fundamental region

= ωdρd

|detB−t | = ωdρd |detB|,

where ρ is the radius of the balls. Observing that the shortest vector in the

lattice is exactly twice the radius of the ball packing, we have
√

λ1
4π2 = 2ρ, giv-

ing ρ2 = λ1
16π2 . It then follows that P

2
d = ω

2
d
d ρ2(detB)

2
d = ω

2
d
d

λ1
16π2 (detB)

2
d =

ω
2
d
d

1
16π2 λ̄1,d , as desired.

Proposition 2.1 shows that maximizing the principal volume-normalized
Laplacian eigenvalue of a d-dimensional torus TB in (4) is equivalent to finding
the lattice '∗

B that gives the densest packing of balls in d-dimensions. In this
sense, the extremal eigenvalue problem on flat tori is dual to the densest lattice
packing problem. Much is known about the densest lattice packings for small di-
mensions, d (Conway and Sloane, 1999). In particular, this problem is NP-hard
and the values for the densest known lattices for dimension d = 1, . . . ,16,24
and corresponding volume-normalized Laplacian eigenvalues are tabulated in
Table 1. For larger k, maximizing λ̄k,d is equivalent to the NP-hard problem of
finding the d-dimensional (dual) lattice with longest k-th shortest lattice vector.
The relationship between these two problems is further discussed in Kao et al.
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TABLE 1 For dimensions d = 1, . . . ,16,24, we tabulate the lattice with the
largest known density !∗

B , the corresponding kissing number τ , the density
P , and the volume-normalized eigenvalue of the torus, #1,d (B). All values
except #1,d appear in Conway and Sloane (1999, Table 1.2), for which we
refer the reader to for details about the lattices.

d !∗
B τ P #1,d (B)

1 A1 2 1 4π2 ≈ 39.4784

2 A2 6 π
2
√

3
≈ 0.9069 8π2√

3
≈ 45.5858

3 D3 12 π

3
√

2
≈ 0.7405 4π22

1
3 ≈ 49.7397

4 D4 24 π2

16 ≈ 0.6169 4π2√
2 ≈ 55.8309

5 D5 40 4π2

15 2− 5
2 ≈ 0.4653 4π22

3
5 ≈ 59.8381

6 E6 72 π3

48
√

3
≈ 0.3729 8π23− 1

6 ≈ 65.7460

7 E7 126 π3

105 ≈ 0.2953 4π22
6
7 ≈ 71.5131

8 E8 240 π4

384 ≈ 0.2537 8π2 ≈ 78.9568

9 *9 272
√

2π4

945 ≈ 0.1457 8π2 ≈ 78.9568

10 *10 336 π5

2715
√

3
≈ 0.0920 2

1
5 3− 1

10 8π2 ≈ 81.2613

11 K11 432 25π5

35385
√

3
≈ 0.06043 2

9
11 3− 5

11 8π2 ≈ 84.4916

12 K12 756 π6

19440 ≈ 0.0495 16π2√
3

≈ 91.1715

13 K13 918 263− 5
2 π6

135135 ≈ 0.02921 2− 2
13 3− 5

13 16π2 ≈ 93.0249

14 *14 1422 π7

24·7!
√

3
≈ 0.02162 2

3
7 3− 1

14 8π2 ≈ 98.2477

15 *15 2340 24π7

2027025
√

2
≈ 0.01686 2

2
5 8π2 ≈ 104.1842

16 *16 4320 π8

16·8! ≈ 0.0147 8
√

2π2 ≈ 111.6618

24 *24 196,560 π12

479,001,600 ≈ 0.0019 16π2 ≈ 157.9137

(2021). It is proved that the optimal tori degenerate as k → ∞ for dimension
2 ≤ d ≤ 10 (Lagacé, 2019). Numerical results in Kao et al. (2021) suggest that
this is true for any dimension d .

2.2 Conformal Laplace–Beltrami eigenvalues

For a fixed Riemannian surface (M,g0) and integer k, the k-th conformal
Laplace–Beltrami eigenvalue of (M, [g0]), denoted *c

k(M, [g0]), is the supre-
mum of the volume-normalized k-th eigenvalue over all metrics of the form ωg0,
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where ω > 0 is a smooth function on M , i.e.,

*c
k(M, [g0]) := sup{λ̄k(M,g) : g ∈ [g0]}

= sup{λ̄k(M,ωg0) : ω ∈ C∞(M), ω > 0} (6)

where λ̄k(M,g) := λk(M,g) · vol(M,g). For a surface (M,ωg0), the Laplace–
Beltrami eigenvalue problem (1) simplifies to

− "g0ψ = λωψ. (7)

The following proposition gives the variation of λ(M,ωg0) and *(M,ωg0) with
respect to ω; a proof can be found in Kao et al. (2017).

Proposition 2.2. If (λ,ψ) be a simple eigenpair satisfying (7), then the varia-
tions of the eigenvalue, λ, and volume-normalized eigenvalue, λ̄, with respect to
a perturbation of the conformal function ω are given by

d

dε

∣∣∣∣
ε=0

λ(ω + εω̃) = −λ

∫

M

(
1∫

M u2ωdµg0

u2
)

ω̃dµg0 (8a)

d

dε

∣∣∣∣
ε=0

λ̄(ω + εω̃) = −λ

∫

M

( ∫
M ωdµg0∫

M u2ωdµg0

u2 − 1
)

ω̃dµg0 (8b)

To make this problem numerically tractable, for constants 0 < ω− < ω+, we
solve the modified problem

*k(M, [g0],ω−,ω+)

:= max{λ̄k(M,ωg0) : ω ∈ L∞(M), ω− ≤ ω(x) ≤ ω+, x ∈ M}. (9)

This extremum eigenvalue problem in (6) is similar to Krein’s problem for non-
homogeneous membranes (Henrot, 2006, Ch. 9), except that here we have a
closed surface (no boundary conditions). A convergence result for this approxi-
mation is proven in Kao et al. (2017, Prop. 1.1).

2.2.1 Numerical methods
For a fixed surface (M,ωg0), to solve the eigenproblem in (7), we use lin-
ear finite elements. To represent the density ω, we first compute the first N

eigenfunctions, {ψ0
i }i∈[N ], for (M,g0) and take ω as the linear combination

ω(x) = ∑
i∈[N ] ciψi (x), x ∈ M . To solve the optimization problem (9), we use

the BFGS quasi-Newton method to determine a direction of ascent, and the step-
size is determined by an Armijo–Wolfe line search. A log-barrier interior-point
method is used to enforce L∞(M) constraints. Further details are given in Kao
et al. (2017).
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FIGURE 1 (left) The best conformal factors found for maximizing λ̄1 on a surface obtained by
rotating the hippopede 4x2 +y2 = (x2 +y2)2 around x-axis. (right) Eigenfunctions taken from the
corresponding three-dimensional eigenspace.

2.2.2 Numerical experiments

We first consider the genus γ = 0 surface obtained by rotating the hippopede
4x2 + y2 = (x2 + y2)2 around x-axis, endowed with the embedded metric. It is
known that the first conformal eigenvalue for this genus γ = 0 surface is 8π2

(Hersch, 1970). The surface is represented by a triangular mesh with 104,670
vertices and 209,336 triangles. The maximum conformal factor found for the
first eigenvalue (k = 1) is plotted in Fig. 1(left) and attains the value *c

1 = 8π ·
0.999. This eigenvalue has multiplicity 3 and a basis for the eigenspace is plotted
in the right panel of Fig. 1.

We now consider a genus γ = 1 surface given implicitly by {(x, y, z) ∈
R3 : (

√
x2 + y2 − 1)2 + z2 = r2} where r ∈ (0,1) is fixed. It is known that this

kind of torus is conformally equivalent to the (a, b)-flat torus with a = 0 and
b = r√

1−r2
; see, e.g., Guenther et al. (2020). We consider the values r = 2√

5

and r = 1√
2
, for which we have b = 2 and b = 1, respectively. The tori are

represented using triangular meshes with 32,014 vertices and 64,028 triangles
for r = 2√

5
and 25,504 vertices and 51,008 triangles for r = 1√

2
. The maxi-

mum first eigenvalue is found to be *c
1 ≈ 30.99 for r = 2√

5
and *c

1 ≈ 39.48 for

r = 1√
2
. For r = 1√

2
, it is known that the first conformal eigenvalue of the square

flat torus is 4π2 ≈ 39.48 (El Soufi et al., 1996). For both r = 2√
5

and r = 1√
2
,

the optimal conformal factors are invariant in the toroidal direction and the first
eigenvalue has multiplicity 4. In Fig. 2, we plot the maximum conformal factor
found for r = 1√

2
and a basis for the four-dimensional eigenspace.
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FIGURE 2 (left) The best conformal factors found for maximizing λ̄1 on a torus with r = 1√
2

.

(right) Eigenfunctions taken from the corresponding four-dimensional eigenspace.

2.3 Topological Laplace–Beltrami eigenvalues

Let M be a (any) smooth closed manifold with genus γ . Let G(M) denote the
class of Riemannian metrics g on M . For k fixed, the k-th topological Laplace–
Beltrami eigenvalue for genus γ is defined

*t
k(γ ) := sup{λ̄k(M,g) : g ∈ G(M)}. (10)

2.3.1 Genus γ = 0 closed surfaces
From the genus γ = 0 uniformization theorem, we have *t

k(0) = λ̄c
k(S2, g).

For k = 1, it was shown by J. Hersch (Hersch, 1970) for k = 1 that *t
1(0) ≤

8π and equality is only attained by the round metric (up to isometry) on S2. This
is equivalent to the first problem that we numerically solved in section 2.2.2.

For higher values of k, we can solve the problem numerically using the ap-
proach described in section 2.2 for conformal eigenvalues. Let us first discuss
the case when k = 2. Here, it is known that *t

2(1) = 16π ≈ 50.26 and is ob-
tained by a sequence of surfaces degenerating to a union of two identical round
spheres, i.e., two kissing spheres (Nadirashvili, 2002). Taking our base surface
to be a sphere, represented using a triangular mesh with 40,962 vertices, we ob-
tain a value of the numerical eigenvalue given by *2 = 50.78 which is slightly
larger than the theoretical value. The conformal factor is displayed in Fig. 3(left)
using the Hammer projection. We observe that the conformal factor has two lo-
calized regions with large values. To achieve better accuracy, we could locally
refine the mesh at the regions. Alternatively, we consider surfaces that can re-
solve the singularity in the conformal factor. We consider surfaces in which two
spheres have been “glued” together; see Fig. 3(center) and Fig. 3(right). When
we solve the optimization problems on these meshes, the conformal factor is
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FIGURE 3 The best conformal factors found for *t
2 on (left) the unit sphere with a Hammer

projection view, (center) a genus zero mesh representing a union of two kissing unit spheres, and
(right) on a genus zero mesh representing a union of a unit sphere and a sphere with radius 1/2.

smooth and approximately constant on each sphere. The obtained eigenvalues
are *t

2 = 50.28 and *t
2 = 50.26, respectively.

In Kao et al. (2017), this experiment was repeated for higher values of k

and it was observed that on a sphere there were k localized regions where the
conformal factor took large values and on k glued spheres, the conformal factor
was smooth and approximately constant on each sphere. These computations
supported the conjecture of N. Nadirashvili (2002) that *t

k(0) = 8πk, attained
by a sequence of surfaces degenerating to a union of k identical round spheres.
This result was proven by M. Karpukhin, N Nadirashvili, A. V. Penskoi, and
Iosif Polterovich in 2021 (Karpukhin et al., 2021).

2.3.2 Genus γ = 1 closed surfaces
We now consider, *t

k(1), the k-th topological eigenvalue for genus γ = 1. By
the genus γ = 1 uniformization theorem, every Riemann surface is conformal to
an (a, b)-flat torus for (a, b) ∈ F . In this case, to solve (10), we must allow the
metric to vary over both the conformal classes and within each conformal class.
For γ = 1, the eigenproblem on the (a, b)-flat torus can be transformed via a
(nonconformal!) linear map to the square domain, [0,2π]2, giving the equation

− "a,b ψ = ω λ(a, b,ω) ψ on [0,2π]2 (11)

where "a,b = 4π2

b2

[
(a2 + b2)∂2

x − 2a∂x∂y + ∂2
y

]
(Kao et al., 2017).

Proposition 2.3. (Kao et al., 2017, Prop. 4.2) Let λ(a, b,ω) be a simple
eigenvalue satisfying (11) for given (a, b) ∈ F and conformal factor ω. Let
the corresponding eigenfunction ψ be normalized such that

∫
[0,2π]2 ψ2(x, y)

ω(x, y) dxdy = 1. Then the derivative of λ with respect to the parameters a

and b and the variation of λ with respect to a perturbation of the conformal
function ω are given by

∂λ

∂a
= − b

4π2

∫

[0,2π]2
ψ(x, y)"aψ(x, y) dxdy, "a := 4π2

b2

[
2a∂2

x − 2∂x∂y

]
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FIGURE 4 (left) The best conformal factor and parameters (a, b) found on a meshed (a, b)- flat
torus, (center) The best conformal factor found on a genus one mesh representing the union of a flat
torus and a unit sphere. (right) The best conformal factor found on a genus one mesh representing
the union of a flat torus and a sphere with radius a factor of 0.7 of the optimal radius.

∂λ

∂b
= − b

4π2

∫

[0,2π]2
ψ(x, y)"bψ(x, y) dxdy, "b := 2λω(x, y)

b
+ 8π2

b
∂2
x

d

dε

∣∣∣∣
ε=0

λ(ω + εω̃) = −λ
b

4π2

∫

[0,2π]2
ψ2(x, y)ω̃(x, y) dxdy.

The derivatives of the volume-normalized eigenvalues can be obtained via
the chain rule. We used the numerical methods described in section 2.2.1 to
solve find the first few topological eigenvalue for genus γ = 1. The best re-
sult for k = 2 was *2 ≈ 68.20 attained by an (a, b)-flat torus with (a, b) =
(0,0.866) ≈ (0,

√
3

2 ) and a conformal factor that has one localized region with
large values; see Fig. 4(left). To better resolve the singularity, we performed the
calculation on a surface consisting of a flat torus glued to a sphere with the ap-
propriate volume (Kao et al., 2017) and found that the best conformal factor con-
verges to a constant function 1, as shown in Fig. 4(center). The obtained eigen-
value is *t

2 ≈ 70.70, which is very close to 8π2√
3

+8π ≈ 70.7185. In Fig. 4(right),
the computation is repeated on a mesh representing a flat torus glued to a sphere
with radius a factor of 0.7 of the optimal radius. The approach is able to iden-
tify the corresponding optimal conformal factor and the obtained eigenvalue is
*t

2 ≈ 70.70. In general, we conjecture that *t
k(1) = 8π2√

3
+ 8π(k − 1), attained

by a sequence of surfaces degenerating into a union of an equilateral flat torus
and k − 1 identical round spheres.

2.4 Maximizing Laplace–Beltrami eigenvalues on embedded
surfaces

The Nash embedding theorem, named after John F. Nash, states that every Rie-
mannian manifold can be isometrically embedded into some Euclidean space. It
was already known to Gauss that there is no C2 isometric embedding of flat tori
in Euclidean space, as at least two points of a C2 embedded surface have positive
Gaussian curvature (the two points of contact with an osculating sphere). On the
other hand, Nash and Kuiper showed that there exists a C1 isometric embedding
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of the flat torus (Nash, 1954; Kuiper, 1955). Gromov introduced a convex inte-
gration theory that abstractly realized a sequence of embeddings which converge
towards isometric embeddings (Gromov, 1970, 1986). Recently, V. Borrelli, S.
Jabrane, F. Lazarus, and B. Thibert, further progressed these ideas by develop-
ing and implementing an algorithm that generates a sequence of increasingly
“corrugated” surfaces degenerating into a fractal shape which is a C1 isometric
embedding of the flat torus (Borrelli et al., 2012). The fourth iteration of this
sequence was computed and the resulting figures and movies are striking.

In this section, we consider an alternative approach to finding an isometric
embedding of the equilateral flat torus in Euclidean space. Our approach relies
on the following theorem of N. Nadirashvili.

Theorem 2.4 (Nadirashvili, 1996). Among all orientable, genus one surfaces
of equal area, the equilateral flat torus attains the maximum first (nontrivial)
Laplace–Beltrami eigenvalue, *1 = 8π2√

3
≈ 45.58.

An idea, suggested by A. Girouard, is then to start with a genus one em-
bedded surface S0 ⊂ R3 and study the gradient flow of λ̄1(S) := λ1(S) · vol(S).
We reason that this flow, which we’ll denote {St : t ≥ 0}, should approach an
embedded surface, isometric to the equilateral flat torus as t → ∞. The surface
flow cannot converge to a smooth surface, as this would violate the Nash em-
bedding theorem. More generally, the conformal version of this problem can
be posed where the conformal class of the embedded surfaces are constrained.
A limitation of this approach, as compared to that of Borrelli et al. (2012), is
that it only allows for the embedding of (a, b)-flat tori in conformal classes for
which the flat metric is maximal, not all flat tori. Computational evidence sug-
gests that this holds for (a, b)-flat tori with {(a, b) ∈ F : a2 + b2 = 1} (Kao et
al., 2017). However, this alternative approach provides a new methodology to
compute approximate isometric embeddings.

We will explore a direct parameterization method of embedded surfaces.
This parametrization needs to be able to describe a sufficiently rich family of
surfaces yet has Laplace–Beltrami eigenvalues which can be accurately and
efficiently computed since an irregular behavior is expected. At some point dur-
ing the flow, the surface may try to flow in a direction which would no longer
be admissible e.g., the surface may attempt to “intersect itself” or increase its
genus. Constraints should be enforced to prevent this from occurring. Further-
more, numerical implementation may encounter difficulty due to the potential
nondifferentiability of λ̄1(S). In fact, the first eigenvalue of the square flat torus
has multiplicity 4 and the first eigenvalue of the equilateral flat torus has multi-
plicity 6. We describe in the following subsections our solutions to tackle these
difficulties.
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2.4.1 Numerical methods
We consider a family of surfaces of revolution, X : [0,2π]2 → R3, given by

X(u,v) =
(
γ1(u) cosv, γ1(u) sinv, γ2(u)

)
(12)

which are generated by revolving the closed curve γ (u) = (γ1(u),γ2(u)) with
γ1 > 0 in the y-z plane around the z-axis. A straightforward calculation shows
that the metric tensor g = g(u, v) is given by

g =
[

Xu · Xu Xu · Xv

Xu · Xv Xv · Xv

]
=

[
g11 0
0 g22

]

where

g11(u) = γ 2
1 (u) and g22(u) = γ ′

1(u)2 + γ ′
2(u)2.

Every surface in this parameterized family is conformally equivalent to a (0, b)-
flat torus where b depends on g11 and g22. Thus, *1 is bounded above by 4π2 ≈
39.4784, which is attained by the flat metric on the square (0,1)-torus (Kao et
al., 2017).

The surface area of the embedded surface is given by A(γ ) =
2π

∫ 2π
0

√
a(u)b(u) du and the Laplace–Beltrami operator is

"gf = 1
a(u)

∂vvf + 1√
a(u)b(u)

∂u

√
a(u)

b(u)
∂uf.

Separating variables and writing / = U(u)V (v), the eigenvalue equation
−"g/ = λ/, gives

− V ′′(v) = k2V (v), where k ∈ N (13a)

and

−
√

a(u)

b(u)

(√
a(u)

b(u)
U ′(u)

)′

+ k2U(u) = λa(u)U(u). (13b)

The solutions to (13b) give the eigenpairs (λ,/) and, in particular, the normal-
ized fundamental eigenvalue,

λ̄1(γ ) = A(γ )λ1(γ ) = 2πλ1(γ )

∫ 2π

0

√
a(u)b(u) du.

2.4.2 Spectral method for eigenpair computation
To solve (13b) on [0,2π] with periodic boundary conditions, we use a spectral
method (Trefethen, 2000; Shen and Tang, 2006), which we briefly recall here.
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A similar method was used in Kao et al. (2017). The discrete operator obtained
by spectral collocation for the first derivative on a one-dimensional periodic grid
on [0,2π] with (odd) N points is represented by the Toeplitz matrix

D =





0 − 1
2 csc 1h

2

− 1
2 csc 1h

2
. . .

. . . + 1
2 csc 2h

2

+ 1
2 csc 2h

2
. . . − 1

2 csc 3h
2

− 1
2 csc 3h

2
. . .

...

...
. . .

. . . + 1
2 csc 1h

2

+ 1
2 csc 1h

2 0





.

Here, h = 2π
N . See, for example, Shen and Tang (2006, p. 83, Eq. 2.2.11a). We

obtain a generalized eigenvalue problem

Aφ = λBφ, (14)

which is solved using Matlab®’s built-in function eigs with default convergence
criteria.

2.4.3 Representation of γ and eigenvalue variations
The closed curve γ : [0,2π] → R2 is further parametrized using trigonometric
functions,

γ1(u) = 1 +
K∑

k=1

ak cos(ku) + bk sin(ku) (15a)

γ2(u) =
K∑

k=1

ck cos(ku) + dk sin(ku). (15b)

We require the variation of eigenvalues λ satisfying (14) with respect to the
surface parameters, p = {ak, bk, ck, dk}k∈[K] given in (15). In what follows we
assume (λ,φ) is a simple eigenpair satisfying (14). We consider a single param-
eter and denote the derivative with respect to this parameter using a dot. Taking
derivatives of (14), we obtain

Ȧφ + Aφ̇ = λ̇Bφ + λḂφ + λBφ̇.

Multiplying this equation on the left by φt , using the symmetry of A and B, and
assuming φ is normalized by φtBφ = 1, we obtain the eigenvalue perturbation
formula

λ̇ = λφt Ḃφ − φt Ȧφ. (16)
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FIGURE 5 The optimal surface found with *1 = 39.0555. (top) The closed curve γ which gen-
erates the surface of revolution. (bottom) The first six eigenfunctions are plotted on the surface.

The matrices Ḃ and Ȧ can be computed analytically using the chain rule and the
explicit dependence on the parameters in (15).

2.4.4 Optimization methods
To minimize p 0→ λ̄1(S(p)) for this choice of surface parameterization p,
we use a gradient-based optimization method and the eigenvalue perturbation
formula (16), In particular, we use the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) quasi-Newton method with an Armijo–Wolfe line search to adaptively
choose the step size. To prevent self intersections during the optimization pro-
cess, we sample N = 4K + 1 points on the closed curve γ and determine
whether line segments connecting these points self-intersect after advancing the
curve. If it does, a smaller step size is chosen to avoid self-intersections. This
process has O(K2) complexity.

2.4.5 Numerical results
Summarizing, we consider surfaces of revolution X as in (12), where the
closed curve γ is parameterized via (15) with a collection of parameters p =
{ak, bk, ck, dk}k∈[K] with K = 64 coefficients. For such a surface, X = X(p),
using the spectral collocation methods described above with N = 257 discretiza-
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tion points, we can approximate p 0→ λ̄1(p) = λ̄1(X(p)). We then use the BFGS
quasi-Newton method to solve the optimization problem of maximizing λ̄1(p),
subject to the constraint that the surface does not self-intersect. As the surface
evolves, we expect it to become increasingly oscillatory tending to an embed-
ding of a square (0,1)-flat torus. As shown in Fig. 5, the final curve γ = (γ1,γ2)

on the y–z plane has a flower shape with 21 petals. For this surface, we have
*1 = 39.0555 and multiplicity two. Also displayed in Fig. 5 are the first six
Laplace–Beltrami eigenfunctions of the embedded surface. As one might expect
from the ill-posedness of the problem, the computation is quite challenging and
indeed the surface evolves irregularly. Nevertheless, the obtained results illus-
trate the idea and suggest that further numerical methods be employed to better
prevent self-intersections and compute embedded surfaces with larger funda-
mental eigenvalue.

3 Maximizing Steklov eigenvalues on compact surfaces with
boundary

Let (M,g) be a smooth, compact, connected Riemannian surface with nonempty
boundary, ∂M . The Steklov eigenproblem on (M,g) is given by

"v = 0 on M (17a)

∂νv = σv on ∂M, (17b)

where " is the Laplace–Beltrami operator and ∂ν is the outward normal deriva-
tive. The Steklov spectrum is discrete and we enumerate the eigenvalues, count-
ing multiplicity, in increasing order: 0 = σ0(M,g) < σ1(M,g) ≤ σ2(M,g) ≤
· · · → ∞. The Steklov spectrum coincides with the spectrum of the Dirichlet-
to-Neumann operator ' : H

1
2 (∂M) → H− 1

2 (∂M), given by the formula 'w =
∂ν(Hw), where Hw denotes the unique harmonic extension of w ∈ H

1
2 (∂M) to

M . The restriction of the Steklov eigenfunctions to the boundary, {vj |∂M}∞j=0 ⊂
C∞(∂M), form a complete orthonormal basis of L2(∂M). A recent survey on
Steklov eigenvalues can be found in Girouard and Polterovich (2017).

We will consider the problem of maximizing the k-th Steklov eigenvalue
over a class of compact surfaces with a boundary length constraint. To avoid
the explicit constraint, we will again normalize the eigenvalue and consider the
equivalent problem of maximizing

σ̄k(M,g) := σk(M,g) · L(∂M,g)

where L(∂M,g) be the length of ∂M with respect to the metric g. For a fixed
integer k and fixed manifold M with genus γ and b boundary components, we
consider the extremal Steklov eigenvalue problem,

3k(γ , b) := sup
g

σ̄k(M,g), (18)
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where g varies over the class of smooth Riemannian metrics on M .

Remark 3.1. As with Laplacian eigenvalues, the problem of maximizing over
a fixed conformal class of metrics is of interest (Karpukhin and Métras, 2021);
but here, we will consider the more general problem.

It is known that for any smooth Riemannian metric g, we have the following
upper bound on the k-th Steklov eigenvalue

3k(M,g) ≤ 2π(γ + b + k − 1) ∀k ∈ N. (19)

This bound was proven by Weinstock (Weinstock, 1954) for k = 1, γ = 0, and
b = 1; by Fraser and Schoen (Fraser and Schoen, 2011) for k = 1 (see also
Girouard and Polterovich (2012)); and in generality by Karpukhin (Karpukhin,
2017). The existence of a smooth maximizer in (18) was established in Fraser
and Schoen (2015, Theorem 1.1) for oriented surfaces of genus 0 with b ≥ 2
boundary components or a Möbius band and in Matthiesen and Petrides (2020)
for general surfaces for the first (k = 1) eigenvalue.

Here, we review work that was published in Oudet et al. (2021) that devel-
ops computational methods for solving the extremal Steklov eigenvalue problem
(18). It was shown in Fraser and Schoen (2013) that the optimality conditions
for (18) generate a free boundary minimal surface in the ball. We review this
optimal condition and use this approach to realize free boundary minimal sur-
faces beyond the known examples of equatorial disks, the critical catenoid, the
critical Möbius band and their higher coverings.

3.1 Uniformization of multiply connected domains

The conformal uniformization of multiply connected domains can be used to
significantly reduce the complexity of the general Steklov eigenproblem (17)
and extremal Steklov eigenproblem (18). The argument relies on two ingredi-
ents:

1. The uniformization result that for a compact, connected, genus-zero Rieman-
nian surface with b boundary components, (M, g), there exists a conformal
mapping f : (M, g) → (4,ρI ), where 4 is a punctured disk with b − 1
holes and ρI is a conformally flat metric.

2. The composition v ◦ f of a function v with a conformal map f is harmonic
if and only if v is harmonic.

Let D = {x ∈ R2 : |x| ≤ 1} be the unit disk and 4c,r = D \ ∪b−1
i=1 Di be a

punctured unit disk with b − 1 holes, Di = D(ci, ri) = {x ∈ R2 : |x − ci | < ri},
i = 1, . . . , b−1. This argument implies that it is sufficient to consider the family
of (flat!) Steklov eigenproblems,

"u = 0 4c,r (20a)

∂nu = σρu ∂4c,r , (20b)
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where " = ∂2
x + ∂2

y is the Laplacian on 4, ∂n is the outward normal derivative,
and ρ > 0 is a density function. The extremal Steklov eigenvalue problem (18)
for genus γ = 0 is transformed to

3k(γ = 0, b) = max
ci , ri , ρ

3k (21a)

s.t. Di ⊂ D, i = 1, . . . , b − 1 (21b)

Di ∩ Dj = ∅, i 4= j (21c)

ρ(x) ≥ 0, x ∈ ∂4c,r . (21d)

Here, 3k = σkL, σk is the k-th nontrivial eigenvalue satisfying (20), and L =∫
∂4c,r

ρ(x) dx is the total length of ∂4c,r . The first two constraints simply state
that the holes are contained in the domain and are pairwise disjoint.

3.2 Computational methods

In section 3.1, we described how conformal maps could be used to reduce the
general Steklov eigenproblem (17) to the Euclidean Steklov eigenproblem (20).
In this subsection, we describe the computational methods used to solve the
Euclidean Steklov eigenproblem (20) and optimization methods used to solve
the extremal eigenvalue problem (18).

3.2.1 Solving the Euclidean Steklov eigenproblem (20)
We require high precision in our solution to the Euclidean Steklov eigenproblem
(20), since we want to use the approximate eigenfunctions satisfying the nons-
mooth optimality conditions to generate a free boundary minimal surface. We
use the method of particular solutions to solve the Steklov eigenproblem (20).
This method for multiply-connected Laplace problems was recently discussed
in Trefethen (2018). The methods rely on the following Theorem.

Theorem 3.2 (Logarithmic Conjugation Theorem (Trefethen, 2018)). Suppose
4 is a finitely connected region, with K1, . . . ,KN denoting the bounded com-
ponents of the complement of 4. For each j , let aj be a point in Kj . If u is a
real valued harmonic function on 4, then there exist an analytic function f on
4 and real numbers c1, . . . , cN such that

u(z) = Ref (z) + c1 log |z − a1| + · · · + cN log |z − aN |, ∀z ∈ 4.

Let M ∈ N∗ and consider some fixed punctured disk 4c,r . Based on The-
orem 3.2, we define the finite basis B to approximate solutions of eigenvalue
problem (20) as the union of the harmonic rescaled real and imaginary parts of
the functions

B =
M⋃

j=0

{
z 0→ zj

} k−1⋃

i=1

M⋃

j=1

{
z 0→ 1

(z − ci)j

} k−1⋃

i=1

{z 0→ log |z − ci |} .
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For instance, we rescaled the basis polynomial Re
(

1
(z−c2)3

)
by a factor r3

2 so
that this basis function takes values of order 1 on the second circle. Consider
now (pl)1≤l≤L a uniform sampling with respect to arc length of ∂4c,r . Using
B, we approximate solutions of eigenvalue problem (20b) by the solution of the
non symmetric square generalized eigenvalue problem

BT A ud = σd BT B ud, where A =
(

∂φ

∂n
(pl)

)

1≤l≤L, φ∈B
and

B = (φ(pl))1≤l≤L, φ∈B .

3.2.2 Optimization methods for extremal Steklov eigenvalues (21)

We used gradient-based optimization methods to solve the extremal Steklov
eigenvalue problem (21). We first describe our parameterization of the bound-
ary.

3.2.3 Parameterizing the geometry
Let ρ ∈ L∞(∂4c,r ) be the boundary density and denote the restriction of ρ to
the i-th disk boundary by ρi = ρ|∂D(ci ,ri ), i = 1, . . . , k − 1. Thus, if 4c,r has b

boundary components, the geometry is described by the parameters

{ci}b−1
i=1 , {ri}b−1

i=1 , and {ρi (x)}bi=1.

Since ∂D(ci, ri) ∼= S1, we expand each ρi in the truncated Fourier series

ρi (θ) = Ai,0 +
N∑

6=0

Ai,6 cos(6θ) + Bi,6 sin(6θ), θ ∈ [0,2π].

Due to the uniqueness of conformal mapping up to a Möbius transformation
from a smooth, compact, genus-zero Riemann surface with b boundary com-
ponents to a unit disk with b − 1 circular holes (Gardiner and Lakic, 1999), it
would be possible to center one of the holes at the origin and another on the pos-
itive x-axis. However, we found that the representation of the boundary density
ρ for finite basis size (finite N ) was better without fixing these centers.

3.2.4 Gradient based optimization methods
As in Akhmetgaliyev et al. (2017), to handle multiple eigenvalues, we trivially
transform (21) into the following problem

max t (22a)

s.t. t ≤ σiL i = k, k + 1, . . . . (22b)
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We approximated the positivity constraint ρ ≥ 0 by imposing the positivity on
all L sample points,

ρ(p6) 6 = 1, . . . ,L. (22c)

This approximation leads to linear inequalities with respect to the coefficients
(Ai,l,Bi,l) only. We also include the geometrical constraints in (21) by imposing
the (few) quadratic constraints on the variables (ci, ri)1≤i≤k−1:

|ci |2 < (1 − ri)
2 i = 1, . . . , k − 1, (22d)

|ci − cj |2 > (ri + rj )
2 i, j = 1, . . . , k − 1, j 4= i. (22e)

Using the derivatives computed in Oudet et al. (2021), together with the interior
point method implemented in Byrd et al. (2006), we solved (22). All results of
section 3.4, have been obtained with the following parameters: M = 30 (maxi-
mal order of basis elements), L = 104 (number of sampling points) and at most
5000 iterations to reach a first order optimality condition criteria to a relative
precision of 10−6. Observe that in all cases, we were able to recover the multi-
plicity three of the optimal eigenvalue up to 6 digits. In our implementation, the
computational cost is proportional to the number of connected components of
the boundary. For instance, one hour of computation on a standard laptop was
required to obtain the desired precision for three boundary components.

3.3 Optimality conditions and free boundary minimal surfaces

Recently, A. Fraser and R. Schoen discovered a rather surprising connection
between the extremal Steklov eigenvalue problem in (18) and the problem of
generating free boundary minimal surfaces in the Euclidean ball (Fraser and
Schoen, 2011, 2013, 2015). These findings have been further developed (Fan
et al., 2014; Fraser and Schoen, 2019; Girouard and Lagacé, 2020) and were
recently reviewed in Li (2019). Denote the closed n-dimensional Euclidean
unit ball by Bn := {x ∈ Rn : |x| ≤ 1} and the (n − 1)-dimensional unit sphere
by Sn−1 = ∂Bn. Let M ⊂ Bn be a d-dimensional submanifold with boundary
∂M = M ∩ Sn−1. We say that M is a free boundary minimal submanifold in
the unit ball if

(i) M has zero mean curvature and
(ii) M meets Sn−1 orthogonally along ∂M.

When d = 2, we call M a free boundary minimal surface in the unit ball or,
more simply, a free boundary minimal surface. For a good visual aid to under-
standing the definition of free boundary minimal surfaces, we recommend the
reader take a look at the free boundary minimal surfaces displayed in Fig. 7.

Fraser and Schoen observed that a d-dimensional submanifold M ⊂ Bn with
boundary ∂M = M∩Sn−1 is a free boundary minimal surface if and only if the
coordinate functions xi , i = 1, . . . , n restricted to M are Steklov eigenfunctions
with eigenvalue σ = 1. Furthermore, they showed the following theorem.
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Theorem 3.3 (Fraser and Schoen, 2013). Let M be a compact surface with
boundary. Suppose that g0 is a smooth metric on M attaining the supre-
mum in (18) for some k ∈ N. Let U be the n-dimensional eigenspace cor-
responding to σk(M, g0). Then, there exist independent Steklov eigenfunc-
tions u1, . . . , un ∈ U which give a (possibly branched) conformal immersion
u = (u1, · · · , un) : M → Bn such that u(M) is a free boundary minimal sur-
face in Bn and, up to rescaling of the metric, u is an isometry on ∂M.

Theorem 3.3 gives a method for using the solution of (18) to compute free
boundary minimal surfaces. The simplest such example is the equatorial disk,
obtained as the intersection of B3 with any two-dimensional subspace of R3.
This can be constructed from Weinstock’s result that inequality in (19) with
k = 1, γ = 0, and b = 1 is attained only by the round disk, D (Weinstock, 1954).
In this case, for the eigenvalue 31(0,1) = 2π , we have the two-dimensional
eigenspace given by span{x, y}. The equatorial disk is given as the map u : D →
R2, defined by u(x, y) =

(
x

y

)
.

For genus γ = 0 and b = 2 boundary components, the extremal metric is
rotationally invariant and the corresponding free boundary minimal surface is
the critical catenoid. For genus γ = 0 and b ≥ 3 boundary components, the ex-
tremal metric is not known explicitly, but it is known that the corresponding free
boundary minimal surface is embedded in B3 and star-shaped with respect to the
origin (Fraser and Schoen, 2013). In Girouard and Lagacé (2020), the authors
used homogenization methods to construct surfaces that have large first Steklov
eigenvalue σ̄1. In particular, free boundary minimal surfaces of genus γ = 0 with
particular symmetries (e.g., symmetries of platonic solids) were constructed nu-
merically. The authors proved that the first nonzero Steklov eigenvalue, σ1, of
these surfaces is 1 and emphasized that it is not known whether these surfaces
have extremal first eigenvalues among all surfaces with the same genus and
number of boundary components.

3.3.1 Computing the free boundary minimal surface from the
Steklov eigenfunctions

At this point we assume that we have successfully solved the extremal Steklov
problem (21) and want to use Theorem 3.3 to compute the associated free
boundary minimal surface using the Steklov eigenfunctions. Let σ denote the
optimal eigenvalue and assume that it has multiplicity n. Define the mapping
v = [v1, . . . , vn] : 4 → Rn, where {vi}ni=1 is some choice of basis for the n-
dimensional eigenspace. For A ∈ Rn, we consider the map uA : 4 → Rn, de-
fined by

uA(x) = [v1(x), . . . , vn(x)]A, x ∈ 4.
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We want to identify the matrix A so that the map uA = u = [u1, . . . , un] satisfies
the spherical and the isothermal coordinate conditions,

|∂ru(r, θ)|2 = r−2|∂θu(r, θ)|2, ∀(r, θ) ∈ 4r,c (23a)

∂ru(r, θ) · r−1∂θu(r, θ) = 0, ∀(r, θ) ∈ 4r,c. (23b)

To this end, we construct the objective function

J (A) =
∫

∂4
W(uA(x)) +

∫

4

(
|∂ruA(r, θ)|2 − r−2|∂θuA(r, θ)|2

)2

+ |∂ruA(r, θ) · r−1∂θuA(r, θ)|2, (24)

where W(u) = 1
4 (|u|2 − 1)2. We then minimize J (A) over A ∈ Rn×n. Using

this method, in all experiments in section 3.4, we were able to obtain three
eigenfunctions which take values in the sphere on ∂4 to an absolute pointwise
error bounded by 10−3. Moreover, since we have a parameterization of the sur-
face, using the well-known analytic formula, we were able to compute the mean
curvature of the surfaces, which in all cases was bounded by 10−2. The mean
curvature and the Gaussian curvature are plotted on the free boundary minimal
surface at Oudet (2020). Additionally, the angle that the boundary makes with
the normal vector to the sphere is less than one degree.

3.4 Numerical solutions of the extremal Steklov eigenvalue
problem and the corresponding free boundary minimal surfaces

In this section, we report numerical solutions for the extremal k-th Steklov
eigenvalue problem with b boundary components and genus γ , along with the
corresponding free boundary minimal surfaces (FBMS). For brevity, we only
report results for selected values of b and k; the results of additional computa-
tions can be found in Oudet et al. (2021) on É. Oudet’s website (Oudet, 2020),
along with gifs.

3.4.1 First nontrivial eigenvalue (k = 1)
For genus γ = 0 and b = 2, . . . ,9,12,15,20 boundary components, we numer-
ically solve the extremal Steklov problem (21) for the first nontrivial (k = 1)
eigenvalue. The optimal values obtained are tabulated in Table 2. In each case,
the multiplicity of the extremal eigenvalue is three, as expected (Fraser and
Schoen, 2015).

Results of the computation for b = 3 are shown in Fig. 6. In Fig. 6(top),
we plot the optimal punctured disk, 4c,r , along with three linearly independent
eigenfunctions corresponding to the eigenvalue λ1 = 12.011987. Interestingly,
the holes in the domain are slightly asymmetrically configured. The eigenfunc-
tions plotted in do not exhibit symmetries, but this could be a result of our
(arbitrary) choice within the three dimensional eigenspace. In Fig. 6(bottom),
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TABLE 2 For different numbers of boundary compo-
nents b, we report the value of the first nontrivial nor-
malized Steklov eigenvalue $1 = σ1L, and the config-
uration of the centers of the boundary components.

b σ̄1 Boundary component configuration

2 10.4748 (critical catenoid) Digon

3 12.0120 equilateral triangle

4 13.6676 regular tetrahedron

5 14.4687 triangular bipyramid

6 15.4292 regular octahedron

7 15.9520 pentagonal bipyramid

8 16.4954 square antiprism (not regular)

9 16.9707 triaugmented triangular prism

12 18.0687 regular icosahedron

15 18.7934 triangular symmetry

20 19.7076 irregular, not dodecahedron

FIGURE 6 (top) For b = 3 connected components of the boundary, we plot three linearly inde-
pendent eigenfunctions associated to the first eigenvalue plotted in the domain with the optimal disk
configuration. (bottom) Optimal densities on the three boundary components.

we plot the corresponding optimal densities on the exterior and two interior
disks, which do not exhibit symmetry.

The free boundary minimal surfaces generated by maximizing the fun-
damental (k = 1) Steklov eigenvalue on genus γ = 0 surfaces with b =
2-6,8,9,12,15,20 boundary components are plotted in Fig. 7. In all cases, the
boundary components of the free boundary minimal surfaces are positioned at
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FIGURE 7 Free boundary surfaces generated by maximizing the fundamental (k = 1) Steklov
eigenvalue on γ = 0 surfaces with b = 2-6,8,9,12,15,20 boundary components as well as the
k = 3 Steklov eigenvalue on γ = 0 surfaces with b = 3,4 boundary components.

very symmetric locations. The arrangement of the centers of the boundary com-
ponents is described in Table 2. Interestingly, the free boundary minimal surface
for b = 8 and b = 20 do not have the symmetry of the cube and regular dodec-
ahedron, respectively. It seems that the positions of the boundary components
are related to the minimizing configurations for Thompson’s problem; known
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as the Fekete points (Fekete, 1923; Brown, 2020). We note that the free bound-
ary minimal surfaces obtained here are closely related to the k-noid surfaces;
see Weber (2020). It may be appropriate to the free boundary minimal surfaces
computed here as critical k-noids. Further description of these free boundary
minimal surfaces, as well as a comparison to the surfaces obtained in Girouard
and Lagacé (2020) can be found in Oudet et al. (2021).

3.4.2 Higher eigenvalues (k ≥ 2)
Here, we consider the extremal Steklov eigenvalue problem (21), for higher
eigenvalues, 3k , k ≥ 2. Less is known in this case and, in particular, the mul-
tiplicity of the optimal eigenvalue, and hence the dimension in which the free
boundary minimal surface exists, is unknown. We recall the result of Fraser and
Schoen (2019, Theorem 5.3), that the degenerate surface consisting of the criti-
cal catenoid glued to k − 1 unit disks, is a free boundary minimal surface with
b = 2 boundary components in 3 + 2(k − 1) dimensions with k-th normalized
Steklov eigenvalue, 3k = 31 + (k − 1)2π .

We numerical solve the k = 3 Steklov problem (21) on γ = 0 surfaces with
b = 3,4 boundary components. The resulting free boundary minimal surfaces
are displayed in Fig. 7. The eigenvalues obtained are 33 = 23.6659 (b = 3) and
33 = 27.3103 (b = 4). This b = 3 solution is only a local maximizer, because if
we glue two disks to the surface attained by maximizing the first eigenvalue with
b = 3 boundary components, we obtain a b = 3 free boundary minimal surface
with third normalized Steklov eigenvalue 33 = 12.0120 + 4 · π ≈ 24.5784.

4 Discussion and future directions

In this chapter, we have demonstrated how computational approaches to such
extremal geometric eigenvalue problems present new computational challenges
and require novel numerical tools, such as the parameterization of confor-
mal classes and the development of accurate and efficient methods to solve
eigenvalue problems on domains with nontrivial genus and boundary. We have
highlight recent progress on computational approaches for extremal geometric
eigenvalue problems, including (i) maximizing Laplace–Beltrami eigenvalues
on closed surfaces and (ii) maximizing Steklov eigenvalues on compact surfaces
with boundary.

4.1 Future directions: spectral geometry

In section 2.1, we discussed maximizing the principal Laplace–Beltrami eigen-
values on flat tori. For larger k, maximizing λ̄k,d is equivalent to the NP-hard
problem of finding the d-dimensional (dual) lattice with shortest k-th longest
lattice vector. In Kao et al. (2021), the relationship between these two problems
will be further investigated.
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It is a very natural question to consider higher genus surfaces (γ ≥ 2). Here
the surface is hyperbolic and the dimension of the space of conformal classes is
known to be 6(γ −1)+3b, where γ is the genus and b is the number of boundary
components. There are parameterizations for this space, known as Fenchel–
Nielsen coordinates. But the implementation of the glued “pairs of pants” is
nontrivial. Furthermore, an efficient implementation would require derivatives
with respect to the ‘length’ and ‘twist’ parameters (the analogue of Proposi-
tion 2.3), which we view as a challenging problem.

In section 2.4, we discussed how maximizing a Laplace–Beltrami eigenvalue
on an embedded surface can be used to compute an isometric embedding of a flat
torus. This extremal eigenvalue approach could be used to compute embeddings
for other surfaces, such as the Bolza surface (γ = 2).

4.2 Future directions: computational methods

Eigenvalue optimization problems are generally challenging as eigenvalues are
not differentiable when they coalesce. While there are many methods for han-
dling nonsmooth optimization and, in particular, extremal eigenvalue problems,
some of the problems studied here could use further attention and a more care-
ful comparison of numerical methods should be conducted. In particular, while
these methods typically try to close a duality gap or converge in the objective
value, we need methods for which the optimality condition is satisfied at the nu-
merically computed optimal point. For example, if we use the extremal Steklov
eigenvalue approach to compute free boundary minimal surfaces, can we bound
the error in the mean curvature in terms of the optimization problem?

One recurring theme in spectral geometry that we hope we’ve illustrated here
is that many of the supremum are obtained in a singular limit (kissing balls or
irregular embeddings). We think it is a very interesting problem to develop more
computational methods for studying such singular limits.
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