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Abstract— The overarching goal of this work is to
understand how human locomotion adapts to mobile
collaborative robots (cobots) that are designed to complement
human well-being. This understanding will provide relevant
inherent safe and human-centered design guidance for future
mobile cobot systems. In this study, we will focus on the
warehousing, wholesale, and retail trade (WRT) industry,
where in general human workers are exposed to extensive
experience working with mobile cobots, investigating the human
locomotion safety in this environment. Eight participants were
recruited to simulate a grocery shopping task with and without
the mobile robot nearby. The walking trajectory of all
participants revealed that the mobile robot complicated
participants walking path selection, compared to the baseline
“No Robot” condition. Meanwhile, participants lowered their
walking speed and showed a proactive reaction to the
approaching robot by initiating and ceasing the walking actions
more smoothly. In conclusion, findings confirmed the values of
mobile cobots in complex occupational settings and suggested
more a systematic approach to ensure these intelligent systems’
inherent safety.

Keywords—Mobile Robots; Human-Robot Interaction;
Loc tion Safety; Hi entered Path Planning

1. INTRODUCTION

The declaration “a robot in every home” by Bill Gates a
decade and a half ago [1] is becoming a reality: ground-based
autonomous transportation systems, exoskeleton suits, and
airborne smart drones are deployed ubiquitously. While our
focus has been drawn on risks and injuries arising from
autonomous cars crashing [2], [3] or muscle strains and
fractures caused by improper exoskeleton designs [4]-[6],
much less attention has been paid to dangers arising from the
imminent arrival of mobile collaborative robots (cobots) that
share the floor with us. These mobile cobots are invented to
improve human well-being by simplifying task flow or
partially taking over human operations, such as service
assistants [7], surveillance patrolling [8], and delivery [9].
Traditionally, safety in robotics applications (e.g.,
manufacturing assembly lines) can be maintained by
separating the working space between humans and robots.
Nevertheless, mobile cobots, which perform work side-by-
side with people, have created unprecedented incidents which
pose new safety challenges. Previous efforts on mobile cobots'
safety have been primarily focused on improving robotics
control methods that avoid direct physical contact. In this
work, the transient influence of mobile cobot deployment on
surrounding pedestrians’ locomotion safety (i.e., risk of slips,
trips, and falls) will be systematically investigated.

During locomotion (i.e., walking), a dynamic interplay is
established between the (1) perception systems such as the
vision, vestibular, and proprioception, (2) neuromuscular
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systems that control posture, gait and balance, and (3) the
environment. A prompt and accurate response to this
information stream appears to be indispensable for falling
injury prevention. Worldwide, falls represent one of the
leading causes of disability [10]-[12], and the second leading
global cause of accidental death [10], [13], [14]. In developed
countries, slips, trips, and falls (STFs) contribute between 20
and 40% of disabling workplace injuries [15]-[17]. STFs were
also the leading reason for unintentional injury emergency
department visits, comprising 21% of such visits [18], [19].
Furthermore, based on a recent nationwide large-scale study,
despite the general improvements in medical treatments, as a
driver of morbidity and mortality, STFs continue to pose an
unresolved threat to society [10]. A similar trend can also be
observed in occupational settings, despite the fact that
automation and robotics have been consistently reducing the
incident rates of workplace injuries caused by overexertion
and stuck by/against, the incident rate of STFs has been
largely unchanged throughout the years [20], [21]. All of these
indicate that a gap needs to be filled in terms of how robotics
and Artificial Intelligence (Al) methods can be leveraged for
STF prevention, especially in the coming ubiquitous robot era.
In this work, the purpose of this study was to assess
individuals’ movement and gait responses to mobile cobots
that work closely with them in a complex and unstructured
environment. Findings will be of great importance for
advancing our understanding of assured robotics as well as
how inherent safety can be guaranteed from the robotics
design and Human-Robot Interaction (HRI) point of view. As
an emerging technology, despite the huge potential, not too
many business sectors have accumulated a large critical mass
that has long-term experience with mobile cobots. In this
study, we will focus on the warehousing, wholesale, and retail
trade (WRT) industry, as WRT workers, in general, have
extensive experience working with mobile cobots compared
to other business sectors (such as Amazon Kiva robots and
Walmart AlphaBots), investigating the human locomotion
safety in this environment.

Therefore, the purpose of this study is to prove the concept
that human behavior is physically affected by the presence of
a mobile cobot during grocery shopping, further impacting
human locomotion safety in the environment. The research
question and proposed hypothesis are listed as follows:

Research Question: Does the presence of a mobile cobot
influence the motion behavior of a customer in a retail
environment?

Research Hypothesis: The presence of a mobile cobot
changes the motion behavior of a human in a retail
environment, as indicated by the spatiotemporal walking
parameters.
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II. METHODS

A. Participants

A total of eight healthy adults (five males and three
females, 19.4 + 2.0 years old, 66.0 + 10.1 kg, and 176.7 +
10.2 cm in stature) were recruited from the University of
Florida. Seven of the participants self-reported being right-
handed, whereas one claimed to be ambidextrous. All
participants provided written informed consent after they
confirmed they had no neurological or musculoskeletal
disorders that would affect their walking behaviors. The study
was approved by the University of Florida Institutional
Review Board (IRB Project #: IRB202002765).

B. Experimental Site and Instruments

To simulate a high-fidelity retail environment, a research
facility with configurable shelves and a selection of
commercial items was employed (Fig. 1). The experiment site
has a dimension of 6.41 m by 8.62 m, with six shelves, one
checkout machine, and one shopping cart in it. To track human
motion behavior, a full set of seventeen inertial measurement
unit (IMU) sensors (MVN Awinda, Xsens Technologies BV,
Enschede, The Netherlands) were attached to participants’ full
body, from head to toe (Fig. 2), following the manufacturer’s
instruction manual[22], [23]. These sensors are small in size
and light in weight (36mm x 24.5 mm x 10 mm, 10 g), making
them non-intrusive for participants during grocery shopping
tasks [24]. The sensor on the pelvis was selected in this study
because it is nearly equivalent to the center of mass of the
human body [25]. The sampling frequency of the motion
recordings was set at 60 Hz. A customized mobile robot
platform was utilized in this study to represent the cleaning
robot present in the retail environment (Fig. 2). This robot
platform is comprised of a Fetch Freight Base (Fetch
Robotics, Inc., San Jose, California) and a URS robot
manipulator (Universal Robots, Odense, Denmark) that runs
on Robot Operating System (ROS). The dimension of the
robot platform is 0.508 m in length, 0.559 m in width, and
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1.295 m in height, whereas the maximum speed of the mobile
robot was limited to 1.0 m/s for safety concerns.

C. Procedures

The experiment was conducted in a simulated retail
environment with high fidelity, with one mobile cobot, six
grocery shelves, one checkout machine, and one shopping cart
present simultaneously.

Upon arrival, the participant signed the informed consent
after they were briefed on the details of the study. The
researchers then inquired about demographic data (age,
gender, weight, height & dominance), measured body
dimensions, finished sensor attachment, and calibrated the
motion tracking system in sequence. Following that, the
participant was instructed to perform the grocery shopping
tasks, which are frequent among customers and employees in
a retail context. The grocery shopping tasks were essentially
item picking and sorting tasks, in which the participant pushed
a shopping cart (45 kg) and retrieved eight specified items
from shelves using their dominant hand. These eight specified
items were chosen at random from the shelf and were
documented in a list for participants’ reference during tasks.
After collecting all items, the participant returned to the
checkout machine and sorted all items into two bins.

Each participant completed a total of ten trials, five of
which were under “No Robot” conditions and the other five
under “With Robot” conditions. During the “No Robot”
condition, participants traversed between shelves to pick and
sort items according to the item lists (Fig. 1, blue dotted line).
During the “With Robot” condition, participants were
instructed to finish the same tasks, but with a robot looped
around the shelves (Fig. 1, red dotted line). The robot
simulated a mobile platform in the retail environment to
disinfect, clean, and inspect its surroundings. It was
programmed to move between waypoints automatically in
such a way that the participant and the robot frequently
interacted. Obstacle avoidance and path replanning

Participant’s origin .
P & Coordinate axes of

the human motion

Participant’s shortest path
capture system

Fig. 1. The grocery shopping task and the motion directions of participants and the robot.
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Fig. 2. Sensor setup and demonstration of the customized mobile robot
platform.

algorithms, as well as the researchers’ necessary manual
remote control of the robot, were applied to ensure that no
collision injuries would occur throughout the experiment. In
each robot condition, participants utilized identical item lists.
And each robot condition was set to be repeated five times
with the aim to prevent potential mental or physical fatigue.
The order of robot conditions was randomly presented across
participants.

D. Data Processing

Data processing was performed using MATLAB scripts
(MATLAB R2019b, MathWorks, Natick, MA, USA). The
sensor on the pelvis was selected in this study because it is
nearly equivalent to the center of mass of the human body
[25]. Before parameter computation, the pelvis position data
were filtered with a low-pass Butterworth filter (2" order, 6

TABLE L.

Hz cut-off frequency, zero lag) [26]-[28]. The coordinate
system (i.e., the origin and axis directions) of the pelvis
position data was calibrated to be the same across all
participants (Fig. 1).

In this study, only the subtask of traversing between
shelves was included to be analyzed; other subtasks, such as
item picking, were not targeted and were excluded by
identifying critical events (i.e., both feet on the ground near
shelves & hands reaching to items) with the help of the
visualization from the IMU data collection software (Xsens
MVN Analyze 2019, Xsens Technologies BV, Enschede,
Netherlands). Eight parameters were calculated to quantify
human motion behavior, which is a potential indicator of
human locomotion safety, when participants traversed
between shelves using methods described by Rudenko and
colleagues [29]: 1) walking time, 2) walking distance, 3)
motion speed, 4) motion acceleration, 5) trajectory curvature,
and 6-8) the trial-wise standard deviation values of the motion
speed, motion acceleration, and trajectory curvature. The
descriptions of each human motion parameter are shown in
Table 1.

E. Statistical Analysis

The changes in dependent variables, eight human motion
parameters, were evaluated by one-way analyses of variance
(ANOVA) using R studio. The model included the robot
condition (“No Robot” vs. “With Robot”) as the within-
subject factor and the participant as the random effect. The
significance level was set at 0. = 0.05.

III. RESULTS

A. Trajectory Comparison

Fig. 3 shows the comparison of walking trajectories of all
participants finishing the grocery shopping task. In general,
when participants walked in the presence of the robot, their
walking path was observed to be more complicated and less
cluttered, compared to the baseline (“No Robot” condition).

DESCRIPTION OF EIGHT MOTION PARAMETERS

Motion Parameters

Description

Walking time (sec)

Walking time participants used to traverse between shelves. The time spent on item browsing and
order picking was not taken into account.

Walking distance (m)

Walking distance participants took to traverse between shelves.

Motion speed (m/s) intervals in a trial.

Motion speed, calculated by the pelvis sensor, average values of speed measured at one-second time

Motion acceleration (m/s?)

Motion acceleration, calculated by the pelvis sensor, average values of resultant acceleration when
traversing between shelves in a trial.

Trajectory curvature (m™)

The average trajectory curvature of the pelvis in a trial, trajectory curvature was calculated by the first,
middle, & last points of the four-second time intervals.

Motion speed STD (m/s)

The standard deviation of the motion speed in a trial.

Motion acceleration STD (m/s?)

The standard deviation of the motion acceleration in a trial.

Trajectory curvature STD (m™)

The standard deviation of the trajectory curvature in a trial.
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Fig. 3. Trajectory comparison between the “No Robot” and “With

Robot” conditions.

Body Movement Pattern Comparison

Significant differences were observed when participants
traversed between shelves under two robot conditions (Table
2 & Fig. 4). On average, participants spent more period of time
(F (1, 68) = 8.13, 7],2, = 0.11, p-value = 0.01) traversing
between shelves with the presence of a robot (mean: 44.36
seconds), when compared to the “No Robot” condition (mean:
40.08 seconds). The presence of a robot also brought on
decreases in participants’ motion speed (F (1, 68) = 10.96, n;
= (.14, p-value < 0.001) and motion acceleration (F (1, 68) =
11.28, 7712, = 0.14, p-value < 0.001) (mean speed: 0.49 m/s;
mean acceleration: 1.08 m/s?), compared to the “No Robot”
condition (mean speed: 0.53 m/s; mean acceleration: 1.14
m/s?). The standard deviation measure of participants’ motion
acceleration was also affected, indicated by a reduction of
values from 0.68 m/s? to 0.66 m/s*> when there was a robot
present in the experiment site against the ‘“No Robot”
condition (F (1, 68) = 6.08, n3 = 0.08, p-value = 0.02).
Walking distance, trajectory curvature, and the other two
standard deviation (STD) measurements were not
significantly affected by the presence of the robot.

IV. DISCUSSION

This study aimed to prove the concept that human motion
is physically affected by the presence of a mobile cobot during
grocery shopping, and the hypothesis is confirmed by the
results in Table 2. With a robot looped around in the retail
environment, participants spent more time traversing between
shelves (p-value = 0.01), accompanied by significant
decreases in motion speed (p-value < 0.001), motion
acceleration (p-value < 0.001), and the standard deviation
values of motion acceleration (p-value = 0.02), when
compared to the “No Robot” condition.

The 11 % increase in walking time (40.08 seconds vs.
44.36 seconds) and 8 % decrease in walking speed (0.53 m/s
vs. 0.49 m/s) under the “With Robot” condition indicate that
participants changed their walking pattern to a slower pace,
either proactively or reactively, when there was a robot in the
scene. Combined with the fact that the standard deviation of
motion speed did not change significantly under the “With
Robot” condition (p-value = 0.68), it is highly likely that
changes in participants’ motion speed were smooth and global

TABLE II. MEAN (STANDARD DEVIATION) OF EIGHT MOTION PARAMETERS AND THE EFFECT OF ROBOT CONDITION ON THESE MOTION PARAMETERS.
Robot Conditions
Motion Parameters
No Robot With Robot p-value
Walking time (sec) 40.08 (7.02) 44.36 (8.00) 0.01
Walking distance (m) 21.41 (2.83) 22.17 (3.24) 0.15
Motion speed (m/s) 0.53 (0.05) 0.49 (0.05) <0.001
Motion acceleration (m/s?) 1.14 (0.12) 1.08 (0.11) <0.001
Trajectory curvature (m™) 1.56 (1.05) 1.69 (1.63) 0.56
Motion speed STD (m/s) 0.24 (0.02) 0.23 (0.03) 0.68
Motion acceleration STD (m/s?) 0.68 (0.10) 0.66 (0.08) 0.02
Trajectory curvature STD (m™) 2.15(2.49) 3.21 (6.69) 0.34
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Fig. 4. Motion comparison between two robot conditions.

throughout the trial, rather than sudden and local at certain
time points. The smooth and global changes in the motion
speed can be attributed to participants’ proactive reaction to
reduce their motion speed after they noticed the approaching
robot from a distance. Even if the robot was not that close,
they may intentionally walk slower to avoid any potential
collisions. The proactive human reaction when interacting
with challenges in the environment, not necessarily the mobile
cobots, has been observed in other studies [30], [31].

When compared to the “No Robot” condition, the
reduction in the average (p-value < 0.001) and standard
deviation (p-value = 0.02) values of participants’ motion
acceleration was also observed in the “With Robot” condition.
Motion acceleration is a measure to depict the change rate of
motion speed [32]. A lower motion acceleration implies that
participants changed their motion speed more slowly. With
that being said, the reduction of motion acceleration, whether
its average or the standard deviation value, once again
revealed that participants took a proactive reaction to the
approaching robot and initiated and ceased their walking
actions more smoothly, maybe to prevent collisions with the
robot.

There are a few limitations recognized in this study that
need to be noted. Firstly, as a pilot study, a limited sample size
of participants was involved. Only healthy college students
were recruited for this study. Individuals from varied
backgrounds (e.g., less educated populations & robotics
professionals) may have different reactions to the presence of
robots. The recruitment of participants from a more diverse
background could help the generalizability of this study.
Secondly, human-robot interaction was only compared to the
“No Robot” condition, although the comparison to human-
human interaction was likewise worthwhile. In the retail
environment, some interactions between customers and
employees may be reformed by interactions between
customers and serving robots. And the reactions of customers
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to those adjustments may be of interest to the majority of retail
stores. Therefore, to further investigate the physical reactions
of retail customers to robot-related innovations, our future
research plans include a comparison of human-robot
interaction and human-human interaction among participants
from a wider range of backgrounds.

V. CONCLUSIONS

In summary, this work is expected to establish and
characterize the user’s short-term gait adaptation and
voluntary response with mobile cobots nearby. Successful
completion of this work will enable the modeling and
validation of the potential influence of mobile cobots on
locomotion safety. Furthermore, it could serve as an estimate
of the impact and effectiveness of a human-centered robot
control algorithm in the following future experiments.

ACKNOWLEDGMENT

This material is based upon work supported by the
National Science Foundation—USA under grant # 2132936.
Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science
Foundation.

REFERENCES

[11 B. Gates, “A robot in every home,” Scientific American, vol.
296, no. 1, pp. 58-65, 2007.

[2] A.J.Mik and B. P. Bouchner, “Safety of crews of

autonomous cars,” in 2020 Smart City Symposium Prague

(SCSP, Jun. 2020, pp. 1-5.

H. M. Thakurdesai and J. Aghav, Autonomous Cars:

Technical Challenges and Solution to Blind Spots Issue.

Research gate, 2020.

J. Howard, V. V. Murashov, B. D. Lowe, and M. L. Lu,

“Industrial exoskeletons: Need for intervention effectiveness

research,” American journal of industrial medicine, vol. 63,

no. 3, pp. 201-208, 2020.

(3]

(4]

385

on June 20,2023 at 19:05:53 UTC from IEEE Xplore. Restrictions apply.



[5] G. Chini et al., “Preliminary Study of an Exoskeleton Index
for Ergonomic Assessment in the Workplace,” Wearable
Robotics: Challenges and Trends, p. 159, 2020.

Z.Zhu, A. Dutta, and F. Dai, “Exoskeletons for manual

material handling—A review and implication for construction

applications,” Automation in Construction, vol. 122, p.

103493, 2021.

A. K. Pandey, R. Gelin, and A. M. P. S. H. Robot, “Pepper:

The first machine of its kind,” IEEE Robotics & Automation

Magazine, vol. 25, no. 3, pp. 40-48, 2018.

M. Sunitha, P. D. Vinay, V. S. N. Lokesh, and B. D. Kumar,

“IP Based Surveillance Robot Using IOT,” in 2020 Fourth

International Conference on I-SMAC (IoT in Social, Mobile,

Analytics and Cloud)(I-SMAC, Oct. 2020, pp. 337-342.

A. J. Hawkins, “Thousands of autonomous delivery robots are

about to descend on US college campuses,” in THE VERGE,

2019. [Online]. Available: https://

A. H. Mokdad et al., “The state of US health, 1990-2016:

burden of diseases, injuries, and risk factors among US

states,” Jama, vol. 319, no. 14, pp. 1444-1472, 2018.

[11] N. M. Schoor, J. H. Smit, S. M. Pluijm, C. Jonker, and P.
Lips, “Different cognitive functions in relation to falls among
older persons: immediate memory as an independent risk
factor for falls,” Journal of clinical epidemiology, vol. 55, no.
9, pp. 855-862, 2002.

[12] W.R. Chang, T. K. Courtney, R. Grongvist, and Redfern,
Measuring slipperiness: Human locomotion and surface
factors. CRC Press, 2002.

[13] W. H. Organization, “Falls fact sheet [Fact sheet.” 2021.
[Online]. Available: https://www.who.int/news-room/fact-
sheets/detail/falls

[14] D. E. Lechner and E. Badr, “Slips, Trips and Falls: Is Your
Prevention Program Multifactorial?,” Jun. 2016.

[15] H. T. Yeoh, T. E. Lockhart, and X. Wu, “Non-fatal
occupational falls on the same level,” Ergonomics, vol. 56,
no. 2, pp. 153-165, 2013.

[16] A.R. Meyers et al., “Applying machine learning to workers’

compensation data to identify Industry-specific ergonomic

and safety prevention priorities: Ohio, 2001 to 2011,” Journal

of occupational and environmental medicine, vol. 60, no. 1,

p. 55, 2018.

M. Warner, P. M. Barnes, and L. A. Fingerhut, “Injury and

poisoning episodes and conditions,” National Health

Interview Survey, 2000.

[18] “National Floor Safety Institute, (n.s,” in Slip & Fall Quick
Facts [Fact sheet, [Online]. Available: https://nfsi.org/nfsi-
research/quick-facts/

[19] A. F. Hoskin, K. T. Fearn, K. Porretta, and M. Predovich,
“Accident facts.” 1998.

[20] N. S. Council, “Falls.” Same Level, 2021. [Online].
Available: https://injuryfacts.nsc.org/work/safety-topics/falls-
same-level/

[21] S. Pilla, “Slip, trip, and fall prevention: A practical
handbook,” CRC Press.f Social Robotics, vol. 11, no. 4, pp.
679-689, 2016.

(6]

(7]

(8]

(9]

(10]

[17]

386

[22] J. T. Zhang, A. C. Novak, B. Brouwer, and Q. Li,
“Concurrent validation of Xsens MVN measurement of lower
limb joint angular kinematics,” Physiological Measurement,
vol. 34, no. 8, 2013, doi: 10.1088/0967-3334/34/8/N63.

Y. Luo, H. Zheng, Y. Chen, W. C. W. Giang, and B. Hu,
“Influences of Smartphone Operation on Gait and Posture
During Outdoor Walking Task,” Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, vol. 64, no.
1, pp. 1723-1727, Dec. 2020, doi:
10.1177/1071181320641418.

A. Resende ef al., “Ergowear: an ambulatory, non-intrusive,
and interoperable system towards a Human-aware Human-
robot Collaborative framework,” in 2021 IEEE International
Conference on Autonomous Robot Systems and Competitions
(ICARSC), Santa Maria da Feira, Portugal, Apr. 2021, pp. 56—
61. doi: 10.1109/ICARSC52212.2021.9429796.

U. D. Croce, P. O. Riley, J. L. Lelas, and D. C. Kerrigan, “A
refined view of the determinants of gait,” Gait & Posture,
vol. 14, no. 2, pp. 79-84, Oct. 2001, doi: 10.1016/S0966-
6362(01)00128-X.

D. A. Winter, H. G. Sidwall, and D. A. Hobson,
“Measurement and reduction of noise in kinematics of
locomotion,” Journal of Biomechanics, vol. 7, no. 2, pp. 157—
159, 1974, doi: 10.1016/0021-9290(74)90056-6.

M. Roell, H. Mahler, J. Lienhard, D. Gehring, A. Gollhofer,
and K. Roecker, “Validation of Wearable Sensors during
Team Sport-Specific Movements in Indoor Environments,”
Sensors, vol. 19, no. 16, p. 3458, Aug. 2019, doi:
10.3390/519163458.

Y. Luo, X. Lu, S. Ahrentzen, and B. Hu, “Impact of
destination-based visual cues on gait characteristics among
adults over 75 years old: A pilot study,” Gait & Posture, vol.
87, pp. 110116, Jun. 2021, doi:
10.1016/j.gaitpost.2021.04.030.

A. Rudenko, T. P. Kucner, C. S. Swaminathan, R. T.
Chadalavada, K. O. Arras, and A. J. Lilienthal, “Thor:
Human-robot navigation data”collection and accurate motion
trajectories dataset,” /EEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 676-682, 2020.

C. Ouwehand, D. T. D. de Ridder, and J. M. Bensing,
“Individual differences in the use of proactive coping
strategies by middle-aged and older adults,” Personality and
Individual Differences, vol. 45, no. 1, pp. 28-33, Jul. 2008,
doi: 10.1016/j.paid.2008.02.013.

F. E. Huxham, P. A. Goldie, and A. E. Patla, “Theoretical
considerations in balance assessment,” Australian Journal of
Physiotherapy, vol. 47, no. 2, pp. 89-100, 2001, doi:
10.1016/S0004-9514(14)60300-7.

G. Elert, “Acceleration,” in The Physics Hypertextbook,
hypertextbook, 2021.

(23]

[24

—

(25]

[26]

[27

—

(28]

[29]

[30]

[31]

[32]

Authorized licensed use limited to: University of Florida. Downloaded on June 20,2023 at 19:05:53 UTC from IEEE Xplore. Restrictions apply.



