
Journal Pre-proof

Real-world challenges for multi-agent reinforcement learning in
grid-interactive buildings

Kingsley Nweye, Bo Liu, Peter Stone, Zoltan Nagy

PII: S2666-5468(22)00048-9
DOI: https://doi.org/10.1016/j.egyai.2022.100202
Reference: EGYAI 100202

To appear in: Energy and AI

Received date : 2 June 2022
Revised date : 6 September 2022
Accepted date : 7 September 2022

Please cite this article as: K. Nweye, B. Liu, P. Stone et al., Real-world challenges for multi-agent
reinforcement learning in grid-interactive buildings. Energy and AI (2022), doi:
https://doi.org/10.1016/j.egyai.2022.100202.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.egyai.2022.100202
https://doi.org/10.1016/j.egyai.2022.100202
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal Pre-proof

Real-w
grid-in
Kingsley
aIntelligent E
Department o
The Universit
bDepartment
The Universit

ART ICL
Keywords:
grid-interacti
benchmarkin
reinforcemen

uilding
earning
in grid-
ework

such as
prevent
re, and
trollers
ent the
ntation
emand
pact of
ence of
rmance
earning
from a
erve no
plinary
of GIB

1. Intro
Buildin

sumption a
sions, whi
tential [26]
of end-use
supply, e�
lation and
(DHW) ge
of building
is integrati
grid (supp
thermal co
ings (dema
capacity an
integration
integration
ensure reli

Deman
egy enable
flexibility

<Corresp
nwey

pstone@cs.ute

ORCID(s
Nagy)

over
times
a re-
ute to
re set
r pre-
or by
ystem
ction-
omers
t set-
ration
stems
hange
pt of
s, and
r DR
dapt-
dings.
rolled
en all
price
rather
cient

Nweye et a
Jo
ur

na
l P

re
-p

ro
of

orld challenges for multi-agent reinforcement learning in
teractive buildings
Nweyea, Bo Liub, Peter Stoneb and Zoltan Nagya,<
nvironments Laboratory
f Civil, Architectural and Environmental Engineering
y of Texas at Austin, 301 E. Dean Keeton St., ECJ 4.200, Austin, 78712-1700, Texas, USA
of Computer Science
y of Texas at Austin, 2317 Speedway, GDC 2.302, Austin, 78712-1700, Texas, USA

E INFO

ve buildings
g
t learning

ABSTRACT
Building upon prior research that highlighted the need for standardizing environments for b
control research, and inspired by recently introduced challenges for real life reinforcement l
(RL) control, here we propose a non-exhaustive set of nine real world challenges for RL control
interactive buildings (GIBs). We argue that research in this area should be expressed in this fram
in addition to providing a standardized environment for repeatability. Advanced controllers
model predictive control (MPC) and RL control have both advantages and disadvantages that
them from being implemented in real world problems. Comparisons between the two are ra
often biased. By focusing on the challenges, we can investigate the performance of the con
under a variety of situations and generate a fair comparison. As a demonstration, we implem
o�ine learning challenge in CityLearn, an OpenAI Gym environment for the easy impleme
of RL agents in a demand response setting to reshape the aggregated curve of electricity d
by controlling the energy storage of a diverse set of buildings in a district, and study the im
di�erent levels of domain knowledge and complexity of RL algorithms. We show that the sequ
operations utilized in a rule based controller (RBC) used for o�ine training a�ects the perfo
of the RL agents when evaluated on a set of four energy flexibility metrics. Longer o�ine l
from an optimized RBC leads to improved performance in the long run. RL agents that learn
simplified RBC risk poorer performance as the o�ine learning period increases. We also obs
impact on performance from information sharing amongst agents. We call for a more interdisci
e�ort of the research community to address the real world challenges, and unlock the potential
controllers.

duction
gs account for ˘ 40% of the global energy con-
nd ˘30% of the associated greenhouse gas emis-
le also o�ering a 50—90% CO2 mitigation po-
. Optimal decarbonization requires electrification
s and concomitant decarbonization of electricity
cient use of electricity for lighting, heating, venti-
air conditioning (HVAC), and domestic hot water
neration, and upgrade of the thermal properties
s [24]. A major driver for grid decarbonization
on of renewable energy systems (RESs) into the
ly) and, photovoltaic (PV) systems and solar-
llectors into residential and commercial build-
nd). electric vehicles (EVs), with their storage
d inherent connectivity, hold a great potential for
with buildings [27]. However, this grid-building
must be carefully managed during operation to

ability and stability of the grid [39, 14, 7] (Fig. 1).
d response (DR) as an energy-management strat-
s end-consumers to provide the grid with more
by reducing their energy consumption through
onding author
e@utexas.edu (K. Nweye); bliu@cs.utexas.edu (B. Liu);
xas.edu (P. Stone); nagy@utexas.edu (Z. Nagy)
): 0000-0003-1239-5540 (K. Nweye); 0000-0002-6014-3228 (Z.

load curtailment, shifting their energy consumption
time, or generating and storing energy at certain
(Fig. 1). In exchange, consumers typically receive
duction of their energy bill [35]. HVAC can contrib
load curtailment events by modifying the temperatu
points, participating in load shifting by pre-heating o
cooling the buildings [3] (passive energy storage),
directly storing thermal energy in an energy storage s
(active energy storage). Thermostats with DR fun
ality can provide energy savings to residential cust
by allowing electricity retailing companies to adjus
points during peak-demand events. Widespread integ
of communication technologies allows all involved sy
(PV, HVAC, storage, EV, thermostats, etc.) to exc
information on their operation, leading to the conce
smart cities, allowing cities to achieve energy saving
become more sustainable [5].

Advanced control systems can be a major driver fo
by automating the operation of energy systems, while a
ing to individual characteristics of occupants and buil
However, for DR to be e�ective, loads must be cont
in a responsive, adaptive and intelligent way. Wh
the electrical loads react simultaneously to the same
signals, aggregated electricity peaks could be shifted
than shaved. Therefore, there is a need for more e�
l.: Preprint submitted to Elsevier Page 1 of 12



Journal Pre-proof

and e�ecti
technologi

Advanc
RL [41] ha
application
e.g., MPC
spectacula
the past sev
based on p
have begun

In cont
model-free
both real-ti
RL is an a
the agent
environme
agent does
from. In co
delayed fee
input, the a
observes a
environme
action is be

RL can
ment learn
ing (MAR
Decision P
trol enviro
a Markov
the same
condition o
multiple ag
observatio
[4]. Yet, M
dimension
of coopera
common c
objectives
optimized.

A majo
algorithm

of this
c real
be fo-
llenge
esents
pro-

4, we
intro-
ssing
ion of
ion 6.

enges
n [12]
dress
ble to
ments
In the
ext of

sam-
alized
on the
cially
ubset
ry 15
uickly
e, and
e can
t and

ays in
ermal
cts of
s are
, e.g.,
ge of
need
amics
erent
eated,
red to
ays in
erfor-

e and
bility

Nweye et a
Jo
ur

na
l P

re
-p

ro
of

Figure 1: Grid-interactive buildings

ve ways of coordinating the response of all the
es described above.
ed control algorithms such asMPC [10] and deep
ve been proposed for a variety of building control
s. While both methods have their disadvantages,
requiring a model while RL being data intensive,
r applications and results have been presented in
eral years. In addition, recently, hybrid methods,
hysics constrained neural networks for models
to emerge [11].
rast to MPC, RL is an adaptive and potentially
control algorithm that can take advantage of
me and historical data to provide DR capabilities.
gent-based machine learning algorithm in which
learns optimal actions via interaction with its
nt [34, 29]. In contrast to supervised learning, the
not receive large amounts of labelled data to learn
ntrast to unsupervised learning, the agent receives
dback from the environment. In brief, for a given
gent chooses to perform a certain action. It then
n immediate or delayed reward signal from the
nt, and uses it to modify its knowledge on which
st to choose under given circumstances.
be classified under the single-agent reinforce-

ing (SARL) or multi-agent reinforcement learn-
L) domains. SARL is formalized as a Markov
rocess (MDP) where one agent acts on a con-
nment while MARL is typically described as
Game (MG) where multiple agents interact in
environment. SARL adheres to the stationarity
f an MDP however in MARL, the interplay of
ents in the controlled environment leads to partial
ns andmay violate theMDP stationarity condition
ARL is better suited for environments with high
al state and action spaces that require a notion
tion or competition between agents which are
haracteristics of GIBs. With MARL, grid-level
such as peak shaving and ramp reduction can be
r challenge for RL in DR is the ability to compare
performance [39]. As argued in [43], a

shared collection of representative environ-
ments [needs to be established in order to] sys-
tematically compare and contrast [...] building
optimization algorithms.

Building on [43], and inspired by [13, 12], the purpose
paper is twofold. First, we introduce and discuss specifi
world challenges for GIBs that our community should
cusing on. Second, we demonstrate one particular cha
using the CityLearn gym environment [36].

This paper is organized as follows. Section 2 pr
nine real world challenges for GIBs, while Section 3
vides background on RLs and CityLearn. In Section
provide a framework towards addressing one of the
duced challenges and present our results from addre
said challenge using a case study data set. A discuss
the results and conclusion follow in Section 5 and Sect

2. Real-world challenges
Dulac-Arnold et al. provide nine real-world chall

for RL in [13] and prescribe a suite of environments i
that may be used to benchmark algorithms which, ad
the challenges. The environments in [12] are not suita
evaluate GIBs, as they are based on small scale environ
without the necessary domain knowledge or context.
following, we present the nine challenges, in the cont
GIBs and provide the description of [12] in italics.
C1: Being able to learn on live systems from limited

ples: In this challenge, the controller is initi
randomly and has to learn to perform only based
samples it observes. The sample size can be artifi
reduced by presenting the controller only with a s
of the data, e.g., every three hours instead of eve
min. The algorithms can be evaluated on how q
in terms of time or sample number they converg
how stable their exploration is. Conversely, w
evaluate the trade-o� between data requiremen
controller performance.

C2: Dealing with unknown and potentially large del
the system actuators, sensors, or feedback The th
dynamics of buildings are such that the e�e
controller actions to adjust the HVAC system
observed in delays. This has implications for
pre-cooling/heating of buildings to take advanta
the thermal mass of buildings. The controller
to implicitly and automatically learn the dyn
of the building. Challenge data sets with di�
thermal mass from light to heavy should be cr
and the converged controller should be compa
understand the relationship between longer del
feedback (higher thermal mass) and controller p
mance.

C3: Learning and acting in high-dimensional stat
action spaces. This challenge addresses the scala

of a proposed controller. As buildings can inherently

l.: Preprint submitted to Elsevier Page 2 of 12
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a large state-action space, controllers can be
ated on specific subsets of them to understand
the performance changes. In the case of control-
multiple buildings (or multiple zones within a
ing), scalability refers to essentially increasing
umber of buildings (or zones) and observing the
rol performance.
oning about system constraints that should never
rely be violated This is a central challenge, as
ing control problems are indeed often presented
lancing between reducing energy usewhilemain-
ng comfortable conditions. Other constraints in
nergy system are operational, such as ensuring
nimum state of charge, maintaining operational
eratures within limits, etc. The algorithms should
aluated on both the number of violations during
learning process and for the converged policy.
ration of constraint violation into the objective
tion is addressed in C6 below.
acting with systems that are partially observable,
h can alternatively be viewed as systems that are
stationary or stochastic. This challenge has two
. In the first part, observations can be modified
ntain failures (sensor noise, missing data, etc.),
h can be common in any real life systems, like
ings and HVAC systems. We then observe the
rmance of the algorithms for various levels of
ailures (more noise, more missing data). In the
nd part, we can observe how a controller performs
perturbed system. Perturbations can consist of
fit measures on buildings (improving envelop or
ows), improving equipment, changed occupant
vior or di�erent climate. We can then judge the
rithms on their ability to perform their previously
ed policy on the perturbed system.
ning from multiple or poorly specified objec-
functions. Energy management in buildings is
rently multi-objective, especially when consid-
multiple zones or multiple buildings. Another
ple is when there is a global objective (overall
ing energy use) as well as multiple local objec-
(equipment operation). Asmentioned in C4, con-
nts can be incorporated into the objective function
tly. When evaluating the controller performance,
ndividual objectives should be separated to allow
fair comparison.
g able to provide actions quickly, especially for
ms requiring low latencies. Latency is a delay
ecuting a control action after acquiring a mea-
ment due to long computational time. Latencies
al life systems can occur if the system dynamics
ast or computational times are long. A practical
ple for smart buildings and micro-grids is if
omputation is taking place in the cloud, adding

be exacerbated by connectivity issues. To obser
impact of latency, time-step delays of various le
should be included into the control execution an
impact on their performance should be evaluate

C8: Training o�-line from the fixed logs of an extern
havior policy. The challenge here is to learn a c
law from data generated by a suboptimal refe
controller, e.g., an RBC, which is often avai
essentially a system log. In addition to the contr
vironment, data sets of various sizes, e.g., two w
one month and six months should be provide
are generated with a known reference RBC. The
controllers can be evaluated on the ability to im
these baselines.

C9: Providing system operators with explainable po
Here we deviate from the description in [12] wh
pose to generate figures to improve the interpreta
of the results. Rather, for the building context,
is needed is that the control actions can be exp
simply to building managers. Advances in expla
artificial intelligence (AI) are needed, and algor
that might perform suboptimally, yet are eas
explain are favored as they are more likely to g
cepted, and thus implemented. A consensus be
modelers and system operators on the standard
outcomes of a control law could be establish
facilitate e�ective communication amongst inv
parties.

Each of the aforementioned challenges require u
experimental designs within a simulation environm
adequately study and quantify the factors that a�ect the
olution. We demonstrate challenge C8 using the City
environment [36] in Section 4.

3. Background
We provide a background on RL and MARL. De

introductions can be found in standard textbooks [34]
3.1. Reinforcement Learning

In RL, an agent interacts with an environment to
imize the reward it receives. RL is usually formula
an MDP. An MDP M is a tuple M = (S ,A, T ,S and A are the state and action spaces for the age
time step t, the agent is located at a state st À S .
taking an action at À A, the agent will be transition
the next state st+1 Ì T (� › st, at), where T denot
transition probability and is usually hidden from the a
Moreover, the agent receives a scalar reward rt Ì R(s
The overall objective of RL is to find a policy ⇡ : S
that maximizes the expected cumulative return:

max
⇡

Est,atÌ⇡(�›st)

4 ÿ…
t=0

�trt

5
.

It has been shown that given any stationary policy

data transfer to the execution time, which can above objective will converge to a value based onwhich state
l.: Preprint submitted to Elsevier Page 3 of 12
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tarts from. Specifically, we have the value of a
ned as:

) = Es0=s,⇡

4 ÿ…
t=0

�tr(st, at)
5
, (2)

, at) = rt Ì R(st, at) and we use E⇡ to denote
pectation is taken over the trajectories sampled
olicy ⇡. Similarly, we can define the action-value

, a) = Es0=s,a0=a,⇡

4 ÿ…
t=0

�tr(st, at)
5
. (3)

objective in Eq. (1) is therefore equivalent to
V ⇡(s),≈s. (4)
imize the above objective, there are typically
of RL algorithms: value-based and policy-based.
based algorithms are based on the well-known
quation of the action-value function. Denote the
tion-value function as Q<, then it is known that
atisfies
, a) = r(s, a) + �Es®ÌT (�›s,a) max

a®
Q<(s®, a®). (5)

izing the di�erence between the left and right-
of the above equation, we reach the Q-learning
[42].
tiagent Reinforcement Learning
extends RL to the setup involving multiple

e general MARL framework includes the coop-
p, the competitive setup and the mixture of the
work, we focus on the cooperative setup because
bjective is to coordinate buildings to flatten the
demand curve, which is a shared objective for all
summarize, the MARL problem we consider in
s also formulated as an MDP represented by the
(S ,A, T , � ,R). The major di�erences are: 1) the
e now includes the joint actions of all agents, i.e.
ù U 25 ù U n, where U i is the action space of
t. 2) the state space S = O1 ùO25 ùOn, where
bservation of the ith agent. The pipeline of RL
are summarized in Fig. 2. We refer the reader
a comprehensive discussion on RL and MARL
.
ciple, a multi-agent problem can be regarded as
ent problem where a centralized agent chooses
all agents. However, it is both computationally ex-
d costly to deploy and train a centralized agent in
the state and action space grow dramatically with
r of agents [33]. A centralized control architecture
ases the robustness of the system to malicious
]. Therefore, decentralized algorithms that learn a
odule for each agent is a more practical approach.
er hand, a fully decentralized algorithm where
not aware of other agents’ policies might result

Figure 2: The pipeline of RL and MARL.

3.3. CityLearn
CityLearn is an OpenAI Gym environment for the

implementation of RL agents in a DR setting to resha
aggregated curve of electricity demand by controllin
energy storage of a diverse set of buildings in a distric
37, 16]. Its main objective is to facilitate and stand
the evaluation of RL agents, such that it can be us
benchmark di�erent algorithms. CityLearn includes e
models of air-to-water heat pumps, electric heaters, c
water (CHW), DHW and electricity energy storage de
as shown in Fig. 3. In each building, the air-to-wate
pump is used to meet the cooling demand and an el
heater is used to meet DHW heating demand. Bui
could also possess a combination of CHW, DHW and
tricity storage devices to o�set cooling, DHW heatin
electricity demand from the grid. CHW and DHW st
capacities are represented as a multiple of the hou
storage devices can satisfy the maximum annual cool
DHW demand if fully charged. All these devices, tog
with other electric equipment and appliances (non-shi
loads) consume electricity from the main grid. PV sy
may be included in the buildings’ energy systems to
part of this electricity consumption by allowing the bui
to generate their own electricity.

The RL agents control the storage of CHW, DHW
electricity by deciding how much cooling, heating and
trical energy to store or release at any given time. City
guarantees that, at any time, the heating and cooling e
demand of the building are satisfied regardless of the a
of the controller by utilizing pre-computed energy lo
the buildings, which include space cooling, dehumid
tion, appliances, DHW, and solar generation. The b
controller guarantees that the energy supply devices
itize satisfying the energy demand of the building b
storing any additional energy.

CityLearn has been used extensively as a referenc
vironment to demonstrate incentive-based DR [6], co
rative DR [17], coordinated energy management [30, 2
benchmarking RL algorithms [9, 32].
rdination.
l.: Preprint submitted to Elsevier Page 4 of 12
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Figure 3: CityLearn overview.

er (CHW), domestic hot water (DHW) and electric-
orage and, photovoltaic (PV) system capacities per
he unit of measurement for CHW and DHW storage
s the hours of maximum annual hourly cooling and
nd that can be satisfied on full charge.

CHW DHW ELE PV
Stg. (h) Stg. (h) Stg. (kWh) (kW)

2 2 140 120
3 3 80 0
2 0 50 0

1.5 0 75 40
3.5 1.5 50 25
1.5 3 30 20
2 2 40 0
3 3 30 0
3 3 35 0

e Learning Challenge (C8)
e provide a framework for studying C8. Specif-
compare two RL control approaches, (1) inde-
ncoordinated soft actor-critic (SAC) agents (see
2.1), and (2) the MARLISA algorithm for co-
the agents (see Section 4.2.2) in the CityLearn
nt using the nine-building data set described in
. We investigate the agents’ behavior with respect
eriods of o�ine training on an RBC. Our central
is that a longer o�ine training period results in
ormance, since the agents will have more existing
of what ideal actions could resemble by the time
online.
Set
the CityLearn Challenge 2021 data set, [40].
of nine Department of Energy (DOE) proto-

ings: one medium o�ce (ID=1), one fast-food
(ID=2), one standalone retail (ID=3), one strip

Table 2
Independent SAC and MARLISA RL agents hyperparam

Variable Value

Discount 0.99
Decay rate 0.005
Learning rate 0.0003
Batch size 256
NN hidden layer count 2
NN hidden layer size 256
Replay buffer capacity 100,000
Temperature 0.2
Training time steps (744, 434, 8760)
Training episodes 1
Total time steps 35,040 (4 years)

(ID=5–9) [8]. The energy demand for each buildin
been pre-simulated in EnergyPlus using 2014–2017
meteorological year weather data for Austin, TX.
cooling, DHW and electricity storage capacities, as w
PV capacities, are shown in Table 1.
4.2. Agent & Reward Design
4.2.1. Independent SAC agents

To control environments that have continuous state
actions, tabular Q-learning is not practical, as it s
the curse of dimensionality. Actor-critic RL method
artificial neural networks to generalize across the
action space. The actor network maps the current sta
the actions that it estimates to be optimal. Then, the
network evaluates those actions by mapping them, tog
with the states under which they were taken, to the Q-v

SAC is a model-free o�-policy RL algorithm [18
an o�-policy method, SAC can reuse experience and
from fewer samples. SAC is based on three key elem
an actor-critic architecture, o�-policy updates, and en
maximization for e�cient exploration and stable tra
SAC learns three di�erent functions: the actor (policy
critic (soft Q-function), and the value function V . For
details about SAC, we refer the reader to [19].

rSACi (t) = min �0, ei(t)
�

The network architecture and algorithm hyperpa
ters utilized in the SAC agent are summarized in Ta
and are the provided CityLearn defaults for the data set
used.

We use the reward rSACi (t) (Eq. (6)) for the indepe
SAC RL agents. It is a single-agent reward whose valu
depends on the net electricity consumption ei(t) of the
i at time step t. ei(t) < 0 if the building is consuming
electricity than it generates, and ei(t) > 0 if the build
self-su�cient at that time and generates excess electri
4.2.2. MARLISA RL Agents

MARLISA is built on the SAC algorithm and allo

(ID=4), and five medium multifamily buildings coordination of the agents through reward sharing, collective
l.: Preprint submitted to Elsevier Page 5 of 12
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well as mutual sharing of some information [38].
predict their own future electricity consumption
this information with each other, following a
wer schema. In an iterative process, each agent
to selecting an action before the action is imple-

= *sign(ei(t))�0.01�ei(t)2�min
H
0,

n…
i=0

ei(t)

I
(7)

me network architecture and algorithm hyperpa-
ilized in the SAC agents and described in Table 2
the MARLISA agents.
t) defined in Eq. (7) is the MARLISA RL agents’
ction. It is a combination of the building level net
consumption ei(t) and the collective component
.e., the total net electricity consumption of the
ict at time step t, and is used to share information
e agents, which rewards them for reducing the
d energy demand.
C
umed no detailed knowledge of the energy profile
ilding and developed two variations of RBC se-
operation (SOO) where, RBCBasic (Algorithm 1)
implified logic and RBCOptimized (Algorithm 2) is
y domain knowledge. For both SOOs, the input
r of the day, h and time step, t and, the output
ge/discharge action, at for chilled water, DHW
ity storage. The action values in Algorithm 1
rily chosen to mimic a poorly tuned controller
e in Algorithm 2 are selected by performing a
on di�erent combinations of hourly values to

a combination that provides the best performance
uated on the metrics presented in Section 4.5.
are tuned to act greedily in every building and
rage capacity to reduce energy consumption by
re energy during the night (when the coe�cient
ance of the heat pumps is higher) and release it
day. We also use the RBC to normalize the RL
formance metrics.

m 1: RBCBasic sequence of operation.
h,t
t: a(t)
h f 21 then
= -0.08;
= 0.091;

n-Space Design
tion space per building is determined by the num-
lable energy storage systems to control, including

Algorithm 2: RBCOptimized sequence of operation.
Input: h,t
Output: a(t)
if 1 f h f 6 then

a(t) = 0.05532;
else if 7 f h f 15 then

a(t) = -0.02;
else if 16 f h f 18 then

a(t) = -0.044;
else if 19 f h f 22 then

a(t) = -0.024;
else

a(t) = 0.034;
end

action space is bounded at n < 3 for a district of n bui
that each possess the three storage systems. The action
is bounded between -1 and 1 where positive and ne
values are charge and discharge control actions respec
4.4. State-Space Design

The available state space is made up of 27 obser
temporal, weather, district, and building variables whic
summarized in Table 3. The storage system state of c
(SOC) states are conditionally available in each bui
Meanwhile, the RBC controllers utilize only the hour s
determining the control action. The states are transform
aid the learning process by applying cyclical transform
to the month and hour states, one-hot encoding to th
state and min-max normalization to all other states.
4.5. Performance Metrics/Cost Functions

We evaluate the agents’ performance on a set o
functions that quantify the collective district’s energy
ibility as follows:
Average Daily Peak is the average of all the daily pe

the 365 days of the year and is calculated usin
net energy demand of the whole district of bui
defined as

ADP =

⇠≥364
d=0max(Qiùd ,… ,Qiù(1+d)*1)

365

where d is the day of the year and i is the num
time steps in a day. In our application, i = 24
hourly resolution.

Load Factor is the di�erence between 1 and the ra
average monthly demand to monthly peak de
defined as

1 * Load Factor =
H 11…

m=0

1*

*
≥kù(1+m)*1

t=mùk Qt
I

ù 1

DHW and electricity storage systems. Hence, the k ùmax(Qt,… ,Qkù(1+m)*1) 12

l.: Preprint submitted to Elsevier Page 6 of 12



Journal Pre-proof

Table 3
The unified

Sta

Tem
Mo
Day
Hou
We
Dry
Dry
Dry
Dry
Rel
Rel
Rel
Rel
Diff
Diff
Diff
Diff
Dir
Dir
Dir
Dir
Dis
Net
Car
Bui
Ind
Ind
Non
Sol
Chi
Dom
Ele

whe
t in
steps
use a

Net Electr

i.e.,
the o
the d
i.e.,

Ramping
two

whe
t an
0 f

SOO
ining
nths)
or of-
ctions
efore
SAC

of the
dered

mpler
ndent
tailed
epoch
ber of
ion of
Learn
n 4.1,
re av-
ilable

l per-
rolled
four-
CBasicr and
ilarly
timizedectric
cs for
tlined
spect
line),
gents
reater
ledge
red to
Con-
esults
long
ed in
e RL
oorer
eriod.

Nweye et a
Jo
ur

na
l P

re
-p

ro
of

state space for all agents.

te Unit

poral
nth -

-
r -
ather
-bulb temperature ˝C
-bulb temperature (+6 hr) ˝C
-bulb temperature (+12 hr) ˝C
-bulb temperature (+24 hr) ˝C
ative humidity %
ative humidity (6 hr) %
ative humidity (12 hr) %
ative humidity (24 hr) %
use solar W/m2

use solar (6 hr) W/m2

use solar (12 hr) W/m2

use solar (24 hr) W/m2

ect solar W/m2

ect solar (6 hr) W/m2

ect solar (12 hr) W/m2

ect solar (24 hr) W/m2

trict
electricity consumption kWh
bon intensity kgCO2

/kWh
lding
oor dry-bulb temperature ˝C
oor relative humidity %
-shiftable load kWh
ar generation W
lled water stg. SOC -
estic hot water stg. SOC -

ctricity stg. SOC -

re Qt is the net electric consumption at time step
the mth month and k is the total number of time
per month. k = 730 in our application where we
n hourly time step resolution.
icity Demand is given by

Net Electricity Demand =
n*1…
t=0

max(0,Qt) (10)

the sum of positive net electricity demand because
bjective is to minimize the energy consumed in
istrict, not to profit from the excess generation,
island operation is incentivized.
is the di�erence in net electric consumption at
consecutive time steps defined as

Ramping =
n*1…
t=1

Qt *Qt*1 (11)

re Qt is the net electric consumption at time step
d n is the total number of time steps such that

4.6. Experimental Design
We vary the o�ine training period and the RBC

during o�ine training to test our hypothesis. For one tra
episode, the initial 744 (two weeks), 4,344 (six mo
or 8,760 (one year) time steps of states are used f
fline training of the RL algorithms while selecting a
from either RBCBasic or RBCOptimized algorithms b
switching online to train on actions selected from the
or MARLISA agents algorithms for the remainder
35,040 time steps (4 years). Hence, the RL agents consi
in totality include:

1. SACRBCBasic2. SACRBCOptimized3. MARLISARBCBasic4. MARLISARBCOptimized

With these combinations, we study the impact of si
vs comparatively more complex algorithms (indepe
SAC vs MARLISA) and the value of less or more de
domain knowledge (RBCBasic vs RBCOptimized).The simulations are run for one epoch, where an
is a period of 35,040 time steps that represent the num
hours in years 2014–2017. We simulate each combinat
o�ine training period and RL agent three times in City
using the nine-building data set described in Sectio
initialized with di�erent random seeds. The results a
eraged over the three runs.

The source code used to produce this work is ava
in [15].
4.7. Results
4.7.1. Performance Metrics

Fig. 4 shows the distinction in the district leve
formance metrics when all storage systems are cont
by either RBCBasic or RBCOptimized during the entire
year simulation period. RBCOptimized outperforms RB
when evaluated on the average daily peak, load facto
ramping metrics. Both RBC algorithms perform sim
in terms of net electric consumption with RBCOpachieving very little advantage in minimizing the net el
consumption in the long run.

Fig. 5 shows the district level performance metri
the varied o�ine training periods and RL agents ou
in Section 4.6 . The metrics are normalized with re
to the RBC used for o�ine training (dashed black
where superior and inferior performance of the RL a
is indicated by values less than one and values g
than one, respectively. The detailed domain know
of RBCOptimized causes superior performance compa
both SACRBCOptimized and MARLISARBCOptimized agents.
sequently, longer o�ine training with RBCOptimized r
in delayed convergence but better performance in the
run. On the other hand, the simplified SOO utiliz
RBCBasic leads to inferior performance compared to th
agents, such that longer trained RL agents su�er from p
performance compared to those trained for a shorter p
t < n. The net electric consumption for RBCOptimized-trained RL
l.: Preprint submitted to Elsevier Page 7 of 12
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Energy flexibility performance metrics when the
tems are controlled by the fixed log of either
r RBCOptimized for the entire four year simulation

oteworthy, as variations in o�ine training period
igible di�erence in performance. Interestingly,
t o�ine training period of 2 weeks results in an
ge improvement in the net electric consumption
ediately after the RL agents comes online but
first year, worsens and approaches the lower

ce six-month and one-year trained agents.
n the SAC and MARLISA RL algorithms, aver-
eak and load factor are una�ected by algorithm
when the agents are trained using the same
ramping metric for MARLISARBCOptimized shows
performance for shorter o�ine training periods,
es over time. In comparison, the SACRBCOptimizedable to maintain nearly the same ramping perfor-
BCOptimized.
trict Electricity Consumption
6, we show the district’s net electric consumption
the four o�ine trained RL agents, as well its
nsumption without PV installation and energy
trol for a selected period. The 2014 profile is the
even days after o�ine training for sixmonths and,
eriod is shown in 2015. In 2014, the two-week
nth trained RL agents are already online while
trained for one year are still being trained o�ine
esents net electric consumption under RBC con-
ch RL agent, the six-month trained agents behave
o-week trained agents immediately after coming
as a result both variations of training period have
et electric consumption six months into the simu-
all RL agents in 2014, the one-year training setup
has higher net electric consumption early in the
d late at night, but lower net electric consumption
day compared to already online scenarios. By the
d in 2015, the net electric consumption profile
qual irrespective of RBC domain knowledge, RL
complexity and o�ine training period. Overall,
son to the baseline i.e. no control and PV, there

provided by solar generation and control of energy st
systems between late morning and afternoon.

5. Discussion
5.1. Advanced Building Controllers

Advanced building controllers are needed to im
upon the industry standard of pre-determined set-point
do not take into account predictions or allow optimizin
operational sequence [41]. MPC has been developed
petrochemical industry in the 1970s and applied across
industries since then [28]. MPC requires the develop
of a mathematical model for the plant to be contr
which works well for replicable systems (cars, planes
uniqueness of buildings and their energy systems, an
engineering costs incurred when developing and calib
a model made it such that, despite all advances, M
have not been adopted in the building industry [23
RL algorithms have been considered to address the
comings of MPC by potentially being model-free. How
RL approaches can be more data intensive and more
consuming compared to MPC approaches. Compar
if even performed, are often biased toward one ty
algorithm, and therefore relatively meaningless. The
lenges introduced here specifically focus on the brea
applications rather than on one specific problem. This a
for a fair comparison. Of course, while we argue
context of RL, the challenges can be used for compa
between algorithm classes.

A promising approach in MARL is centralized tra
with decentralized execution (CTDE). CTDE assume
the learning of each agent’s policy can depend on the g
state (the aggregation of all agents’ observation in our
but during executing, agents work independently. By
so, it is possible for the agents to cooperate accord
some learned heuristics so that during execution they d
need to know what others’ observations are. A CTDE
sion of MARLISA has been found to provide more sm
trajectories compared to the basic MARLISA algo
[17]. Of course, advances in algorithm complexity m
weighted against data and communication requiremen
potential privacy issues.
5.2. Environment Standardization

We emphasize the need for standardizing computa
environments, such as the COmprehensive Building
lator (COBS) [46], Sinergym [21], BOPTEST [1], th
vanced Controls TestBed (ACTB), or CityLearn [36] u
common interface, e.g., OpenAI Gym [2], and releasin
sets and implementations open source. This can help
a development rush similar to the one that the Ima
data set sparked for the deep learning community
However, in contrast to ImageNet’s development, a
in-depth collaboration and exchange between resea
in the built environment and computer science wou
beneficial to transfer domain knowledge from buildin
controller design on the one hand and facilitate trans
nt energy flexibility in the form of peak shaving ing theoretical findings of algorithms into practice on the
l.: Preprint submitted to Elsevier Page 8 of 12
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nergy flexibility performance metrics evaluated on results from CityLearn simulations of varied offline training perio
Offline training periods include 744 (two weeks), 4344 (six months), 8760 (one year) time steps indicated by the
green lines respectively. The RL agents include SACRBCBasic

, SACRBCOptimized
, MARLISARBCBasic

, MARLISARBCOp

c is normalized with respect to the RBC used for offline training (dashed black line) which, is indicated in the sub
gent’s name.

omparison between electricity consumption without control and PV (dashed black line) and net electricity wi
olled CHW, DHW and electric storage systems and, PV at the district level for varied offline training periods
ing periods include 744 (two weeks), 4344 (six months), 8760 (one year) timesteps indicated by the blue, o
ines respectively. The RL agents include SACRBCBasic

, SACRBCOptimized
, MARLISARBCBasic

, MARLISARBCOptimized

ven days after six months of simulation in 2014 are shown (left) and the same time period in the subsequent y
wn (right).
l.: Preprint submitted to Elsevier Page 9 of 12
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mon venues or guest invitation to each other’s
ld be established: ACM’s BuildSys/e-energy and
E/IBPSA communities should explore common

or knowledge exchange to ultimately unlock the
nment’s potential to reduce greenhouse gas emis-

ne Learning Challenge (C8)
ntral hypothesis in addressing C8 is that a longer
ning period results in better performance, since
will have more existing knowledge of what ideal
ld resemble by the time they come online. We find
esis to be true and governed by certain design
ur experiments reveal that the SOO utilized in the
for o�ine training determines the performance of
nts when evaluated on a set of energy flexibility
onger o�ine learning from an optimized RBC
o slower convergence upon coming online, but
ergy flexibility in the long run. RL agents that
a simplified RBC risk poorer performance as the
ning period increases.
timized RBC is able to significantly outperform
trollers in reducing the district average daily peak,
and ramping. This shows significant energy flex-
ntial from improving existing RBCs in practice
ation of more complex controllers. Nevertheless,
ms are unable to respond to perturbations in the
ironment (C5), an ability RL controllers possess,
a�ect the overall performance of the controller in
the control objective. We shall address C5 in our
k.
not observe any significant di�erences between
ance of the SAC and MARLISA RL algorithms
ated on the four performance metrics. This sug-
the simpler SAC algorithm is su�cient and the
plexity and cost of information sharing amongst
ld be avoided.
periments show negligible di�erence in net elec-
sumption irrespective of o�ine learning period,
and RL algorithm complexity. We provide an
in the context of the RBC design. Both RBCBasic

ptimized are designed to charge the storage systems
nd early in the morning to take advantage of
t pump coe�cent of performance (COP). Their
lso be beneficial in a residential DR program that
s electricity consumption during periods of lower
owever, in the absence of such DR setup in the
environment, this design is most beneficial to the
ge whose energy is delivered by a heat pump. The
electrical storage charging demands are directly
grid and o�set by available solar generation. Solar
is intermittently available during the day, hence,
ge devices could potentially benefit from ’free’
uring the RBC’s hours of discharge control action.
lenge that is presented in o�ine training is the
of a homogeneous o�ine data set that is non-
which, may lead to a non-generalized policy that

performs poorly on live systems. The work by Yarats
highlights the importance of the diversity of explo
data used in o�ine training on the performance of th
agents [44]. Our results corroborates this observati
longer o�ine training on the fixed log of a tuned RBC
preferable results.

6. Conclusion
We have introduced a set of challenges to stud

world GIBs. While there are many research challenge
remain in this realm, we highlight the need for an orga
move forward of the community in addressing both f
mental computational challenges, but in a way that app
the larger problems in the built environment. As an exa
we studied the o�-line learning challenge (C8) for two
of domain knowledge, RL algorithm complexity and
performance metrics. It is not our intention to impl
the list above is an exhaustive list of challenges. R
by highlighting typical real world problems, our aim
inspire researchers to define and share their environ
and the problems they are addressing with these chall
as a standard framework.

Acronyms
AI artificial intelligence.

CHW chilled water.
COP coe�cent of performance.
CTDE centralized training with decentralized execut

DHW domestic hot water.
DOE Department of Energy.
DR demand response.

EV electric vehicle.

GIB grid-interactive building.

HVAC heating, ventilation and air conditioning.

MARL multi-agent reinforcement learning.
MDP Markov Decision Process.
MG Markov Game.
MPC model predictive control.

PV photovoltaic.

RBC rule based controller.

RES renewable energy system.
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