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ReX: an integrative tool for quantifying and 
optimizing measurement reliability for the 
study of individual differences

Ting Xu    1  , Gregory Kiar    1, Jae Wook Cho1, Eric W. Bridgeford2, 
Aki Nikolaidis1, Joshua T. Vogelstein    2 & Michael P. Milham    1,3

Characterizing multifaceted individual differences in brain function using 
neuroimaging is central to biomarker discovery in neuroscience. We 
provide an integrative toolbox, Reliability eXplorer (ReX), to facilitate the 
examination of individual variation and reliability as well as the effective 
direction for optimization of measuring individual differences in biomarker 
discovery. We also illustrate gradient flows, a two-dimensional field 
map-based approach to identifying and representing the most effective 
direction for optimization when measuring individual differences, which is 
implemented in ReX.

Over the past decade, research into individual differences has become a 
central focus in the brain-imaging community. Researchers have shifted 
from looking at average effects within and between groups to relating 
individual variation in brain organization and function to genetic and 
phenotypic variables (for example, demographic, behavioral, cogni-
tive, psychiatric)1–8. An inherent assumption of this shift is that the 
measures employed are reliable, that is, they will detect differences that 
are stable over time as well as across instruments, settings and analysts; 
these are necessary conditions for valid and reproducible brain-wise 
association research. Not surprisingly, as crises related to reproduc-
ibility have plagued the imaging field and the scientific community 
more broadly, researchers have revisited this assumption and begun 
the arduous task of quantifying and optimizing measurement reliability 
for individual difference research in the neuroscience community.

Here, we present ReX, an open-source tool designed to facili-
tate the quantification and optimization process by addressing a 
critical gap in studying individual differences: the failure to take into 
account the component variances of reliability (that is, within- and 
between-individual variance). The majority of reliability studies in the 
neuroimaging literature tend to treat reliability as a unitary construct 
rather than a ratio. This approach is problematic, as it overlooks the 
differential contributions of its component variances, which may be 
more readily mapped to a specific design or procedural optimiza-
tions being considered. Compounding the challenge at hand is that, 
when the experiment paradigms are cross-sectional, estimates of 

between-individual variance may be inflated, as the contributions 
of within-individual variances to its measurement are rarely consid-
ered. In this paper, we describe three features in ReX to help address  
these challenges.

First, ReX provides evaluation and a visualization module to iden-
tify the impact of variations and their contributions to reliability. Previ-
ous efforts in studying individual differences commonly focus on 
between-individual variation of observations and treat this as the true 
interindividual difference9. Within-individual variation is, by contrast, 
often overlooked or misinterpreted when studying interindividual 
differences in brain function, in particular in cross-sectional studies. 
For example, metabolomic or psychological changes over hours, days 
or weeks within an individual can alter the brain and mental states. 
Together with noise, these within-individual variations are embedded 
in the observed behavioral or brain connectome data. Treating the 
observed interindividual differences, which are contaminated with 
within-individual variation, as the true individual difference can com-
promise brain–behavior association discovery across individuals. 
Deciphering sources of variation both within and between individuals 
is central to interpreting individual differences in these scenarios. In 
ReX, we formally construct the variation space and provide a visualiza-
tion module (Fig. 1a) using the ‘true’ between-individual variation σ2b 
(y axis) against the within-individual variation σ2w (x axis). Here, σ2b is 
the ‘true’ between-individual variation rather than the observed 
between-individual variation. Using the variation space, it is easier to 
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the change of the variation in x and y cannot fully determine whether 
it improves reliability (Fig. 2e, first and third quadrants). Thus, ReX 
normalizes the change of within- and between-individual variation 
as compared to the optimal direction and visualizes such normal-
ized changes using a standard color map (Fig. 2c). The resultant GFM 
(Fig. 2f) provides a straightforward answer to whether the change of 
within- and between-individual variation from one pipeline to the other 
improves reliability as well as to whether the improvement is in the most 
efficient direction. Using the GFM can support multifaceted applica-
tions to facilitate comparing and optimizing possible analytic strate-
gies and experiment designs. Of note, ReX determines how much the 
approaches that have been tested align with the most efficient direction 
to improve reliability. Interpreting new approaches requires collecting 
repeated-measure datasets or available estimated within- and between- 
individual variations.

Third, to accommodate the needs of a broad range of designs, 
ReX offers users a range of parametric and nonparametric methods 
for both univariate and multivariate reliability. ICC formations includ-
ing one-way random, two-way random and two-way mixed models 
using the linear mixed model (LMM in the R package lme4) with the 
restricted maximum likelihood (ReML) estimation method12. Com-
pared to the traditional ANOVA-based method, LMM allows missing 
data in the sample and ReML avoids negative ICC values. Specifically, 
ReX uses the one-way random model for single-measure ICC(1, 1) 
and average-measure ICC(1, k); the two-way random model for 
single-measure agreement ICC(2, 1) and average-measure agreement 
ICC(2, k); and the two-way mixed model for single-measure consistency 
ICC(3, 1) and average-measure consistency ICC(3, k)13. In the LMM, the 
random factors and residuals are assumed to be independent. Users 
can specify the confounding variables as covariates in the model (for 
example, age, sex). The parametric and nonparametric multivariate 
formulations of reliability implemented in ReX were recently devel-
oped in the imaging field including the distance-based ICC (dbICC)14, 
the image ICC coefficient (I2C2)15, discriminability16 and identification 
rate (that is, fingerprinting)17. It is important to note that reliability is 
a prerequisite and the upper bound for validity. However, it does not 
imply validity. Depending on the trait of interest, the validity of the 
same measurement may vary. Optimizations for reliability need to be 
complemented by those focused on the validity of the specific trait 
(Supplementary Video 1).

differentiate within-individual from between-individual variation and 
examine which factors (for example, analytic methods, experiment 
designs, individual traits, state, etc.) influence the component variation 
separately or in combination. To illustrate the utility of the variation 
space of ReX in understanding the individual difference, we present 
the theoretical variation field map (Fig. 1a) and examples of a wide 
range of behavioral measurements. We demonstrate that the 
between-individual variation in the Human Connectome Project (HCP) 
behavioral battery is not consistent across task domains (Fig. 1b)10. 
Personality and cognition tasks show less within-individual variation, 
while the variation of emotion and sensory tasks attributes more to 
within-individual variation. In studying self-regulation measures,  
the variation space facilitates the comparison of selecting self- 
report surveys to behavioral tasks in characterizing individual  
differences (Fig. 1c)11.

Second, we developed Gradient Flow Map (GFM) for reliability 
optimization. In addition to the variation calculation module, another 
feature of ReX is the GFM, which indicates the most efficient direc-
tion to improve the reliability in measuring individual differences. 
Reducing within-individual variation (that is, from point B to A) and 
increasing between-individual variation (that is, from point B to C) 
can improve reliability to the same extent (that is, change in intraclass 
correlation (ICC) = 0.3, Fig. 1a). However, the contribution of changes 
in within- and between-individual variation for improving reliability 
is not the same. The decrease in within-individual variation is more 
efficient (from point B to A) than the increase in between-individual 
variation (from point B to C). In general, if a measure has relatively 
small within-individual variation (x axis) and large between-individual 
variation (y axis) (for example, Fig. 2b, point A), the reduction in x 
improves ICC more than a similar increment in y. On the other hand, 
if a measure is relatively high in x but low in y (for example, point C in 
Fig. 2b), the most efficient direction to improve the reliability is to 
increase the between-individual variation. Such optimal direction for 
improving reliability can be calculated as the first derivative of the 
reliability, the ratio of the true between-individual variation to the 
total variation (that is, ICC). The improvement of x and y that is closest 
to this optimal direction is more likely to improve the reliability the 
most under the Gaussian assumption. When comparing the perfor-
mance of two different measures (for example, pipelines in measur-
ing brain functional connectivity, Fig. 2d and Supplementary Note), 
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Fig. 1 | Theoretical individual variation field map in ReX and its applications. 
a, The two-dimension theoretical individual variation field map characterizes 
within- and between-individual variability and the likelihood of individual 
characterization (quantified by the ICC reliability). b, Within- and between-

individual variations of National Institutes of Health Toolbox measures included 
in the HCP. c, Within- and between-individual variations of self-regulation 
measures using self-report surveys and behavioral tasks. Each dot represents 
self-regulation measures from one task or one survey.
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To demonstrate the utility of ReX, we include six example appli-
cations (Supplementary Note). Application 1 shows the differential 
contributions of within- and between-individual variances to reliabil-
ity across behavioral assessments. The remaining applications (2–6) 
use ReX to facilitate the optimal selection of experimental choices in 
behavioral measures, neuroimaging data-preprocessing pipelines, the 
amount of data required and data-aggregation strategies (Extended 
Data Fig. 1 and Supplementary Figs. 1–5). The resulting visualizations 
from ReX are included to make obvious how the tool allows users to 
intuitively interpret results easily. Of note, ReX can be applied to any 
repeated-measure dataset, although the power and effect size of the 
reliability will depend on the data quality and quantity. It is recom-
mended to also calculate the power of the reliability and consider trade-
offs of selecting the data-collecting and -preprocessing strategies18–20. 
In addition, the optimal direction in ReX is the theoretical direction that 
improves reliability, which might not be the most practical direction. 
In practice, the cost of the approach (for example, scan time, collect-
ing rare patients, etc.) to select measures needs to be considered for 
assessing individual differences and reliability18–20.

Recognizing the growing need for techniques to guide opti-
mization efforts for the measurement of individual differences, we 
proposed the reliability GFM to quantify the optimization efforts 
of measuring reliability and individual variations. We develop ReX, 

which integrates reliability concepts, calculation, optimization and 
visualization to bridge the gap between establishing reliability and 
measuring individual variations. We hope that ReX will help calculate 
and compare reliabilities across experiments and analytic methods 
to facilitate studying individual differences in neuroscience and 
psychology.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-023-01901-3.

References
1.	 Seghier, M. L. & Price, C. J. Interpreting and utilising  

intersubject variability in brain function. Trends Cogn. Sci. 22, 
517–530 (2018).

2.	 Dubois, J. & Adolphs, R. Building a science of individual 
differences from fMRI. Trends Cogn. Sci. 20, 425–443 (2016).

3.	 Barch, D. M. et al. Function in the human connectome: task- 
fMRI and individual differences in behavior. Neuroimage 80, 
169–189 (2013).

∆IC
C = 

0

∆IC
C = 

0

∆ICC > 0

∆ICC < 0

–0.01

0

0.01

–0.01 0 0.01

ICC = 0.2

ICC = 0
.4

IC
C 

= 0
.6

IC
C

 =
 0

.8

IC
C = 

0.5

0

0.01

0.02

0.03

0 0.01 0.02 0.03

Within-individual variation

a b c

d e f

Optimal improvement direction

Optimal 
direction

Suboptimal 
direction

Suboptimal
direction

Gradient flow (optimal direction for
improving ICC)

Within-individual variation

Be
tw

ee
n-

in
di

vi
du

al
 v

ar
ia

tio
n

A

B

C

Variation field map
Example: two measures

Be
tw

ee
n-

in
di

vi
du

al
 v

ar
ia

tio
n

Normalized changes of variation
Measure 1 vs measure 2

N
or

m
al

iz
ed

 c
ha

ng
e 

of
be

tw
ee

n-
in

di
vi

du
al

 v
ar

ia
tio

n
Normalized change of

within-individual variation

+Optimal

–Optimal

Changes of variation
Measure 1 vs measure 2

Change of
within-individual variation

C
ha

ng
e 

of
be

tw
ee

n-
in

di
vi

du
al

–0.01

0

0.01

–0.01 0 0.01

Measure 1

Measure 2

Univariate
ICC
Discriminability
Fingerprinting
Data inspection

Multivariate
dbICC
I2C2
Discriminability
Fingerprinting

Variation field map
Change of variation
Gradient flow

Visualization module

Calculation module

Comparison module

Modules in ReX

∆ICC > 0

∆IC
C = 

0

∆ICC > 0

∆ICC < 0

∆ICC < 0

∆ICC??

∆ICC??

σb
2

σ2
w

∆σ2
b↑ ∆σ2

w↓

∆σ2
b↓ ∆σ2

w↓

∆σ2
b↑ ∆σ2

w↑

∆σ2
b↓ ∆σ2

w↑

∆σ2
w

2∆σb↑∆σw↓2

2∆σb↓∆σw↓2

2∆σb↑∆σw↑2

∆σ2
b

Fig. 2 | GFM in ReX and its application example. a, ReX modules. b, The 
theoretical GFM (that is, the first derivative of the ICC) captures the most 
efficient way to improve reliability. c, Normalized changes of variation as 
compared to the optimal direction for improving ICC. d, Example of within- 

and between-individual variability of two different measures. e, Change of 
within- and between-individual variation. f, Normalized change of variation to 
the optimal direction reveals whether one measure displays higher or lower 
reliability than the other.

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-023-01901-3


Nature Methods

Brief Communication https://doi.org/10.1038/s41592-023-01901-3

4.	 Finn, E. S. et al. Can brain state be manipulated to emphasize 
individual differences in functional connectivity? NeuroImage 
160, 140–151 (2017).

5.	 Lebreton, M., Bavard, S., Daunizeau, J. & Palminteri, S. Assessing 
inter-individual differences with task-related functional 
neuroimaging. Nat. Hum. Behav. 3, 897–905 (2019).

6.	 Van Horn, J. D., Grafton, S. T. & Miller, M. B. Individual variability in 
brain activity: a nuisance or an opportunity? Brain Imaging Behav. 
2, 327–334 (2008).

7.	 Palminteri, S. & Chevallier, C. Can we infer inter-individual differences 
in risk-taking from behavioral tasks? Front. Psychol. 9, 2307 (2018).

8.	 Genon, S., Eickhoff, S. B. & Kharabian, S. Linking interindividual 
variability in brain structure to behaviour. Nat. Rev. Neurosci. 23, 
307–318 (2022).

9.	 Hsu, S., Poldrack, R., Ram, N. & Wagner, A. D. Observed 
correlations from cross-sectional individual differences research 
reflect both between-person and within-person correlations. 
Preprint at PsyArXiv https://doi.org/10.31234/osf.io/zq37h (2022).

10.	 Van Essen, D. C. et al. The WU-Minn Human Connectome Project: 
an overview. NeuroImage 80, 62–79 (2013).

11.	 Enkavi, A. Z. et al. Large-scale analysis of test–retest reliabilities  
of self-regulation measures. Proc. Natl Acad. Sci. USA 116, 
5472–5477 (2019).

12.	 Chen, G. et al. Intraclass correlation: improved modeling 
approaches and applications for neuroimaging. Hum. Brain Mapp. 
39, 1187–1206 (2018).

13.	 Koo, T. K. & Li, M. Y. A guideline of selecting and reporting 
intraclass correlation coefficients for reliability research.  
J. Chiropr. Med. 15, 155–163 (2016).

14.	 Xu, M., Reiss, P. T. & Cribben, I. Generalized reliability based on 
distances. Biometrics 77, 258–270 (2021).

15.	 Shou, H. et al. Quantifying the reliability of image replication 
studies: the image intraclass correlation coefficient (I2C2). Cogn. 
Affect. Behav. Neurosci. 13, 714–724 (2013).

16.	 Bridgeford, E. W. et al. Eliminating accidental deviations to 
minimize generalization error and maximize replicability: 
applications in connectomics and genomics. PLoS Comput. Biol. 
17, e1009279 (2021).

17.	 Finn, E. S. et al. Functional connectome fingerprinting: identifying 
individuals using patterns of brain connectivity. Nat. Neurosci. 18, 
1664–1671 (2015).

18.	 Zuo, X.-N., Xu, T. & Milham, M. P. Harnessing reliability for 
neuroscience research. Nat. Hum. Behav. 3, 768–771 (2019).

19.	 Cho, J. W., Korchmaros, A., Vogelstein, J. T., Milham, M. P. & Xu, 
T. Impact of concatenating fMRI data on reliability for functional 
connectomics. NeuroImage 226, 117549 (2021).

20.	 Noble, S., Scheinost, D. & Constable, R. T. A guide to the 
measurement and interpretation of fMRI test–retest reliability. 
Curr. Opin. Behav. Sci. 40, 27–32 (2021).

Publisher’s note Springer Nature remains neutral with  
regard to jurisdictional claims in published maps and  
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with 
the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature America, 
Inc. 2023

http://www.nature.com/naturemethods
https://doi.org/10.31234/osf.io/zq37h


Nature Methods

Brief Communication https://doi.org/10.1038/s41592-023-01901-3

Methods
ReX follows the classical test theory and provides visualization of the 
theoretical variation field map GFM as well as the reliability–validity 
relationship map to facilitate understanding the relationship between 
validity, reliability and its component individual variance. The details 
of each map are introduced as follows.

The variation field map, reliability and validity
In classical test theory, the observed score (X) from each person 
obtained using a measurement contains a true score (T) and an error 
score (E)21. Reliability is defined as the ratio of true score variance σ2

T
 to 

the observed score variance σ2
X

, which is the sum of the variance of true 
scores and the variance of error scores (that is, Reliability = σ2

T

σ2
T
+σ2

E

). In 

practice, a true score is always compounded with error. In the study of 
individual differences, within-individual variance (as the error term) 
is embedded in the observed interindividual variance. In ReX, we use 
two-dimensional space (that is, variation field map) to formulize the 
true between-individual variation (y axis) and within-individual varia-
tion (x axis). The visualization of this field map (Fig. 1a) along with the 
contour line of reliability allows the users to intuitively interpret the 
theoretical contribution of each variance component to reliability.

It is worth noting that reliability is a necessary prerequisite for 
validity but is not sufficient. The true score T of measurement here 
refers to the consistent score over tests of an individual. It contains a 
valid score for the trait of interest Ti and the unwanted score Tu that is 
not related to the trait of interest (that is, contaminants relative to the 
trait of interest).

σ2
T
= σ2

Ti
+ σ2

Tu

In test theory, validity is defined as the proportion of variation in 
the trait of interest to the total variation of the observed score22.

Validity =
σ2
Ti

σ2
Ti
+ σ2

Tu
+ σ2

E

Reliability =
σ2
Ti
+ σ2

Tu

σ2
Ti
+ σ2

Tu
+ σ2

E

Depending on the trait of interest, validity may vary for the same 
measurement. In other words, the validity of a measurement can be dif-
ferent in examining different traits, while the reliability always remains 
the same (for example, using cortical thickness to measure age and 
IQ). When the true score T equals the trait score Tr, validity equals reli-
ability. If there is a signal but it is not related to the trait, validity is lower 
than reliability (Supplementary Video 1; GitHub, https://github.com/
TingsterX/Reliability_Explorer/blob/main/reliability_and_validity/
reliability_and_validity.md). In summary, reliability is the upper bound 
for validity. It does not imply validity, but it is a prerequisite for validity. 
Depending on the trait of interest, validity of the specific trait needs to 
be considered in optimizations for reliability18,23.

Reliability models
ReX includes multiple ICC models for univariate reliability estimation 
implemented in one-way random (equation (1)), two-way random 
(equation (2)) and two-way mixed (equation (3)) models using the 
LMM12,13.

y = μ0 + λi + ϵij , λi ∼ 𝒩𝒩𝒩0, σ2
λ
), ϵij ∼ 𝒩𝒩𝒩0, σ2ϵ ) (1)

y = μ0 + λi + αj + ϵij , λi ∼ 𝒩𝒩𝒩0, σ2
λ
),αj ∼ 𝒩𝒩𝒩0, σ2α), ϵij ∼ 𝒩𝒩𝒩0, σ2ϵ ) (2)

y = μ0 + λi + αj + ϵij , αj is the fixedeffect, λi ∼ 𝒩𝒩𝒩0, σ2
λ
), ϵij ∼ 𝒩𝒩𝒩0, σ2ϵ )

(3)

In equations (1–3), the term i = 1, 2, …, n indexes individual repeti-
tions, j = 1, 2, …, k indexes test–retest repetitions, μ is the intercept 
represents the group average, and 𝒩𝒩  is a normal distribution. λi  is the 
random effect in equations (1–3) and represents the differences at the 
i-th individual level so that its variance σ2

λ
 indicates between-individual 

variation. The error term ϵij  represents the differences across tests of 
each individual, and its variance indicates within-individual variance. 
The random effect and the error term are assumed to be independent 
(that is, orthogonal). The absolute agreement of single-rater ICC(1, 1) 
and the absolute agreement of multiple-rater ICC(1, k) are estimated 
using equation (1) as follows.

ICC𝒩1, 1) =
σ2
λ

σ2
λ
+ σ2ϵ

, ICC𝒩1, k) =
σ2
λ

σ2
λ
+ σ2ϵk−1

The absolute agreement of single-rater ICC(2, 1) and the absolute 
agreement of multiple-rater ICC(2, k) are estimated using equation (2)  
as follows.

ICC𝒩2, 1) =
σ2
λ

σ2
λ
+ σ2α + σ2ϵ

, ICC𝒩2, k) =
σ2
λ

σ2
λ
+ 𝒩σ2α + σ2ϵ )k−1

The consistency of single-rater ICC(3, 1) and the consistency of 
multiple raters are estimated using equation (3) as follows.

ICC𝒩3, 1) =
σ2
λ

σ2
λ
+ σ2ϵ

, ICC𝒩3, k) =
σ2
λ

σ2
λ
+ σ2ϵk−1

ReX also provides parametric and nonparametric multivariate 
formulations of reliability that were recently developed in the imaging 
field, namely, dbICC14, the I2C215, discriminability and the identification 
rate (that is, fingerprinting)17 as well as univariate nonparametric gen-
eralizations when appropriate (that is, discriminability and identifica-
tion rate). The parametric reliability (dbICC) is based on the Euclidean 
distance estimated by

dbICC = 1 − MSDw
MSDb

,

where MSDw is the mean within-individual distances and MSDb is the 
mean between-individual distances of the observed score(s) for all 
variable(s) of interest. The parametric multivariate reliability (I2C2) 
is estimated by

I2C2 = 1 − trace𝒩Ku)
trace𝒩Ko)

,

where

trace 𝒩Ko) =
1

ΣiJ − 1
∑
i

∑
j

∑
v

𝒩Xij𝒩v) − X..𝒩v))2,

and

trace𝒩Ku) =
1

Σi𝒩J − 1)
∑
i

∑
j

∑
v

𝒩Xij𝒩v) − X.i)
2.

Here X..𝒩v) is the average over all individuals and all repetitions  
J for each variable v. X.i  is the average over all repetitions j for  
each individual i and variable v. The nonparametric reliability  
indices (discriminability and fingerprinting) are both estimated by 
comparing the observed within-individual distance to the observed 
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between-individual distance. Discriminability is the fraction of times 
that observed within-individual similarity is greater than the 
between-individual similarities16. Identification rate (that is, finger-
printing) is the proportion of individuals whose within-individual 
similarities over all repetitions are higher than all the between-individual 
similarities17.

The Gradient Flow Map
In the theoretical field map, one can recognize that both decreases in 
x and increases in y can improve reliability. However, the contribution 
of within-individual (Δx) and between-individual (Δy) variance to the 
increase in reliability is not the same. If a measure has a relatively small 
x and large y, the reduction in x improves reliability more than the same 
increment in y. On the other hand, if a measure is relatively high in x 
but low in y, an increase in y improves reliability more than the same 
reduction in x. In theory, the most efficient direction to improve reli-
ability can be calculated as the first derivative of the reliability, which 
is (−y(y + x)−2, x(y + x)−2). As shown in Fig. 2b, the optimal direction of a 
measure at (x0, y0) is always perpendicular to the vector (x0, y0). When 
x0 = y0 (that is, reliability = 0.5), the optimal direction (slope = −1, angle 
of the slope = (3/4)π) in the x axis and the y axis is the same (|Δx| = |Δy|). 
In ReX, we use this optimal direction when x = y as the reference to 
normalize the relative change of Δx and Δy (Fig. 2c). Specifically, let 
(x0, y0) be the estimated within- and between-individual variance of 
a measure. The change of (x0, y0) to (x1, y1) is Δx and Δy. The relative 
Δx and Δy can be calculated by rotating (Δx, Δy) by a relative angle to 
the x = y line.

NormalizedΔx = cos𝒩θ)Δx − sin𝒩θ)Δy

NormalizedΔx = sin𝒩θ)Δx + cos𝒩θ)Δy,

whereθ = 1
4π − arctan𝒩

y0
x0

).

In ReX, we use a standard circular color map (Fig. 2c) to visualize 
the angle of the normalized changes of x and y. The darker red and 
magenta represent Δx and Δy improved reliability, while darker blue 
and green represent Δx and Δy decreased reliability from (x0, y0) to 
(x1, y1). The light color indicates that the change is less close to the 
optimal direction.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data used in application examples are available from public reposito-
ries. HCP data are available on ConnectomeDB (https://www.human-
connectome.org/study/hcp-young-adult)10. Self-regulation data are 
available on GitHub (https://github.com/IanEisenberg/Self_Regula-
tion_Ontology)11. HNU data are available from the Consortium for 
Reliability and Reproducibility (https://fcon_1000.projects.nitrc.org/
indi/CoRR/html/index.html)19. Application data and code are available 
on GitHub (https://github.com/TingsterX/Reliability_Explorer/tree/
main/application_examples). Source data are provided with this paper.

Code availability
ReX is implemented using multiple R packages (lme4, dplyr, ggplot2, 
scales, stats, reshape2, shinybusy, colorspace, RColorBrewer). The 
toolbox is available under a GNU version 3 license on GitHub (https://
github.com/tingsterx/reliability_explorer), with a web-based R–Shiny 
application on Docker Hub (tingsterx:reliability_explorer) and shin-
yapps.io: https://tingsterx.shinyapps.io/ReliabilityExplorer. Docker 
images of the command line version (tingsterx:rex) used in this paper 
are available on Docker Hub.
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Extended Data Fig. 1 | Results for Application 4 to compare the impact of 
global signal regression in multiple fMRI preprocessing pipelines at the 
parcel level. a) The within- and between-individual variance of GSR and No-GSR 
results from four pipelines. b) The change of within- and between-individual 

variance comparing GSR versus No-GSR results of the fMRIprep pipeline. c) The 
normalized change of the within- and between-individual variance comparing 
GSR versus No-GSR results of the fMRIprep pipeline.
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