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How Do Humans Adjust Their Motion Patterns in
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Abstract— In the retail environment, mobile robots start to
serve as customer helpers and human worker assistants, which
necessitates a safe, seamless, and affective human-robot
interaction. Individuals’ physical responses during those
interactions become crucial factors to consider in order to improve
robots’ functionality and system productivity. The purpose of this
study was to assess individuals’ physical responses to mobile
robots in a typical retail environment. Eight participants were
recruited to complete shopping tasks (i.e., cart pushing, item
picking, and item sorting) with and without a mobile robot.
Biomechanics analysis showed that participants spent more time
walking between shelves with a reduced walking speed and they
demonstrated deteriorated walking stability with the mobile robot
in the same space. Meanwhile, the mobile robot induced more
posture adaptation in participants’ distal segments (knee and
ankle) during cart pushing and more posture adaptation in their
proximal segments (hip) during item searching and sorting tasks.
In addition, this study revealed that the mobile robot had a greater
impact on participants’ locomotion activities (walking) rather
than other activities (item searching and sorting).
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Environment, Biomechanics Analysis, Locomotion

Safety,

I. INTRODUCTION

Robots have been increasingly omnipresent in work and life,
as evidenced by its $ 43.8 billion worldwide global market share
(for industrial robots) in 2021 [1]. Manufacturing [2], [3],
agriculture [4], [5], healthcare [6], [7], and customer service [§],
[9], are among the major fields for which robots and robotics
technology are being developed. Historically, human workers
have been physically separated from robots by safeguards (e.g.
physical barriers or sensor-based systems) [10]. The designated
physical safeguards, however, have hampered the utilization of
robots in industries that demand frequent and direct interactions
between humans and robots in shared space and close proximity.
Collaborative robots (cobots) emerge as the times require in
industries where direct human-robot interaction is mandatory.
The warehousing, wholesale, and retail trade (WRT) industry
[11]-[13] is one of the good examples in which the system
efficiency can be best achieved using cobots, when the cobots
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take charge of repetitive and mundane tasks (e.g., cleaning,
disinfection, inspection, delivery) and the human workers focus
on tasks that need advanced environment perception, decision
making, or object manipulation that beyond the capability of
current robotic technologies [14], [15]. In this case, a safe,
seamless, and affective human-robot interaction (HRI) becomes
a critical research topic and the whole human-robot system can
only be embraced if the safety of human workers and the
productivity of the system are well ensured and perceived.

A large body of literature put focuses on the psychological
aspects of HRI, for example, in terms of trust [16], [17],
acceptance [14], [18], and other safety bounds [19], to calibrate
humans’ perception of the advanced technology. However,
working with cobots may not only cause individuals’
psychological adaptations but also induce their physical
responses to some extent, especially when the cobots share
space with them in close proximity. The purpose of this study
was to fill current research gaps by investigating individuals’
physical responses to mobile robots that work closely with them.
A retail environment was chosen as the specific application
domain. Individuals’ physical responses (i.c., gait and posture)
to the interaction were measured and compared by their motion
patterns with and without a cobot in the same working
environment. The following are the research question and the
corresponding hypotheses:

Research Question: What aspects of personal physical
responses can be induced by a mobile cobot in a robot-populated
environment?

Research Hypothesis 1: The mobile cobot can alter
personal gait and posture in a robot-populated environment, as
indicated by individuals’ spatiotemporal and kinematics
parameters.

Research Hypothesis 2: The influence of the mobile cobot
on individuals’ gait and posture differs depending on the tasks
that humans undertake in a robot-populated environment.
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II. METHODS

A. Participants

Eight adults (three females, 19.4 + 2.0 years old, 176.7 +
10.2 cm in height) were recruited from the surrounding
community. Participants who had no injuries that required
medical attention in the last six months were scheduled for the
experiment. Seven of the eight participants claimed to be right-
handed, while one reported being ambidextrous. The University
of Florida Institutional Review Board authorized this study
(IRB202002765).

B. Apparatus

The experiment environment: A high-fidelity retail
environment was simulated (Fig. 1A). The facility is equipped
with configurable walls, shelves, and essential accessories (e.g.,
100+ grocery items, one checkout machine, and one shopping
cart) that can be reconfigured to meet the most of the layout
adjustment demands seen in a retail store.

Motion capture system: A wireless wearable motion capture
system (MVN Awinda, Xsens Technologies BV, Enschede, The
Netherlands) was employed to record participants’ positions and
body postures during the experiment. This system includes a
total of seventeen Inertial Measurement Unit (IMU) sensors (~
10 g per sensor) that can be affixed to the top of participants'
outfits in accordance with the manufacturer's instructions (Fig.
1B) [20]-[23]. Throughout the study, the sampling rate of the
motion capture system was set at 60Hz.

The mobile robot platform: The retail robot was custom-built
with a Fetch Freight Base (Fetch Robotics, Inc., San Jose,
California) and a URS robot manipulator (Universal Robots,
Odense, Denmark), measuring 0.508 x 0.559 x 1.295 m (Fig.
1C). The platform incorporated a 2D LiDAR sensor, a webcam,
a 6D IMU sensor, and two wheel-encoders; and its base was
controlled by the Robot Operating System (ROS) with an Intel
i3 CPU, 8 GB RAM, and a 120 GB SSD. The robot was
programmed to drive autonomously between predefined
waypoints, avoiding obstacles and rerouting paths. The
maximum speed of the robot was set at 1.0 m/s for the
experiment, with the URS powered off and stayed retracted.

B

e

Fig. 1. Experiment site (A), sensor setup (B), and robot apperance (C).

C. Experimental Design

The study employed a within-subject design to evaluate the
influence of a retail robot on customers’ motion patterns during
grocery shopping. The independent variable was the robot
condition (“no robot” vs. “with robot”). The dependent variables
of interest in this article contained measures that depict the
motion patterns of each participant, including features of task
efficiency, stability, and posture while grocery shopping. During
the experiment, participants were instructed to complete ten
grocery shopping tasks with (#:5) and without (#:5) the retail
robot. The grocery shopping task was designed as a series of
continuous actions, which included: (1) pushing a shopping cart
between shelves (i.e., cart pushing task), (2) scanning and
picking eight items, one from each shelf (i.e., item picking task),
and (3) sorting the items into two bins at the checkout machine
(i.e., item sorting task) (Fig. 2). At the beginning of each trial, a
new list including all the items of target was given to the
participants. And the participants were asked to pick up items in
the correct sequence using their dominant hand.

During the trials in which the participants performed the
grocery shopping task alongside the mobile robot (i.e., the “with
robot” condition), the retail robot was designed to circle the
“store”, representing a platform realizing functions (e.g.,
disinfection, cleaning, and inventory management) in retail
environments. The waypoints of the robot were predefined to
ensure a frequent interaction between the robot and the
participants (Fig. 2). And the order of the robot condition was
presented at random to prevent systematic errors.

< &
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item picking
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ﬂ Task starting point —> Cart pushing task
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@® Item picking task @ Item sorting task

&
- 71 Origin and designed path of

Robot: T
s 1= 5 21 the robot circling the store

Fig. 2. Illustrations of the simulated retail environment, participants’ grocery
shopping tasks, and the path robot took to circle the store.
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D. Procedures

The participants were first asked to sign the informed
consent form and provide demographic information including
their age, gender, weight, and height (shoes on). Following that,
the motion capture sensors were attached to the participant's
body and the system was calibrated [24]. The participants were
then given ten grocery shopping tasks to complete. To avoid
fatigue, a mandatory rest was designed between each trial.

E. Data Analysis

Data processing: Motion data collected by sensors was
processed using custom MATLAB code [25], [26] to derive
three categories of gait and posture features (i.e., task efficiency,
stability, and posture) from the cart pushing, item picking, and
item sorting tasks. The task efficiency measure included task
completion time (i.e., the period of time to accomplish the
action) and walking speed (i.e., the distance traveled retrieved
from the pelvis sensor divided by task completion time). In
terms of stability measures, the sample entropy of the resultant
acceleration was extracted from the pelvis motion data [27]—
[29]. Another stability measure, spectral arc length measure
(SPARC), was chosen to describe the motion smoothness of the
trunk [30], [31]. The average values of the participants’ right
hip, knee, and ankle flexion angles in the sagittal plane were
calculated for each of the three shopping tasks and treated as
posture measures [32].

Statistical analysis: Using R studio (R version 3.6.0), one-
way repeated ANOVAs were performed if ANOVA model
assumptions (e.g., normality and homogeneity of the model
residuals) were satisfied. The robot condition was set as the
independent variables, with motion pattern measures being the
dependent variables, and the participant being the random effect.
In case of unsatisfied model assumptions (e.g., the model
residuals were not normally distributed), the Friedman tests for
repeated measurement (participant being the blocking factor)
were applied using the package “muStat” [33], [34]. The
significance level of a = 0.05 was used across all tests.

III. RESULTS

A. Data Description

This study included a total of 77 trials from -eight
participants, 40 of which were collected in the "no robot"

condition and the remaining 37 in the "with robot" condition
(motion data of three trials were discarded because of poor data
quality). In general, during the grocery shopping task, the
participants walked 21.31 + 3.01 meters when there was no
robot and 21.82 + 3.15 meters in the “with robot” condition. Fig.
3 depicts the trajectories of one sampled participant (#3) under
both robot conditions for demonstration purposes, while other
participants showed consistent patterns.

With Robot

No Robot

Fig. 3. The trajectories of one participant (#3) under both robot conditions.

The average time to complete the grocery shopping task was
129.58 + 55.04 and 124.46 + 31.83 seconds, respectively in the
“no robot” and “with robot” conditions. In the “no robot”
condition, the time spent on cart pushing, item picking, and item
sorting tasks accounted for roughly 34 %, 41 %, and 25 % of the
total time spent on the shopping task (Fig. 4). When the robot
was on duty, an average of 36 %, 40 %, and 24 % of the time
was spent on cart pushing, item picking, and item sorting (Fig.
4).

No Robot With Robot
Item
Cart Sorting
Pushing 24% Ca["t
34% Pushing
36%
Item Item
Picking Picking

41% 40%

Fig. 4. Amount of time spent on tasks of cart pushing, item picking, and item
sorting in two robot condition.

TABLE L. COMPARISON OF EFFICIENCY, STABILITY, AND POSTURE MEASURES (MEANS AND STANDARD DEVIATIONS) IN THREE GROCERY TASKS (WALKING,
ORDER PICKING, AND CHECKOUT).
Tasks Cart Pushing Item Picking Item Sorting
m No Robot | With Robot | p-value No Robot With Robot | p-value | No Robot | With Robot | p-value
) Task Completion Time (s)[ 40.20 (7.06) | 44.14 (8.01) | 0.002 "™ | 59.44 (49.24) | 50.82 (21.67) | 0.615™ |29.94 (7.77)|29.51 (6.83) | 0.908™
Fificiency Motion Speed (m/s) 0.51 (0.04) | 0.49 (0.04) | 0.014 0.16 (0.04) | 0.14 (0.03) | 0.040™ | 0.14 (0.04) | 0.14 (0.04) | 0.969™
- Sample Entropy 0.79 (0.08) | 0.82 (0.09) | 0.010 0.51(0.13) | 0.55(0.11) 0.061 0.53(0.17) | 0.50(0.17) | 0.202
Stabiliey SPARC -3.05 (0.21) | -3.15(0.23) | 0.006™ | -3.88(0.59) | -3.89 (0.54) | 0.969™ |-4.10(0.63) | -4.21(0.76) | 0.523
Hip Flexion (°) 16.76 (6.38) | 15.57 (9.58) | 0.511" | 18.74 (8.69) |15.74 (10.93) | 0.010™ | 14.45 (9.48) [11.25 (11.81)| 0.010
Posture | Knee Flexion (°) 21.27 (4.96) | 19.19 (5.67) | 0.002 15.07 (7.30) | 11.69 (7.16) | 0.058™ |10.21 (6.29) | 8.62(7.88) | 0.134
Ankle Flexion (°) 7.53 (2.51) | 6.74 (2.06) | 0.004 5.47(3.18) | 5.12(3.71) | 0.671™ | 5.15(5.17) | 4.57 (4.13) | 0.235

": Instead of ANOVA, non-parametric analysis (Freidman test with participant as the blocking factor) was employed.
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Fig. 5. Participants’ efficiency, stability, and posture changes caused by the collaborative robot. Data were presented as means and 95 % confidence intervals.

B. Task Efficiency Measures

There were significant differences found in the task
efficiency measures. According to Table 1 and Fig. 5, when the
robot was present in the same working space, participants spent
a longer period of time (mean: 44.14 s) pushing the cart and
walking between shelves, compared to the baseline “no robot”
condition (mean: 40.20 s) (y2(1) = 9.34, p = 0.002). During the
“with robot” condition, their motion speed was also observed to
decrease in both of the cart pushing (0.51 m/s vs. 0.49 m/s,
F(1,68) = 6.36, p = 0.014) and item picking tasks (0.16 m/s vs.
0.14 m/s, y2(1)=4.20, p = 0.040), compared to the baseline. No
significant differences in task efficiency measures were
identified between the two robot conditions during the item
sorting task.

C. Stability Measures

Significant changes in two stability measures revealed the
effect caused by different robot conditions. Specifically, when
compared to the “no robot” condition, the “with robot” condition
induced an increase in sample entropy (0.79 vs. 0.82, F(1,68) =
7.11, p = 0.010) and a reduction in SPARC (-3.05 vs. -3.15,
x2(1) = 7.54, p = 0.006) during the cart pushing task. The
stability measures showed no significant changes during the
item picking and sorting tasks.

D. Posture Measures

In terms of posture measures, when the participants pushed
the cart and walked between shelves with the robot on duty, their
average knee (mean: 19.19 °, F(1,68) = 10.79, p = 0.002) and
ankle (mean: 6.74 °, F(1,68) = 8.77, p = 0.004) flexion angles (in
the sagittal plane) were lower than the corresponding flexion
angles under the “no robot” condition (knee mean: 21.27 °; ankle
mean: 7.53 °).

When conducting the item picking task with the presence of
the robot, participants displayed a decreased hip sagittal flexion
(mean: 15.74°, y2(1) = 6.72, p = 0.010), when compared to the
baseline “no robot” condition (mean: 18.74 °).

During the item sorting task, participants reduced their
sagittal hip flexion (mean: 11.25°, F(1,68) = 6.96, p = 0.010)
under the “with robot” condition, when compared to the “no
robot” condition (mean: 14.45 °).

IV. DISCUSSION

The purpose of this study was to investigate individuals’
physical responses to robots that work closely with them in the
retail environment. Participants’ physical responses in terms of
task efficiency, motion stability, and lower-body posture can be
revealed by comparing the motion data between two robot
conditions when completing the grocery shopping tasks.

A. Effect of the Retail Robot

Preliminary results show that participants spent more time
traversing between shelves (p = 0.002) with a reduced walking
speed (p = 0.014) when the robot was presented in the same
working space (Fig. 5). One possible explanation can be: upon
perceiving the robot, participants slowed down or even stopped
their shopping cart, either subconsciously or intentionally, to
plan/adjust their path in accordance with the moving robot. This
statement is corroborated by the differences in the percentage of
time participants spent “slow walking” (<0.05 m/s) during the
cart pushing tasks: participants' motion speed was less than 0.05
m/s around 1.3% of the time in the “with robot” condition,
compared to 0.8% in the "no robot" condition. And interestingly,
when moving from shelf 3 to shelf 4 and from shelf 4 to shelf 5,
the amount of time that participants' motion speed was less than
0.05 m/s was observed to be 1% more in the "with robot"
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condition than in the "no robot" condition. When walking from
shelf 3 to shelf 4, participants' vision (i.e., the sight of view) may
be obscured by shelf 4 for a short period of time, causing them
to slow down and verify the position of the robot. And when
traveling from shelf 4 to shelf 5, the interactions between
participants and the retail robot may be the most frequent,
forcing them to slow down or stop to avoid the passing robot.

Participants' motion stability during the cart pushing task
was also influenced by the retail mobile robot, as evidenced by
a larger sample entropy (p = 0.010) and a lower SPARC (p =
0.006). Sample entropy was used to describe human postural
control, especially the regularity of human motion [28], [35].
When the value of sample entropy sits near zero, it indicates the
corresponding motion has a high regularity and its future
patterns are likely to be comparable to the previous observations
[36]. And the SPARC measures the smoothness of the
movement [37], with a lower value indicating less smooth
movement. In this study, larger sample entropy and lower
SPARC wunder the “with robot” condition implied that
participants’ moving patterns contained certain unpredictable
and sudden (i.e., jerkier motion) components during cart pushing
tasks, and these components were most likely caused by direct
or indirect interactions between participants and the retail robot.

Additionally, when perceiving the mobile robot as active on
duty, participants flexed less of their knees (p = 0.002) and
ankles (p = 0.004) during the cart pushing task and less of their
hips during the item picking and sorting tasks (p = 0.010 for
both). Smaller knee flexion [38], [39] and ankle (dorsi-)flexion
[40], [41] angles were reported during dual tasks that engaged
walking/running and other concurrent cognitive tasks. The
findings from this study were consistent with previous dual-task
studies. Participants’ dual tasks, which included walking and
monitoring (and perceiving) the position and motion of the
mobile robot, took an obvious influence on their body postures
(the knee and ankle flexions). In addition to that, individuals
flexed their hips less throughout the item picking and sorting
tasks. A more erect standing posture can be one of the
explanations for this observation. Participants may choose to
stand as straight as possible in order to occupy the least amount
of space in the environment, minimizing potential collisions
with the retail robot.

B. The difference in physical response between tasks

Another noteworthy finding from this study is that the
physical responses of participants to the robot varied between
tasks. The mobile robot in a retail environment negatively
affected participants' walking pace and motion stability during
the cart pushing task but showed less effect on those during the
item picking and sorting tasks. Meanwhile, when the mobile
robot was presented in the same space, participants' posture
adaptation focused more on the distal segments (i.c., knees and
ankles) during the cart pushing task and focused more on the
proximal segments (i.e., hip) during the item picking and sorting
tasks. The difference in the nature of these tasks can be ascribed
to the physical response distinction. The cart pushing task
required participants to maneuver the cart between shelves and
needed more locomotion control capability (i.e., walking) from
them. Whereas the item picking and sorting tasks were
conducted in a standing (or bending) posture, which demanded

less locomotion control capability but more alternative skills
(i.e., item searching and sorting skills).

C. Limitations and Future Work

Three limitations were highlighted here to aid in the
interpretation of the results. First, the participants recruited in
this pilot study only reflected a portion of the demographics of
all retail customers. A sampling strategy to include people in a
wider age range and a broader cultural background could better
represent the population of retail customers, strengthening the
study’s generalizability. Second, due to the research interest of
this pilot study, only motion patterns were examined between
the “no robot” and “with robot” conditions. Follow-up studies
could expand the research scope by looking into the effect of
robots on individuals’ other responses (e.g., task accuracy &
attention allocation). And last, although the appearance of the
retail environment (i.e., items display and shelf layout) was
simulated in high fidelity, the experiment site was relatively
quieter than the actual retail setting. More realistic background
noise could be applied to the experiment site during the
experiment in future studies.

V. CONCLUSIONS

In summary, the mobile retail robot negatively affected
participants' walking pace and motion stability during the
shopping tasks that required human locomotion. The frequent
interactions between the robot and humans in the retail setting
induced participants’ posture adaptation in the distal segments
(i.e., knees and ankles) during locomotion-involving tasks and
in the proximal segments (i.e., hips) during tasks that demanded
item searching and sorting skills.
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