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Abstract— In the retail environment, mobile robots start to 

serve as customer helpers and human worker assistants, which 

necessitates a safe, seamless, and affective human-robot 

interaction. Individuals’ physical responses during those 

interactions become crucial factors to consider in order to improve 

robots’ functionality and system productivity. The purpose of this 

study was to assess individuals’ physical responses to mobile 

robots in a typical retail environment. Eight participants were 

recruited to complete shopping tasks (i.e., cart pushing, item 

picking, and item sorting) with and without a mobile robot. 

Biomechanics analysis showed that participants spent more time 

walking between shelves with a reduced walking speed and they 

demonstrated deteriorated walking stability with the mobile robot 

in the same space. Meanwhile, the mobile robot induced more 

posture adaptation in participants’ distal segments (knee and 

ankle) during cart pushing and more posture adaptation in their 

proximal segments (hip) during item searching and sorting tasks. 

In addition, this study revealed that the mobile robot had a greater 

impact on participants’ locomotion activities (walking) rather 

than other activities (item searching and sorting).  

Keywords— Human-Robot Interaction, Safety, Retail 

Environment, Biomechanics Analysis, Locomotion 

I. INTRODUCTION  

Robots have been increasingly omnipresent in work and life, 
as evidenced by its $ 43.8 billion worldwide global market share 
(for industrial robots) in 2021 [1]. Manufacturing [2], [3], 
agriculture [4], [5], healthcare [6], [7], and customer service [8], 
[9], are among the major fields for which robots and robotics 
technology are being developed. Historically, human workers 
have been physically separated from robots by safeguards (e.g. 
physical barriers or sensor-based systems) [10]. The designated 
physical safeguards, however, have hampered the utilization of 
robots in industries that demand frequent and direct interactions 
between humans and robots in shared space and close proximity. 
Collaborative robots (cobots) emerge as the times require in 
industries where direct human-robot interaction is mandatory. 
The warehousing, wholesale, and retail trade (WRT) industry 
[11]–[13] is one of the good examples in which the system 
efficiency can be best achieved using cobots, when the cobots 

take charge of repetitive and mundane tasks (e.g., cleaning, 
disinfection, inspection, delivery) and the human workers focus 
on tasks that need advanced environment perception, decision 
making, or object manipulation that beyond the capability of 
current robotic technologies [14], [15]. In this case, a safe, 
seamless, and affective human-robot interaction (HRI) becomes 
a critical research topic and the whole human-robot system can 
only be embraced if the safety of human workers and the 
productivity of the system are well ensured and perceived. 

A large body of literature put focuses on the psychological 
aspects of HRI, for example, in terms of trust [16], [17], 
acceptance [14], [18], and other safety bounds [19], to calibrate 
humans’ perception of the advanced technology. However, 
working with cobots may not only cause individuals’ 
psychological adaptations but also induce their physical 
responses to some extent, especially when the cobots share 
space with them in close proximity. The purpose of this study 
was to fill current research gaps by investigating individuals’ 
physical responses to mobile robots that work closely with them. 
A retail environment was chosen as the specific application 
domain. Individuals’ physical responses (i.e., gait and posture) 
to the interaction were measured and compared by their motion 
patterns with and without a cobot in the same working 
environment. The following are the research question and the 
corresponding hypotheses: 

Research Question: What aspects of personal physical 
responses can be induced by a mobile cobot in a robot-populated 
environment? 

Research Hypothesis 1: The mobile cobot can alter 
personal gait and posture in a robot-populated environment, as 
indicated by individuals’ spatiotemporal and kinematics 
parameters. 

Research Hypothesis 2: The influence of the mobile cobot 
on individuals’ gait and posture differs depending on the tasks 
that humans undertake in a robot-populated environment. 
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II. METHODS 

A. Participants 

Eight adults (three females, 19.4 ± 2.0 years old, 176.7 ± 
10.2 cm in height) were recruited from the surrounding 
community. Participants who had no injuries that required 
medical attention in the last six months were scheduled for the 
experiment. Seven of the eight participants claimed to be right-
handed, while one reported being ambidextrous. The University 
of Florida Institutional Review Board authorized this study 
(IRB202002765). 

B. Apparatus  

The experiment environment: A high-fidelity retail 
environment was simulated (Fig. 1A). The facility is equipped 
with configurable walls, shelves, and essential accessories (e.g., 
100+ grocery items, one checkout machine, and one shopping 
cart) that can be reconfigured to meet the most of the layout 
adjustment demands seen in a retail store.  

Motion capture system: A wireless wearable motion capture 
system (MVN Awinda, Xsens Technologies BV, Enschede, The 
Netherlands) was employed to record participants’ positions and 
body postures during the experiment. This system includes a 
total of seventeen Inertial Measurement Unit (IMU) sensors (~ 
10 g per sensor) that can be affixed to the top of participants' 
outfits in accordance with the manufacturer's instructions (Fig. 
1B) [20]–[23]. Throughout the study, the sampling rate of the 
motion capture system was set at 60Hz. 

The mobile robot platform: The retail robot was custom-built 
with a Fetch Freight Base (Fetch Robotics, Inc., San Jose, 
California) and a UR5 robot manipulator (Universal Robots, 
Odense, Denmark), measuring 0.508 × 0.559 × 1.295 m (Fig. 
1C). The platform incorporated a 2D LiDAR sensor, a webcam, 
a 6D IMU sensor, and two wheel-encoders; and its base was 
controlled by the Robot Operating System (ROS) with an Intel 
i3 CPU, 8 GB RAM, and a 120 GB SSD. The robot was 
programmed to drive autonomously between predefined 
waypoints, avoiding obstacles and rerouting paths. The 
maximum speed of the robot was set at 1.0 m/s for the 
experiment, with the UR5 powered off and stayed retracted. 

C. Experimental Design 

The study employed a within-subject design to evaluate the 
influence of a retail robot on customers’ motion patterns during 
grocery shopping. The independent variable was the robot 
condition (“no robot” vs. “with robot”). The dependent variables 
of interest in this article contained measures that depict the 
motion patterns of each participant, including features of task 
efficiency, stability, and posture while grocery shopping. During 
the experiment, participants were instructed to complete ten 
grocery shopping tasks with (#:5) and without (#:5) the retail 
robot. The grocery shopping task was designed as a series of 
continuous actions, which included: (1) pushing a shopping cart 
between shelves (i.e., cart pushing task), (2) scanning and 
picking eight items, one from each shelf (i.e., item picking task), 
and (3) sorting the items into two bins at the checkout machine 
(i.e., item sorting task) (Fig. 2). At the beginning of each trial, a 
new list including all the items of target was given to the 
participants. And the participants were asked to pick up items in 
the correct sequence using their dominant hand. 

During the trials in which the participants performed the 
grocery shopping task alongside the mobile robot (i.e., the “with 
robot” condition), the retail robot was designed to circle the 
“store”, representing a platform realizing functions (e.g., 
disinfection, cleaning, and inventory management) in retail 
environments. The waypoints of the robot were predefined to 
ensure a frequent interaction between the robot and the 
participants (Fig. 2). And the order of the robot condition was 
presented at random to prevent systematic errors. 

 
Fig. 1. Experiment site (A), sensor setup (B), and robot apperance (C).  

A

B C  
Fig. 2. Illustrations of the simulated retail environment, participants’ grocery 

shopping tasks, and the path robot took to circle the store. 
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D. Procedures 

The participants were first asked to sign the informed 
consent form and provide demographic information including 
their age, gender, weight, and height (shoes on). Following that, 
the motion capture sensors were attached to the participant's 
body and the system was calibrated [24]. The participants were 
then given ten grocery shopping tasks to complete. To avoid 
fatigue, a mandatory rest was designed between each trial. 

E. Data Analysis 

Data processing: Motion data collected by sensors was 
processed using custom MATLAB code [25], [26] to derive 
three categories of gait and posture features (i.e., task efficiency, 
stability, and posture) from the cart pushing, item picking, and 
item sorting tasks. The task efficiency measure included task 
completion time (i.e., the period of time to accomplish the 
action) and walking speed (i.e., the distance traveled retrieved 
from the pelvis sensor divided by task completion time). In 
terms of stability measures, the sample entropy of the resultant 
acceleration was extracted from the pelvis motion data [27]–
[29]. Another stability measure, spectral arc length measure 
(SPARC), was chosen to describe the motion smoothness of the 
trunk [30], [31]. The average values of the participants’ right 
hip, knee, and ankle flexion angles in the sagittal plane were 
calculated for each of the three shopping tasks and treated as 
posture measures [32]. 

Statistical analysis: Using R studio (R version 3.6.0), one-
way repeated ANOVAs were performed if ANOVA model 
assumptions (e.g., normality and homogeneity of the model 
residuals) were satisfied. The robot condition was set as the 
independent variables, with motion pattern measures being the 
dependent variables, and the participant being the random effect. 
In case of unsatisfied model assumptions (e.g., the model 
residuals were not normally distributed), the Friedman tests for 
repeated measurement (participant being the blocking factor) 
were applied using the package “muStat” [33], [34]. The 
significance level of α = 0.05 was used across all tests.  

III. RESULTS  

A. Data Description 

This study included a total of 77 trials from eight 
participants, 40 of which were collected in the "no robot" 

condition and the remaining 37 in the "with robot" condition 
(motion data of three trials were discarded because of poor data 
quality). In general, during the grocery shopping task, the 
participants walked 21.31 ± 3.01 meters when there was no 
robot and 21.82 ± 3.15 meters in the “with robot” condition. Fig. 
3 depicts the trajectories of one sampled participant (#3) under 
both robot conditions for demonstration purposes, while other 
participants showed consistent patterns.  

The average time to complete the grocery shopping task was 
129.58 ± 55.04 and 124.46 ± 31.83 seconds, respectively in the 
“no robot” and “with robot” conditions. In the “no robot” 
condition, the time spent on cart pushing, item picking, and item 
sorting tasks accounted for roughly 34 %, 41 %, and 25 % of the 
total time spent on the shopping task (Fig. 4). When the robot 
was on duty, an average of 36 %, 40 %, and 24 % of the time 
was spent on cart pushing, item picking, and item sorting (Fig. 
4).  

TABLE I.  COMPARISON OF EFFICIENCY, STABILITY, AND POSTURE MEASURES (MEANS AND STANDARD DEVIATIONS) IN THREE GROCERY TASKS (WALKING, 
ORDER PICKING, AND CHECKOUT). 

Tasks 
 

Measures 

Cart Pushing Item Picking Item Sorting  

No Robot With Robot p-value No Robot With Robot p-value No Robot With Robot p-value 

Efficiency 
Task Completion Time (s) 40.20 (7.06) 44.14 (8.01) 0.002 np 59.44 (49.24) 50.82 (21.67) 0.615 np 29.94 (7.77) 29.51 (6.83) 0.908 np 

Motion Speed (m/s) 0.51 (0.04) 0.49 (0.04) 0.014 0.16 (0.04) 0.14 (0.03) 0.040 np 0.14 (0.04) 0.14 (0.04) 0.969 np 

Stability 
Sample Entropy 0.79 (0.08) 0.82 (0.09) 0.010 0.51 (0.13) 0.55 (0.11) 0.061 0.53 (0.17) 0.50 (0.17) 0.202 

SPARC -3.05 (0.21) -3.15 (0.23) 0.006 np -3.88 (0.59) -3.89 (0.54) 0.969 np -4.10 (0.63) -4.21 (0.76) 0.523 

Posture 

Hip Flexion (°) 16.76 (6.38) 15.57 (9.58) 0.511 np 18.74 (8.69) 15.74 (10.93) 0.010 np 14.45 (9.48) 11.25 (11.81) 0.010 

Knee Flexion (°) 21.27 (4.96) 19.19 (5.67) 0.002 15.07 (7.30) 11.69 (7.16) 0.058 np 10.21 (6.29) 8.62 (7.88) 0.134 

Ankle Flexion (°) 7.53 (2.51) 6.74 (2.06) 0.004 5.47 (3.18) 5.12 (3.71) 0.671 np 5.15 (5.17) 4.57 (4.13) 0.235 

np: Instead of ANOVA, non-parametric analysis (Freidman test with participant as the blocking factor) was employed.  

 

 
Fig. 3. The trajectories of one participant (#3) under both robot conditions. 
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Fig. 4. Amount of time spent on tasks of cart pushing, item picking, and item 

sorting in two robot condition. 
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B. Task Efficiency Measures 

There were significant differences found in the task 
efficiency measures. According to Table 1 and Fig. 5, when the 
robot was present in the same working space, participants spent 
a longer period of time (mean: 44.14 s) pushing the cart and 
walking between shelves, compared to the baseline “no robot” 
condition (mean: 40.20 s) (𝜒 (1) = 9.34, p = 0.002). During the 
“with robot” condition, their motion speed was also observed to 
decrease in both of the cart pushing (0.51 m/s vs. 0.49 m/s, 
F(1,68) = 6.36, p = 0.014) and item picking tasks (0.16 m/s vs. 
0.14 m/s, 𝜒 (1) = 4.20, p = 0.040), compared to the baseline. No 
significant differences in task efficiency measures were 
identified between the two robot conditions during the item 
sorting task. 

C. Stability Measures 

Significant changes in two stability measures revealed the 
effect caused by different robot conditions. Specifically, when 
compared to the “no robot” condition, the “with robot” condition 
induced an increase in sample entropy (0.79 vs. 0.82, F(1,68) = 
7.11, p = 0.010) and a reduction in SPARC (-3.05 vs. -3.15, 
𝜒 (1) = 7.54, p = 0.006) during the cart pushing task. The 
stability measures showed no significant changes during the 
item picking and sorting tasks. 

D. Posture Measures 

In terms of posture measures, when the participants pushed 
the cart and walked between shelves with the robot on duty, their 
average knee (mean: 19.19	°, F(1,68) = 10.79, p = 0.002) and 
ankle (mean: 6.74	°, F(1,68) = 8.77, p = 0.004) flexion angles (in 
the sagittal plane) were lower than the corresponding flexion 
angles under the “no robot” condition (knee mean: 21.27	°; ankle 
mean: 7.53	°).  

When conducting the item picking task with the presence of 
the robot, participants displayed a decreased hip sagittal flexion 
(mean: 15.74	°, 𝜒 (1) = 6.72, p = 0.010), when compared to the 
baseline “no robot” condition (mean: 18.74	°).  

During the item sorting task, participants reduced their 
sagittal hip flexion (mean: 11.25	°, F(1,68) = 6.96, p = 0.010) 
under the “with robot” condition, when compared to the “no 
robot” condition (mean: 14.45	°). 

IV. DISCUSSION 

The purpose of this study was to investigate individuals’ 
physical responses to robots that work closely with them in the 
retail environment. Participants’ physical responses in terms of 
task efficiency, motion stability, and lower-body posture can be 
revealed by comparing the motion data between two robot 
conditions when completing the grocery shopping tasks. 

A. Effect of the Retail Robot 

Preliminary results show that participants spent more time 
traversing between shelves (p = 0.002) with a reduced walking 
speed (p = 0.014) when the robot was presented in the same 
working space (Fig. 5). One possible explanation can be: upon 
perceiving the robot, participants slowed down or even stopped 
their shopping cart, either subconsciously or intentionally, to 
plan/adjust their path in accordance with the moving robot. This 
statement is corroborated by the differences in the percentage of 
time participants spent “slow walking” (<0.05 m/s) during the 
cart pushing tasks: participants' motion speed was less than 0.05 
m/s around 1.3% of the time in the “with robot” condition, 
compared to 0.8% in the "no robot" condition. And interestingly, 
when moving from shelf 3 to shelf 4 and from shelf 4 to shelf 5, 
the amount of time that participants' motion speed was less than 
0.05 m/s was observed to be 1% more in the "with robot" 

 
Fig. 5. Participants’ efficiency, stability, and posture changes caused by the collaborative robot. Data were presented as means and 95 % confidence intervals. 
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condition than in the "no robot" condition. When walking from 
shelf 3 to shelf 4, participants' vision (i.e., the sight of view) may 
be obscured by shelf 4 for a short period of time, causing them 
to slow down and verify the position of the robot. And when 
traveling from shelf 4 to shelf 5, the interactions between 
participants and the retail robot may be the most frequent, 
forcing them to slow down or stop to avoid the passing robot.  

Participants' motion stability during the cart pushing task 
was also influenced by the retail mobile robot, as evidenced by 
a larger sample entropy (p = 0.010) and a lower SPARC (p = 
0.006). Sample entropy was used to describe human postural 
control, especially the regularity of human motion [28], [35]. 
When the value of sample entropy sits near zero, it indicates the 
corresponding motion has a high regularity and its future 
patterns are likely to be comparable to the previous observations 
[36]. And the SPARC measures the smoothness of the 
movement [37], with a lower value indicating less smooth 
movement. In this study, larger sample entropy and lower 
SPARC under the “with robot” condition implied that 
participants’ moving patterns contained certain unpredictable 
and sudden (i.e., jerkier motion) components during cart pushing 
tasks, and these components were most likely caused by direct 
or indirect interactions between participants and the retail robot. 

Additionally, when perceiving the mobile robot as active on 
duty, participants flexed less of their knees (p = 0.002) and 
ankles (p = 0.004) during the cart pushing task and less of their 
hips during the item picking and sorting tasks (p = 0.010 for 
both). Smaller knee flexion [38], [39] and ankle (dorsi-)flexion 
[40], [41] angles were reported during dual tasks that engaged 
walking/running and other concurrent cognitive tasks. The 
findings from this study were consistent with previous dual-task 
studies. Participants’ dual tasks, which included walking and 
monitoring (and perceiving) the position and motion of the 
mobile robot, took an obvious influence on their body postures 
(the knee and ankle flexions). In addition to that, individuals 
flexed their hips less throughout the item picking and sorting 
tasks. A more erect standing posture can be one of the 
explanations for this observation. Participants may choose to 
stand as straight as possible in order to occupy the least amount 
of space in the environment, minimizing potential collisions 
with the retail robot. 

B. The difference in physical response between tasks 

Another noteworthy finding from this study is that the 
physical responses of participants to the robot varied between 
tasks. The mobile robot in a retail environment negatively 
affected participants' walking pace and motion stability during 
the cart pushing task but showed less effect on those during the 
item picking and sorting tasks. Meanwhile, when the mobile 
robot was presented in the same space, participants' posture 
adaptation focused more on the distal segments (i.e., knees and 
ankles) during the cart pushing task and focused more on the 
proximal segments (i.e., hip) during the item picking and sorting 
tasks. The difference in the nature of these tasks can be ascribed 
to the physical response distinction. The cart pushing task 
required participants to maneuver the cart between shelves and 
needed more locomotion control capability (i.e., walking) from 
them. Whereas the item picking and sorting tasks were 
conducted in a standing (or bending) posture, which demanded 

less locomotion control capability but more alternative skills 
(i.e., item searching and sorting skills).  

C. Limitations and Future Work 

Three limitations were highlighted here to aid in the 
interpretation of the results. First, the participants recruited in 
this pilot study only reflected a portion of the demographics of 
all retail customers. A sampling strategy to include people in a 
wider age range and a broader cultural background could better 
represent the population of retail customers, strengthening the 
study’s generalizability. Second, due to the research interest of 
this pilot study, only motion patterns were examined between 
the “no robot” and “with robot” conditions. Follow-up studies 
could expand the research scope by looking into the effect of 
robots on individuals’ other responses (e.g., task accuracy & 
attention allocation). And last, although the appearance of the 
retail environment (i.e., items display and shelf layout) was 
simulated in high fidelity, the experiment site was relatively 
quieter than the actual retail setting. More realistic background 
noise could be applied to the experiment site during the 
experiment in future studies. 

V. CONCLUSIONS  

In summary, the mobile retail robot negatively affected 
participants' walking pace and motion stability during the 
shopping tasks that required human locomotion. The frequent 
interactions between the robot and humans in the retail setting 
induced participants’ posture adaptation in the distal segments 
(i.e., knees and ankles) during locomotion-involving tasks and 
in the proximal segments (i.e., hips) during tasks that demanded 
item searching and sorting skills.  
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