
Beyond Black Box Densities: Parameter Learning for
the Deviated Components

Dat Do?
Department of Statistics

University of Michigan at Ann Arbor
Ann Arbor, MI 48109
dodat@umich.edu

Nhat Ho?
Department of Statistics and Data Sciences

University of Texas at Austin
Austin, TX 78712

minhnhat@utexas.edu

XuanLong Nguyen
Department of Statistics

University of Michigan at Ann Arbor
Ann Arbor, MI 48109
xuanlong@umich.edu

Abstract

As we collect additional samples from a data population for which a known density
function estimate may have been previously obtained by a black box method, the
increased complexity of the data set may result in the true density being deviated
from the known estimate by a mixture distribution. To learn about this phenomenon,
we consider the deviating mixture model (1−λ∗)h0 +λ∗(

∑k
i=1 p

∗
i f(x|θ∗i )), where

h0 is a known density function, while the deviated proportion λ∗ and latent mixing
measure G∗ =

∑k
i=1 p

∗
i δθ∗i associated with the mixture distribution are unknown.

Using a novel notion of distinguishability between the known density h0 and the
deviated mixture distribution, we establish rates of convergence for the maximum
likelihood estimates of λ∗ and G∗ under Wasserstein metrics. Simulation studies
are carried out to illustrate the theory.

1 Introduction
Most data-driven learning processes typically consist of an iteration of steps that involve model
training and fine-tuning, with more data in-take leading to further model re-training and refinement. As
more samples become available and exhibit more complex patterns, the initial model may be obsolete,
risks being discarded, or absorbed into a richer class of models that adapt better to the increased
complexity. It takes considerable resources to train complex models on a rich data population.
Moreover, many successful models in modern real-world applications have become so complex that
make them hard to properly evaluate and interpret; aside from the predictive performance they may as
well be considered as black boxes. Nonetheless, as data populations evolve and so must the learning
models, several desiderata remain worthy: the ability to adapt to new complexity while retaining
aspects of old "wise" model, and the ability to interpret the changes.

In this paper we will investigate a class of complex models for density estimation that are receptive
to adaptation, reuse and interpretablity: we posit that there is an existing distribution h0 which
may have been obtained a priori by some means for the data population of interest, e.g., via kernel
density estimation (KDE) [22] or mixture models [20] or some modern black box methods, such
as generative adversarial networks (GANs) [13, 1] or normalizing flows [9]. Nonetheless, as more
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samples become available and/or as the data population changes, it is possible that the true density
may deviate from h0. While h0 is potentially difficult to explicate, it is the deviation from the known
h0 that we wish to learn and interpret. We will use a mixture distribution to represent this deviation,
leading to what we call a deviating mixture model for the underlying data population:

pλ∗G∗(x) := (1− λ∗)h0(x) + λ∗F (x,G∗), (1)

for x ∈ Rd, where F (x,G∗) :=
∑k∗
i=1 p

∗
i f(x|θ∗i )) represents a mixture distribution for the density

components deviating from h0. Such deviating components are from a known family of density
function f . The unknown parameters for this model are the mixing proportion λ∗ ∈ [0, 1], and the
mixing measure G∗ =

∑k∗
i=1 p

∗
i δθ∗i , where k∗ ≥ 1 number of deviated components. The choice of

mixture distribution F (x,G∗) allows us to express complex deviation from h0, yet the overall model
remains amenable to the interpretation of its parameters: λ∗ represents the amount of deviation from
the existing candidate h0, while the mixing measure G∗ represents heterogeneous patterns of the
deviation. Because h0 might be complex and trained with great computational resource to estimate
the density of prior data population, it is reasonable to assume h0 be known in the model (1). The
primary contribution of this paper is a rigorous investigation into the rather challenging questions of
identifiability and parameter learning rates that arise from a standard maximum likelihood estimation
procedure.
Relations to existing works. This modeling framework owes its roots to several significant bodies
of work in both statistics and machine learning literature. In classical statistics, a dominant approach
to address the increased complexity of data populations is via hypothesis testing: one can test an
alternative (possibly composite) hypothesis represented by a class of distributions against the null
hypothesis represented by h0. Due to the constraint for obtaining simple and theoretically valid test
statistics in order to accept or reject the null hypothesis, the testing approaches were mostly restricted
to simple choices of distribution for the null and alternative hypotheses [6, 10, 7, 4, 8]. More similar
to (1) is the class of contaminated mixture models for density estimation: in this framework, the data
are assumed to be sampled from a mixture of P0 and Q where either P0 or Q can be an unknown
distribution that needs to be estimated. While this approach offers more flexibility in terms of
modeling, it does not always guarantee the identifiability of the mixing weight or mixture components
P0, Q [25, 23, 19]. Without identifiability, it is virtually impossible to interpret the model parameters
for the data domains. To avoid the identifiability issue, several researchers added the semi-parametric
or parametric structures on P0 and Q, such as P0 and Q are mixture distributions [2, 12]. However, to
the best of our knowledge, the convergence theory of these models remains poorly understood, except
for some simple settings (see also [3, 5]). The main distinction between our modeling framework of
deviating mixture models and the existing research on contaminated mixtures lies in our assumption
that one of the mixture components, namely h0 is known, allowing us to focus on the inference
of the deviation from h0, for which a considerable learning theory for the parameters of interest
can be established and will be presented in this paper. Finally, estimating parameters of mixture
distributions is an essential problem in mixture models. The convergence properties have been studied
using identifiability notions and Wasserstein distances [21, 18, 15]. Our technical approach requires
a generalization of the identifiability notion to take account of structural property of the existing
component h0, which helps to shed light on a considerably more complex convergence behavior of
the deviated components.
Contributions. The primary contribution of this paper is a rich theory of identifiability and rates
of convergence for parameters and density estimation that arise in the deviating mixture model (1),
under various settings of the existing component h0, and that of the deviating components (via f
and G∗). Because the convergence of density estimation in Hellinger distance under the MLE
procedure is well studied in [26], the bulk of our technical innovation lies in establishing a collection
of inverse bounds which relate the Hellinger distance of densities in model (1) in terms of that of their
parameters. To do that, we introduce a novel notion of distinguishability between h0 and family of
density f . The inverse bounds will be characterized under such distinguishability conditions (or the
lack thereof). Our proof technique allows us to characterize different convergence rates of parameters
in the deviating mixture model under distinguishable settings. It also gives rise to several new types
of inverse bounds in partially distinguishable settings, where we may not have identifiability in our
model. To the best of our knowledge, this is the first work in which such bounds are obtained in
mixture modeling literature. Moreover, we will provide many examples to demonstrate the broad
applicability of our theory, including cases where the existing component h0 is obtained by a black
box method (e.g., deep learning model) and a more traditional method (e.g., via KDE’s or mixture
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models). By doing so, we are able to push the boundary of identifiability and learning theory of
mixture models toward a larger class of modern machine learning models.
Organization. The remainder part of this paper is structured as follows. In Section 2, we review the
MLE method and the identifiability conditions, where the notion of distinguishability is presented.
In Section 3, the main results of inverse bounds and convergence rates for parameters estimation of
model (1) are shown. In Section 4, multiple simulation experiments are carried out to support the
theory. Finally, Section 5 is used to discuss and conclude. Proofs of all the results in the main text are
deferred to the Supplementary Material.

Notation. We denote by Ek(Θ) = {
∑k
i=1 pif(x|θi) :

∑k
i=1 pi = 1, pi > 0, θi ∈ Θ ∀1 ≤ i ≤ k}

the family of mixtures with exactly k components and OK(Θ) = {
∑K
i=1 pif(x|θi) :

∑K
i=1 pi =

1, pi ≥ 0, θi ∈ Θ ∀1 ≤ i ≤ K} the family of mixtures with no more thanK components. Ek,c0(Θ) =

{
∑k
i=1 pif(x|θi) :

∑k
i=1 pi = 1, pi ≥ c0, θi ∈ Θ ∀1 ≤ i ≤ k, k ≤ K} is the family of mixtures

with exactly K components and mixing proportions being bounded below by c0, and OK,c0(Θ) =

{
∑k′

i=1 pif(x|θi) :
∑k′

i=1 pi = 1, pi ≥ c0, θi ∈ Θ ∀1 ≤ i ≤ k′, k′ ≤ K}. ‖·‖2 is the usual l2 norm
for vectors in Rd and matrices in Rd×d. We write g(x) & h(x) if g(x) > ch(x) for all x, where c is
a constant does not depend on x (similar for g(x) . h(x)). For any λ ∈ R and B ⊂ R, denote by
1{λ∈B} the function that takes value 1 if λ ∈ B, and 0 otherwise. For any two densities p and q, we
denote h(p, q) by the Hellinger distance and V (p, q) by the Total Variation distance between them.

2 Identifiability and distinguishability theory
The principal goal of the paper is to establish the efficiency of parameter learning for the deviating
mixture model (1) via the standard maximum likelihood estimation (MLE) method. To achieve this
goal, the parameters have to be identifiable to begin with. Thus, our theory builds on and extends a
standard notion of identifiability of families of density {f(x|θ) : θ ∈ Θ} that has been considered in
previous work [21, 15].
Definition 2.1. The family {f(x|θ), θ ∈ Θ} (or in short, f ) is identifiable in the order r, for some
r ≥ 1, if f(x|θ) is differentiable up to the order r in θ and the following holds:

A1. For any k ≥ 1, given k different elements θ1, . . . , θk ∈ Θ, if we have α(i)
η such that for

almost all x
r∑
l=0

∑
|η|=l

k∑
i=1

α(i)
η

∂|η|f

∂θη
(x|θi) = 0

then α(i)
η = 0 for all 1 ≤ i ≤ k and |η| ≤ r.

Many commonly used families f for mixture modeling satisfy the first order identifiability condition,
including location-scale Gaussian distributions, e.g., f(x|θ) = N(x|µ, σ2) where µ and σ2 represent
the mean (location) and variance (scale) parameters, and location-scale Student’s t-distributions.
In model (1), however, due to the presence of the existing component h0, the deviated mixture
components need to be distinguishable from h0. This motivates a more general notion of identifiability,
namely, distinguishability that we now define. This condition specifies a property jointly for both the
existing component h0 and the family of density functions f that make up the deviated components.
Definition 2.2. For any natural numbers k, r ≥ 1, we say that the family of density
functions {f(·|θ), θ ∈ Θ} with complexity level k (or in short, (f, k)) is distinguishable
up to the order r from h0 if the following holds:

A2. For any k distinct components θ1, . . . , θk, if we have real coefficients α(i)
η for 0 ≤ i ≤ k

such that

α(0)h0(x) +
r∑
l=0

∑
|η|=l

k∑
i=1

α(i)
η

∂|η|f

∂θη
(x|θi) = 0,

for almost surely x ∈ X , then α(0) = α
(i)
η = 0 for 1 ≤ i ≤ k and |η| ≤ r.

We observe that the identifiable condition is a direct consequence of the corresponding distinguishable
condition. A simple but non-trivial example of the distinguishability condition can be derived directly
from the definitions.
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Example 2.3. (a) When h0(x) =
∑k0

i=1 p
0
i f(x|θ0

i ) for some given weights (p0
1, . . . , p

0
k0

) and param-
eters (θ0

1, . . . , θ
0
k0

) where k0 ≥ 1, then (f, k) is distinguishable in the order r from h0 as long as
k < k0 and the family of density f is identifiable in the order r.
(b) Given the choice of h0 in (a), (f, k) is not distinguishable in the order r from h0 when k ≥ k0.
More significantly, we can establish a broad class of h0 and families f for which distinguishability
holds. This is exemplified by the following theorem, where f represents a family of location or
location-scale Gaussian kernels, and h0 is subject to a relatively weak condition.
Theorem 2.4. (a) Suppose that − log h0(x) & ‖x‖β1

2 or − log h0(x) . ‖x‖β2

2 for all ‖x‖2 > x0,
for some x0 > 0, β1 > 2, and β2 < 2. Then, for f being family of location-scale Gaussian and any
k > 0, (f, k) is distinguishable from h0 up to the first order, where the derivatives in Assumption A2
are taken with respect to both location and scale parameters, and (f, k) is also distinguishable from
h0 up to any order, where the derivatives in Assumption A2 are taken only with location parameters.

(b) Suppose that h0 is the pdf of a pushforward measure of N(0, Id) by a piecewise linear function
with a finite and positive number of breakpoints. Then, the same conclusions as in part (a) hold.

The proof of Theorem 2.4 is in Appendix C.1, where the main proof technique is carefully examining
the tail densities of h0 and f at infinity. Note that in part (a), h0 can be a pdf of any distribution
possessing a lighter or heavier tail than Gaussian distributions, and in part (b), h0 represents the
pushforward of a Gaussian distribution by any piecewise linear function (recall that family of
piecewise linear functions is dense in the Banach space of continuous functions with compact
support). In the sequel we shall demonstrate several examples of interest that are applicable to
Theorem 2.4 where h0 may have been estimated by some popular "black box" methods.
Kernel based representation. Suppose that h0 was obtained from a m- sample Y1, . . . , Ym ∈ Rd
by a classical kernel density estimation (KDE) method [22] or a RKHS-based method [24], so that

h0(x) =
1

m

m∑
j=1

kσ(x, Yj) ∀x ∈ Rd, (2)

where kσ is a kernel function with bandwidth σ. Popular choices of kernels include the Gaus-

sian kernel kσ(x, x′) =

(
1√
2πσ

)d
exp

(
−
‖x− x′‖22

2σ2

)
and the multivariate Student’s kernel

kσ(x, x′) =
(

1√
πσ

)d
Γ((ν+d)/2)

Γ(ν/2)

(
1 +
‖x−x′‖2

2

νσ2

)− ν+d
2

. The corresponding distinguishability guar-

antee is as follows.
Corollary 2.5. Suppose h0 is defined by Eq. (2), where kσ is Gaussian kernel and m > K, or kσ
is the multivariate Student’s kernel. Then, for f being family of location-scale Gaussian, (f,K) is
distinguishable from h0 up to the first order, where the derivatives in Assumption A2 are taken with
respect to both location and scale parameters, and (f,K) is also distinguishable from h0 up to any
order, where the derivatives in Assumption A2 are taken only with location parameters.

In application, it is common that the conditionm > K is satisfied. It is also matches with the scenario
that we consider in the paper, where h0 is already trained using a big data set, and there is a small
number of deviated components.
Neural networks. Deep neural networks represent a powerful, albeit black box, approximation
device for constructing rich classes of distribution for generative models [13, 1]. Accordingly, h0 is
the pdf function of a Gaussian distribution being push-forwarded by a map T , which is represented
by a neural network (NN). Suppose that the NN representing T has a positive and finite number of
layers L, and so

T (x) = a(WLa(WL−1(. . . a(W1x+ b1)) + bL−1) + bL), (3)

where W1, . . . ,WL ∈ Rd×d are the weights and b1, . . . , bL ∈ Rd are the biases. The activation
function a is chosen to be rectified linear unit (ReLU) function defined by a(x) = max{x, 0}, and
is applied elementwise to any vector in Rd. The corresponding guarantee on the distinguishability
condition is as follows.
Corollary 2.6. Suppose that h0 is the pdf a pushforward measure of N(0, Id) by a map T defined by
Eq. (3). Then, for f being family of location-scale Gaussian and any k > 0, (f, k) is distinguishable
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from h0 up to the first order, where the derivatives in Assumption A2 are taken with respect to both
location and scale parameters, and (f, k) is also distinguishable from h0 up to any order, where the
derivatives in Assumption A2 are taken only with location parameters.

3 Convergence rates of density estimation
In this section, we first establish the rate of density estimation for the deviating mixture models
in Section 3.1. We then describe a general procedure to obtain the convergence rate of parameter
estimation based on that of density estimation via inverse bounds in Section 3.2. Finally, we provide
comprehensive inverse bounds under several settings of the deviating mixture models in Section 3.3.

3.1 MLE for deviating mixture model

Given n i.i.d. sample X1, X2, . . . , Xn from pλ∗G∗ as in model (1), where G∗ has k∗ components,
we want to estimate λ∗ and G∗ from the data. We refer to the problem as in exact-fitted setting if k∗
is known, and we refer to it as in over-fitted setting if k∗ is unknown but is known to be bounded by
some number K. We denote the MLE for exact-fitted setting by

λ̂n, Ĝn ∈ arg max
λ∈[0,1],G∈Ek∗ (Θ)

n∑
i=1

log(pλG(Xi)),

and for the over-fitted setting, we replace Ek∗(Θ) in the equation above by OK(Θ), where K ≥ k∗.
In order to state a rate of convergence for the density estimators pĜn under the Hellinger distance h
[26], we need a condition on the complexity of the function class

P1/2

k (Θ, ε) =
{
p̄

1/2
λG : G ∈ Ok(Θ), h(p̄λG, pλ∗G∗) ≤ ε

}
, (4)

where for anyG ∈ OK(Θ), we write p̄λG = (pλG+pλ∗G∗)/2. The definition of Pk(Θ, ε) originates
from [26]. We measure the complexity of this class through the bracketing entropy integral

JB(ε,P1/2

k (Θ, ε), ν) =

∫ ε

ε2/213

√
logNB(u,P1/2

k (Θ, ε), ν)du ∨ ε, (5)

where NB(ε,X, η) denotes the ε-bracketing number of a metric space (X, η) and ν is the Lebesgue
measure. We require the following assumption.

A3. Given a universal constant J > 0, there exists N > 0, possibly depending on Θ and k, such
that for all n ≥ N and all ε > (log n/n)1/2,

JB(ε,P1/2

k (Θ, ε), ν) ≤ J
√
nε2.

Theorem 3.1. Assume that Assumption A3 holds, and let k ≥ 1. There exists a constant C > 0
depending only on Θ, k such that for all n ≥ 1,

sup
G∗∈Ok(Θ),λ∗∈[0,1]

Eλ∗,G∗h(pλ̂nĜn , pλ∗G∗) ≤ C
√

log n/n.

Therefore, in order to get convergence rate for density functions based on MLE procedure, we only
need to check assumption A3. This assumption holds true for a wide range class of parametric model
[26]. For our model, we give an example that it holds when h0 has an exponential tail (satisfied for
KDE’s and Neural networks above) and f is location-scale Gaussian distribution.
Proposition 3.2. Suppose f is location-scale Gaussian family and Θ = [−a, a]d × Ω, where Ω is
a subset of S++

d whose eigenvalues are bounded in [λ, λ], a, λ, λ > 0, and h0 is bounded with tail
− log h0(x) & ‖x‖β2 for some β > 0. Then, the family of densities {pλG : λ ∈ [0, 1], G ∈ Ok(Θ)}
satisfies assumption A3.

3.2 Parameter learning rates of deviated components

The core of this paper lies in establishing a collection of inverse bounds, provided that some distin-
guishability condition developed in Section 2 holds. The inverse bounds basically say that a small
distance between pλG and pλ∗G∗ under the total variation distance entails that (λ,G) and (λ∗, G∗)
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are similar under appropriate distances, where (λ∗, G∗) is fixed. To this end, we employ Wasserstein
metrics [27] and their extensions.
Wasserstein distances. Wasserstein distances are natural and useful for assessing the convergence
of latent mixing measures in mixture models [21, 16, 14]. Given two measures G =

∑k
i=1 piδθi and

G′ =
∑k′

j=1 p
′
jδθ′j on a space Θ endowed with a metric ρ, the Wasserstein metric of order r ≥ 1 is:

Wr(G,G
′) = [inf

q

∑
i,j

qijρ
r(θi, θ

′
j)]

1/r,

where the infimum is taken over all joint distribution on [1, . . . , k]× [1, . . . , k′] such that
∑
i qij =

p′j ,
∑
j qij = pi. Note that if Gn is a sequence of discrete measures that converges to G in a

Wasserstein distance, then for every atom of G, there is a subset of atoms of Gn converges to it.
Therefore, the convergence in Wasserstein metrics implies convergence of parameters in mixture
models. In this paper, space Θ is often chosen to be a compact subset of Rd and ρ is the usual l2
distance. In the case of location-scale Gaussian mixtures, space Θ is a compact subset of Rd ×
S++
d , where S++

d is the set of positive definite and symmetric matrices in Rd×d, and for every
(µ,Σ), (µ′,Σ′) ∈ Θ, the distance ρ is defined by ρ((µ,Σ), (µ′,Σ′)) = ‖µ− µ′‖2 + ‖Σ− Σ′‖2 .
From inverse bounds to parameter learning rates. Suppose that some distinguishablity condition
is satisfied, then we will establish an inverse bound providing a guarantee that a small distance
between pλ∗G∗ and pλG entails a small distance between λ and λ∗ and between G and G∗. More
concretely, define a divergence between two measures λG and λ∗G∗ via

W r(λG, λ
∗G∗) := |λ− λ∗|+ (λ+ λ∗)W r

r (G,G∗).

for all r ≥ 1, and the inverse bounds will have the form that V (pλG, pλ∗,G∗) &W r(λG, λ
∗G∗), for

some r that depends on the level of distinguishable level of the model. Since total variational distance
is upper bounded by Hellinger distance, if Assumption A3. holds, then combining the aforementioned
inverse bound with Theorem 3.1 we immediately obtain

Eλ∗,G∗W r(λ̂nĜn, λ
∗G∗) ≤ C

√
log n

n
.

This further implies that the convergence rate of λ̂n to λ∗ is of order (log(n)/n)1/2 and the conver-
gence rate of Wr(Ĝn, G∗) to 0 is of order (log(n)/n)1/2r.

3.3 Inverse bounds in distinguishable setting

We shall establish inverse bounds provided a distinguishability condition for model (1) holds under
either exact-fitted and over-fitted settings regarding the true number of components k∗.
Theorem 3.3. Assume that k∗ is known and (f, k∗) is distinguishable in the first order from h0. Then,
for any G ∈ Ek∗(Θ), there exist positive constant C1 and C2 depending only on λ∗, G∗, h0,Θ such
that the following holds:

(a) When λ∗ = 0, then V (pλ∗G∗ , pλG) ≥ C1λ.

(b) When λ∗ ∈ (0, 1], then V (pλ∗G∗ , pλG) ≥ C2W 1(λG, λ∗G∗).

We now present a proof sketch for Theorem 3.3. It is a combination of the Taylor expansion around
the true parameters and the Fatou’s lemma; the proof technique for the remaining results also shares
similar spirit as that of Theorem 3.3. Detailed proof of Theorem 3.3 is deferred to the Appendix.

Proof sketch for part (b): Suppose that the bound is not correct, so there exists a sequence
λn ∈ (0, 1] and Gn ∈ Ek∗(Θ) such that V (pλ∗G∗ , pλnGn)/W 1(λ∗G∗, λnGn) → 0. Because of
the compactness of the parameter space, by extracting a subsequence if necessary, we can assume
λn → λ′, Gn

W1−−→ G′. If (λ′, G′) 6= (λ∗, G∗), we have W 1(λ∗G∗, λnGn) → W 1(λ∗G∗, λ
′G′) 6=

0. It indicates that V (pλ∗G∗ , pλnGn) → 0, which leads to pλ∗G∗ = pλ′G′ . It contradicts to the
distinguishable condition when (λ′, G′) 6= (λ∗, G∗)).

Otherwise, we have λn → λ∗, Gn → G∗, and can presentGn =
∑k∗
i=1 p

n
i δθni andG∗ =

∑k∗
i=1 p

∗
i δθ∗i

such that pni → p∗, θni → θ∗i . Because of these limits and by Taylor expansion, we can ar-
range the difference (pλnGn(x)− pλ∗G∗(x))/W 1(λnGn, λ

∗G∗) in terms of a linear combination of

6



h0(x), f(x|θ∗i ), ∂∂θf(x|θ∗i ) such that at least one coefficient is different from 0. By Fatou’s lemma,

0 =
lim inf V (pλnGn , pλ∗G∗)

W 1(λnGn, λ∗G∗)
dx ≥

∫ ∣∣∣∣lim inf
pλnGn(x)− pλ∗G∗(x))

W 1(λnGn, λ∗G∗)

∣∣∣∣ dx, which equals to the

absolute integral of the linear combination above. Hence, there exists a non-trivial linear combination
of h0(x), f(x|θ∗i ), ∂∂θf(x|θ∗i ) that equals 0, which contradict to the distinguishability condition.
Therefore, we complete the proof.
In application, the true number of components k∗ might not be known and we often fit the model (1)
with G ∈ OK(Θ) for some large K ≥ k∗. The next result shows that similar bounds can also be
established in this case, where we require distinguishability of f and h0 in a higher order.

Theorem 3.4. Assume that k∗ is unknown and strictly upper bounded by a given K. Assume
additionally that (f,K) is distinguishable in second order from h0. Then, for any G ∈ OK(Θ), there
exist positive constant C1 and C2 depending only on λ∗, G∗, h0,Θ such that the following holds:

(a) When λ∗ = 0, then V (pλ∗G∗ , pλG) ≥ C1λ.

(b) When λ∗ ∈ (0, 1], then V (pλ∗G∗ , pλG) ≥ C2W 2(λG, λ∗G∗).

Thanks to the distinguishability up to second order, no matter how large the number of over-fitted
components K is, we always get the W 2 lower bound for the total variation distances. Proof of this
theorem shares the same spirit with what of Theorem 3.3. The difference here is when we overfit
G∗ with some Ĝ, there are some atoms of Ĝ that converges to the same atom of G∗, which requires
us to do Taylor expansion up to second order and explain the higher order of Wasserstein distance
here. Next, we relax the assumption of Theorem 3.4 by working on the setting where f is not second
order identifiable. This is an instance of the so-called weakly identifiable setting — One popular
example of weakly identifiable f is location-scale Gaussian distribution, which admits the partial

differential equation (PDE) structure
∂2f

∂µ2
(x|µ,Σ) = 2

∂f

∂Σ
(x|µ,Σ), for all x ∈ Rd where f(x|µ,Σ)

stands for location-scale Gaussian density function with location µ and covariance Σ. In order to
illustrate the result of our bound for that weak identifiability setting of f , we specifically consider f
to be location-scale Gaussian distribution. In this case, the parameter space Θ is a compact subset of
Rd × S++

d , where S++
d is the set of positive definite and symmetric matrices in Rd×d equipped with

the usual Frobenius norm. To put our result in context, we shall adopt a notion used in analyzing the
convergence rate of parameter estimation in location-scale Gaussian mixtures in [16]. For any k ≥ 1,
let r(k) be the minimum value of r such that the following system of polynomial equations:

k+1∑
j=1

∑
n1,n2

c2ja
n1
j b

n2
j

n1!n2!
= 0 for each α = 1, . . . , r, (6)

does not have any nontrivial solution for the unknown variables (aj , bj , cj)
k+1
j=1 , where the ranges of

n1 and n2 in the second sum consist of all natural pairs satisfying the equation n1 + 2n2 = α. A
solution to the above system is considered nontrivial if all of variables cj are non-zeroes, while at
least one of the aj is non-zero. Some examples of known values of r are r(1) = 4 and r(2) = 6,
and r(k) ≥ 7 for all k ≥ 3. Using this notion, we can characterize the convergence of parameters of
model (1) for the location-scale Gaussian family via the following theorem for inverse bounds.

Theorem 3.5. Assume that G∗ ∈ Ek∗,c0(Θ), and k∗ is unknown and strictly upper bounded by a
given K. In addition, f is location-scale Gaussian distribution and (f,K) with varied location, fixed
variance parameters is distinguishable in any order from h0. Then, for any G ∈ OK,c0(Θ), there
exist positive constant C1 and C2 depending only on λ∗, G∗, h0,Θ such that the following holds:

(a) When λ∗ = 0, then V (pλ∗G∗ , pλG) ≥ C1λ.

(b) When λ∗ ∈ (0, 1], then V (pλ∗G∗ , pλG) ≥ C2W r(K−k∗)(λG, λ
∗G∗).

The proof technique of this result involves doing Taylor expansion of both location and scale

parameter up to order r, then utilize the heat equation
∂f

∂Σ
(x|µ,Σ) =

1

2

∂2f

∂µ2
(x|µ,Σ) to compress

this expression into linear combination of h0 and derivatives of f(x|µ,Σ) with respect to µ only.
This allows us to use the condition in this theorem to imply a contradiction, and gives rise to Eq. (6).
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3.4 Inverse Bounds in Partially Distinguishable Setting

What happens if the distinguishability condition required by Def. 2.2 no longer holds generally?
Recall in Example 2.3 (b) that this situation is not uncommon, specifically when

h0(x) = f(x;G0) =

k0∑
i=1

p0
i f(x|θ0

i ), (7)

where G0 :=
∑k0

i=1 p
0
i δθ0

i
. In some specific cases of this setting, in fact, we fail to attain distin-

guishability, and the model may not even be identifiable in the classical sense, i.e. pλG = pλ∗G∗
does not guarantee to have λG = λ∗G∗. Since h0 is the pdf of a mixture distribution — a popular
choice for modeling complex forms of probability densities given its amenability to interpretation
compared to black box type models — it is of interest to study the implication of parameter estimation
for the deviated components in this setting, provided that the distinguisability condition may be at
least partially achieved in some suitable sense. As we shall see, our theory demands a more refined
analysis. To facilitate the presentation, denote A :=

{
1 ≤ i ≤ k∗ : θ∗i ∈ {θ0

1, . . . , θ
0
k0
}
}

. Also, set
k̄ := |A|, which stands for the cardinal of the set A. Our results will be divided into three separate
regimes of k̄ and λ∗: (i) λ∗ = 0, (ii) k̄ < k0 and λ∗ ∈ (0, 1], and (iii) k̄ = k0 and λ∗ ∈ (0, 1]. We
only choose to present results of the second regime (ii) in the main text because of limited space
and because of its representativeness as it shows all the intriguing behaviours of the model in this
partially distinguishable setting. The first and third regime are deferred to Appendix A.

3.4.1 Regime B: k̄ < k0 and λ∗ ∈ (0, 1]

First, we consider the exactly-specified setting of model (1), namely, k∗ is known. When k̄ < k0,
we can check that we still have dishtinguishability of h0 and linear combinations of {f(x|θ∗i )}k∗i=1
and its derivatives. Therefore, as long as f is first order identifiable, one can invoke the proof of
Theorem 3.3 to establish the same lower bound V (pλG, pλ∗G∗) in terms of W r(λG, λ

∗G∗) for some
r ≥ 1. Thus, our focus in this subsection is the settings when k∗ is unknown.

Over-fitted setting with strongly identifiable f . Moving to the over-fitted settings of model
setup (1), i.e., k∗ is unknown and strictly upper bounded by a given K, as long as K ≥ k0,
(f,K) is not distinguishable from h0. Therefore, the results of Theorem 3.3 are not always applicable
to the setting when K ≥ k0. Besides, in the over-fitted setting, the identifiability of model (1) no
longer holds. Indeed, for any λ > λ∗, if we take

G∗(λ) = (1− λ∗/λ)G0 + (λ∗/λ)G∗, (8)

then pλ∗G∗ = pλG∗(λ). We present this pathological behavior in the following result.

Theorem 3.6. Assume that h0 takes the form (7) and k̄ < k0. Besides that, K ≥ k0 and f is second
order identifiable. Then, for any G ∈ OK(Θ), there exist positive constants C1 and C2 depending
only on λ∗, G∗, h0,Θ such that the following hold:

(a) If K ≤ k∗ + k0 − k̄ − 1, then V (pλ∗,G∗ , pλ,G) ≥ C1W 2(λG, λ∗G∗),

(b) If K ≥ k∗ + k0 − k̄, then

V (pλ∗,G∗ , pλ,G) ≥ C2

(
1{λ≤λ∗}W 2(λG, λ∗G∗) + 1{λ>λ∗}W

2
2 (G,G∗(λ))

)
.

(c) As a special case, if K = k∗ + k0 − k̄, we have

V (pλ∗,G∗ , pλ,G) ≥ C31{λ>λ∗+δ}W1(G,G∗(λ)),

for all δ > 0, where C3 depends on λ∗, G∗, h0,Θ, δ.

As we can see, the magnitude of λ compared to λ∗ will decide the solution of (λ,G) to the identifiable
equation pλG = pλ∗G∗ , therefore lead to different lower bounds such in part (b) of the theorem.
In particular, if λ ≤ λ∗, the solution is (λ,G) = (λ∗, G∗), and for any λ > λ∗, the solution is
G = G∗(λ) given in Eq. (8). Specifically, when λ is strictly larger than λ∗ by some amount δ > 0,
then the latter case is well separated from the former, and we have an exact-fitted result when
K = k0 + k∗ − k.
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4 Experiments

We now would like to demonstrate the convergence rates in Section 3 via two synthetic experi-
ments: one for distinguishable setting and one for partially distinguishable setting. For the partially
distinguishable one, the experiments are in Appendix B.

Distinguishable setting. We conduct an experiment where the original data distribution comes from
an uniform distribution on a curve (half circle) in R2 convoluted with Gaussian noises (red curve and
blue points in Fig. 1(a)), and train a Normalizing Flow neural network [11] (Masked Autoregressive
architecture) with 5 layers to get a good density estimation h0 for this dataset. Then we assume that
there are new data coming in, and the original distribution h0 is deviated by a mixture of distributions
in the location Gaussian family f(x|θ). So the true generating density now is

pλ∗G∗(x) = (1− λ∗)h0(x) + λ∗
3∑
i=1

p∗i f(x|θ∗i ), (9)

where λ∗ = 0.5, G∗ =
∑3
i=1 p

∗
i δθ∗i , where p∗1 = 0.3, p∗2 = 0.3, p∗3 = 0.4, θ∗1 = (−0.7, 1.5), θ∗2 =

(0.1, 2.0), θ∗3 = (1.0, 1.5). Samples from the deviated component are green points in Fig. 1(a). It can
be seen from Proposition 2.4(a) that h0 is distinguishable with family f . For each n, we simulate
n data points from true model (9), estimate λ̂n, Ĝn by the EM algorithm (it is possible because
Normalizing Flows provides exact density computation), and measure its convergence to the true
λ∗, G∗. We conduct 16 replications for each sample size. The average error estimations with a 75%
error bar can be seen in Fig. 1. TheW1 error in the exact-fitted case is of order (log(n)/n)1/2 andW2

error in the over-fitted case is of order (log(n)/n)1/4. Meanwhile, thanks to the distinguishability,
the estimation errors in both cases of λ are all of the order (log(n)/n)1/2. These simulation results
are matched with the theoretical results found in Theorem 3.3 and Theorem 3.4. From the result,
we see that the deviating mixture model successfully learns the deviated components and reuses the
pre-trained black box model h0, which helps to reduce computational costs.

(a) Synthetic data set (b) Convergence rates of λ̂n (c) Convergence rates ofW (Ĝn, G∗)

Figure 1: Convergence rates for parameter estimation in the distinguishable case.

5 Discussion

In this work, we have presented the deviating mixture model and studied its parameter learning rates
under MLE procedure. With a novel notion of distinguishability between distributions, we are able to
prove inverse bounds for our model under several distinguishability settings, which allow us to deduce
the parameter learning rates from the convergence rate of density functions. The distinguishability
condition is shown to be satisfied for multiple families of distributions including those that come
from black box models.

We now discuss practical implication of the theory. The deviating mixture model is designed to capture
the deviated mixture components, and learning its parameters can reveal meaningful information
about subpopulations in the data. When there is distinguishability in the model, our theory implies
that we can learn the deviated proportion with the parametric rate and deviated components with
a rate depending on the identifiablity of f . However, our theory does not support employing the
deviating mixture model when the existing distribution h0 itself is a mixture distributions in family f
and possesses parameters similar to deviated part, as the learning rate can be slow, and the deviated
proportion estimator may not converge to the true value. Asymptotically, when h0 is estimated using
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a very complex model (eg. a wide and deep neural network) and somehow approximates a mixture
of f , and/or the signal from deviating components is low, then the provided learning rates in the
paper, while still the same with respect to sample size n, may deteriorate from a large multiplicative
constant that depends on h0, λ

∗, and G∗.

We believe that this work is the first attempt in the effort of understanding a broader class of mixture
models combining with black box models, and interpreting the learned model parameters. There
is room for future work going forward. From a theoretical viewpoint, one may be interested in
establishing minimax lower bounds for the learning behavior of the deviating mixture model, or show
uniform inverse bounds for the model when λ∗ and G∗ are considered as signals that will change with
samples. From a modeling viewpoint, it is worthwhile to explore mixtures of black box models and
develop a suitable notion of identifiability and inverse bounds so that the learning process is efficient.
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Supplement for "Beyond Black Box Densities: Parameter Learning for the Deviated
Components"

In the supplementary material, we collect proofs and results deferred from the main text. Section A
provides remaining results for the partially distinguishable case. Section B presents the simulation
studies that demonstrates the results in the partially distinguishable case. Section C contains proofs
of results in Section 2, and Section D contains proofs of Section 3.

A Additional results

In this appendix, we provide theory for the inverse bounds in partially distinguishable setting when
k̄ = k0 and λ∗ ∈ (0, 1].

A.1 Regime A: λ∗ = 0.

Theorem A.1. Assume that h0 takes the form (7) and λ∗ = 0. Then, there exist positive constants
C1 and C2 depending only on h0,Θ such that the following holds:

(a) (exact-fitted) If f is first order identifiable, then for any G ∈ Ek0
(Θ)

V (pλ∗,G∗ , pλ,G) ≥ C1λW1(G,G0).

(b) (over-fitted) If f is second order identifiable, then for any G ∈ OK(Θ) that K > k0

V (pλ∗,G∗ , pλ,G) ≥ C2λW
2
2 (G,G0).

(c) (over-fitted and weakly identifiable) If f is location-scale Gaussian distribution and we further
assume that G∗ ∈ Ek∗,c0(Θ), then for any G ∈ OK,c0(Θ) that K > k0, there exists C3 depends on
h0,Θ0, c0 such that

V (pλ∗,G∗ , pλ,G) ≥ C3λW
r(K−k∗)
r(K−k∗) (G,G0).

We may also "underfit" the deviated components by imposing G ∈ OK(Θ) such that K < k0. In that
case, because of having less atoms, pλG is K−distinguishable with h0 and the result in Theorem 3.3
applies.

A.2 Regime B: k̄ < k0 and λ∗ ∈ (0, 1]

We recall Theorem 3.6 in the main text, together with a similar theorem on weak identifiable family
(Theorem A.3), and then provide some additional comments on the results.
Theorem A.2. Assume that h0 takes the form (7) and k̄ < k0. Besides that, K ≥ k0 and f is second
order identifiable. Then, for any G ∈ OK(Θ), there exist positive constants C1 and C2 depending
only on λ∗, G∗, h0,Θ such that the following hold:

(a) If K ≤ k∗ + k0 − k̄ − 1, then V (pλ∗,G∗ , pλ,G) ≥ C1W 2(λG, λ∗G∗),

(b) If K ≥ k∗ + k0 − k̄, then

V (pλ∗,G∗ , pλ,G) ≥ C2

(
1{λ≤λ∗}W 2(λG, λ∗G∗) + 1{λ>λ∗}W

2
2 (G,G∗(λ))

)
.

(c) As a special case, if K = k∗ + k0 − k̄, we have

V (pλ∗,G∗ , pλ,G) ≥ C31{λ>λ∗+δ}W1(G,G∗(λ)),

for all δ > 0, where C3 depends on λ∗, G∗, h0,Θ, δ.

We can view pλG as a mixture distributions with latent mixing measures Ĝ = (1− λ)
∑k0

i=1 p
0
i δθ0

i
+∑K

i=1 piδθi having at most K + k0 elements, while pλ∗G∗ as a mixture with latent measure Ĝ∗ =∑k̄
i=1

[
(1−λ∗)p0

i +λ∗p∗i

]
δθ0
i
+
∑k0

i=k̄+1(1−λ∗)p0
i δθ0

i
+
∑k∗
i=k̄+1 λ

∗p∗i δθ∗i having exactly k0+k∗−k̄
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elements. Because k0 + k∗ − k̄ < K + k0, a direct application of Theorem 3.2 in [17] gives us
V (pλ∗,G∗ , pλ,G) & W 2

2 (Ĝ∗, Ĝ). But this bound is not as tight as what in Theorem 3.6(c), since
W1 &W 2

2 . The bounds established in the theorem are possible as we carefully explore the structure
of Ĝ∗ and Ĝ.

Over-fitted setting with weakly identifiable f . Similar to Theorem 3.5, when f is the location-scale
Gaussian, the weak identifiability can worsen the power of the bound in the over-fitted case.
Theorem A.3. Assume that h0 takes the form (7). Besides that, K ≥ k0 and f is location-scale
Gaussian distribution. Then, for any λ ∈ [0, 1] and G ∈ OK,c0(Θ) for some c0 > 0, there exist
positive constants C1, C2, C3, C4 depending only on λ∗, G∗, G0,Θ (C3 and C4 also depend on δ)
such that the following holds:

(a) When K ≤ k∗ + k0 − k̄ − 1, then V (pλ∗,G∗ , pλ,G) ≥ C1W r(K−k∗)(λG, λ
∗G∗).

(b) When K ≥ k∗ + k0 − k̄, then

V (pλ∗,G∗ , pλ,G) ≥ C2

(
1{λ≤λ∗}W r(K−k∗)(λG, λ

∗G∗) + 1{λ>λ∗}W
r(K−k∗)
r(K−k∗) (G,G∗(λ))

)
.

(c) For δ > 0, when K = k∗ + k0 − k̄, we have
V (pλ∗,G∗ , pλ,G) ≥ C31{λ>λ∗+δ}W1(G,G∗(λ)),

and when K > k∗ + k0 − k̄, we have

V (pλ∗,G∗ , pλ,G) ≥ C41{λ>λ∗+δ}W
r(K−k0 −k∗+k̄)

r(K−k0−k∗+k̄)
(G,G∗(λ)).

In this theorem, we once again observe the pathological behavior of the lower bound by Wasserstein
distances caused by the unidentifiability of the model (1). In part (c), when there is a well separation
between two region of solutions of equation pλG = pλ∗G∗ , we can improve the order of Wasserstein
distances for both exact-fitted case and over-fitted case. In application, if λ̂n and Ĝn are the MLE
of model (1) estimated by n i.i.d. data, then the convergence of (λ̂n, Ĝn) depends on the limit of
λ̂n (or its subsequence) comparing to λ∗. If K = k0 + k∗ − k, any subsequence of (λ̂n) having
limit greater than λ∗ can achieve W1 convergence rate of the distance between Ĝn and G∗(λ̂n). If
K > k0 +k∗−k, any subsequence of (λ̂n) having limit greater than λ∗ can achieveW r(K−k0−k∗+k̄)

r(K−k0−k∗+k̄)

convergence rate of the distance between Ĝn and G∗(λ̂n), where r(K − k0− k∗+ k̄) is smaller than
r(K − k∗) in part (b).

A.3 Regime C: k̄ = k0 and λ∗ ∈ (0, 1].

When k̄ = k0, (f, k∗) and (f,K) are not distinguishable from h0. It indicates that the results of
Theorem 3.3 are no longer applicable to this setting. If G∗ = G0, the setting goes back to the case
λ∗ = 0 and it is already considered, so from this section, we assume that G∗ 6= G0. To streamline
the argument, we further denote a few more notations. As k̄ = k0, we can rewrite G∗ as follows:

G∗ =

k0∑
i=1

p∗i δθ0
i

+

k∗∑
i=k0+1

p∗i δθ∗i . (10)

Because of the non-identifiability, the lower bound of V (pλG, pλ∗G∗) must be inspected carefully
based on the magnitude of mixing proportions of pλG compared to what of pλ∗G∗ . To serve this
purpose, we denote

B := {λ ∈ [0, 1] : (λ∗ − λ)p0
i ≤ λ∗p∗i ∀ 1 ≤ i ≤ k0},

I(λ) := {1 ≤ i ≤ k0 : (λ∗ − λ)p0
i > λ∗p∗i }.

For any λ ∈ [0, 1], we say that the set I(λ) is ratio-independent if and only if |I(λ)| = 1 or
pi/p

∗
i = pj/p

∗
j for all i, j ∈ I(λ) when |I(λ)| ≥ 2. Moreover, we define

G̃∗(λ) :=
1

S(I(λ))

( ∑
i∈I(λ)c

[
p∗i λ
∗ + (λ− λ∗) p0

i

]
δθ0
i

+λ∗
k∗∑

i=k0+1

p∗i δθ∗i

)
, (11)
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where S(I(λ)) :=
∑
i∈I(λ)c

[
p∗i λ
∗ + (λ− λ∗) p0

i

]
+ λ∗

∑k
i=k0+1 p

∗
i . In the case I(λ) is ratio-

independent, the identifiable equation pλG = pλ∗G∗ attains a solutionG = G̃∗(λ) as in equation (11).
Hence, in the following, we need to divide λ into several regimes to specify the lower bound for
V (pλG, pλ∗G∗) based on appropriate distances of (λ,G) and (λ∗, G∗).

Setting with second order identifiable f : We first consider the setting when f is second order
identifiable and the model setup (1) is over-fitted. The following result demonstrates that under
different settings of λ and I(λ), the lower bound of V (pλG, pλ∗G∗) in terms of its corresponding
parameters (λ,G) and (λ∗, G∗) can be very different.
Theorem A.4. Assume that h0 takes the form (7) and k̄ = k0. Besides that, f is second order
identifiable. Then, for any λ ∈ [0, 1] and G ∈ OK(Θ) that K ≥ k∗, there exist positive constants C1

and C2 depending only on λ∗, G∗, G0,Θ such that the following holds:

(a) If I(λ) is not ratio-independent, then

V (pλ∗G∗ , pλG) ≥ C1

[
1{λ∈Bc} + 1{λ∈B}W

2
2 (G,G∗(λ))

]
. (12)

(b) If I(λ) is ratio-independent, then

V (pλ∗,G∗ , pλ,G) ≥ C2

[
1{λ∈Bc}

( ∑
i∈I(λ)

[
(λ∗ − λ)p0

i

− λ∗p∗i
]

+ S(I(λ))W 2
2 (G, G̃∗(λ))

)
+ 1{λ∈B}W

2
2 (G,G∗(λ))

]
. (13)

We can see that when λ ∈ Bc and I(λ) is not ratio-independent, the bound in equation (12) shows
that V (pλ∗G∗ , pλG) ≥ C1. It is due to the fact that (λ∗ − λ)p0

i − λ∗p∗i cannot be simultaneously
arbitrarily small as i ∈ I(λ). On the other hand, these terms can become very small at the same
time when I(λ) is ratio-independent. It implies that V (pλ∗G∗ , pλG) can become arbitrarily close to
0 under this setting of I(λ). It explains the difference of bounds between two settings of I(λ).

Setting with weakly identifiable f : Finally, we consider the settings of model setup (1) when f is
weakly identifiable. We specifically choose f to be location-scale Gaussian distribution and study the
lower bounds of V (pλG, pλ∗G∗) in terms of their parameters.
Theorem A.5. Assume that h0 takes the form (7) and k̄ = k0. Besides that, f is location-scale
Gaussian distribution. Then, for k̃ := max{k∗−k0, 1}, and for any λ ∈ [0, 1] andG ∈ OK,c0(Θ) for
some K ≥ k∗ and c0 > 0, there exist positive constants C1 and C2 depending only on λ∗, G∗, G0,Θ
such that on λ∗, G∗, G0,Θ such that

(a) If I(λ) is not ratio-independent, then

V (pλ∗G∗ , pλG) ≥ C1

[
1{λ∈Bc}

+ 1{λ∈B}W
r(K−k̃)

r(K−k̃)
(G, Ḡ∗(λ))

]
. (14)

(b) If I(λ) is ratio-independent, then

V (pλ∗,G∗ , pλ,G) ≥ C2

[
1{λ∈Bc}

( ∑
i∈I(λ)

[
(λ∗ − λ)p0

i

−λ∗p∗i
]

+ S(I(λ))W
r(K−k̃)

r(K−k̃)
(G, G̃∗(λ))

)
+ 1{λ∈B}W

r(K−k̃)

r(K−k̃)
(G, Ḡ∗(λ))

]
. (15)
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B Additional Experiment

We provide a simulation experiment with partially distinguishable setting in this section to demonstrate
the theoretical results in Section 3.4.

Partially distinguishable setting. Consider the partial distinguishable case as in Theorem A.3
with weakly identifiable f , we will conduct an experiment to distinguish two regimes in part (b)
and (c) of the theorem, which are λ > λ∗ and λ ≤ λ∗. We simulate n data from the true data
generating model (1), where p0

1 = 0.4, p0
2 = 0.6, p∗1 = 1, λ∗ = 0.3, µ0

1 = µ∗1 = (−2, 3),Σ0
1 = Σ∗1 =(

3 −1
−1 2

)
, µ0

2 = (1,−4),Σ0
2 =

(
1 0
0 4

)
. In this case, k∗ = 1, k0 = 2, k̄ = 1, k∗ + k0 − k = 2

and we will fit the data with model pλG, where G has 3 atoms. The MLE (λ̂n, Ĝn) is found by
the EM algorithm. In the regime λ̂n < λ∗, we see that λ̂n → λ∗ in the parametric rate and the
convergence of Ĝn to G∗ is of order (log(n)/n)2r(K−k∗) = (log(n)/n)12 (Fig. 2). When λ̂n > λ∗,
because of the indistinguishability of the model, we do not expect λ̂n → λ∗ but the Wasserstein
distance between Ĝn and G∗(λ̂n) converges to 0 with the rate (log(n)/n)2r(2) = (log(n)/n)1/8.
The simulation study matches with this result, where λ̂n converges to some number greater than λ∗,
and the rate that W4(G,G∗(λ̂n)) converges to 0 is of order (log(n)/n)1/8 (Fig. 3).

(a) Convergence rates ofW6(Ĝn, G∗) (b) Convergence rates of |λ̂n − λ∗|

Figure 2: Parameter learning rates in regime λ ≤ λ∗.

(a) Convergence rates ofW4(Ĝn, G∗) (b) Limit of λ̂n

Figure 3: Parameter learning rates in regime λ > λ∗.
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C Proofs of Section 2

C.1 Proof of Theorem 2.4

(a) We first prove that h0 is distinguishable with (f, k) up to first order with any k and f being location-
scale Gaussian family, i.e., if there exists λ, αj ∈ R, βj ∈ Rd, symmetric matrices γi ∈ Rd×d,
θj ∈ Rd, and positive definite symmetric Σj ∈ Rd×d for j = 1, . . . , k such that

λh0(x) +
k∑
j=1

αjf(x|θj ,Σj) +
k∑
j=1

βTj
∂f

∂θ
(x|θj ,Σj) + tr

(
∂f

∂Σ
(x|θj ,Σj)T γj

)
= 0,

then λ = αj = βj = γj = 0 for all j = 1, . . . , k, where f(x|θ,Σ) is the density evaluated at
x of Gaussian distribution with mean θ and covariance Σ and (θj ,Σj)

k
j=1 are pairwise different.

Suppose there exists such (λ, αj , βj , γj)
k
j=1. We borrow a technique from [17, 28], where we find a

one-dimensional space to project x ∈ Rd onto and work with the order of means and variances in
that space to show that the solution must be trivial. Calculating the first derivatives of f gives

λh0(x) +
k∑
j=1

(
α′j + (β′j)

T (x− θj) + (x− θj)T γ−1
j (x− θj)

)
e
−

1

2
(x−θj)TΣ−1

j (x−θj)
= 0, (16)

where

α′j =
2αj − tr(Σ−1

j γj)

2πd/2|Σj |1/2
, β′j =

2

πd/2|Σj |1/2
Σ−1
j βj , γ′j =

1

πd/2|Σj |1/2
Σ−1
j γjΣ

−1
j ,

for all j = 1, . . . , k. If all the covariance matrices are equal, i.e., Σ1 = · · · = Σk, then (θj)
k
j=1

are pairwise different. Denote by δij = θi − θj , then for any x′ 6∈ ∪1≤i≤j≤k{u ∈ Rd : δTiju =

0}, we have (x′)T θ1, . . . , (x
′)T θk are distinct. Otherwise, if (without loss of generality) there

are Σ1, . . . ,Σm different matrices among Σ1, . . . ,Σk, then for every x′ 6∈ ∪1≤i≤j≤m{u ∈ Rd :
uT (Σi − Σj)u = 0}, we have (x′)TΣ1(x′), . . . , (x′)TΣm(x′) are distinct. In both cases, we
find a finite collection of hyperplanes and cones such that for every x′ not belongs to any set of
this collection, we have ((x′)T θ1, (x

′)TΣ1(x′)), . . . , ((x′)T θk, (x
′)TΣk(x′)) are pairwise different.

Note that because the union of these collection of (d− 1) dimensional manifolds can not be Rd, such
a non-zero x′ exists. Now we only consider x belongs to the one-dimensional linear space spanned
by this x′, i.e., x = y(x′), where y ∈ R. Denote by

aj = (x′)T γ′jx
′, bj = [(β′j)

T − 2θTj γ
′
j ]x
′, cj = θTj γ

′
jγj − (β′j)

T θj ,

dj = (x′)TΣ−1
j x′, ej = (x′)TΣ−1

j θ′j , fi = θTj Σ−1
j θj ,

for j = 1, . . . , k, we proved that ((dj , ej))
k
j=1 are distinct. Equation (16) implies that

λh0(yx′) +
k∑
j=1

(α′j + ajy
2 + bjy + cj) exp(djy

2 + ejy + fj) = 0. (17)

Case 1. If − log h0(x) & ‖x‖β1

2 for some β1 > 2 and for all ‖x‖2 > x0, we have h0(x) .

exp−‖x‖
β1
2 . Choose di1 = max1≤i≤k dk and ei2 = max{ej : dj = dj1}. Because h0 has a lighter

tail than Gaussian and

djy
2 + ejy + fj < di2y

2 + ei2y + fi2 , ∀j 6= i2,

for all y large enough, divide both sides of (17) by exp(di2y
2 + ei2y + fi2) and let y →∞, we have

ai2 = bi2 = 0. It implies that (x′)T γ′i2x
′ = [(β′i2)T − 2θTi2γ

′
i2

]x′ = 0. If γ′i2 6= 0 then we can further
choose x′ outside a cone such that (x′)T γ′i2x

′ 6= 0. Hence, γi2 = 0, which implies (β′i2)T (x′) = 0.
If βi2 6= 0 then we can further choose x′ outside a hyperplane such that (β′i2)T (x′) 6= 0. Hence, in
any case, we can argue so that β′i2 = θ′i2 = 0. Put it back to (17), we also have α′i2 = 0. Therefore,
αi2 = βi2 = γi2 = 0. Repeat the same argument, notice that the tail of h0 is lighter than any
Gaussian distribution, we have αj = βj = γj = 0 for all j = 1, . . . , k. It finally leads to λ = 0.
Hence, we have the distinguishability of h0 with family of location-scale Gaussians up to first order.
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Case 2. If − log h0(x) . ‖x‖β2

2 for some β2 < 2 and for all ‖x‖2 > x0. We have
p(x|θj ,Σj)/h0(x) → 0 as x → ∞ for all j = 1, . . . , k. Therefore, dividing both sides of (16)
by h0(x) and let x→∞ by some direction, we have λ = 0. Now proceed to argue similar to Case 1,
we also have the distinguishability of h0 with family of location-scale Gaussians up to first order.

Now we proceed to prove that h0 is distinguishable with (f, k) up to the any order, for f being
family of location Gaussian and any k > 0. Arguing similar to above, we only need to work on
one-dimensional space. Suppose that there exists λ, (ci,j)i=1,...,k,j=1,...,r such that

λh0(x) +
k∑
i=1

r∑
j=0

ci,j
∂jf

∂θj
(x|θi, vi) = 0, (18)

where f(·|θ, v) is the density function of normal distribution with mean θ and variance v, and
(θ1, v1), . . . , (θk, vk) are distinct. We need to prove that λ = ci,j = 0 for all i = 1, . . . , k, j =
1, . . . , r. Calculating the partial derivatives of f , we have

λh0(x) +
k∑
i=1

 r∑
j=0

γi,j(x− θi)j
 exp

(
− (x− θi)2

2vi

)
= 0, (19)

such that γi,j for odd j are linear combination of (ci,l) with odd l ≤ j, γi,j for even j are linear
combination of (ci,l) with even l ≤ j, and one can prove (for example, by induction) that γi,j = 0∀j
is equivalent to ci,j = 0∀j. Now we can argue similar to Case 1 and Case 2 above to get the
contradiction, with the notice that polynomials grow slower than exponential functions.

(b) Let T be a piecewise linear function with a positive finite number of breakpoints and h0 is the
density function of N(0, Id) being pushforwarded by T . Argue similar to above, we only need to
prove the result in one-dimensional case. In order to prove the distinguishable of h0 with mixtures of
location Gaussians family or mixtures of location-scale Gaussians family, it all boils down to prove
that if there exists λ ∈ R and polynomials Q1(x), Q2(x), . . . , Qk(x) such that

λh0(x) +
k∑
i=1

Qi(x)f(x|θi, v2
i ) = 0, (20)

where (θ1, v
2
1), . . . , (θk, v

2
k) are distinct, then λ = Q1(x) = · · · = Qk(x) = 0. We will prove this

by induction in k. Consider the case k = 1, we have

λh0(x) +Q1(x)f(x|θ1, v
2
1) = 0. (21)

Because T has finite number of break points, there exists some x0 large enough so that for all x > x0,
T is a linear one-to-one function between [x0,∞) and its image. Denote by T (x) = ax+ b when
x > x0. We can argue that a 6= 0, because otherwise the distribution of h0 will has an atom, which
directly leads to distinguishability between h0 and mixtures of Gaussians. Then, h0(x) = f(x|b, a2)
and we have

λf(x|b, a2) +Q1(x)f(x|θ1, v
2
1) = 0.

Argue similar to part (a), if (b, a2) 6= (θ1, v
2
1), we have λ = Q1(x) = 0, which implies the

distinguishability. Otherwise, we have b = θ1, a
2 = v2

1 , and Q1(x) = −λ for all x ∈ R. We can
rewrite (21) as

h0(x)− f(x|θ1, v
2
1) = 0.

Because h0 is N(0, 1) being pushforwarded by a piecewise linear function, we can write R as a
partition (−∞, c1], (c1, c2], . . . , [cm,∞) such that each semi-open interval is image of some linear
functions of T . Consider a semi-open interval (ci, ci+i] being image of Tj(z) = ajz + bj for
j = 1, . . . , h, by the change of variable formula for many-to-one map, we have

0 = h0(x)− f(x|θ1, v
2
1) =

h∑
j=1

f(x|bj , a2
j )− f(x|θ1, v

2
1), (22)

for all x ∈ (ci, ci+i]. Applying Lemma C.1, we have equation (22) is true for all x ∈ R. Hence, by
integrating both side, we get h = 1, and then b1 = θ1, a

2
1 = v2

1 . Because this is true for all semi-open
intervals (ci, ci+i], we have T (x) = a1x+ b1 for all x ∈ R, which is contradict to our assumption
that T is non-linear.
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Suppose that our inductive hypothesis is correct for k = n, now we proceed to prove it is true for
k = n+ 1. If there exists λ ∈ R and polynomials Q1(x), Q2(x), . . . , Qn+1(x) such that

λh0(x) +
n+1∑
i=1

Qi(x)f(x|θi, v2
i ) = 0, (23)

where (θ1, v1), . . . , (θn+1, v
2
n+1) are distinct. Without loss of generality, assume that v2

1 =
max1≤i≤n+1 v

2
k and θ1 = max{θj : v2

j = v2
1}. Because T has finite number of break points,

there exists some x0 large enough so that for all x > x0, T is a linear one-to-one function between
[x0,∞) and its image. Denote by T (x) = ax+ b when x > x0. We have

λf(x|b, a2) +
n+1∑
i=1

Qi(x)f(x|θi, v2
i ) = 0, ∀x > x0. (24)

If a2 > v2
1 or a2 = v2

1 , b > θ1, divide both sides of equation (24) by exp((x − b)/2a2) and let
x→∞, we have λ = 0 and the conclusion follows from the identifiability of Gaussians family.

If v2
1 > a2 or v2

1 = a2, θ1 > b, divide both sides of equation (24) by exp((x − θ1)/2v2
1) and let

x → ∞, we have Q1(x) = 0. The problem is back to the case k = n and is proved using the
inductive hypothesis.

If a2 = v2
1 , b = θ1, divide both sides of equation (24) by exp((x− b)/2a2) and let x→∞, we have

Q1(x) = −λ for all x ∈ R. Hence for x large enough,
n+1∑
i=2

Qi(x)f(x|θi, v2
i ) = 0,

which implies Q2(x) = · · · = Qn+1(x) = 0. The problem is back to the case k = 1 and is proved
using the inductive hypothesis.

The following lemma presents the local identifiability of location-scale Gaussians mixtures.
Lemma C.1. Denote by f(·|θ, σ2) the density function of Gaussian distribution with mean θ and
variance σ2. For all a < b and pairs {(θi, σ2

i )}ki=1, if there exists α1, α2, . . . , αn ∈ R such that

α1f(x|θ1, σ
2
1) + · · ·+ αkf(x|θk, σ2

k) = 0

for all x ∈ [a, b], then
α1f(x|θ1, σ

2
1) + · · ·+ αkf(x|θk, σ2

k) = 0, (25)
for all x ∈ R.

Proof. Step 1. (Centralize and normalize coefficients). Suppose that there exists α1, α2, . . . , αn ∈ R
such that

α1f(x|θ1, σ
2
1) + · · ·+ αkf(x|θk, σ2

k) = 0

for all x ∈ [a, b]. Denote by θ′i = θi −
a+ b

2
for all i = 1, . . . , k, then

α1
1√

2πσ1

exp

(
− (x− θ′1)2

2σ2
1

)
+ · · ·+ αk

1√
2πσk

exp

(
− (x− θ′k)2

2σ2
k

)
= 0, (26)

for all x ∈ [− b−a2 , b−a2 ]. Denote by σi1 = min{α1, . . . , αk}. Multiple both sides of (26) by

exp(− x2

σ2
i1

), and denote by s2
i = 1

σ2
i1

− 1
2σ2
i
,mi = θ′i/σ

2
i , βi =

1√
2πσi

exp(−(θ′i)
2/2σ2

i ) for all

i = 1, . . . , k, we have

β1 exp
(
s2

1x
2 +m1x

)
+ · · ·+ βk exp

(
s2
kx

2 +mkx
)

= 0, (27)

for all x ∈ [− b−a2 , b−a2 ].

Step 2. (Use properties of Laplace transformation). The left-hand side of equation (27) is the Laplace
transformation of

∑k
i=1 βif(x|mi, s

2
i ) and is identical to 0 in an open set around 0. Hence
k∑
i=1

βif(x|mi, s
2
i ) = 0,
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for all x ∈ R. It implies that

β1 exp
(
s2

1x
2 +m1x

)
+ · · ·+ βk exp

(
s2
kx

2 +mkx
)

= 0,

for all x ∈ R, which is equivalent to equation (25).

C.2 Proof of Proposition 2.5

If kσ is the Gaussian kernel with m > K, then we get the conclusions as direct consequences of
Example 2.3(a). If kσ is the multivariate Student kernel, then h0 has a tail heavier than Gaussian tail,
so that we get the conclusions as consequences of Proposition 2.4(a).

C.3 Proof of Proposition 2.6

Because T has a finite and postive number of layers, it is a piecewise linear and non-linear function.
So the conclusions are direct consequences of Proposition 2.4(b).

C.4 Proof of Theorem 3.1

This result can be obtained by modifying the proof of Theorem 7.4 in [26]. Recall that we defined
the function class

P1/2

k (Θ, ε) =
{
p̄

1/2
λG : G ∈ Ok(Θ), h(p̄λG, pλ∗G∗) ≤ ε

}
, (28)

where for any G ∈ OK(Θ), we write p̄λG = (pλG + pλ∗G∗)/2, and measure the complexity of this
class through the bracketing entropy integral

JB(ε,P1/2

k (Θ, ε), ν) =

∫ ε

ε2/213

√
logNB(u,P1/2

k (Θ, u), ν)du ∨ ε,

where NB(ε,X, η) denotes the ε-bracketing number of a metric space (X, η) and ν is the Lebesgue
measure. We denote by PλG the distribution corresponding to the density pλG. The technique to
prove this theorem is to bound the convergence rate by the increments of an empirical processes:

νn(λG) =
√
n

∫
{pλ∗G∗}>0

1

2
log

pλG
pλ∗G∗

d(Pn − Pλ∗G∗),

where Pn = 1
n

∑n
i=1 δXi is the empirical measure (X1, . . . , Xn

iid∼ pλ∗G∗ ). We first recall Theorem
5.11 in [26] with the notations adapted from our setting:

Theorem C.2. Let R > 0, k ≥ 1, and G be a subset of Ok(Θ), which contains G∗. Given C1 <∞,
for all C sufficiently large, and for n ∈ N and t > 0 satisfying

t ≤
√
n((8R) ∧ (C1R

2)), (29)

and

t ≥ C2(C1 + 1)

(
R ∨

∫ R

t/(26
√
n)

H
1/2
B

(
u√
2
,P1/2

k (Θ, R), ν

)
du

)
, (30)

we have

Pλ∗G∗

(
sup

G∈G,h(pλG,pλ∗G∗ )≤R
|νn(λG)| ≥ t

)
≤ C exp

(
− t2

C2(C1 + 1)R2

)
. (31)

Now we proceed to prove Theorem 3.1, the proof is divided into three parts: Bounding the tail
probability of h(pλ̂nĜn , pλ∗G∗) by sums of empirical processes increments using chaining technique,
bounding the empirical processes increments using Theorem C.2, and bounding the expectation of
h(pλ̂nĜn , pλ∗G∗) using its tail probability.
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Step 1 (Bounding the tail probability h(pλ̂nĜn , pλ∗G∗) by sums of empirical processes incre-
ments): Firstly, by Lemma 4.1 and 4.2 of [26], we have

1

16
h2(pλ̂nĜn , pλ∗G∗) ≤ h

2(pλ̂nĜn , pλ∗G∗) ≤
1√
n
νn(λ̂nĜn).

Hence, for any δ > δn := (log n/n)1/2, we have

Pλ∗G∗(h(pλ̂nĜn , pλ∗G∗) ≥ δ) ≤ Pλ∗G∗
(
νn(λ̂nĜn)−

√
nh2(pλ̂nĜn , pλ∗G∗) ≥ 0,

h(pλ̂nĜn , pλ∗G∗) ≥ δ/4
)

≤ Pλ∗G∗

(
sup

λ,G:h(pλG,pλ∗G∗ )≥δ/4
[νn(λG)−

√
nh2(pλG, pλ∗G∗)] ≥ 0

)

≤
S∑
s=0

Pλ∗G∗

(
sup

λ,G:2sδ/4≤h(pλG,pλ∗G∗ )≤2s+1δ/4

|νn(λG)| ≥
√
n22s(δ/4)2

)

≤
S∑
s=0

Pλ∗G∗

(
sup

λ,G:h(pλG,pλ∗G∗ )≤2s+1δ/4

|νn(λG)| ≥
√
n22s(δ/4)2

)
,

where S is a smallest number such that 2Sδ/4 > 1, as h(pλG, pλ∗G∗) ≤ 1. Now we will bound the
each term above using Theorem C.2.

Step 2 (Bounding the empirical processes increments using Theorem C.2): In Theorem C.2,
choose R = 2s+1δ, C1 = 15 and t =

√
n22s(δ/4)2, we can readily check that Condition (29)

satisfies (because 2s−1δ/4 ≤ 1 for all s = 0, . . . , S). Condition (30) satisfies thanks to Assumption
A3:∫ R

t/(26
√
n)

H
1/2
B

(
u√
2
,P1/2

k (Θ, R), ν

)
du ∨ 2s+1δ =

√
2

∫ R/
√

2

R2/213

H
1/2
B

(
u,P1/2

k (Θ, R), ν
)
du ∨ 2s+1δ

≤ 2JB(R,P1/2(Θ, R), ν)

≤ 2J
√
n22s+1δ2 = 26Jt.

So the conclusion of Theorem C.2 gives us

Pλ∗G∗(h(pλ̂nĜn , pλ∗G∗) > δ) ≤ C
∞∑
s=0

exp

(
22snδ2

J2214

)
≤ c exp

(
nδ2

c2

)
, (32)

where c is a large constants that does not depend on λ∗, G∗.

Step 3 (Implying the bound on supremum of expectation): Thus, we have

Eh(pλ̂nĜn , pλ∗G∗) =

∫ ∞
0

P(h(pλ̂nĜn , pλ∗G∗) > δ)dδ ≤ δn + c

∫ ∞
δn

exp

(
−nδ

2

c2

)
≤ c̃δn,

for some c̃ does not depend on λ∗, G∗. Hence, we finally proved that

sup
G∗∈Ok(Θ),λ∗∈[0,1]

Eλ∗,G∗h(pλ̂nĜn , pλ∗G∗) ≤ C
√

log n/n.

As a consequence, we obtain the conclusion of the theorem.

D Proof of Section 3

D.1 Proof of Proposition 3.2

We first need to denote some notations that are required for the proof. Those notations are well-known
in Empirical Processes field [26]. Denote by

Pk(Θ) = {pλG : λ ∈ [0, 1], G ∈ Ok(Θ)},
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and let N(ε,Pk(Θ), ‖ · ‖∞) be the ε−covering number of (Pk(Θ, ‖ · ‖∞) and NB(ε,Pk(Θ), h)
be the bracketing number of Pk(Θ) measured by Hellinger metric h. HB(ε,Pk(Θ), h) =
logNB(ε,Pk(Θ), h) is called the bracketing entropy of Pk(Θ) under metric h. Let Pk(Θ) =

{(pλG + pλ∗G∗)/2 : λ ∈ [0, 1], G ∈ Ok(Θ)} and P1/2

k (Θ) = {p1/2 : p ∈ Pk(Θ)}. We want to
show that

JB(ε,Pk
1/2

(Θ, ε), L2(µ)) =

(∫ ε

ε2/2213
H

1/2
B (δ,Pk

1/2
(Θ, δ), ν)dδ ∨ δ

)
.
√
nε2, (33)

for all n > N large enough and ε > (log n/n)1/2. We proceed to show that claim (33) will be proved
if

logN(ε,Pk(Θ), ‖·‖∞) . log(1/ε), (34)

HB(ε,Pk(Θ), h) . log(1/ε), (35)
and then prove claim (34) and (35).

Proof of that claim (35) implies claim (33) Because P1/2

k (Θ, δ) ⊂ P1/2

k (Θ) and from the defini-
tion of Hellinger distance,

HB(δ,P1/2

k (Θ, δ), µ) ≤ HB(δ,P1/2

k (Θ), µ) = HB(
δ√
2
,Pk(Θ), h).

Now use the fact that for densities f∗, f1, f2, we have h2((f1 + f∗)/2, (f2 + f∗)/2) ≤ h2(f1, f2)/2,
oen can readily check that HB( δ√

2
,Pk(Θ), h) ≤ HB(δ,Pk(Θ), h). Hence, if claim (35) holds true,

then
HB(δ,P1/2

k (Θ, δ), µ) ≤ HB(δ,Pk(Θ), h) . log(1/δ),

which implies that
JB(ε,P1/2

k (Θ, δ), µ) . ε(log(213/ε2))1/2 < nε2,

for all ε > (log n/n)1/2. Hence, claim (33) is proved.

Proof of claim (34) By invoking the proof of Lemma 2.1. of [16], we have a ε-net S for ({pG :
G ∈ Ok(Θ), h}) with the cardinality being bounded as follows

|S| ≤
(

2dλ

ε

)d(d+1)k/2

×
(

2a

ε

)dk (
5

ε

)k
.

Denote by G the set of latent mixing measures G in that net. Let S0 be an ε−net in [0, 1] for λ, it
is seen that |S0| ≤ 1/ε. Now we form a net for Pk(Θ) by {pλG : λ ∈ S0, G ∈ G}. Hence, for any
λ,G, there exists λ̃ ∈ S0, G ∈ G such that

|λ− λ̃| ≤ ε, ‖pG − pG̃‖∞ ≤ ε.

This implies ∥∥pλG − pλ̃G̃∥∥∞ ≤ ∥∥pλG − pλ̃G∥∥∞ +
∥∥pλ̃G − pλ̃G̃∥∥∞

≤ |λ− λ̃|(‖h0‖∞ + ‖pG‖∞) + λ̃ ‖pG − pG̃‖∞

≤ ε
(
‖h0‖∞ +

1

(
√

2πλ)d/2

)
+ ε

. ε.

Hence, we get an ε−net for Pk(Θ) with the cardinality less than or equal

|S0| × |S| =
1

ε
×
(

2dλ

ε

)d(d+1)k/2

×
(

2a

ε

)dk (
5

ε

)k
.

Thus,
logN(ε,Pk(Θ), ‖·‖∞) . log(1/ε).
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Proof of claim (35) Now, from the entropy number to get the bracketing number, we let η ≤ ε
which will be chosen later. Let f1, . . . , fN be a η-net for Pk(Θ). We have

(x− θ)TΣ−1(x− θ) ≥
‖x− θ‖22

λ̄
≥
‖x‖22
4λ̄

, ∀ ‖x‖ ≥ 2
√
da, (θ,Σ) ∈ Θ, (36)

Moreover, h0 has an exponential tail − log h0(x) & ‖x‖β2 for some β > 0, and ‖h0‖∞ < C for

some constant C. Therefore, if we let β′ = min{β, 2} > 0 and C ′ = max

{
C,

1

(2π)d/2λd

}
, then

H(x) =

{
C1 exp(−‖x‖β

′

2 ), ‖x‖2 ≥ B1,

C ′, otherwise
(37)

is an envelop for Pk(Θ), where C1 depends only on λ and h0, B1 depends on a, λ, h0. We can
construct brackets [pLi , p

U
i ] as follows.

pLi (x) = max{fi(x)− η, 0}, pUi (x) = min{fi(x) + η,H(x)}. (38)

Because for each f ∈ Pk(Θ), there is fi such that ‖f − fi‖∞ < η, therefore pLi ≤ f ≤ pUi .
Moreover, for any B ≥ B1,∫

Rd
(pUi − pLi )dµ ≤

∫
‖x‖2≤B

2ηdx+

∫
‖x‖2≥B

H(x)dx

. ηBd +Bd exp
(
−Bβ

′
)
, (39)

where we use spherical coordinate to have∫
‖x‖≤B

dx =
πd/2

Γ(d/2 + 1)
Bd . Bd,

and ∫
‖x‖≥B

exp
(
−‖x‖β

′

2

)
.
∫
r≥B

rd−1 exp
(
−rβ

′
)
dr

=
1

β

∫ ∞
Bβ′

ud/β
′−1 exp(−u)du (change of variable u = rβ

′
)

≤ 1

β′
Bd−β

′
exp(−Bβ

′
),

in which the last step we use the inequality (with change of variable formula)∫ ∞
z

ud/β−1e−udu = zd/βe−z
∫ ∞

0

(1 + s)d/β−1e−zsds ≤ zd/βe−z 1

z − d/β + 1
< zd/βe−z,

(40)
whenever z > d/β′, and we use z = Bβ

′
. Hence, in (39), if we choose B = B1(log(1/η))1/β′ then∫

Rd
(pUi − pLi )dµ . η

(
log

(
1

η

))d/β′
. (41)

Therefore, there exists a positive constant c which does not depend on η such that

HB(cη log(1/η)d/β
′
,Pk(Θ), ‖·‖1) . log(1/η).

Let ε = cη(log(1/η))d/β
′
, we have log(1/ε) � log(1/η), which combines with inequality ‖·‖1 ≤ h2

leads to
HB(ε,Pk(Θ), h) ≤ HB(ε2,Pk(Θ), ‖·‖1) . log(1/ε2) . log(1/ε).

Thus, we have proved claim (35).

We put a remark here that the technique in this proof can be generalized for any family of f(x|θ) that
have sub-exponential tails, i.e. f(x|θ) . exp(−‖x‖γ) for all x large enough and γ > 0. We can
substitute this condition into equation (36), then proceed to continue the proof similarly.

Next, we provide proofs for inverse bounds in Section 3 of the paper. Because there are several results
with the same spirit in this section, to make it easy for reader, we recall each result before proving it.
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D.2 Proof of Theorem 3.3

Theorem 3.3. Assume that k∗ is known, f is first order identifiable and (f, k∗) is distinguishable
from h0. Then, for any G ∈ Ek∗(Θ), there exist positive constant C1 and C2 depending only on
λ∗, G∗, h0,Θ such that the following holds:

(a) When λ∗ = 0, then V (pλ∗G∗ , pλG) ≥ C1λ.

(b) When λ∗ ∈ (0, 1], then
V (pλ∗G∗ , pλG) ≥ C2 [|λ− λ∗|+ (λ+ λ∗)W1(G,G∗)]︸ ︷︷ ︸

W 1(λG,λ∗G∗)

.

We first provide the proof of the theorem for the setting λ∗ ∈ (0, 1] in Section D.2.1. Then, the proof
for the setting λ∗ = 0 is presented in Section D.2.2.

D.2.1 Proof of setting λ∗ ∈ (0, 1]

Recall that, we define W 1(λG, λ∗G∗) := |λ − λ∗| + (λ + λ∗)W1(G,G∗). Besides that, G∗ =∑k∗
i=1 p

∗
i δθ∗i . In order to obtain the proof of the theorem for the setting λ∗ ∈ (0, 1], it is sufficient to

verify the following two claims:

lim
ε→0

inf
λ∈[0,1],G∈Ek∗ (Θ)

{
V (pλG, pλ∗G∗)

W 1(λG, λ∗G∗)
: W 1(λG, λ∗G∗) ≤ ε

}
> 0, (42)

inf
λ∈[0,1],G∈Ek∗(Θ):W 1(λG,λ∗G∗)>ε′

V (pλG, pλ∗G∗)

W 1(λG, λ∗G∗)
> 0, (43)

for any ε′ > 0.

Proof of claim (42): Assume that claim (42) does not hold. It indicates that there exists a sequence
of probability measures Gn ∈ Ek∗(Θ) and a sequence of λn ∈ [0, 1] such that W 1(λnGn, λ

∗G∗)→
0 and V (pλnGn , pλ∗G∗)/W 1(λnGn, λ

∗G∗) → 0 as n → ∞. Therefore, we have λn → λ∗ and
W1(Gn, G∗)→ 0 as n→∞. We can relabel the atoms and weights of Gn such that it admits the
following form:

Gn =

k∗∑
i=1

pni δθni , (44)

where pni → p∗i and θni → θ∗i for all i ∈ [k∗]. To ease the ensuing presentation, we denote
∆θni := θni − θ∗i and ∆pni := pni − p∗i for i ∈ [k∗]. Then, using the coupling between Gn and G∗
such that it put mass min{pni , p∗i } on δ(θni ,θ∗i ), we can verify that

W1(Gn, G∗) �
k∗∑
i=1

|∆pni |+ pni ‖∆θni ‖2 . (45)

Our proof is divided into three steps.

Step 1 - Taylor expansion: Invoking Taylor expansion up to the first order, we find that

f(x|θni ) = f(x|θ∗i ) + (∆θni )>
∂f

∂θ
(x|θ∗i ) +Ri(x),

where Ri(x) is Taylor remainder such that Ri(x) = o(‖∆θni ‖2) for i ∈ [k∗]. Given the above
expressions, we obtain that

pλnGn(x)− pλ∗G∗(x) = (λ∗ − λn)h0(x) +

k∗∑
i=1

(λnp
n
i − λ∗p∗i ) f(x|θ∗i )

+ λnp
n
i (∆θni )

> ∂f

∂θ
(x|θ∗i ) +R(x),

(46)

whereR(x) = λn
∑n
i=1 p

n
i Ri(x) = o

(
λn
∑k∗
i=1 p

n
i ‖∆θni ‖2

)
. From the expression ofW1(Gn, G∗)

in (45), we have R(x)/W 1(λnGn, λ
∗G∗)→ 0 as n→∞ for all x.
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Step 2 - Non-vanishing coefficients: From equation (46), we can represent the ratio
(pλnGn(x)− pλ∗G∗(x)) /W 1(λnGn, λ

∗G∗) as a linear combination of elements of h0(x), f(x|θ∗i ),
∂f
∂θ (x|θ∗i ) for i ∈ [k∗]. Assume that all of the coefficients associated with these terms go to 0 as
n→∞. As the coefficient with h0(x) goes to 0, we obtain that (λ∗ − λn)/W 1(λnGn, λ

∗G∗)→ 0

as n → ∞. Furthermore, the coefficients of f(x|θ∗i ), ∂f∂θ (x|θ∗i ) vanish to 0 are equivalent to the
following limits

(λnp
n
i − λ∗p∗i ) /W 1(λnGn, λ

∗G∗)→ 0, pni ‖∆θni ‖2 /W 1(λnGn, λ
∗G∗)→ 0.

As we have (λ∗ − λn)/W 1(λnGn, λ
∗G∗)→ 0, the above limits lead to

λ∗ (∆pni ) /W 1(λnGn, λ
∗G∗)→ 0.

Putting the above results together, we obtain 1 = W 1(λnGn, λ
∗G∗)/W 1(λnGn, λ

∗G∗)→ 0, which
is a contraction. As a consequence, not all the coefficients of h0(x), f(x|θ∗i ), ∂f∂θ (x|θ∗i ) go to 0 for
i ∈ [k∗].

Step 3: Show the contradiction using the distinguishability condition and Fatou’s lemma: De-
note mn as the maximum of the absolute values of the coefficients of h0(x), f(x|θ∗i ), ∂f∂θ (x|θ∗i ) as
i ∈ [k∗]. Since not all of these coefficients vanish to 0, we have mn 6→ 0 as n → ∞. There-
fore, dn = 1/mn 6→ ∞ as n → ∞. Given the previous results, there exist α0, α1, . . . , αk∗ and
β1, . . . , βk∗ such that not all of them are 0 and the following limit holds:

dn ·
pλnGn(x)− pλ∗G∗(x)

W 1(λnGn, λ∗G∗)
→ α0h0(x) +

k∗∑
i=1

αif(x|θ∗i ) + β>i
∂f

∂θ
(x|θ∗i ).

By means of Fatou’s lemma, we have

0 = lim
n→∞

dn ·
V (pλnGn , pλ∗G∗)

W 1(λnGn, λ∗G∗)
≥
∫

lim inf
n→∞

dn ·
pλnGn(x)− pλ∗G∗(x)

W 1(λnGn, λ∗G∗)
dx,

=

∫ (
α0h0(x) +

k∗∑
i=1

αif(x|θ∗i ) + β>i
∂f

∂θ
(x|θ∗i )

)
dx. (47)

The above equation indicates that

α0h0(x) +

k∗∑
i=1

αif(x|θ∗i ) + β>i
∂f

∂θ
(x|θ∗i ) = 0,

for almost surely x. Since (f, k∗) is distinguishable from h0 and f is first order identifiable, the above
equation suggests that α0 = α1 = . . . = αk∗ = 0 and β1 = . . . = βk∗ = 0, which is a contradiction.

As a consequence, we achieve the conclusion of claim (42).

Proof of claim (43) Similar to the proof of claim (42), we also prove claim (43) by contradiction.
Assume that claim (43) does not hold. It implies that we can find sequences λ′n ∈ [0, 1] and
G′n ∈ Ek∗(Θ) such that W 1(λ′nG

′
n, λ
∗G∗) > ε′ and V (pλ′nG′n , pλ∗G∗)/W 1(λ′nG

′
n, λ
∗G∗) → 0 as

n → ∞. Since [0, 1] and Θ are bounded sets, there exist λ′ ∈ [0, 1] and G′ ∈ Ek∗(Θ) such that
λ′n → λ′ and W1(G′n, G

′) → 0 as n → ∞. Since W 1(λ′nG
′
n, λ
∗G∗) > ε′ for all n, the previous

limits indicate that W 1(λ′G′, λ∗G∗) ≥ ε′.

On the other hand, since V (pλ′nG′n , pλ∗G∗)/W 1(λ′nG
′
n, λ
∗G∗)→ 0, we have V (pλ′nG′n , pλ∗G∗)→ 0

as n→∞. An application of Fatou’s lemma leads to

0 = lim
n→∞

V (pλ′nG′n , pλ∗G∗) ≥
1

2

∫
lim inf
n→∞

∣∣pλ′nG′n(x)− pλ∗G∗(x)
∣∣ dx = V (pλ′G′,λ∗G∗).

Due to the identifiability of model (1), the above equation leads to (λ′, G′) ≡ (λ∗, G∗), which is
a contradiction to the condition that W 1(λ′G′, λ∗G∗) ≥ ε′. As a consequence, we achieve the
conclusion of claim (43).
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D.2.2 Proof of setting λ∗ = 0

We want to show that

inf
G∈Ek∗ (Θ)

V (pλG, pλ∗G∗)

λ
> 0 (48)

Proof of claim (48): Assume that claim (48) does not hold. We can find two sequences λ̄n ∈ [0, 1]

and Ḡn ∈ Ek∗(Θ) such that V (pλ̄nḠn , pλ∗G∗)/λ̄n → 0 as n→∞. We denote Ḡn =
∑k∗
i=1 p̄

n
i δθ̄ni .

Since Θ is a bounded set, there exists Ḡ =
∑k∗
i=1 p̄iδθ̄i ∈ Ek∗(Θ) such that W1(Ḡn, Ḡ) → 0 as

n→∞. Invoking Fatou’s lemma, we obtain that

0 = lim
n→∞

V (pλ̄nḠn , pλ∗G∗)

λn
≥ 1

2

∫
lim inf
n→∞

∣∣∣∣∣
k∗∑
i=1

p̄ni f(x|θ̄ni )− h0(x)

∣∣∣∣∣ dx
= V

(
k∗∑
i=1

p̄if(.|θ̄i), h0(.)

)
.

The above equation shows that
∑k∗
i=1 p̄if(x|θ̄i) = h0(x) for almost surely x, which is a contradiction

to the hypothesis that (f, k∗) is distinguishable from h0. Hence, we reach the conclusion of claim (48).

D.3 Proof of Theorem 3.4

Theorem 3.4. Assume that k∗ is unknown and strictly upper bounded by a given K. Besides that, f
is second order identifiable and (f,K) is distinguishable from h0. Then, for any G ∈ OK(Θ), there
exist positive constant C1 and C2 depending only on λ∗, G∗, h0,Θ such that the following holds:

(a) When λ∗ = 0, then V (pλ∗G∗ , pλG) ≥ C1λ.

(b) When λ∗ ∈ (0, 1], then

V (pλ∗G∗ , pλG) ≥ C2

[
|λ− λ∗|+ (λ+ λ∗)W 2

2 (G,G∗)
]︸ ︷︷ ︸

W 2(λG,λ∗G∗)

.

The proof argument for the setting λ∗ = 0 is similar to that in Section D.2.2; therefore, it is omitted.
We focus only on the proof of the setting λ∗ ∈ (0, 1].

Similar to the proof of Theorem 3.3, in order to reach the conclusion of Theorem 3.4 for the setting
λ∗ ∈ (0, 1], it is sufficient to demonstrate the following claims:

lim
ε→0

inf
λ∈[0,1],G∈OK(Θ)

{
V (pλG, pλ∗G∗)

W 2(λG, λ∗G∗)
: W 2(λG, λ∗G∗) ≤ ε

}
> 0, (49)

inf
λ∈[0,1],G∈OK(Θ):W 2(λG,λ∗G∗)>ε′

V (pλG, pλ∗G∗)

W 2(λG, λ∗G∗)
> 0,

for any ε′ > 0. Since the proof of the second claim is similar to that of claim (43) in Section D.2;
therefore, it is omitted.

Proof of claim (49): Similar to the proof of claim (42), we use proof by contradiction for claim (49).
Assume that claim (49) does not hold. Given that assumption, we can find sequences Gn ∈ OK(Θ)
and λn ∈ [0, 1] such that W 2(λnGn, λ

∗G∗)→ 0 and V (pλnGn , pλ∗G∗)/W 2(λnGn, λ
∗G∗)→ 0 as

n→∞. As W2(Gn, G∗)→ 0 as n→∞, using the similar argument as that in Section 3.2 in Ho et
al. [18], we can find a subsequence of Gn (without loss of generality, we replace that subsequence by
the whole sequence of Gn with k′ ∈ [k∗,K] supports such that

Gn =

k∗+l̄∑
i=1

si∑
j=1

pnijδθnij , (50)
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where
∑si
j=1 p

n
ij → p∗i and θnij → θ∗i for all i ∈ [k∗ + l̄]. Here, p∗i = 0 for k∗ + 1 ≤ i ≤ k∗ + l̄.

In addition, s1, . . . , sk∗+l̄ ≥ 1 are such that
∑k∗+l̄
i=1 si = k′. To ease the ensuing presentation, we

denote ∆θnij := θnij − θ∗i and ∆pni. :=
∑si
j=1 p

n
ij − p∗i for i ∈ [k∗ + l̄]. Then, based on Lemma 3.1 in

Ho et al. [18], we have

W 2
2 (Gn, G∗) �

k∗+l̄∑
i=1

|∆pni.|+
k∗+l̄∑
i=1

si∑
j=1

pnij
∥∥∆θnij

∥∥2

2
. (51)

We divide our proof of claim (49) into three steps.

Step 1 - Taylor expansion: An application of Taylor expansion up to the second order leads to

f(x|θnij) = f(x|θ∗i ) + (∆θij)
> ∂f

∂θ
(x|θ∗i ) + (∆θij)

> ∂
2f

∂θ2
(x|θ∗i )(∆θij) +Rij(x),

where Rij(x) is Taylor remainder such that Rij(x) = o(‖∆θij‖22) for all i ∈ [k∗ + l̄] and j ∈ [si].
Collecting the above equations, we obtain that

pλnGn(x)− pλ∗G∗(x) = (λ∗ − λn)h0(x) +

k∗+l̄∑
i=1

 si∑
j=1

λnp
n
ij − λ∗p∗i

 f(x|θ∗i )

+ λn

 si∑
j=1

pnij∆θ
n
ij

> ∂f
∂θ

(x|θ∗i ) + λn

 si∑
j=1

pnij
(
∆θnij

)> ∂2f

∂θ2
(x|θ∗i )(∆θnij)

+R(x),

(52)

where R(x) = λn
∑k∗+l̄
i=1

∑si
j=1 p

n
ijRij(x) = o

(
λn
∑k∗+l̄
i=1

∑si
j=1 p

n
ij

∥∥∆θnij
∥∥2

2

)
. Given the expres-

sion of W 2
2 (Gn, G∗) in equation (77), we can verify that R(x)/W 2(λnGn, λ

∗G∗)→ 0 as n→∞.

Step 2 - Non-vanishing coefficients: Given the expression in equation (52), we can view
(pλnGn(x) − pλ∗G∗(x))/W 2(λnGn, λ

∗G∗) as a linear combination of elements of the forms
h0(x), f(x|θ∗i ), ∂f∂θ (x|θ∗i ), and ∂2f

∂θ2 (x|θ∗i ) for all i ∈ [k∗+ l̄]. Assume that their coefficients go to 0 as
n tends to infinity. As the coefficient of h0(x) goes to 0, we have (λn−λ∗)/W 2(λnGn, λ

∗G∗)→ 0.

Similarly, by learning the coefficients of f(x|θ∗i ) and
[
∂2f
∂θ2 (x|θ∗i )

]
jj

for j ∈ [d], we obtain the

following limits: si∑
j=1

λnp
n
ij − λ∗p∗i

 /W 2(λnGn, λ
∗G∗)→ 0, λn

 si∑
j=1

pnij
∥∥∆θnij

∥∥2

2

 /W 2(λnGn, λ
∗G∗)→ 0.

Collecting the above limits, we find that

λ∗∆pni.
W 2(λnGn, λ∗G∗)

=
(λ∗ − λn)

(∑si
j=1 p

n
ij

)
+
(∑si

j=1 λnp
n
ij − λ∗p∗i

)
W 2(λnGn, λ∗G∗)

→ 0.

Putting the above results together, we achieve that 1 = W 2(λnGn, λ
∗G∗)/W 2(λnGn, λ

∗G∗)→ 0,
which is a contraction. Therefore, not all the coefficients associated with h0(x), f(x|θ∗i ), ∂f∂θ (x|θ∗i ),

and ∂2f
∂θ2 (x|θ∗i ) for i ∈ [k∗ + l̄] go to 0 as n tends to infinity.

Step 3: Show the contradiction using the distinguishability condition and Fatou’s lemma:
Similar to Step 3 in Section D.2.1, by denoting dn = 1/mn where mn is the maximum values
of the absolute values of the coefficients of h0(x), f(x|θ∗i ), ∂f∂θ (x|θ∗i ), and ∂2f

∂θ2 (x|θ∗i ), we have

dn ·
pλnGn(x)− pλ∗G∗(x)

W 1(λnGn, λ∗G∗)
→ α0h0(x) +

k∗+l̄∑
i=1

αif(x|θ∗i ) + β>i
∂f

∂θ
(x|θ∗i ) + γ>i

∂2f

∂θ2
(x|θ∗i )γi,
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where αi, βi, γi are some coefficients such that not all of them are 0. However, the Fatou’s lemma
suggests that the RHS of the above equation is 0 for almost surely x. Since (f,K) is distinguishable
from h0, it shows that αi = 0, βi = 0 ∈ Rd, and γi = 0 ∈ Rd×d for all i ∈ [k∗+ l̄]— a contradiction.
As a consequence, we obtain the conclusion of claim (49).

D.4 Proof of Theorem 3.5

Theorem 3.5. Assume that k∗ is unknown and strictly upper bounded by a given K. Besides that, f
is location-scale Gaussian distribution and (f,K) with fixed variance is distinguishable in any order
from h0. Then, for any G ∈ OK(Θ), there exist positive constant C1 and C2 depending only on
λ∗, G∗, h0,Θ such that the following holds:

(a) When λ∗ = 0, then V (pλ∗G∗ , pλG) ≥ C1λ.

(b) When λ∗ ∈ (0, 1], then

V (pλ∗G∗ , pλG) ≥ C2W r(K−k∗)(λG, λ
∗G∗).

The proof argument for the setting λ∗ = 0 is similar to that in Section D.2.2; therefore, it is omitted.
We focus only on the proof of the setting λ∗ ∈ (0, 1].

Denote by r1 = r(K − k∗). Similar to the proof of Theorem 3.3, in order to reach the conclusion of
Theorem 3.5 for the setting λ∗ ∈ (0, 1], it is sufficient to demonstrate the following claims:

lim
ε→0

inf
λ∈[0,1],G∈OK(Θ)

{
V (pλG, pλ∗G∗)

W r1
(λG, λ∗G∗)

: W r1
(λG, λ∗G∗) ≤ ε

}
> 0, (53)

inf
λ∈[0,1],G∈OK(Θ):W r1

(λG,λ∗G∗)>ε′

V (pλG, pλ∗G∗)

W r1
(λG, λ∗G∗)

> 0,

for any ε′ > 0. Since the proof of the second claim is similar to that of claim (43) in Section D.2;
therefore, it is omitted. We now proceed to prove claim (53). Suppose that it is not correct, that
is, there exist sequences λn and Gn =

∑kn
i=1 p

n
i δθni ∈ OK(Θ) such that W r1(λnGn, λ

∗G∗) → 0

and V (pλnGn , pλ∗G∗)/W r1
(λnGn, λ

∗G∗)→ 0. For the ease of presentation, we consider the one
dimension Gaussian case where (µ,Σ) = (θ, v), the higher dimension cases are treated similar.

We can use the subsequence argument to have λ∗ ≥ λn for all n and Gn can be assumed to have a
fixed number of atoms k′ (less than or equals K) and have a representation as in (54), that is,

Gn =

k∗+l̄∑
i=1

si∑
j=1

pnijδ(θnij ,vnij), (54)

where
∑si
j=1 p

n
ij → p∗i and θnij → θ∗i , v

n
ij → v∗i for all i ∈ [k∗ + l̄]. Here, p∗i = 0 for k∗ + 1 ≤ i ≤

k∗ + l̄. In addition, s1, . . . , sk∗+l̄ ≥ 1 are such that
∑k∗+l̄
i=1 si = k′.

Step 1 - Taylor expansion: Using Taylor expansion of f around {(θ∗i , v∗i )}k∗i=1 to the r1−th order
we have

pλnGn(x)− pλ∗G∗(x) = (λ∗ − λn)h0(x) + λn(

k∗+l∑
i=1

si∑
j=1

pnijf(x|θnij , vnij))−
k∗∑
i=1

p∗i f(x|θ∗i , v∗i )

= (λ∗ − λn)h0(x) +

k∗+l∑
i=1

si∑
j=1

λnp
n
ij

r1∑
|α|=1

(∆θnij)
α1(∆vnij)

α2
1

α!

∂|α|f(θ∗i ,v
∗
i )

∂α1θ∂α2v

+

k∗+l∑
i=1

(∆pni·)f(x|θ∗i , v∗i ) +R(x),

where α = (α1, α2), |α| = α1+α2,α! = α1!α2!, ∆pni· = λn
∑
j p

n
ij−p∗i , ∆θnij = θnij−θ∗i ,∆vnij =

vnij − v∗i and R(x) = o(
∑k∗+l
i=1

∑si
j=1 p

n
ij(|∆θnij |r1 + |∆vnij |r1)). Now we can use the character
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equation
∂2f

∂θ2
= 2

∂f

∂v
to rewrite the formula above as

(λ∗ − λn)h0(x) +

2r1∑
α=1

k∗+l∑
i=1

 si∑
j=1

λnp
n
ij

∑
n1,n2

(∆θnij)
n1(∆vnij)

n2

2n2n1!n2!

 ∂αf(θ∗i , v
∗
i )

∂θα

+

k∗+l∑
i=1

(∆pni·)f(x|θ∗i , v∗i ) +R(x), (55)

where we sum over n1, n2 such that n1 + 2n2 = α, n1 + n2 ≤ r1.

Step 2 - Non-vanishing coefficients: Assume that all coefficients in the formula above vanish
when dividing by W r1

r1
(λnGn, λ

∗G∗) when n→∞. Because

W r1

r1
(λnGn, λ

∗G∗) � |λn−λ∗|+(λn+λ∗)

k∗+l̄∑
i=1

|∆pni.|+
k∗+l̄∑
i=1

si∑
j=1

pnij(
∥∥∆θnij

∥∥r1

2
+
∥∥∆vnij

∥∥r1

2
)

 := Dr1(Gn, G∗),

(56)
we have

λ∗ − λn
Dr1

(Gn, G∗)
→ 0,

∆pni·
Dr1

(Gn, G∗)
→ 0. (57)

These limits together imply

(λ∗ + λn)∆pni·
Dr1

(Gn, G∗)
→ 0, ∀i = 1, . . . , k∗ + l.

From the definition of Dr1
, it can be deduced that there exists at least an index i∗ such that
si∗∑
j=1

(λn + λ∗)pni∗j((θ
n
ij)

r1 + (vnij)
r1)

Dr1
(Gn, G∗)

6→ 0.

Without loss of generality, assign i∗ = 1. But as we assume all the coefficients in equation (55) go to
0 for all α and i, we have

s1∑
j=1

λnp
n
1j

∑
n1+2n2=α
n1+n2≤r1

(θn1j)
n1(vn1j)

n2

2n2n1!n2!

Dr1(Gn, G∗)
→ 0,

for all α = 1, . . . , 2r1. From two expressions above combining with equation (57), we have for all
α = 1, . . . , 2r1,

Fα :=

s1∑
j=1

pn1j
∑

n1+2n2=α
n1+n2≤r1

(∆θn1j)
n1(∆vn1j)

n2

2n2n1!n2!∑s1
j=1 p

n
1j((∆θ

n
ij)

r1 + (∆vnij)
r1)

→ 0. (58)

If s1 = 1 then substituting α = 1 and α = 2r1 gives

|∆θn11|r1

|∆θn11|r1 + |∆vn11|r1
,

|∆vn11|r1

|∆θn11|r1 + |∆vn11|r1
→ 0,

which is impossible as they are sum up to 1 for all n. Hence s1 ≥ 2. Now we proceed to show
the contradiction using the system of equations (6). Denote by pn = max1≤j≤s1{pn1j},Mn =

max1≤j≤s1{|∆θn1j |, |∆vn1j |1/2}. By the subsequence argument in compact sets, without loss of
generality, we can denote c2j := limn→∞ pn1j/pn, aj = lim ∆θn1j/Mn, and bj = lim ∆vn1j/Mn for
all j = 1, . . . , k∗ + l. Because of the definition of OK,c0 , we have pnij ≥ c0 for all j, which implies
all cj are different from 0 and at least one of them is 1. Similarly, in (aj , bj)j , there is at least one of
them equals to 1 or −1. Dividing both numerators and denominators of equation (58) by pnM

α

n , we
have

s1∑
j=1

∑
n1+2n2=α

c2ja
n1
j b

n2
j

n1!n2!
= 0,
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for all α = 1, . . . , r1. Hence, we get the contradiction, where we use the fact that s1 ≤ K − k∗ + 1
(as si ≥ 1 for all i ≥ 2) and r1 = r(K − k∗) is the smallest number such that equation (6), where
k = K − k∗, has the trivial solution only. Hence, when dividing by W r1

r1
(λnGn, λ

∗G∗), not all
coefficients of equation (55) vanish as n→∞.

Step 3: Show the contradiction using the distinguishability condition and Fatou’s lemma: De-
note by

Ei,α =

si∑
j=1

λnp
n
ij

∑
n1,n2

(∆θnij)
n1(∆vnij)

n2

2n2n1!n2!

/
W r1

r1
(λnGn, λ

∗G∗), ∀i, α ≥ 1.

Ei,0 = ∆pni·

/
W r1

r1
(λnGn, λ

∗G∗), ∀i ≥ 1, E0,0 = (λ∗ − λn)

/
W r1

r1
(λnGn, λ

∗G∗).

We have proved that not all Ei,α go to 0. Let dn = max0≤α≤2r1,0≤i≤k′ |Ei,α|. Because Ei,α/dn ∈
[−1, 1] for all n, by the subsequence argument if needed, we have Ei,α/mn → βi,α as n → ∞,
where at least one of the limits are different from 0. But Fatou’s argument implies that

β0,0h0(x) +

k∗∑
i=1

2r1∑
α=0

βi,α
∂αf

∂θα
(x|θ∗i , v∗i ) = 0,

which contradicts our assumption. Hence, claim (53) is proved.

D.5 Proof Theorem A.1

Theorem A.1. Assume that h0 takes the form (7) and λ∗ = 0. Then, there exist positive constants C1

and C2 depending only on h0,Θ such that the following holds:

(a) (exact-fitted) If f is first order identifiable, then for any G ∈ Ek0
(Θ)

V (pλ∗,G∗ , pλ,G) ≥ C1λW1(G,G0),

(b) (over-fitted) If f is second order identifiable, then for any G ∈ OK(Θ) that K > k0

V (pλ∗,G∗ , pλ,G) ≥ C2λW
2
2 (G,G0),

(c) (over-fitted and weakly identifiable) If f is location-scale Gaussian distribution and we
further assume that G∗ ∈ Ek∗,c0(Θ), then for any G ∈ OK,c0(Θ) that K > k0, there exists
C3 depends on h0,Θ0, c0 such that

V (pλ∗,G∗ , pλ,G) ≥ C3λW
r(K−k∗)
r(K−k∗) (G,G0)

(a) We can write

V (p0, pλG)

λW1(G,G0)
=

∫ |∑k0

i=1 p
0
i f(x|θ0

i )−
∑k0

i=1 pif(x|θi)|
W1(G,G0)

dx

=
V (p0, pG)

W1(G,G0)
,

because this is the exact-fitted and first-order identifiable, we can apply Theorem 3.1. in Ho
et al. [17]

(b) Similar to the last part, we can write

V (p0, pλG)

λW 2
2 (G,G0)

=

∫ |∑k0

i=1 p
0
i f(x|θ0

i )−
∑K
i=1 pif(x|θi)|

W 2
2 (G,G0)

dx

=
V (p0, pG)

W 2
2 (G,G0)

,

as this is the over-fitted and second-order identifiable, we can apply Theorem 3.2. in Ho et
al. [17].

(c) Similar to last two cases, we can write
V (p0, pλG)

λW
r(K−k∗)
r(K−k∗) (G,G0)

=
V (p0, pG)

W
r(K−k∗)
r(K−k∗) (G,G0)

,

and apply Proposition 2.2. in [16].
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D.6 Proof of Theorem 3.6

Theorem 3.6. Assume that h0 takes the form (7). Besides that, K ≥ k0 and f is location-scale
Gaussian distribution. Then, for any λ ∈ [0, 1] and G ∈ OK,c0(Θ) for some c0 > 0, there exist
positive constants C1, C2, C3, C4 depending only on λ∗, G∗, G0,Θ (C3 and C4 also depends on δ)
such that the following holds:

(a) When K ≤ k∗ + k0 − k̄ − 1, then

V (pλ∗,G∗ , pλ,G) ≥ C1W r(K−k∗)(λG, λ
∗G∗).

(b) When K ≥ k∗ + k0 − k̄, then

V (pλ∗,G∗ , pλ,G) ≥ C2

(
1{λ≤λ∗}W r(K−k∗)(λG, λ

∗G∗)

+1{λ>λ∗}W
r(K−k∗)
r(K−k∗) (G,G∗(λ))

)
(c) For δ > 0, when K = k∗ + k0 − k̄, we have

V (pλ∗,G∗ , pλ,G) ≥ C31{λ>λ∗+δ}W1(G,G∗(λ)),

and when K > k∗ + k0 − k̄, we have

V (pλ∗,G∗ , pλ,G) ≥C41{λ>λ∗+δ}

×W r(K−k0 −k∗+k̄)

r(K−k0−k∗+k̄)
(G,G∗(λ)).

To facilitate the proof argument, we denote T := k∗ + k0 − k̄. In addition, we assume without loss
of generality that θ∗i = θ0

i for i ∈ [k̄]. Moreover, we introduce the following shorthand:

D(λG, λ∗G∗) =

{
W 2(λG, λ∗G∗), when K ≤ T − 1

1{λ≤λ∗}W 2(λG, λ∗G∗) + 1{λ>λ∗}(λ+ λ∗)W 2
2 (G,G∗(λ)), when K ≥ T .

Similar to the previous proofs, in order to obtain the conclusion of the theorem, we need to prove the
following claims:

lim
ε→0

inf
λ∈[0,1],G∈OK(Θ)

{
V (pλG, pλ∗G∗)

D(λG, λ∗G∗)
: D(λG, λ∗G∗) ≤ ε

}
> 0. (59)

Proof of claim (59): Assume that the above claim is not true. It indicates that we can find
sequences Gn =

∑kn
i=1 p

n
i δθni ∈ OK(Θ) and λn ∈ [0, 1] such that D(λnGn, λ

∗G∗) and
V (pλnGn , pλ∗G∗)/D(λnGn, λ

∗G∗) go to 0 as n approaches to infinity. Given the assumption
that θ∗i = θ0

i for i ∈ [k̄], we obtain that

pλnGn(x)− pλ∗G∗(x) = (λ∗ − λn)

k0∑
i=k̄+1

p0
i f(x|θ0

i ) + λn

(
kn∑
i=1

pni f(x|θni )

)
−

k∗∑
i=1

p̄∗i f(x|θ∗i ),

(60)

where p̄∗i = λ∗p∗i + (λn − λ∗)p0
i when 1 ≤ i ≤ k̄ and p̄∗i = λ∗p∗i otherwise. Now, we prove the

contradiction of our assumption under two separate settings of λn.

Case 1: λ∗ ≥ λn for infinitely many n. Without loss of generality, we assume that λ∗ ≥ λn for all
n ≥ 1. Under this case, D(λnGn, λ

∗G∗) = W 2(λnGn, λ
∗G∗). As D(λnGn, λ

∗G∗)→ 0, we have
λn → λ∗ and W2(Gn, G∗)→ 0 as n→∞. Therefore, we can rewrite Gn like equation (54).

In light of equation (60) and the assumption λ∗ ≥ λn, by means of Taylor expansion up
to the second order around θ∗1 , . . . , θ

∗
k∗

as that in the proof of Theorem D.3, we can view
(pλnGn(x)− pλ∗G∗(x))/D(λnGn, λ

∗G∗) as a linear combination of elements of the forms f(x|θ0
i ),

f(x|θ∗j ), ∂f∂θ (x|θ∗j ), and ∂2f
∂θ2 (x|θ∗j ) for k̄ + 1 ≤ i ≤ k0 and j ∈ [k∗].
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It is sufficient to argue that not all the coefficients of these elements go 0 as the remaining Fatou’s
argument is similar to Step 3 of the proof of Theorem D.3. Indeed, assume that all of these
coefficients go to 0 as n tends to infinity. Since k̄ < k0, we always have at least one index
I ∈ [k̄ + 1, k0]. Studying the coefficient of f(x|θ0

I ) proves that (λ∗ − λn)/D(λnGn, λ
∗G∗) → 0

as n → ∞. From here, with similar argument as in Step 2 of claim (49), we can show that
1 = D(λnGn, λ

∗G∗)/D(λnGn, λ
∗G∗) → 0, which is a contradiction. Therefore, we obtain the

conclusion of claim (59).

Case 2: λ∗ < λn for infinitely many n. Without loss of generality, we assume that λ∗ < λn for all
n ≥ 1. Under this case, we can rewrite equation (60) as follows:

pλnGn(x)− pλ∗G∗(x) = λn

( kn∑
i=1

pni f(x|θni )︸ ︷︷ ︸
:=f(x;Gn)

−
[(

1− λ∗

λn

) k0∑
i=k̄+1

p0
i f(x|θ0

i ) +

k∗∑
i=1

p̄∗i
λn
f(x|θ∗i )

︸ ︷︷ ︸
:=f(x;G∗(λn))

])
,

where G∗(λn) :=

(
1− λ∗

λn

)
G0 + λ∗

λn
G∗. Under Case 2, p̄∗i > λ∗p∗i > 0 for i ∈ [k∗]. Therefore, we

can treat f(x;Gn) and f
(
x;G∗(λn)

)
respectively as mixtures with kn and k0 + k∗ − k̄ elements.

Without loss of generality, we assume kn = K for all n, namely, the setting where Gn have full K
supports. We consider three separate settings of K.

Case 2.1: K ≤ k∗+k0− k̄−1. Under this case, Gn has fewer supports thanG∗(λn). Hence, there
always exists one element in the set {θ0

i : k̄+1 ≤ i ≤ k0}∪{θ∗j : 1 ≤ j ≤ k∗} such that no supports
of Gn converge to. We first show that this element cannot belong to the set {θ∗j : 1 ≤ j ≤ k∗}.
Assume by contrary that this element is in that set. Without loss of generality, we assume this element
is θ∗1 . Since V (pλnGn , pλ∗G∗)/D(λnGn, λ

∗G∗)→ 0, we have f(x;Gn)− f(x;G∗(λn)) → 0 for
almost surely x. Since θni do not converge to θ∗1 , the identifiability of f and the previous limit imply
that p̄∗1/λn goes to 0 as n→∞, which is a contradiction as p̄∗1/λn > λ∗p∗1.

Therefore, there exists an element in the set {θ0
i : k̄ + 1 ≤ i ≤ k0} such that no elements of

Gn converge to. We assume without loss of generality that this element is θ0
1 . In addition, all the

elements in the set {θ∗j : 1 ≤ j ≤ k∗} have at least one support of Gn converge to. By performing
Taylor expansion up to the second order around the limit points of the supports of Gn, we can
view (pλnGn(x) − pλ∗G∗(x))/D(λnGn, λ

∗G∗) as a linear combination of elements of the forms
f(x|θ0

i ), f(x|θ∗j ), ∂f∂θ (x|θ0
i ), ∂f∂θ (x|θ∗j ), ∂

2f
∂θ2 (x|θ0

i ), and ∂2f
∂θ2 (x|θ∗j ) for some but not all k̄+1 ≤ i ≤ k0

and for all j ∈ [k∗]. Assume that all of the coefficients associated with these elements go to 0 as
n goes to infinity. Since no support of Gn converges to θ0

1 , the previous assumptions mean that
(λn − λ∗)/D(λnGn, λ

∗G∗)→ 0. Given that result, we have

0 = lim
n→∞

V (pλnGn , pλ∗G∗)

D(λnGn, λ∗G∗)
= lim
n→∞

λnV (f(.;Gn), f(.;G∗))

(λn + λ∗)W 2
2 (Gn, G∗)

,

which is a contradiction as V (f(.;Gn), f(.;G∗))/W
2
2 (Gn, G∗) 6→ 0 based on the result of Theorem

3.2 in [17]. Hence, not all the coefficients with f(x|θ0
i ), f(x|θ∗j ), ∂f∂θ (x|θ0

i ), ∂f∂θ (x|θ∗j ), ∂
2f
∂θ2 (x|θ0

i ),

and ∂2f
∂θ2 (x|θ∗j ) go to 0 as n→∞. From here, invoking the Fatou’s argument and the identifiability

of f , we conclude the claim (59) under Case 2.1.

Case 2.2: K ≥ k∗ + k0 − k̄. We see that the number of support points of Ḡ∗(λn) decreases to k∗
if λn → λ∗ as n→∞ or keeps being k∗ + k0 − k̄ for any subsequence of λn does not converge to
λ∗. In both cases, we are in the over-fitted setting as K ≥ k∗ + k0 − k̄. If λn → λ∗, our assumption
W2(Gn, Ḡ∗(λn)) → 0 indicates that we can write Gn as in equation (54) so that the atoms of Gn
converge to θ∗i for i ∈ [k∗] or 0. The proof of claim (59) goes through similar to what of Theorem
3.4 (or Theorem 3.2. in Ho et al. [17]).

If λn 6→ λ∗ as n → ∞ then Ḡ∗(λn) has k0 + k∗ − k̄ in any of its limits. Hence this is over-fitted
setting when K ≥ k∗ + k0 − k̄ and we can proceed similar to above to have claim (59).
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Case 2.3: K = k∗ + k0 − k̄ and λn > λ∗ + δ > λ∗ for all n. In this case, λn 6→ λ∗, so that
Ḡ∗(λn) has k0 + k∗ − k̄ in any of its limits. Hence, this is an exact-fitted setting and we can apply
Theorem 3.1. in Ho et al. [17]. As a consequence, claim (59) is shown under Case 2.3.

D.7 Proof of Theorem A.3

Theorem A.3. Assume that h0 takes the form (7). Besides that, K ≥ k0 and f is location-scale
Gaussian distribution. Then, for any λ ∈ [0, 1] and G ∈ OK,c0(Θ) for some c0 > 0, there exist
positive constants C1, C2, C3, C4 depending only on λ∗, G∗, G0,Θ (C3 and C4 also depends on δ)
such that the following holds:

(a) When K ≤ k∗ + k0 − k̄ − 1, then
V (pλ∗,G∗ , pλ,G) ≥ C1W r(K−k∗)(λG, λ

∗G∗).

(b) When K ≥ k∗ + k0 − k̄, then

V (pλ∗,G∗ , pλ,G) ≥ C2

(
1{λ≤λ∗}W r(K−k∗)(λG, λ

∗G∗)

+1{λ>λ∗}W
r(K−k∗)
r(K−k∗) (G,G∗(λ))

)
(c) For δ > 0, when K = k∗ + k0 − k̄, we have

V (pλ∗,G∗ , pλ,G) ≥ C31{λ>λ∗+δ}W1(G,G∗(λ)),

and when K > k∗ + k0 − k̄, we have
V (pλ∗,G∗ , pλ,G) ≥C41{λ>λ∗+δ}

×W r(K−k0 −k∗+k̄)

r(K−k0−k∗+k̄)
(G,G∗(λ)).

We still denote T = k∗ + k0 − k and follow the path of Theorem 3.6 to prove by contradiction. We
denote by r1 = r(K − k∗), r2 = r(K − k0 − k∗ + k), and

D(λG, λ∗G∗) =

{
W r1

(λG, λ∗G∗), when K ≤ T − 1

1{λ≤λ∗}W r1
(λG, λ∗G∗) + 1{λ>λ∗}(λ+ λ∗)W r2

r2
(G,G∗(λ)), when K ≥ T .

We need to show the following claim:

lim
ε→0

inf
λ∈[0,1],G∈OK(Θ)

{
V (pλG, pλ∗G∗)

D(λG, λ∗G∗)
: D(λG, λ∗G∗) ≤ ε

}
> 0. (61)

There exists sequences λn and Gn =
∑kn
i=1 p

n
i δθni ∈ OK(Θ) such that D(λnGn, λ

∗G∗) → 0 and
V (pλnGn , pλ∗G∗)/D(λnGn, λ

∗G∗)→ 0, where D is the lower bound in the theorem statement. For
the ease of presentation, we consider the one dimension Gaussian case where (µ,Σ) = (θ, v), the
higher dimension cases are treated similar.

Case 1: λ∗ ≥ λn for infinitely many n. We can use the subsequence argument to have λ∗ ≥ λn for
all n and Gn can be assumed to have a fixed number of atoms (less than or equals K) and have a
representation as in (54). In this case,

D(λnGn, λ
∗G∗) = |λn − λ∗|+ (λn + λ∗)W

r1

r1
(Gn, G∗)→ 0,

V (pλ∗G∗ , pλnGn)

D(λnGn, λ∗G∗)
→ 0. (62)

Using Taylor expansion of f around {(θ∗i , v∗i )}k∗i=1 to the r1−th order we have

pλnGn(x)− pλ∗G∗(x) = (λ∗ − λn)

k0∑
i=k̄+1

p0
i f(x|θ0

i , v
0
i ) + λn(

k∗+l∑
i=1

si∑
j=1

pnijf(x|θnij , vnij))−
k∗∑
i=1

p∗i f(x|θ∗i , v∗i )

= (λ∗ − λn)

k0∑
i=k̄+1

p0
i f(x|θ0

i , v
0
i ) +

k∗+l∑
i=1

si∑
j=1

λnp
n
ij

r1∑
|α|=1

(∆θnij)
α1(∆vnij)

α2
1

α!

∂|α|f(θ∗i ,v
∗
i )

∂α1θ∂α2v

+

k∗+l∑
i=1

(∆pni·)f(x|θ∗i , v∗i ) +R(x),
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where α = (α1, α2), |α| = α1+α2,α! = α1!α2!, ∆pni· = λn
∑
j p

n
ij−p∗i , ∆θnij = θnij−θ∗i ,∆vnij =

vnij − v∗i and R(x) = O(
∑k∗+l
i=1

∑si
j=1 p

n
ij(|∆θnij |r1 + |∆vnij |r1)). Now we can use the character

equation
∂2f

∂θ2
= 2

∂f

∂v
to rewrite the formula above as

(λ∗ − λn)

k0∑
i=k̄+1

p0
i f(x|θ0

i , v
0
i ) +

2r1∑
α=1

k∗+l∑
i=1

 si∑
j=1

λnp
n
ij

∑
n1,n2

(∆θnij)
n1(∆vnij)

n2

2n2n1!n2!

 ∂αf(θ∗i , v
∗
i )

∂θα

+

k∗+l∑
i=1

(∆pni·)f(x|θ∗i , v∗i ) +R(x), (63)

where we sum over n1, n2 such that n1 + 2n2 = α, n1 + n2 ≤ r1. Now we turn into proving the
non-vanishing coefficients. Assume that all coefficients in the formula above vanish when dividing
by D(λnGn, λ

∗G∗) when n→∞. Because

D(λnGn, λ
∗G∗) � |λn−λ∗|+(λn+λ∗)

k∗+l̄∑
i=1

|∆pni.|+
k∗+l̄∑
i=1

si∑
j=1

pnij(
∥∥∆θnij

∥∥r1

2
+
∥∥∆vnij

∥∥r1

2
)

 := Dr1
(Gn, G∗),

(64)
we have

λ∗ − λn
Dr1

(Gn, G∗)
→ 0,

∆pni·
Dr1

(Gn, G∗)
→ 0. (65)

These limits together imply

(λ∗ + λn)∆pni·
Dr1

(Gn, G∗)
→ 0, ∀i = 1, . . . , k∗ + l. (66)

From the definition of Dr1
, it can be deduced that there exists at least an index i∗ such that
si∗∑
j=1

(λn + λ∗)pni∗j((θ
n
ij)

r1 + (vnij)
r1)

Dr1(Gn, G∗)
6→ 0. (67)

Without loss of generality, assign i∗ = 1. But as we assume all the coefficients in equation (63) go to
0 for all α and i, we have

s1∑
j=1

λnp
n
1j

∑
n1+2n2=α
n1+n2≤r1

(θn1j)
n1(vn1j)

n2

2n2n1!n2!

Dr1
(Gn, G∗)

→ 0, (68)

for all α = 1, . . . , 2r1. From two expressions above combining with equation (65), we have for all
α = 1, . . . , 2r1,

Fα :=

s1∑
j=1

pn1j
∑

n1+2n2=α
n1+n2≤r1

(∆θn1j)
n1(∆vn1j)

n2

2n2n1!n2!∑s1
j=1 p

n
1j((∆θ

n
ij)

r1 + (∆vnij)
r1)

→ 0. (69)

If s1 = 1 then substituting α = 1 and α = 2r1 gives

|∆θn11|r1

|∆θn11|r1 + |∆vn11|r1
,

|∆vn11|r1

|∆θn11|r1 + |∆vn11|r1
→ 0,

which is impossible as they are sum up to 1 for all n. Hence s1 ≥ 2. Now we proceed to show
the contradiction using the system of equations (6). Denote by pn = max1≤j≤s1{pn1j},Mn =

max1≤j≤s1{|∆θn1j |, |∆vn1j |1/2}. By the subsequence argument in compact sets, without loss of
generality, we can denote c2j := limn→∞ pn1j/pn, aj = lim ∆θn1j/Mn, and bj = lim ∆vn1j/Mn for
all j = 1, . . . , k∗ + l. Because of the definition of OK,c0 , we have pj ≥ c0 for all j, which implies
all cj are different from 0 and at least one of them is 1. Similarly, in (aj , bj)j , there is at least one of
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them equals to 1 or −1. Dividing both numerators and denominators of equation (69) by pnM
α

n , we
have

s1∑
j=1

∑
n1+2n2=α

c2ja
n1
j b

n2
j

n1!n2!
= 0,

for all α = 1, . . . , r1. Hence, we get the contradiction, where we use the fact that s1 ≤ K − k∗ + 1
(as si ≥ 1 for all i ≥ 2) and r1 = r(K − k∗) is the smallest number such that equation (6), where
k = K − k∗, has the trivial solution only. After that, we can argue as in the Step 9 of Proposition 2.2.
in [16] to get the contradiction to the assumption proposed in the beginning, where we use the fact
that Gaussian family is identifiable up to any order with respect to the location parameters.

Case 2: λ∗ ≤ λn for all n. We rewrite

pλnGn(x)−pλ∗G∗(x) = λn

( kn∑
i=1

pni f(x|θni )︸ ︷︷ ︸
:=f(x;Gn)

−
[(

1− λ∗

λn

) k0∑
i=k̄+1

p0
i f(x|θ0

i ) +

k∗∑
i=1

p̄∗i
λn
f(x|θ∗i )

︸ ︷︷ ︸
:=f(x;G∗(λn))

])
,

(70)

Cases 2.1. K ≤ T − 1, argue similarly to Case 2.1. of the proof of Theorem 3.6, we have
λn − λ∗

D(λnGn, λ∗G∗)
→ 0 as n → ∞. Now we arrive at the equation (65) of Case 1. Follow the

argument above, we can prove claim (61).

Case 2.2. K ≥ T , we can see equation (70) as an over-fitted mixture of location-scale Gaussian
setting where the number of over-fitted atoms is at most K − k∗. Hence we can argue similar to Case
1 or the Proposition 2.2. in [16] to obtain the conclusion.

Cases 2.3. K = T and λn > λ∗ + δ for all n. From the presentation as in equation (70), we can

see that 1− λ∗

λn
does not vanish in any of it limits. Therefore G∗(λn) has k∗ + k0 − k = T number

of components in its limits. Because this is an exact-fitted setting, we can apply Theorem 3.1. in Ho
et al. [17] to get the result of claim (61)

Cases 2.4. K > T and λn > λ∗ + δ for all n, we can also see that G∗(λn) has k∗ + k0 − k = T
number of components in its limits. We can apply Proposition 2.2. in Ho et al. [16] to get the result
of claim (61).

D.8 Proof of Theorem A.4

Theorem A.4. Assume that h0 takes the form (7) and k̄ = k0. Besides that, f is second order
identifiable. Then, for any λ ∈ [0, 1] and G ∈ OK(Θ) that K ≥ k∗, there exist positive constants C1

and C2 depending only on λ∗, G∗, G0,Θ such that the following holds:

(a) If I(λ) is not ratio-independent, then

V (pλ∗G∗ , pλG) ≥ C1

[
1{λ∈Bc} + 1{λ∈B}W

2
2 (G, Ḡ∗(λ))

]
. (71)

(b) If I(λ) is ratio-independent, then

V (pλ∗G∗ , pλG) ≥ C2

[
1{λ∈Bc}

( ∑
i∈I(λ)

[
(λ∗ − λ)p0

i − λ∗p∗i
]

+ S(I(λ))W 2
2 (G, G̃∗(λ))

)
+ 1{λ∈B}W

2
2 (G, Ḡ∗(λ))

]
. (72)
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To ease the ensuing presentation, we denote D(λG, λ∗G∗) = 1{λ∈Bc}

(∑
i∈I(λ)

[
(λ∗ − λ)p0

i −

λ∗p∗i

]
+ S(I(λ))W 2

2 (G, G̃∗(λ))

)
+ 1{λ∈B}W

2
2 (G, Ḡ∗(λ)) when I(λ) is ratio-independent or

D(λG, λ∗G∗) = 1{λ∈Bc} + 1{λ∈B}W
2
2 (G, Ḡ∗(λ)) when I(λ) is not ratio-independent.

In order to prove the theorem, it is sufficient to verify the following inequality:

lim
ε→0

inf
λ∈[0,1],G∈Ek∗ (Θ)

{
V (pλG, pλ∗G∗)

D(λG, λ∗G∗)
: D(λG, λ∗G∗) ≤ ε

}
> 0. (73)

Proof of claim (73): Assume that the above claim is not true. It implies that there exist
sequences Gn =

∑kn
i=1 p

n
i δθni ∈ OK(Θ) and λn ∈ [0, 1] such that D(λnGn, λ

∗G∗) and
V (pλnGn , pλ∗G∗)/D(λnGn, λ

∗G∗) go to 0 as n approaches to infinity. Since k̄ = k0 and G∗
admits the form (10), we find that

pλnGn(x)− pλ∗G∗(x) = λn

(
kn∑
i=1

pni f(x|θni )

)
−

k∗∑
i=1

p̄∗i f(x|θ∗i ), (74)

where p̄∗i = λ∗p∗i +(λn−λ∗)p0
i when 1 ≤ i ≤ k0 and p̄∗i = λ∗p∗i otherwise. In addition, θ∗i = θ0

i for
i ∈ [k0]. From this presentation, we see that there must exists a constant C depending on λ∗, G∗, G0

such that lim inf λn > C. Indeed, suppose it is not the case, then by the subsequence argument, we
can assume that λn → 0. Besides, V (λnGn, λ

∗G∗) → 0, we have p∗i → 0 for all i ∈ [k∗]. These
conditions lead to p∗i = 0 for all i > k0 and p0

i = p∗i for all i ∈ [k0], which mean that G∗ = G0 (a
contradiction to our assumption). Hence, limits of (λn) is bounded below. We have two settings with
λn.

Case 1: λn ∈ B for infinitely many n. Without loss of generality, we assume that λn ∈ B for all
n ≥ 1. If k∗ = k0 then we see that p̄∗i can not vanish simultaneously when n→∞ for all i, otherwise
we have G∗ = G0, which contradicts to the assumption in this section. Otherwise, k∗ > k0, and
p∗i does not vanish for all i > k0. Therefore, every limit of

∑k∗
i=1 p̄

∗
i f(x|θ∗i ) has a number of atoms

ranging from max{1, k∗ − k0} to k∗, which is less than or equal to K. So that this is an over-fitted
scenario. In addition, D(λnGn, λ

∗G∗) = W 2
2 (Gn, Ḡ∗(λn)). We can further rewrite equation (74)

as:

pλnGn(x)− pλ∗G∗(x) = λn(f(x;Gn)− f(x; Ḡ∗(λn)).

From Theorem 3.2 in Ho et al. [17], we have V (f(.;Gn), f(.;G∗(λn))/W 2
2 (Gn, Ḡ∗(λn)) 6→ 0 as

n→∞. Putting the above results together, we obtain that V (pλnGn , pλ∗G∗)/D(λnGn, λ
∗G∗) 6→ 0,

which is a contradiction. Hence, we reach the conclusion of claim (74).

Case 2: λn 6∈ B for infinitely many n. Without loss of generality, we assume that λn 6∈ B for
all n ≥ 1. Under this setting, I(λn) 6= ∅. In addition, for any i ∈ I(λn), p̄∗i < 0. Given these
conditions, we can rewrite equation (74) as follows:

pλnGn(x)− pλ∗G∗(x) =
∑

i∈I(λn)

(−p̄∗i )f(x|θ0
i )+

[
λn

(
kn∑
i=1

pni f(x|θni )

)
−

∑
i∈I(λn)c

p̄∗i f(x|θ0
i )

−
∑k∗
i=k0+1 p̄

∗
i f(x|θ∗i )

]
.(75)

We have two separate settings with I(λn).

Case 2.1: I(λn) is not ratio-independent. Under this case, D(λnGn, λ
∗G∗) = 1. Since

V (pλnGn , pλ∗G∗)/D(λnGn, λ
∗G∗) → 0, we have V (pλnGn , pλ∗G∗) → 0. It indicates that

pλnGn(x) − pλ∗G∗(x) → 0 almost surely x. Since −p̄∗i > 0 for all i ∈ I(λn), the previous
limit demonstrates that p̄∗i → 0 for all i ∈ I(λn), which leads to p∗i /p

0
i = p∗j/p

0
j for all i, j ∈ I(λn).

It contradicts the assumption that I(λn) is not ratio-independent. Hence, we achieve the conclusion
of claim (74) under Case 2.1.
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Case 2.2: I(λn) is ratio-independent. Under this case, D(λnGn, λ
∗G∗) =

∑
i∈I(λn)

[
(λ∗ −

λn)p0
i − λ∗p∗i

]
+ S(I(λn))W 2

2 (Gn, G̃∗(λn)) → 0 and V (pλnGn,λ∗G∗)/D(λnGn, λ
∗G∗) → 0,

which imply V (pλnGn,λ∗G∗)→ 0. We first prove that S(I(λn)) 6→ 0. Indeed, suppose it is not the
case, then p∗i = 0 for all i > k0 and (λ∗p∗i + (λn − λ∗)p0

i )→ 0 for all i ∈ I(λn). From equation
(75) and the fact that V (pλnGn,λ∗G∗)→ 0, we also see that p∗i → 0 for all i ∈ I(λn) and λn → 0.
But that means

λn → 0, λ∗p∗i + (λn − λ∗)p0
i → 0, ∀i ∈ [k0].

Those limits together imply that λ∗(p0
i − p∗i ) = 0 for all i ∈ [k0], which is contradictory with

our assumption that G∗ 6= G0. Hence S(I(λn)) 6→ 0. As D(λnGn, λ
∗G∗) → 0, we have

W 2
2 (Gn, G̃∗(λn))→ 0 as n→∞. It implies that we can rewrite Gn as follows:

Gn =
∑

i∈I(λn)c∪{k0+1,...,k∗+l̄}

si∑
j=1

pnijδθnij , (76)

where
∑si
j=1 p

n
ij → p̄∗i /S(I(λn)) and θnij → θ∗i for all i ∈ J := I(λn)c ∪ {k0 + 1, . . . , k∗ + l̄}.

Here, p̄∗i = 0 for k∗ + 1 ≤ i ≤ k∗ + l̄. In addition,
∑
i∈J si = k′ for some k′ such that

k∗ − k0 + |I(λn)c| ≤ k′ ≤ k∗. To faciliate the proof argument, we denote ∆θnij := θnij − θ∗i and
∆pni. :=

∑si
j=1 p

n
ij − p̄∗i /S(I(λn)) for i ∈ J . The result of Lemma 3.1 in Ho et al. [18] leads to

W 2
2 (Gn, G̃∗(λn)) �

∑
i∈J
|∆pni.|+

∑
i∈J

si∑
j=1

pnij
∥∥∆θnij

∥∥2

2
. (77)

Invoking Taylor’s expansion up to the second order, we have

pλnGn(x)− pλ∗G∗(x) =
∑

i∈I(λn)

(−p̄∗i )f(x|θ0
i ) +

∑
i∈J

(λn

si∑
j=1

pnij − p̄∗i )f(x|θ∗i )

+ λn

 si∑
j=1

pnij∆θ
n
ij

> ∂f
∂θ

(x|θ∗i ) + λn

 si∑
j=1

pnij
(
∆θnij

)> ∂2f

∂θ2
(x|θ∗i )(∆θnij)

+R(x),

(78)

where R(x) is Taylor remainder such that R(x) = o
(
λn
∑
i∈J

∑si
j=1 p

n
ij

∥∥∆θnij
∥∥2

2

)
. Therefore, we

have R(x)/D(λnGn, λ
∗G∗)→ 0 as n→∞.

The expression in equation (78) indicates that we can view (pλnGn(x)−pλ∗G∗(x))/D(λnGn, λ
∗G∗)

as a linear combination of elements of the forms f(x|θ0
i ), f(x|θ∗j ), ∂f∂θ (x|θ∗j ), ∂

2f
∂θ2 (x|θ∗j ) for i ∈

I(λn) and j ∈ J . Assume that the coefficients of these terms go to 0 as n approaches infinity. By
studying the coefficients of f(x|θ0

i ) when i ∈ I(λn), we find that

(
∑

i∈I(λn)

(−p̄∗i ))/D(λnGn, λ
∗G∗)→ 0.

Given the above result, as the coefficients of f(x|θ∗i ) and ∂2f
∂θ2 (x|θ∗i ) go to 0 when i ∈ J , we obtain

S(I(λn))
∑si
j=1 p

n
ij − p̄∗i

D(λnGn, λ∗G∗)
=

[λn − (
∑
l∈I(λn) p̄

∗
l ))]

∑si
j=1 p

n
ij − p̄∗i

D(λnGn, λ∗G∗)
→ 0,

S(I(λn))
∑si
j=1 p

n
ij

∥∥∆θnij
∥∥2

2

D(λnGn, λ∗G∗)
=

[λn − (
∑
l∈I(λn) p̄

∗
l ))]

∑si
j=1 p

n
ij

∥∥∆θnij
∥∥2

2

D(λnGn, λ∗G∗)
→ 0

Putting the above results together, given the expression in equation (77), we obtain 1 =
D(λnGn, λ

∗G∗)/D(λnGn, λ
∗G∗) → 0 as n → ∞, which is a contradiction. Therefore, not

all the coefficients of f(x|θ0
i ), f(x|θ∗j ), ∂f∂θ (x|θ∗j ), ∂

2f
∂θ2 (x|θ∗j ) when i ∈ I(λn) and j ∈ J . From

here, we utilize the Fatou’s argument from the previous proofs to obtain the conclusion of claim (73)
under Case 2.2.
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D.9 Proof of Theorem A.5

Theorem A.5. Assume that h0 takes the form (7) and k̄ = k0. Besides that, f is location-scale
Gaussian distribution. Then, for k̃ := max{k∗−k0, 1}, and for any λ ∈ [0, 1] andG ∈ OK,c0(Θ) for
some K ≥ k∗ and c0 > 0, there exist positive constants C1 and C2 depending only on λ∗, G∗, G0,Θ
such that on λ∗, G∗, G0,Θ such that

(a) If I(λ) is not ratio-independent, then

V (pλ∗G∗ , pλG) ≥ C1

[
1{λ∈Bc}

+ 1{λ∈B}W
r(K−k̃)

r(K−k̃)
(G, Ḡ∗(λ))

]
. (79)

(b) If I(λ) is ratio-independent, then

V (pλ∗,G∗ , pλ,G) ≥ C2

[
1{λ∈Bc}

( ∑
i∈I(λ)

[
(λ∗ − λ)p0

i − λ∗p∗i
]

+ S(I(λ))W
r(K−k̃)

r(K−k̃)
(G, G̃∗(λ))

)
+ 1{λ∈B}W

r(K−k̃)

r(K−k̃)
(G, Ḡ∗(λ))

]
. (80)

The proof of Theorem A.5 is similar to what of Theorem A.4 and with the technical details
borrowed from Theorem A.3. Therefore we only highlight the main differences. Denote by

D(λG, λ∗G∗) = 1{λ∈Bc}

(∑
i∈I(λ)

[
(λ∗ − λ)p0

i − λ∗p∗i

]
+ S(I(λ))W

r(K−k̃)

r(K−k̃)
(G, G̃∗(λ))

)
+

1{λ∈B}W
r(K−k̃)

r(K−k̃)
(G, Ḡ∗(λ)) when I(λ) is ratio-independent or D(λG, λ∗G∗) = 1{λ∈Bc} +

1{λ∈B}W
r(K−k̃)

r(K−k̃)
(G, Ḡ∗(λ)) when I(λ) is not ratio-independent.

In order to prove the theorem, it is sufficient to verify the following inequality:

lim
ε→0

inf
λ∈[0,1],G∈Ek∗ (Θ)

{
V (pλG, pλ∗G∗)

D(λG, λ∗G∗)
: D(λG, λ∗G∗) ≤ ε

}
> 0. (81)

Proof of claim (81): Assume that the above claim is not true. It implies that there exist
sequences Gn =

∑kn
i=1 p

n
i δθni ∈ OK(Θ) and λn ∈ [0, 1] such that D(λnGn, λ

∗G∗) and
V (pλnGn , pλ∗G∗)/D(λnGn, λ

∗G∗) go to 0 as n approaches to infinity. Since k̄ = k0 and G∗
admits the form (10), we find that

pλnGn(x)− pλ∗G∗(x) = λn

(
kn∑
i=1

pni f(x|θni )

)
−

k∗∑
i=1

p̄∗i f(x|θ∗i ), (82)

where p̄∗i = λ∗p∗i + (λn − λ∗)p0
i when 1 ≤ i ≤ k0 and p̄∗i = λ∗p∗i otherwise. In addition, θ∗i = θ0

i
for i ∈ [k0]. One could argue as in Theorem A.4 to get (λn) being bounded below.

Case 1: λn ∈ B for infinitely many n. Without loss of generality, we assume that λn ∈ B for all
n ≥ 1. Under this case, every limit of

∑k∗
i=1 p̄

∗
i f(x|θ∗i ) has a number of atoms ranging from k̃ to k∗,

which is less than or equal to K. So that this is an over-fitted scenario where the number of over-fitted
atoms is at most K − k̃. In addition, D(λnGn, λ

∗G∗) = W
r(K−k̃)

r(K−k̃)
(Gn, Ḡ∗(λn)). We can further

rewrite equation (82) as:

pλnGn(x)− pλ∗G∗(x) = λn(f(x;Gn)− f(x; Ḡ∗(λn)).

Now we can argue similarly to the proof Theorem A.3 or Proposition 2.2. in [16] to get
V (pλnGn , pλ∗G∗)/D(λnGn, λ

∗G∗) 6→ 0, which combines with the fact that λn 6→ 0 gives us
a contradiction. Hence, we reach the conclusion of claim (81)

38



Case 2: λn 6∈ B for infinitely many n. Without loss of generality, we assume that λn 6∈ B for
all n ≥ 1. Under this setting, I(λn) 6= ∅. In addition, for any i ∈ I(λn), p̄∗i < 0. Given these
conditions, we can rewrite equation (74) as follows:

pλnGn(x)− pλ∗G∗(x) =
∑

i∈I(λn)

(−p̄∗i )f(x|θ0
i )+

[
λn

(
kn∑
i=1

pni f(x|θni )

)
−

∑
i∈I(λn)c

p̄∗i f(x|θ0
i )

−
∑k∗
i=k0+1 p̄

∗
i f(x|θ∗i )

]
.(83)

We have two separate settings with I(λn).

Case 2.1: I(λn) is not ratio-independent. This is the same as Case 2.1. of Theorem A.4. With
a similar argument, we can show that I(λn) must be ratio-independent, which is a contradiction.
Hence, we get claim (81) under this case.

Case 2.2: I(λn) is ratio-independent. We can see that the second term of equation (83) is in an
over-fitted setting with the number of extra components being at most K − k̃. Arguing similar to
Case 2.2. of Theorem A.3 gives us the conclusion of claim (81).
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