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Kodan is an orbital edge computing system that maximizes

data value from satellites limited by communication and com-

putation. Under a saturated satellite downlink, Kodan mitigates

the computational bottleneck without the high cost of hundreds

of satellite-parallel processors. Kodan uses a combination of tech-

niques that modify applications based on unique, orbital data char-

acteristics by trading between geospatial analysis precision and

processing speed. After deployment to a satellite, the Kodan run-

time system dynamically selects appropriate optimizations for each

observation. Kodan decides how to process a sample based on its

geospatial context. A geospatial context is a property of a data sam-

ple indicating its likelihood to contain certain features, e.g., the

presence of ocean, forest, tundra, clouds, or high-value data. High-

precision value labels are computationally easier in some contexts

and harder in others.

Kodan balances precision and execution time to maximize

data value density. Software running on each satellite prioritizes

decreased compute time when computationally bottlenecked and

prioritizes precision otherwise. When computationally limited, Ko-

dan uses tile context to select an action: the satellite downlinks

data in high-value contexts, discards data in low-value ones, and

executes an application to more thoroughly �lter the rest. Whether

or not computationally limited, Kodan uses context-speci�c mod-

els to increase precision and downlinked data value density, i.e.,

the fraction of a saturated downlink composed of high-value bits.

Kodan recognizes that not all sensor data need equal care in pro-

cessing. To trade precision for execution time, Kodan adjusts frame

tile count to reduce data quantity at a cost in quality.

Kodan increases downlinked data value density by mitigat-

ing the computational bo�leneck. To show the value of Ko-

dan, we implement seven end-to-end, deployment-ready, pixel-

segmentation applications trained to �lter low-value clouds using

publicly-available, geospatial datasets. We quantify the improve-

ment in valuable data downlinked with on-orbit computing using

context-specialization to identify high-value observations; Kodan

improves the data value density of the saturated downlink between

89 and 97 percent compared to the bent pipe.

To summarize, the main contributions of this work are:

• We characterize the impact of orbital edge computing on both

the downlink bottleneck and the computational bottleneck.

• We present Kodan, an OEC system that addresses the com-

putational bottleneck using hardware-aware modi�cations of

satellite applications.

• We characterize and evaluate context-speci�c models, frame

tiling, and context-based elision to maximize data value density

within the constraints of the computational bottleneck.

• Weprovide a comprehensive evaluation of Kodan across satellite

data processing applications and hardware targets, resulting

in improvements to the data value density of the saturated

downlink between 89 and 97 percent.

2 BACKGROUND AND MOTIVATION

We provide context for Kodan and characterize challenges for Earth-

observation satellites.

Figure 1: A satellite periodically captures image frames, and

the time between frame captures is the frame deadline. Be-

fore processing an image, geospatial analysis software splits

a frame into tiles. Details visible in the images depend on the

ground sample distance, or the geographic area per pixel.

Earth-observation satellites: LEO, Earth-observation satellites

collect sensor data — e.g., multispectral images — for geospatial

analytics. These satellites often deploy to polar orbits (i.e., orbits

crossing near the poles of Earth). As the satellite travels through

its orbit, it accesses nearly all latitudes; as the planet rotates, the

satellite accesses all longitudes. LEO altitudes are hundreds of kilo-

meters, and LEO periods are about 90min.

Historically, Earth-observation satellites are large and mono-

lithic. Recently, inexpensive nanosatellites have proliferated. The

monolithic Worldview [13], Earth-Observing 1 (EO-1) [33], and

Landsat [27] satellites cost hundreds of millions of US dollars each

(e.g., $855,000,000 [20]). Now, many missions use cubesats [32],

chipsats [42], and pocketqubes [9, 36] to increase hardware refresh

cadence and avoid the high costs of monolithic satellites. Lower

costs enable Earth-observing constellations consisting of hundreds

of devices [5, 26].

Orbital mechanics determine both access to and the quality of

satellite sensor data. For images, a satellite captures a frame along

its ground track. A frame is a large geographic region; geospatial

applications often split frames into many smaller tiles for analysis.

Satellite image quality is characterized by ground sample distance

(GSD) — geographic distance between adjacent pixels — which may

range from km/px to cm/px [13, 27] and is determined by altitude

and camera characteristics. Figure 1 illustrates these concepts.

The bent pipe: Today, most Earth-observation satellite operators

manually task their devices to sense and downlink raw observations

to a datacenter for processing, i.e., a bent pipe [12, 25]. Commu-

nication opportunities for high-velocity, LEO satellites last only

for a few minutes while the device is near a ground station and

may occur infrequently depending on the orbit. State-of-the-art

communication systems downlink a total data quantity of MBs or

GBs per pass. This downlink bottleneck constrains observation rate

because not all data can be sent (we quantify this bottleneck in

Section 2.1).
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density improvement for Application 1 is 34% on the i7 platform. On

the 1070 Ti platform, Application 1 is not computationally bottle-

necked; instead, the bene�ts derive from the precision improvement

of sending down likely high-value pixels without processing, rather

than imprecisely processing those pixels and transmitting a worse

result.

6 RELATED WORK

This work spans computer systems, space systems, space networks,

and systems ML. Section 2 provides an overview of the emerging

computational space systems domain, and Section 2.1 characterizes

major challenges of this research area. Recent works in orbital edge

computing provide context for this work. The space networking

challenge of the bent pipe bottleneck is quanti�ed in [7], which

also introduces the concept of a computational satellite deploying

machine inference to address this challenge. Orbital edge comput-

ing [8] aims to address the downlink bottleneck and introduces the

computational bottleneck of the inelastic space edge. Challenges

and opportunities in this domain are examined in [30].

The computational bottleneck poses a major space systems chal-

lenge. Although monolithic satellites cost hundreds of millions of

US dollars each, this high cost does not provide high-performance

onboard processors. These systems must operate for decades to

justify the high cost, which means that computer hardware must be

low-risk and highly-reliable. Often, these systems use decades-old,

“�ight heritage” CPUs. After two or more decades of operation,

onboard processors could be nearly half a century behind the state-

of-the-art.

For example, LEON processors — which receive signi�cant sup-

port from the European Space Agency (ESA) — implement the 32-bit

SPARC V8 instruction set architecture (ISA). A recent implementa-

tion achieved a clock frequency of 250MHz [1]. The EO-1 makes

use of a 12MHz Mongoose-V central processing unit (CPU), which

implements the 32-bit MIPS ISA, to demonstrate autonomous sci-

ence [6]. The RAD5500 implements a 64-bit PowerPC ISA operating

at 466MHz [2]. The limited performance of these CPUs stems from

larger technology nodes and functional unit duplication, which

help to provide reliability in the space environment. Extremely

high costs demand extremely low risk and long-duration missions

at the expense of performance. Recent trends in space systems have

started to consider COTS embedded computer systems [28, 29].

Several works consider models optimized for accuracy or speed

in terrestrial applications [4, 21, 22, 34, 37, 41]. Works on em-

bedded, terrestrial, wireless sensor systems study the tradeo� be-

tween computation and communication for energy-harvesting de-

vices [10, 11, 16, 17, 35]. These works identify the relatively high

energy cost of communication and quantify bene�ts to spending

energy on computation instead. While these terrestrial systems can

transmit data at any time within energy constraints, satellites can

transmit data only while near a ground station. In this work, we

focus on model specialization for geospatial contexts at the orbital

edge to improve the data value density of a saturated downlink.

Space networking is a growing �eld of research [3, 19, 24]. Much

work focuses on inter-satellite communication, which is a chal-

lenging engineering question encompassing control theory, orbital

dynamics, robotics, and energy-performance tradeo�s. Less atten-

tion has been paid to the challenges of the downlink bottleneck

and the saturated downlink, which we examine in this work. Al-

ternate approaches to addressing the downlink bottleneck [39] are

complementary to this work by enabling higher performance with

even smaller satellite constellation populations.

7 CONCLUSION AND FUTUREWORK

The increasing accessibility of space opens the orbital edge to new

geospatial analysis applications. A limited downlink creates a need

for on-orbit processing to extract value from sensor data. However,

constraints on orbital edge computing limit the value of satellite-

based applications. Kodan mitigates the downlink bottleneck and

the computational bottleneck for space edge systems by leverag-

ing geospatial contexts and specializing satellite computation to

balance application processing time with precision. This approach

contrasts with expensive, constellation-oriented techniques that

extract value from data but require many satellites to do so. We

implement and evaluate Kodan, which increases the density of

valuable data downlinked from LEO between 89 and 97 percent

without changing ground infrastructure or radio attributes despite

bottlenecked bandwidth and computing.

Orbital edge computing has an exciting futurewithmany open

research questions. Building on this work, computational space

system designers should improve sensor coverage and comput-

ing capability of constellations through co-design of system-level

optimizations and computer architecture while avoiding unfavor-

able cost-scaling of high device counts. Future constellations will

feature heterogeneous sensors, computational capabilities, and ac-

tuators. Some satellites may share data via crosslinks and distribute

processing so that each satellite need not contain telescope op-

tics, precision pointing, laser communication, and a high-end GPU.

Instead, a heterogeneous constellation supports hardware special-

ization (as opposed to processing specialization based on sample

context), allowing individual satellites to contain fewer subsystems

are therefore be more simple. Energy constraints, orbital dynam-

ics, and client mission goals place time-dependent constraints on

satellite operations. Communication and computation will remain

perennial challenges for space-based computer systems. Kodan

demonstrates that these challenges are surmountable with new

techniques tailored to the unique constraints of the orbital edge.

REFERENCES
[1] Jan Andersson, Magnus Hjorth, Fredrik Johansson, and Sandi Habinc. 2017. Leon

processor devices for space missions: First 20 years of leon in space. In SMC-IT.
IEEE.

[2] Richard Berger, Steve Chadwick, Ernesto Chan, Richard Ferguson, Patrick Flem-
ing, Jane Gilliam, Michael Graziano, Mary Hanley, Andrew Kelly, Marla Lassa,
et al. 2015. Quad-core radiation-hardened system-on-chip power architecture
processor. In Aerospace Conference. IEEE.

[3] Debopam Bhattacherjee, Waqar Aqeel, Ilker Nadi Bozkurt, Anthony Aguirre,
Balakrishnan Chandrasekaran, P Brighten Godfrey, Gregory Laughlin, Bruce
Maggs, and Ankit Singla. 2018. Gearing up for the 21st century space race. In
Proceedings of the 17th ACM Workshop on Hot Topics in Networks.

[4] Jiashen Cao, Ramyad Hadidi, Joy Arulraj, and Hyesoon Kim. 2021. Thia: Accel-
erating video analytics using early inference and �ne-grained query planning.
arXiv preprint arXiv:2102.08481 (2021).

[5] Jeroen Cappaert. 2018. Building deploying and operating a cubesat constellation-
exploring the less obvious reasons space is hard. In Proc. AIAA/USU Conf. Small
Satellites.

402



ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Bradley Denby, Krishna Chintalapudi, Ranveer Chandra, Brandon Lucia, and Shadi Noghabi

[6] Steve Chien, Rob Sherwood, Daniel Tran, Benjamin Cichy, Gregg Rabideau,
Rebecca Castano, Ashley Davies, Rachel Lee, Dan Mandl, Stuart Frye, et al. 2004.
The EO-1 autonomous science agent. In Joint Conference on Autonomous Agents
and Multiagent Systems.

[7] Bradley Denby and Brandon Lucia. 2019. Orbital edge computing: Machine
inference in space. IEEE Computer Architecture Letters (2019).

[8] Bradley Denby and Brandon Lucia. 2020. Orbital edge computing: Nanosatellite
constellations as a new class of computer system. In Architectural Support for
Programming Languages and Operating Systems.

[9] Bradley Denby, Emily Ruppel, Vaibhav Singh, Shize Che, Chad Taylor, Fayyaz
Zaidi, Swarun Kumar, Zac Manchester, and Brandon Lucia. 2022. Tartan Artibeus:
A Batteryless, Computational Satellite Research Platform. (2022).

[10] HarshDesai and Brandon Lucia. 2020. A power-aware heterogeneous architecture
scaling model for energy-harvesting computers. Computer Architecture Letters
(2020).

[11] Harsh Desai, Matteo Nardello, Davide Brunelli, and Brandon Lucia. 2022. Ca-
maroptera: A long-range image sensor with local inference for remote sensing
applications. Transactions on Embedded Computing Systems (TECS) (2022).

[12] Kiruthika Devaraj, Ryan Kingsbury, Matt Ligon, Joseph Breu, Vivek Vittaldev,
Bryan Klofas, Patrick Yeon, and Kyle Colton. 2017. Dove High Speed Downlink
System. In Proc. AIAA/USU Conf. Small Satellites.

[13] Warren Ferster. 2012. DigitalGlobe Adding Infrared Capability to WorldView-
3 Satellite. Space News, https://spacenews.com/digitalglobe-adding-infrared-
capability-worldview-3-satellite/ (2012).

[14] Alistair Francis, John Mrziglod, Panagiotis Sidiropoulos, and Jan-Peter Muller.
2020. Sentinel-2 Cloud Mask Catalogue. https://doi.org/10.5281/zenodo.4172871.

[15] Warren Frick and Carlos Niederstrasser. 2018. Small Launch Vehicles-A 2018
State of the Industry Survey. In Proc. AIAA/USU Conf. Small Satellites.

[16] Graham Gobieski, Nathan Beckmann, and Brandon Lucia. 2018. Intermittent
deep neural network inference. In SysML Conference.

[17] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelligence
beyond the edge: Inference on intermittent embedded systems. In Architectural
Support for Programming Languages and Operating Systems.

[18] Ritwik Gupta, Richard Hosfelt, Sandra Sajeev, Nirav Patel, Bryce Goodman,
Jigar Doshi, Eric Heim, Howie Choset, and Matthew Gaston. 2019. xBD: A
Dataset for Assessing Building Damage from Satellite Imagery. arXiv preprint
arXiv:1911.09296 (2019).

[19] Mark Handley. 2018. Delay is not an option: Low latency routing in space. In
Proceedings of the 17th ACM Workshop on Hot Topics in Networks.

[20] William Harwood. 2013. NASA launches USD 855 million Landsat mission. CBS
News, https://www.cbsnews.com/news/nasa-launches-855-million-landsat-mission/
(2013).

[21] Nada Ibrahim, Preeti Maurya, Omid Jafari, and Parth Nagarkar. 2021. A survey
of performance optimization in neural network-based video analytics systems.
arXiv preprint arXiv:2105.14195 (2021).

[22] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.
Noscope: optimizing neural network queries over video at scale. arXiv preprint
arXiv:1703.02529 (2017).

[23] Michael D King, Steven Platnick, W Paul Menzel, Steven A Ackerman, and Paul A
Hubanks. 2013. Spatial and temporal distribution of clouds observed by MODIS
onboard the Terra and Aqua satellites. Transactions on Geoscience and Remote
Sensing (2013).

[24] Tobias Klenze, Giacomo Giuliari, Christos Pappas, Adrian Perrig, and David
Basin. 2018. Networking in Heaven as on Earth. In Proceedings of the 17th ACM
Workshop on Hot Topics in Networks.

[25] Wiley J Larson and James Richard Wertz. 1992. Space mission analysis and design.
Microcosm.

[26] Lawrence Leung, Vincent Beukelaers, Simone Chesi, Hyosang Yoon, Daniel
Walker, and Joshua Egbert. 2018. ADCS at scale: Calibrating and monitoring the
dove constellation. In Proc. AIAA/USU Conf. Small Satellites.

[27] Thomas R Loveland and James R Irons. 2016. Landsat 8: The plans, the reality,
and the legacy. Remote Sensing of Environment (2016).

[28] Tyler M Lovelly and Alan D George. 2017. Comparative analysis of present
and future space-grade processors with device metrics. Journal of aerospace
information systems (2017).

[29] Tyler M Lovelly, Travis W Wise, Shaun H Holtzman, and Alan D George.
2018. Benchmarking analysis of space-grade central processing units and �eld-
programmable gate arrays. Journal of Aerospace Information Systems (2018).

[30] Brandon Lucia, Brad Denby, ZacharyManchester, Harsh Desai, Emily Ruppel, and
Alexei Colin. 2021. Computational Nanosatellite Constellations: Opportunities
and Challenges. GetMobile: Mobile Computing and Communications (2021).

[31] James McClain. 2021. The Azavea Cloud Dataset.
https://github.com/azavea/cloud-model.

[32] Arash Mehrparvar, D Pignatelli, J Carnahan, R Munakat, W Lan, A Toorian, A
Hutputanasin, and S Lee. 2014. CubeSat Design Speci�cation Rev. 13. Technical
Report. California Polytechnic State University, San Luis Obispo.

[33] ElizabethMMiddleton, StephenGUngar, Daniel JMandl, LawrenceOng, StuartW
Frye, Petya E Campbell, David R Landis, Joseph P Young, and Nathan H Pollack.
2013. The earth observing one (EO-1) satellite mission: Over a decade in space.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
(2013).

[34] Mahyar Najibi, Bharat Singh, and Larry S Davis. 2019. Autofocus: E�cient
multi-scale inference. In Proceedings of the IEEE/CVF International Conference on
Computer Vision.

[35] Matteo Nardello, Harsh Desai, Davide Brunelli, and Brandon Lucia. 2019. Ca-
maroptera: A batteryless long-range remote visual sensing system. In Workshop
on Energy Harvesting and Energy-Neutral Sensing Systems.

[36] S Radu, M Uludag, S Speretta, J Bouwmeester, A Dunn, T Walkinshaw, P Kaled
Da Cas, and C Cappelletti. 2018. The PocketQube Standard Issue 1. Technical
Report. TU Delft.

[37] Abhijit Suprem, Joy Arulraj, Calton Pu, and Joao Ferreira. 2020. Odin: automated
drift detection and recovery in video analytics. arXiv preprint arXiv:2009.05440
(2020).

[38] U.S. Geological Survey. 2021. Landsat Path/Row World Reference System.
https://www.usgs.gov/landsat-missions/landsat-shape�les-and-kml-�les.

[39] Deepak Vasisht and Ranveer Chandra. 2020. A distributed and hybrid ground
station network for low earth orbit satellites. In Proceedings of the 19th ACM
Workshop on Hot Topics in Networks.

[40] Deepak Vasisht, Zerina Kapetanovic, Jongho Won, Xinxin Jin, Ranveer Chandra,
Sudipta Sinha, Ashish Kapoor, Madhusudhan Sudarshan, and Sean Stratman.
2017. FarmBeats: An IoT Platform for Data-Driven Agriculture. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17).

[41] Ran Xu, Rakesh Kumar, Pengcheng Wang, Peter Bai, Ganga Meghanath, Somali
Chaterji, Subrata Mitra, and Saurabh Bagchi. 2021. ApproxNet: Content and
contention-aware video object classi�cation system for embedded clients. ACM
Transactions on Sensor Networks (TOSN) (2021).

[42] Zac Manchester. 2015. KickSat. http://zacinaction.github.io/kicksat/.
[43] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio

Torralba. 2017. Scene Parsing through ADE20K Dataset. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition.

Received 2022-10-20; accepted 2023-01-19

403


	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Challenges at the Orbital Edge

	3 Kodan System Design
	3.1 Kodan System Architecture
	3.2 Contexts and the Context Engine
	3.3 Model Specialization
	3.4 Selection Logic

	4 Methodology
	5 Evaluation
	5.1 Kodan Improves Data Value Density
	5.2  Kodan Improves Satellite Performance 
	5.3 Contexts Improve Precision
	5.4 Tiling Trades Precision and Performance
	5.5 Elision Improves Data Value Density

	6 Related Work
	7 Conclusion and Future Work
	References

