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Characterizing multifaceted individual differences in brain function using
neuroimaging is central to biomarker discovery in neuroscience. We

provide anintegrative toolbox, Reliability eXplorer (ReX), to facilitate the
examination of individual variation and reliability as well as the effective
direction for optimization of measuring individual differences in biomarker
discovery. We also illustrate gradient flows, a two-dimensional field
map-based approach to identifying and representing the most effective
direction for optimization when measuring individual differences, which is
implementedin ReX.

Overthe past decade, researchinto individual differenceshasbecome a
central focusinthe brain-imaging community. Researchers have shifted
fromlooking at average effects within and between groups torelating
individual variationin brain organization and function to genetic and
phenotypic variables (for example, demographic, behavioral, cogni-
tive, psychiatric)'®. An inherent assumption of this shift is that the
measures employed arereliable, thatis, they will detect differences that
are stable over time as well as across instruments, settings and analysts;
these are necessary conditions for valid and reproducible brain-wise
association research. Not surprisingly, as crises related to reproduc-
ibility have plagued the imaging field and the scientific community
more broadly, researchers have revisited this assumption and begun
the arduous task of quantifying and optimizing measurement reliability
for individual difference researchin the neuroscience community.
Here, we present ReX, an open-source tool designed to facili-
tate the quantification and optimization process by addressing a
critical gap in studying individual differences: the failure to take into
account the component variances of reliability (that is, within- and
between-individual variance). The majority of reliability studies in the
neuroimaging literature tend to treat reliability as a unitary construct
rather than a ratio. This approach is problematic, as it overlooks the
differential contributions of its component variances, which may be
more readily mapped to a specific design or procedural optimiza-
tions being considered. Compounding the challenge at hand is that,
when the experiment paradigms are cross-sectional, estimates of

between-individual variance may be inflated, as the contributions
of within-individual variances to its measurement are rarely consid-
ered. In this paper, we describe three features in ReX to help address
these challenges.

First, ReX provides evaluation and a visualization module toiden-
tify theimpact of variations and their contributions to reliability. Previ-
ous efforts in studying individual differences commonly focus on
between-individual variation of observations and treat this as the true
interindividual difference’. Within-individual variation s, by contrast,
often overlooked or misinterpreted when studying interindividual
differences in brain function, in particular in cross-sectional studies.
For example, metabolomic or psychological changes over hours, days
or weeks within an individual can alter the brain and mental states.
Together withnoise, these within-individual variations are embedded
in the observed behavioral or brain connectome data. Treating the
observed interindividual differences, which are contaminated with
within-individual variation, as the trueindividual difference can com-
promise brain-behavior association discovery across individuals.
Deciphering sources of variation both withinand between individuals
is central to interpreting individual differences in these scenarios. In
ReX, we formally construct the variation space and provide a visualiza-
tion module (Fig. 1a) using the ‘true’ between-individual variation 0@
(v axis) against the within-individual variation o, (x axis). Here, o is
the ‘true’ between-individual variation rather than the observed
between-individual variation. Using the variation space, it is easier to
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Fig.1| Theoretical individual variation field map in ReX and its applications.
a, The two-dimension theoretical individual variation field map characterizes
within- and between-individual variability and the likelihood of individual
characterization (quantified by the ICC reliability). b, Within- and between-

Within-subject variation

individual variations of National Institutes of Health Toolbox measures included
inthe HCP. ¢, Within- and between-individual variations of self-regulation
measures using self-report surveys and behavioral tasks. Each dot represents
self-regulation measures from one task or one survey.

differentiate within-individual from between-individual variation and
examine which factors (for example, analytic methods, experiment
designs, individual traits, state, etc.) influence the component variation
separately or in combination. To illustrate the utility of the variation
space of ReX in understanding the individual difference, we present
the theoretical variation field map (Fig. 1a) and examples of a wide
range of behavioral measurements. We demonstrate that the
between-individual variationin the Human Connectome Project (HCP)
behavioral battery is not consistent across task domains (Fig. 1b)"°.
Personality and cognition tasks show less within-individual variation,
while the variation of emotion and sensory tasks attributes more to
within-individual variation. In studying self-regulation measures,
the variation space facilitates the comparison of selecting self-
report surveys to behavioral tasks in characterizing individual
differences (Fig.1c)".

Second, we developed Gradient Flow Map (GFM) for reliability
optimization. Inaddition to the variation calculation module, another
feature of ReX is the GFM, which indicates the most efficient direc-
tion to improve the reliability in measuring individual differences.
Reducing within-individual variation (that is, from point B to A) and
increasing between-individual variation (that is, from point B to C)
canimprovereliability to the same extent (thatis, change inintraclass
correlation (ICC) = 0.3, Fig.1a). However, the contribution of changes
in within- and between-individual variation for improving reliability
is not the same. The decrease in within-individual variation is more
efficient (from point B to A) than the increase in between-individual
variation (from point B to C). In general, if a measure has relatively
small within-individual variation (x axis) and large between-individual
variation (y axis) (for example, Fig. 2b, point A), the reduction in x
improves ICC more than a similar increment in y. On the other hand,
if ameasure is relatively high in x but low in y (for example, point Cin
Fig. 2b), the most efficient direction to improve the reliability is to
increase the between-individual variation. Such optimal direction for
improving reliability can be calculated as the first derivative of the
reliability, the ratio of the true between-individual variation to the
total variation (thatis, ICC). Theimprovement of xand y that is closest
to this optimal direction is more likely to improve the reliability the
most under the Gaussian assumption. When comparing the perfor-
mance of two different measures (for example, pipelines in measur-
ing brain functional connectivity, Fig. 2d and Supplementary Note),

the change of the variation in x and y cannot fully determine whether
itimproves reliability (Fig. 2e, first and third quadrants). Thus, ReX
normalizes the change of within- and between-individual variation
as compared to the optimal direction and visualizes such normal-
ized changes using a standard color map (Fig. 2c). The resultant GFM
(Fig. 2f) provides a straightforward answer to whether the change of
within-and between-individual variation fromone pipelineto the other
improves reliability as well as to whether theimprovementisin the most
efficient direction. Using the GFM can support multifaceted applica-
tions to facilitate comparing and optimizing possible analytic strate-
gies and experiment designs. Of note, ReX determines how much the
approachesthat have beentested align with the most efficient direction
toimprove reliability. Interpreting new approaches requires collecting
repeated-measure datasets or available estimated within-and between-
individual variations.

Third, to accommodate the needs of a broad range of designs,
ReX offers users a range of parametric and nonparametric methods
for both univariate and multivariate reliability. ICC formationsinclud-
ing one-way random, two-way random and two-way mixed models
using the linear mixed model (LMM in the R package Ime4) with the
restricted maximum likelihood (ReML) estimation method. Com-
pared to the traditional ANOVA-based method, LMM allows missing
datainthe sample and ReML avoids negative ICC values. Specifically,
ReX uses the one-way random model for single-measure ICC(1, 1)
and average-measure ICC(J, k); the two-way random model for
single-measure agreement ICC(2, 1) and average-measure agreement
ICC(2, k); and the two-way mixed model for single-measure consistency
ICC(3, 1) and average-measure consistency ICC(3, k). Inthe LMM, the
random factors and residuals are assumed to be independent. Users
can specify the confounding variables as covariates in the model (for
example, age, sex). The parametric and nonparametric multivariate
formulations of reliability implemented in ReX were recently devel-
oped in the imaging field including the distance-based ICC (dbICC)™,
theimage ICC coefficient (12C2)", discriminability’ and identification
rate (that is, fingerprinting)". It is important to note that reliability is
aprerequisite and the upper bound for validity. However, it does not
imply validity. Depending on the trait of interest, the validity of the
same measurement may vary. Optimizations for reliability need to be
complemented by those focused on the validity of the specific trait
(Supplementary Video1).
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Fig.2|GFMin ReX andits application example. a, ReX modules.b, The
theoretical GFM (that is, the first derivative of the ICC) captures the most
efficient way to improve reliability. c, Normalized changes of variation as
compared to the optimal direction for improving ICC. d, Example of within-

and between-individual variability of two different measures. e, Change of
within- and between-individual variation. f, Normalized change of variation to
the optimal direction reveals whether one measure displays higher or lower
reliability than the other.

To demonstrate the utility of ReX, we include six example appli-
cations (Supplementary Note). Application 1 shows the differential
contributions of within-and between-individual variances to reliabil-
ity across behavioral assessments. The remaining applications (2-6)
use ReX to facilitate the optimal selection of experimental choices in
behavioral measures, neuroimaging data-preprocessing pipelines, the
amount of data required and data-aggregation strategies (Extended
Data Fig.1and Supplementary Figs.1-5). The resulting visualizations
from ReX are included to make obvious how the tool allows users to
intuitively interpret results easily. Of note, ReX can be applied to any
repeated-measure dataset, although the power and effect size of the
reliability will depend on the data quality and quantity. It is recom-
mended toalso calculate the power of the reliability and consider trade-
offs of selecting the data-collecting and -preprocessing strategies'®2°.
Inaddition, the optimal directionin ReXis the theoretical direction that
improves reliability, which might not be the most practical direction.
In practice, the cost of the approach (for example, scan time, collect-
ing rare patients, etc.) to select measures needs to be considered for
assessing individual differences and reliability'®°.

Recognizing the growing need for techniques to guide opti-
mization efforts for the measurement of individual differences, we
proposed the reliability GFM to quantify the optimization efforts
of measuring reliability and individual variations. We develop ReX,

which integrates reliability concepts, calculation, optimization and
visualization to bridge the gap between establishing reliability and
measuringindividual variations. We hope that ReX will help calculate
and compare reliabilities across experiments and analytic methods
to facilitate studying individual differences in neuroscience and

psychology.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-023-01901-3.
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Methods

ReX follows the classical test theory and provides visualization of the
theoretical variation field map GFM as well as the reliability-validity
relationship map to facilitate understanding the relationship between
validity, reliability and its componentindividual variance. The details
of eachmap are introduced as follows.

The variation field map, reliability and validity

In classical test theory, the observed score (X) from each person
obtained using a measurement contains a true score (7) and an error
score (E)*'. Reliability is defined as theratio of true score variance % to
the observedscore variance o%, whichis the sum of the variance of true

. . - P
scores and the variance of error scores (that is, Reliability = —). In

o7+
practice, atruescoreis always compounded with error. In the study of
individual differences, within-individual variance (as the error term)
isembedded in the observed interindividual variance. In ReX, we use
two-dimensional space (that is, variation field map) to formulize the
true between-individual variation (y axis) and within-individual varia-
tion (xaxis). The visualization of this field map (Fig. 1a) along with the
contour line of reliability allows the users to intuitively interpret the
theoretical contribution of each variance component to reliability.

It is worth noting that reliability is a necessary prerequisite for
validity but is not sufficient. The true score T of measurement here
refers to the consistent score over tests of an individual. It contains a
valid score for the trait of interest 7; and the unwanted score T, that is
notrelated to the trait of interest (that is, contaminants relative to the
trait of interest).

2 _ 42 2
OT—UTi+0Tu

Intest theory, validity is defined as the proportion of variationin
the trait of interest to the total variation of the observed score?.

2
T
validity = —— 1
0% + 02 +0}
2 2
- +0
Reliability = UI.

2 2 2
UTi +UTu +UE

Depending on the trait of interest, validity may vary for the same
measurement. Inother words, the validity of ameasurement can be dif-
ferentin examining different traits, while the reliability always remains
the same (for example, using cortical thickness to measure age and
1Q). Whenthe true score Tequals the trait score T, validity equals reli-
ability. Ifthereis asignal butitis notrelated to the trait, validity is lower
than reliability (Supplementary Video 1; GitHub, https://github.com/
TingsterX/Reliability_Explorer/blob/main/reliability_and_validity/
reliability_and_validity.md).Insummary, reliability is the upper bound
forvalidity. It does notimply validity, butitis a prerequisite for validity.
Depending on the trait ofinterest, validity of the specific trait needs to
be considered in optimizations for reliability'®*.

Reliability models

ReXincludes multiple ICC models for univariate reliability estimation
implemented in one-way random (equation (1)), two-way random
(equation (2)) and two-way mixed (equation (3)) models using the
LMM™%,

y=ﬂ0+/li+€ij:/li"’N(O)U,zl),eij"’N(Oaag) @

Y=Ho+A+a+ €, ~ N0, 02), 8 ~ N(0, 3), € ~ N (0, 62)  (2)

Y =Ho + A+ a; + €, ajisthe fixed effect, A; ~ M(0, 03), €5 ~ N(0, 07)

©)]

Inequations (1-3), thetermi=1, 2, ..., nindexes individual repeti-
tions,j=1,2, ..., kindexes test-retest repetitions, u is the intercept
represents the group average, and v is a normal distribution. 4;is the
random effectin equations (1-3) and represents the differences at the
i-thindividuallevel so thatits variance o} indicates between-individual
variation. The error term ¢; represents the differences across tests of
eachindividual, andits variance indicates within-individual variance.
Therandom effect and the error term are assumed to be independent
(thatis, orthogonal). The absolute agreement of single-rater ICC(1, 1)
and the absolute agreement of multiple-rater ICC(1, k) are estimated
using equation (1) as follows.

2 2

9 9
ICCAY) = ==, ICCLK = —F5—
0, +0; o, + 0k

The absolute agreement of single-rater ICC(2, 1) and the absolute
agreementof multiple-rater ICC(2, k) are estimated using equation (2)
asfollows.

o? o?
ICCR,)=—2 | IcCRh)=——2
@D 0% + 05 +0; @0 0% + (05 + 0D)k1

The consistency of single-rater ICC(3, 1) and the consistency of
multiple raters are estimated using equation (3) as follows.

ICC(3,1) % 1CC(3, k) %
' _o§+ 2’ ' _0§+o§k—1

ReX also provides parametric and nonparametric multivariate
formulations of reliability that were recently developedintheimaging
field, namely, dbICC", the 12C2", discriminability and the identification
rate (thatis, fingerprinting)" as well as univariate nonparametric gen-
eralizations when appropriate (that s, discriminability and identifica-
tionrate). The parametricreliability (dbICC) isbased on the Euclidean
distance estimated by

MSD,,

dblCC=1- MSD; ’

where MSD,, is the mean within-individual distances and MSD, is the
mean between-individual distances of the observed score(s) for all
variable(s) of interest. The parametric multivariate reliability (12C2)
isestimated by

2C2=1- %,
where
trace (K,) = # 5 ; D0G) =X
and

trace(K,) = SN 1_ E E E (le(y)_X~i)2-
(-1
4 i j v

Here X..(v) is the average over all individuals and all repetitions
J for each variable v. X; is the average over all repetitions j for
each individual i and variable v. The nonparametric reliability
indices (discriminability and fingerprinting) are both estimated by
comparing the observed within-individual distance to the observed
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between-individual distance. Discriminability is the fraction of times
that observed within-individual similarity is greater than the
between-individual similarities'. Identification rate (that is, finger-
printing) is the proportion of individuals whose within-individual
similarities overallrepetitionsare higher thanall the between-individual
similarities”.

The Gradient Flow Map

Inthe theoretical field map, one can recognize that both decreasesin
xandincreasesinycanimprove reliability. However, the contribution
of within-individual (Ax) and between-individual (Ay) variance to the
increaseinreliability is not the same. Ifameasure has arelatively small
xandlargey, the reductioninximprovesreliability more thanthe same
increment in y. On the other hand, if a measure is relatively high in x
butlowiny, anincrease inyimproves reliability more than the same
reductioninx. Intheory, the most efficient direction to improve reli-
ability can be calculated as the first derivative of the reliability, which
is (-y(y +x), x(y + x)). Asshown in Fig. 2b, the optimal direction of a
measure at (x,, J,) is always perpendicular to the vector (x,, y,). When
Xo =), (thatis, reliability = 0.5), the optimal direction (slope = -1, angle
oftheslope = (3/4)m) inthe x axis and the y axis is the same (|Ax| = |Ay]).
In ReX, we use this optimal direction when x =y as the reference to
normalize the relative change of Ax and Ay (Fig. 2c). Specifically, let
(X0, Vo) be the estimated within- and between-individual variance of
ameasure. The change of (x,, y,) to (x;, ;) is Ax and Ay. The relative
Axand Ay can be calculated by rotating (Ax, Ay) by arelative angle to
thex=yline.

Normalized Ax = cos(8)Ax — sin(6)Ay

Normalized Ax = sin(6)Ax + cos(6)Ay,

where 6 = %n - arctan(i)—g).

In ReX, we use a standard circular color map (Fig. 2¢) to visualize
the angle of the normalized changes of x and y. The darker red and
magenta represent Ax and Ay improved reliability, while darker blue
and green represent Ax and Ay decreased reliability from (x,, y,) to
(x;, y1)- The light color indicates that the change is less close to the
optimal direction.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Datausedinapplication examples are available from public reposito-
ries. HCP data are available on ConnectomeDB (https:/www.human-
connectome.org/study/hcp-young-adult)'®. Self-regulation data are
available on GitHub (https://github.com/lanEisenberg/Self_Regula-
tion_Ontology)". HNU data are available from the Consortium for
Reliability and Reproducibility (https://fcon_1000.projects.nitrc.org/
indi/CoRR/html/index.html)". Application data and code are available
on GitHub (https://github.com/TingsterX/Reliability Explorer/tree/
main/application_examples). Source dataare provided with this paper.

Code availability

ReXisimplemented using multiple R packages (Ime4, dplyr, ggplot2,
scales, stats, reshape2, shinybusy, colorspace, RColorBrewer). The
toolbox is available under a GNU version 3 license on GitHub (https://
github.com/tingsterx/reliability_explorer), with aweb-based R-Shiny
application on Docker Hub (tingsterx:reliability_explorer) and shin-
yapps.io: https://tingsterx.shinyapps.io/ReliabilityExplorer. Docker
images of the command line version (tingsterx:rex) used in this paper
areavailable on Docker Hub.
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from S1200 release (N=170, 2 sessions). Each has 0.95, 0.99, 0.84, 0.99 power to achieve a moderate (ICC=0.5) reliability (alpha=0.05, two
tails).

Data exclusions | For HCP test-retest and self-regulation datasets, participants who didn't complete both test and retest sessions were excluded. For HNU and
HCP S1200 datasets, participants with the higher head motion (framewise displacement >0.25 mm) were excluded.
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Magnetic resonance imaging

Experimental design

Design type Resting state fMRI
Design specifications No specifications

Behavioral performance measures  None

Acquisition
Imaging type(s) Structural (T1w) and functional MRI
Field strength 3 Tesla

Sequence & imaging parameters HCP dataset: TR = 720 ms, TE = 33 ms, Flip angle = 52 degree, multi-slice factor N=8, FOV=20.8cm(A-P) x 18cm(R-L).
See details http://fmri.ucsd.edu/Howto/3T/HCP.html
HNU dataset: TR = 2000mx, TE = 30ms, flig angle = 90 degree. See details: http://fcon_1000.projects.nitrc.org/indi/
CoRR/html/hnu_1.html

Area of acquisition whole brain scan
Diffusion MRI [ ] used Not used

Preprocessing

Preprocessing software The Configurable Pipeline for the Analysis of Connectomes (C-PAC, https://fcp-indi.github.io/docs/latest/user/index). In
addition to the C-PAC default pipeline, Adolescent Brain Cognitive Development (ABCD), Connectome Computational System
(CCS), and fMRIPrep pipelines were also employed using C-PAC.

Normalization ANTs was used for the non-linear registration for ABCD, CPAC, fMRIPrep pipelines. FSL Fnirt was used for CCS pipeline.
Normalization template MNI152 template

Noise and artifact removal Data with global signal regression (GSR) and without GSR were examined, Details see Application 3-6

Volume censoring No volume censoring was performed

Statistical modeling & inference
Model type and settings No model type or setting required
Effect(s) tested The test-retest reliability of the functional connectivity from pipelines
Specify type of analysis: Whole brain [ | ROI-based [ ] Both

Statistic type for inference The timeseries were averaged first within each parcel to calculate the parcel-wise connectivity matrix.
(See Eklund et al. 2016)

Correction Not applicable




Models & analysis

n/a | Involved in the study
|:| Functional and/or effective connectivity

|:| Graph analysis

|:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Pearson correlation was used to calculate the functional connectivity
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