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Abstract

Multi-head attention empowers the recent success of transformers, the state-of-the-
art models that have achieved remarkable success in sequence modeling and beyond.
These attention mechanisms compute the pairwise dot products between the queries
and keys, which results from the use of unnormalized Gaussian kernels with the
assumption that the queries follow a mixture of Gaussian distribution. There is no
guarantee that this assumption is valid in practice. In response, we first interpret
attention in transformers as a nonparametric kernel regression. We then propose
the FourierFormer, a new class of transformers in which the dot-product kernels
are replaced by the novel generalized Fourier integral kernels. Different from the
dot-product kernels, where we need to choose a good covariance matrix to capture
the dependency of the features of data, the generalized Fourier integral kernels can
automatically capture such dependency and remove the need to tune the covariance
matrix. We theoretically prove that our proposed Fourier integral kernels can effi-
ciently approximate any key and query distributions. Compared to the conventional
transformers with dot-product attention, FourierFormers attain better accuracy
and reduce the redundancy between attention heads. We empirically corroborate
the advantages of FourierFormers over the baseline transformers in a variety of
practical applications including language modeling and image classification.

1 Introduction

Transformers [83] are powerful neural networks that have achieved tremendous success in many
areas of machine learning [40, 76, 36] and become the state-of-the-art model on a wide range
of applications across different data modalities, from language [23, 1, 18, 13, 62, 4, 8, 21] to
images [24, 43, 78, 63, 59, 27], videos [3, 44], point clouds [97, 31], and protein sequence [65, 34].
In addition to their excellent performance on supervised learning tasks, transformers can also
effectively transfer the learned knowledge from a pretraining task to new tasks with limited or no
supervision [60, 61, 23, 94, 42]. At the core of transformers is the dot-product self-attention, which
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mainly accounts for the success of transformer models [14, 56, 41]. This dot-product self-attention
learn self-alignment between tokens in an input sequence by estimating the relative importance of a
given token with respect to all other tokens. It then transform each token into a weighted average of
the feature representations of other tokens where the weight is proportional to a importance score
between each pair of tokens. The importance scores in self-attention enable a token to attend to other
tokens in the sequence, thus capturing the contextual representation [6, 83, 38].

1.1 Self-Attention

T c RNXD

Given an input sequence X := [x1, - ,ZN] = of N feature vectors, self-attention

computes the output sequence H from X as follows:
Step 1: Projecting the input sequence into different subspaces. The input sequence X is
transformed into the query matrix Q, the key matrix K, and the value matrix V via three linear
transformations

Q=XWyK=XW;;V=XW/,
where Wq, Wy € RP*P: and Wy € RP»*D= are the weight matrices. We denote Q :=

[q1, - ,qn]) T, K = [k1,--- kx|, and V := [vy,--- ,vy]T, where the vectors gq;, k;, v; for
i=1,---, N are the query, key, and value vectors, respectively.
Step 2: Computing the output as a weighted average. The output sequence H := [hy,--- ,hy]T
is then given by

H= softmaX(QKT/\/ﬁ)V = AV, (1)
where the softmax function is applied to each row of the matrix (QK ) /+/D. For each query vector
g;, i =1,--- N, Eqn. (1) can be written in the vector form to compute the output vector h; as
follows

N N
h; = Zsoftmax(q;kj/\/ D)vj = Zaijvj. 2
j=1 Jj=1

The matrix A € RV*¥ and its component a;; for i, j = 1,---, N are the attention matrix and
attention scores, respectively. The self-attention computed by equations (1) and (2) is called the dot-
product attention or softmax attention. In our paper, we refer a transformer that uses this attention as
the baseline transformer with the dot-product attention or the dot-product transformer. The structure
of the attention matrix A after training governs the ability of the self-attention to capture contextual
representation for each token.

Multi-head Attention Each output sequence H forms an attention head. Multi-head attention
concatenates multiple heads to compute the final output. Let H be the number of heads and
WO ¢ REPv*HDu be the projection matrix for the output. The multi-head attention is defined as

MultiHead({Q, K, V}Z ) = Concat(H,, ..., Hy)W©.

The capacity of the attention mechanism and its ability to learn diverse syntactic and semantic
relationships determine the success of transformers [77, 84, 17, 85, 32]. However, equations (1)
and (2) implies that the dot-product attention assumes the features (¢;1, ..., ¢:p) in g;, as well as
the features (k;1,...,¢;p) in k;, are independent. Thus, the dot-product attention fail to capture the
correlations between these features, limiting its representation capacity and inhibit the performance
of transformers on practical tasks where there is no guarantee that independent features can learned
from complex data. One solution to capture correlations between features g; and k; is to introduce
covariance matrices into the formulation of the dot-product attention with the cost of significantly
increasing of the computational complexity. Also, choosing good covariance matrices is difficult.

1.2 Contribution

In this paper, we first establish a correspondence between self-attention and nonparametric kernel
regression. Under this new perspective of self-attention, we explain the limitation of the dot-product
self-attention that it may fail to capture correlations between the features in the query and key
vectors. We then leverage the generalized Fourier integral theorems, which can automatically capture
these correlations, and derive the generalized Fourier integral estimators for the nonparametric
regression problem. Using this new density estimator, we propose the FourierFormer, a novel
class of transformers that can capture correlations between features in the query and key vectors of
self-attention. In summary, our contribution is three-fold:



1. We derive the formula of self-attention from solving a nonparametric kernel regression
problem, thus providing a nonparametric regression interpretation to study and further
develop self-attention.

2. We develop the generalized Fourier integral estimators for the nonparametric regression
problem and provide theoretical guarantees for these estimator.

3. We propose the FourierFormer whose attentions use the generalized Fourier integral es-
timators to capture more efficiently correlations between features in the query and key
vectors.

Finally, we empirically show that the FourierFormer attains significantly better accuracy than the
baseline transformer with the dot-product attention on a variety of tasks including the WikiText
language modeling and ImageNet image classsification. We also demonstrate in our experiments that
FourierFormer helps reduce the redundancy between attention heads.

Organization We structure this paper as follows: In Section 2, we present the correspondence
between self-attention and nonparametric kernel regression. In Section 3, we discuss the generalized
Fourier integral estimators and define the FourierFormer. We validate and empirically analyze the
advantages of FourierFormer in Section 4. We discuss related works in Section 5. The paper ends with
concluding remarks. Technical proofs and more experimental details are provided in the Appendix.

Notation For any N € N, we denote [N] = {1,2,...,N}. Forany D > 1, L;(R?) denotes the
space of real-valued functions on R” that are integrable. For any two sequences {ay } N>1,{ON}N>1,
we denote ay = O(by) to mean that ay < Cby forall N > 1 where C is some universal constant.

2 A Nonparametric Regression Interpretation of Self-attention

In this section, we establish the connection between self-attention and nonparametric kernel regression.
In particular, we derive the self-attention in equation (2) as a nonparametric kernel regression in
which the key vectors k; and value vectors v; are training inputs and training targets, respectively,
while the query vectors g; and the output vectors h; form a set of new inputs and their corresponding
targets that need to be estimated, respectively, for ¢, j = 1,--- , N. In general, we can view the
training set {k;, v;} for j € [N] to come from the following nonparametric regression model:

vj = f(k;) + &, 3)

where €1, ..., e are independent noises such that E(e;) = 0. Furthermore, we consider a random
design setting where the key vectors ki, ko, ..., ky are i.i.d. samples from the distribution that
admits p as density function. By an abuse of notation, we also denote p as the joint density where the
key and value vectors (vi,k1),..., (vy, ky) are i.i.d. samples from. Here, f is a true but unknown
function and we would like to estimate it.

Nadaraya—Watson estimator Our approach to estimate the function f is based on
Nadaraya—Watson’s nonparametric kernel regression approach [50]. In particular, from the nonpara-
metric regression model (3), we have E [v;|k;] = f(k;) for all j € [N]. Therefore, it is sufficient to
estimate the conditional distribution of the value vectors given the key vectors. Given the density
function p of the key vectors and the joint density p of the key and value vectors, for any pair of
vectors (v, k) generate from model (3) we have

E [v|k] :ADv~p(v|k)dv:/de. 4)

The formulation (4) of the conditional expectation indicates that as long as we can estimate the joint
density function p(v, k) and the marginal density function p(v), we are able to obtain an estimation
for the conditional expectation and thus for the function f. This approach is widely known as
Nadaraya—Watson’s nonparametric kernel regression approach.

Kernel density estimator To estimate p(v, k) and p(k), we employ the kernel density estimation
approach [66, 57]. In particular, by using the isotropic Gaussian kernel with bandwidth o, we have
the following estimators of p(v, k) and p(k):

1 & 1 &
ﬁa(vak):NZ‘PU(V_Vj)(PJ(k_kj)a ﬁa(k): NZ%:(k—k?j), (5)
J=1 j=1



where @, (.) is the isotropic multivariate Gaussian density function with diagonal covariance matrix
021 p. Given the kernel density estimators (5), we obtain the following estimation of the function f:

~ B v Po(v, k) v — V'ijzl%(vf"j)%(k*kj) v
foll = [ YheliBay— [ S AT
Z;‘\r:l Sao(k’*kj)fv'@a(vaj)dv Z;V=1 Vs (k — k;)

_ = . (6)
SN ek — kj) SN @olk — kj)

Connection between Self-Attention and nonparametric regression By plugging the query vectors
g; into the function f,; in equation (6), we obtain that

gy = Zview Cla = kil/27°)
S exp (~llai — k[12/20?)
SN vie [ (gl + k1) /207 exp (aik] /o)
X e[l + kg 12) /207 exp (qik] /o?)

)

If we further assume that the keys k; are normalized, which is usually done in practice to stabilize
the training of transformers [71], the value of f,(g;) in equation (6) then becomes

Fola) = Zjv vjexp (gik] /o?)

N
=) softmax(q, k;/0?)v;. (8)
Z;V exp (qiij/UQ) ; ( J ) J

When we choose 62 = v/D where D is the dimension of ¢; and k;, equation (8) matches equa-

tion (2) of self-attention, namely, ﬁ,(qz) = h,;. Thus, we have shown that self-attention performs
nonparametric regression using isotropic Gaussian kernels.

Remark 1 The assumption that k; is normalized is to recover the pairwise dot-product attention in
transformers. In general, this assumption is not necessary. In fact, the isotropic Gaussian kernel in
equation (7) is more desirable than the dot-product kernel in equation (8) of the pairwise dot-product
attention since the former is Lipschitz while the later is not Lipschitz [37]. The Lipschitz constraint
helps improve the robustness of the model [16, 81, 2] and stabilize the model training [48].

Limitation of Self-Attention From our nonparametric regression interpretation, self-attention is
derived from the use of isotropic Gaussian kernels for kernel density estimation and nonparametric
regression estimation, which may fail to capture the complex correlations between D features
in g; and k; [88, 33]. Using multivariate Gaussian kernels with dense covariance matrices can
help capture such correlations; however, choosing good covariance matrices is challenging and
inefficient [87, 73, 11]. In the following section, we discuss the Fourier integral estimator and its use
as a kernel for computing self-attention in order to overcome these limitations.

3 FourierFormer: Transformer via Generalized Fourier Integral Theorem

In the following, we introduce generalized integral theorems that are able to capture the complex
interactions among the features of the queries and keys. We then apply these theorems to density
estimation and nonparametric regression problems. We also establish the convergence rates of these
estimators. Given these density estimators, we introduce a novel family of transformers, named
FourierFormer, that integrates the generalized Fourier integral theorem into the dot-product attention
step of the standard transformer.

3.1 Generalized Fourier Integral Theorems and Their Applications

The Fourier integral theorem is a beautiful result in mathematics [92, 7] and has been recently used
in nonparametric mode clustering, deconvolution problem, and generative modeling [33]. Itis a
combination of Fourier transform and Fourier inverse transform. In particular, for any function



p € L1 (RP), the Fourier integral theorem is given by

o) = g [ ] costa™ (k= w)p(w)dyas

D .
-5 dm [ 1;[ & _yj“)) (v)dy, ©

where k = (k1,...,kp),y = (y1,.-.,yp),8 = (s1,...,5p), and R is the radius. The de-
tailed derivation of Equation (9) is in Appendix B.3. Equation (9) suggests that pr(k) :=
25 fan HjD:l %p(y)d'y can be used as an estimator of the function p.

Benefits of the Fourier integral over Gaussian kernel There are two important benefits of the
estimator ppr: (i) it can automatically preserve the correlated structure lying within p even when p is
very complex and high dimensional function. It is in stark contrast to the standard kernel estimator
built based on multivariate Gaussian kernel where we need to choose good covariance matrix in the
multivariate Gaussian kernel to guarantee such estimator to work well. We note that as the standard
soft-max Transformer is constructed based on the multivariate Gaussian kernel, the issue of choosing
good covariance matrix in dot-product transformer is inevitable; (ii) The product of sinc kernels in
the estimator pr does not decay to a point mass when R — oo. It is in stark difference from the
multivariate Gaussian kernel estimator, which converges to a point mass when the covariance matrix
goes to 0. It indicates that pp is a non-trivial estimator of the function p. Finally, detailed illustrations
of these benefits of the Fourier integral over Gaussian kernel in density estimation and nonparametric
regression problems, which we have just shown to have connection to the self-attention in transformer,
can be found in Section 8 in [33].

Generalized Fourier integral estimator Borrowing the above benefits of Fourier integral estimator
PR, in the paper we would like to consider a generalization of that estimator, named generalized
Fourier integral estimator, which is given by:

/RD r_[ (bm R(y; _kk).))> P(y)dy, (10)

where A = fR(b (%) dz and ¢ : R — R is a given function. When ¢(k) = k for all

k € RP, the generalized Fourier integral estimator p% becomes the Fourier integral estimator pp.

Under appropriate conditions on the function ¢ (see Theorem 1 in Section 3.1.1 and Theorem 3 in

Appendix C.1), the estimator pf—c converges to the true function p, namely,

p(k) = Iggilmpfz(k) = ngnoo 1D /RD H <Sm Rly, — kk)’))>p(y)dy- (11)

We name the above limit as generalized Fourier integral theorem. Furthermore, the estimator p‘fz also
inherits similar aforementioned benefits of the Fourier integral estimator pr. Therefore, we will use
the generalized Fourier integral theorem as a building block for constructing density estimators and
nonparametric regression estimators, which are crucial to develop the FourierFormer in Section 3.2.

3.1.1 Density Estimation via Generalized Fourier Integral Theorems

We first apply the generalized Fourier integral theorem to the density estimation problem. To ease the
presentation, we assume that k1, ko, ..., kx € R arei.i.d. samples from a distribution admitting
density function p where D > 1 is the dimension. Inspired by the generalized Fourier integral

theorem, we obtain the following generalized Fourier density estimator pﬁ,) r of p as follows:

sin(R(k; — kij))
p?V,R = NAD Z H ( k _ k”; ) ’ (12)

=1 j5=1

where A = fR 10) (%) dz and k; = (k;1,...,k;p) for all i € [N]. To quantify the error between

the generalized Fourier density estimator pf: r, and the true density p, we utilize mean integrated



squared errors (MISE) [91], which is given by:

MISE( ) = [ (0 (k) = (k) (13)

We start with the following bound on the MISE between pﬁ, rand p.

Theorem 1 Assume that [, ¢(sin(z)/z)z7dz = 0 for all j € [m] and [, |¢(sin(z)/2)||z|™1dz <
oo for some m € N. Then, there exist universal constants C and C' depending on d and A such that
C C'RP

+

M[SE(pﬁ,’R,p) < Rl TN

Proof of Theorem 1 is in Appendix D.1. A few comments are in order. First, by choosing R
to balance the bias and variance in the bound of MISE in Theorem 1, we have the optimal R as

R = O(NY/(P+m+1) With that choice of R, the MISE rate of p},  is O(N~(m+1D/(D+m+1))
Second, when ¢(z) = Zlforl > 4 and z € R, the assumptions in Theorem 1 are satisfied when
m = 1. Under this case, the MISE rate of p‘ﬁhR is O(N_2/(D+2)). However, these assumptions
do not satisfy when ¢(z) = z! and | € {1,2, 3}, which is due to the limitation of the current proof
technique of Theorem 1 that is based on Taylor expansion of the estimator pfi R

To address the limitation of the Taylor expansion technique, we utilize the Plancherel theorem in
Fourier analysis to establish the MISE rate of p}@’ » When ¢(z) = z' and | € {1,2,3}. The details of
the theoretical analyses for such setting are in Appendix C.

3.2 FourierFormer: Transformers with Fourier Attentions

Motivated by the preservation of the correlated structure of the function from the generalized Fourier
integral theorem as well as the theoretical guarantees of density estimators, in this section we adapt
the nonparametric regression interpretation of self-attention in Section 2 and propose the generalized
Fourier nonparametric regression estimator in Section 3.2.1. We also establish the convergence
properties of that estimator. Then, based on generalized Fourier nonparametric regression estimator,
we develop the Fourier Attention and its corresponding FourierFormer in Section 3.2.2.

3.2.1 Nonparametric Regression via Generalized Fourier Integral Theorem

We now discuss an application of the generalized Fourier integral theorems to the nonparametric
regression setting (3), namely, we assume that (v, k1), ..., (vy, ky) are i.i.d. samples from the
following nonparametric regression model:

V= f(kj) + Ej,

where €1, ..., ey are independent noises such that E(e;) = 0 and the key vectors k1, ko, . . ., kxy are
ii.d. samples from p. Given the generalized Fourier density estimator (12), following the argument in
Section 2, the Nadaraya—Watson estimator of the function f based on the generalized Fourier density
estimator is given by:

N D sin(R(k; —kij
D1 Vi Hj:l ¢ (W)
N D sin(R(k; —kij))
21:1 Hj:l ¢ (W)

The main difference between the generalized Fourier nonparametric regression estimator fy g in

fN,R(k) = (14)

equation (14) and the estimator f, in equation (6) is that the estimator fx, r utilizes the generalized
Fourier density estimator to estimate the conditional distribution of the value vectors given the key
vectors instead of the isotropic Gaussian kernel density estimator as in f,. As we highlighted in
Section 3, an important benefit of the generalized Fourier density estimator is that it can capture the
complex dependencies of the features of the value vectors and the key vectors while the Gaussian
kernel needs to have good covariance matrix to do that, which is computationally expensive in
practice.

We now have the following result establishing the mean square error (MSE) of fn r when D, = 1.



Theorem 2 Assume that [;, ¢ (““(Z)) Zdz =0foralll < j <mand [, ‘d) (m(z))‘ |z[9dz < oo

forany m +1 < j < 2m + 2 for some m € N. Then, for any k € RP, when D, = 1 there exist
universal constants C, Cs, C3, Cy such that the following holds:

E[(fw.n(k) - f(k))?] < ( iy + LB+ G ) / (v2(k)I(R)) ,

d
where J(R) = 1 — p2%k,) (Rzg?ﬂ) + Gaf ljc\),g(NR)). Here, the outer expectation is taken with

respect to the key vectors k1, . .., kyn and the noises €1, ... .

Proof of Theorem 2 is in Appendix D.3. A few comments with Theorem 2 are in order. First, by
choosing R to balance the bias and variance in the bound of the MSE of the nonparametric generalized

Fourier estimator fy, g, we have the optimal radius R as R = O(N D ). With that choice of
2(m+41)

the optimal radius R, the rate of fy ris O(N~ DHEAT) ). Second, when ¢(2) = 2! for I > 6, the

assumption on the function ¢ of Theorem 2 is satisfied with m = 1. Under this case, the rate of fx r

becomes O(N ~ D ). In Appendix C, we also provide the rate of fx r when ¢(z) = 2! for some

I < 5, which includes the original Fourier integral theorem.

3.2.2 FourierFormer

Given the generalized Fourier nonparametric regression estimator fx, g in equation (14), by plugging
the query values ¢, . .., gy into that function, we obtain the following definition of the Fourier
attention:

Definition 1 (Fourier Attention) A Fourier attention is a multi-head attention that does nonpara-
metric regression using the generalized Fourier nonparametric regression estimator fn r. The output

h; of the Fourier attention is then computed as
N sin(R(qi;—kij))
Zifl v; H] 1¢( qijjk”)] )

Vie[N]. (15)
sin( ij—kij
Zz 1H] 1¢( qz‘—k,,)))>

iLi = fN,R(Qi) =

Given the Fourier Attention in Definition 1, we then give the definition of FourierFormer as follows.

Definition 2 (FourierFormer) A FourierFormer is a transformer that uses Fourier attention to
capture dependency between tokens in the input sequence and the correlation between features in
each token.

Remark 2 (The Nonnegativity of the Fourier Kernel) The density estimation via generalized
Fourier integral theorem in Section 3.1.1 does not require the generalized Fourier density esti-
mator to be nonnegative. However, empirically, we observe that negative density estimator can cause
instability in training the FourierFormer. Thus, in FourierFormer, we choose the function ¢ to be a
nonnegative function to enforce the density estimator to be nonnegative. In particular, we choose ¢ to
be power functions of the form ¢(x) = x*™, where m is an positive integer. Note that when m = 1
and m = 2, the kernels in our generallzed Fourzer integral estimators are the well-known Fejer-de la
Vallee Poussin and Jackson-de la Vallee Poussin kernels [20].

3.3 An Efficient Implementation of the Fourier Attention

The Fourier kernel is implemented efficiently in the C++/CUDA extension developed by Pytorch
[58]. The idea is similar to the function cdist [58], which computes the p-norm distance between
each pair of the two collections of row vectors. In our case, we aim to compute kernel functions that
represent a Fourier attention in Definition 1. The core of this implementation is the following Fourier

metric function d:
sin(R(qia — kjd)))
s(ak H ¢ < R(qia — kja) '

We directly implement d; as a torch. autograd .Function [58] in which we provide an efficient
way to compute forward and backward function (d; and gradient of d¢). While the implementation




Table 1. Perplexity (PPL) on WikiText-103 of FourierFormers compared to the baselines. FourierForm-
ers achieve much better PPL than the baselines.

Method Valid PPL  Test PPL
Baseline dot-product (small) 33.15 34.29
FourierFormer (small) 31.86 32.85
Baseline dot-product (medium) 27.90 29.60
FourierFormer (medium) 26.51 28.01

of the forward function is straight forward, the backward function is more tricky since we need to
optimize the code to compute the gradient of dy w.r.t to variables g, k, and R all at once. We can
develop the backward function with highly parallel computation by exploiting GPU architecture and
utilizing the reduction technique. The computational time is comparable to function cdist; thus, our
FourierFormer implementation is as computationally time-efficient.

4 Experimental Results

In this section, we numerically justify the advantage of FourierFormer over the baseline dot-product
transformer on two large-scale tasks: language modeling on WikiText-103 [46] (Section 4.1) and
image classification on ImageNet [22, 67] (Section 4.2), time series classification on the UEA
benchmark [5] (Section 4.3), and reinforcement learning on the D4RL Benchmark [29] (Section 4.4),
and the machine translation on the IWSLT’ 14 De-En [10] (Section 4.5). We aim to show that: (i)
FourierFormer achieves better accuracy than the baseline transformer on a variety of practical tasks
with different data modalities, and (ii) FourierFormer helps reduce head redundancy compared to the
baseline transformer (Section 4.6).

Throughout the section, we compare FourierFormers with the baseline dot-product transformers of the
same configuration. In all experiments, we made the constant R in Fourier attention (see equation (16))
to be a learnable scalar and set choose the function ¢(x) = z# (see Remark 2). All of our results
are averaged over 5 runs with different seeds. The details on the models and training are provided in
Appendix A. Moreover, additional experiments results are provided in Appendix E. Our PyTorch code
with documentation can be found at https://github.com/minhtannguyen/FourierFormer NeurIPS.

4.1 Language Modeling on WikiText-103

We report the validation and test perplexity (PPL) of FourierFormer versus the baseline transformer
with the dot-product attention in Table 1. FourierFormers attain much better PPL than the base-
lines in both small and medium configurations. For the small configuration, the improvements of
FourierFormer over the baseline are 1.29 PPL in validation and 1.44 PPL in test. For the medium
configuration, these improvements are 1.39 PPL in validation and 1.59 PPL in test. These results
suggest that the advantage of FourierFormer over the baseline dot-product transformer grows with
the model’s size. This meets our expectation because larger models has larger query and key di-
mensions, e.g. the language model with medium configuration in this experiment has the query
and key dimension of 256 versus 128 as in the language model with small configuration. Since the
advantage of FourierFormer results from the property that FourierFormer can capture correlation
between features in query and key vectors, the larger the query and key dimensions are, the more
advantage FourierFormer has.

4.2 Image Classification on ImageNet

In the Imagenet classification task, we illustrates the benefits of Fourierformers in different data
modalities. We summarize our models’ results in Table 2. Same as in the language modeling experi-
ment, for this image classification task, the Deit model equipped with FourierFormer significantly
outperforms the baseline Deit dot-product transformer [79] in both top-1 and top-5 accuracy. This
result suggests that the advantage of FourierFormer over the baseline dot-product transformer holds
across different data modalities.

4.3 UEA Time Series Classification

To evaluate Fourierformers on temporal sequences, we compare the accuracy of the our models and
the baseline softmax transformers trained on 10 datasets in the the UEA Time Series Classification
Archive benchmark [5]. We summarize our results in Table 3. We observe show that Fourierformers
outperforms softmax baselines in 7 out of 10 tasks and yields significantly better accuracy than the
softmax transformer on average, showing the our models benefits when trained on temporal data.


https://github.com/minhtannguyen/FourierFormer_NeurIPS

Table 2. Top-1 and top-5 accuracy (%) of FourierFormer Deit vs. the baseline Deit with dot-product
attention. FourierFormer Deit outperforms the baseline in both top-1 and top-5 accuracy.

Method Top-1 Acc  Top-5 Acc
Baseline DeiT 72.23 91.13
FourierFormer DeiT 73.25 91.66

Table 3. The FourierFormer vs. the baseline softmax transformer on the UEA Time Series Classification
Archive benchmark [5]. The FourierFormer outperforms the baseline. We also include the reported
results from [95] and [93] (in parentheses) in addition to our reproduced results. The experiment setups
and configurations for the baseline and our FourierFormer are the same as in [93] (for the PEMS-SF,
SelfRegulationSCP2, UWaveGestureLibrary datasets) and [95] (for other tasks).

Dataset/Model | Baseline softmax  FourierFormer
ETHANOLCONCENTRATION 32.08 (33.70) 36.12
FACEDETECTION 68.70 (68.10) 68.71
HANDWRITING 32.08 (30.50) 31.68
HEARTBEAT 75.77 (77.60) 76.42
JAPANESEVOWELS 99.46 (99.40) 99.37
PEMS-SF 82.66 (82.10) 86.70
SELFREGULATIONSCP1 91.46 (92.50) 91.70
SELFREGULATIONSCP2 54.72 (53.90) 55.37
SPOKENARABICDIGITS 99.33 (99.30) 99.00
UWAVEGESTURELIBRARY 84.45 (85.60) 86.66
AVERAGE ACCURACY \ 72.07 (72.27) 73.17

Table 4. The decision FourierFormer vs. the baseline decision transformer [12] on the continuous
control tasks from D4RL benchmark [29]. The decision FourierFormer yields significantly better results
than the baseline decision transformer on 8§ out of 9 tasks and on average across tasks. Each experiment
result is averaged over 5 runs with different random seeds.We also include the reported results from [93]
(in parentheses) in addition to our reproduced results.

Environment/Model \ Baseline decision transformer — Decision FourierFormer

MEDIUM-EXPERT

HALFCHEETAH 91.03 (83.80) 92.27
HOPPER 110.30 (104.40) 111.10
WALKER 108.70 (107.70) 108.90
MEDIUM-REPLAY
HALFCHEETAH 35.31 (34.6) 38.47
HOPPER 85.61 (79.70) 89.70
WALKER 66.11 (62.90) 63.19
MEDIUM
HALFCHEETAH 42.28 (42.40) 42.38
HOPPER 61.47 (64.20) 64.77
WALKER 68.68 (70.60) 70.42
AVG REWARD \ 74.39 (72.20) 75.69

4.4 Reinforcement learning on the D4RL benchmark

We also examine the performance of our Fourierformers in reinforcement learning. In Table 4, we
verify the advantage of decision FourierFormer over the baseline decision transformer [12] on the
continuous control tasks from the D4RL benchmark [29]. The decision FourierFormer is the decision
transformer with the Fourier attention instead of the softmax attention. On this benchmark, our
decision FourierFormer significantly outperforms the baseline decision transformer on 8 out of 9
tasks and on average across tasks. Each experiment result averaged over 5 runs with different random
seeds. We follow the architecture and training configuration from [93].

4.5 Machine Translation on IWSLT’ 14 De-En

We demonstrate the performance of Fourierformer on the IWSLT’ 14 De-En [10] neural machine trans-
lation task, which has different inputs’ the sequence lengths. Table 5 shows that the FourierFormer
achieves better BLUE scores than the softmax baseline.

4.6 FourierFormer Helps Reducing Head Redundancy

To study the diversity between attention heads, given the model trained for the WikiText-103 language
modeling task, we compute the average Lo distance between heads in each layer. We show the
layer-average mean and variance of distances between heads in Table 6. Results in Table 6 shows



Table 5. The FourierFormer vs. the baseline softmax transformer on the IWSLT’ 14 De-En machine
translation benchmark [10]. The FourierFormer outperforms the baseline.

Method BLEU score
Baseline softmax 34.42
FourierFormer 34.68

Table 6. Layer-average mean and standard deviation of L, distances between heads of FourierFormer
versus the baseline transformer with dot-product attention trained for the WikiText-103 language
modeling task. FourierFormer has greater L2 distance between heads than the baseline and thus captures
more diverse attention patterns.

Method Mean Variance
Baseline dot-product  6.20 £ 2.30 6.17 £ 2.30
FourierFormer 7.45+250 7.37+244

that FourierFormer obtains greater Lo distance between attention heads than the baseline transformer
with the dot-product attention and thus helps reduce the head redundancy. Note that we use the small
configuration as specified in Section 4.1 for both models.

5 Related Work

Interpretation of Attention Mechanism in Transformers Recent works have tried to gain an
understanding of transformer’s attention from different perspectives. [80] considers attention as
applying kernel smoother over the inputs. Extending this kernel approach, [35, 15, 52, 89, 54]
linearize the softmax kernel in dot-product attention and propose a family of efficient transformers
with linear computational and memory complexity. [9] then shows that these linear transformers
are comparable to a Petrov-Galerkin projection [64], suggesting that the softmax normalization in
the dot-product attention is sufficient but not necessary. Other works provide an understanding of
attention in transformers via ordinary/partial differential equation include [45, 69]. In addition, [51,
75, 30, 96, 53] relate attentions in transformers to a Gaussian mixture models. Several works also
connect the attention mechanism to graph-structured learning and message passing in graphical
models [90, 72, 39]. Our work focuses on deriving the connection between self-attention and
nonparametric kernel regression and exploring better regression estimator, such as the generalized
Fourier nonparametric regression estimator, to improve the performance of transformers.

Redundancy in Transformers [19, 47, 25] show that neurons and attention heads in the pre-trained
transformer are redundant and can be removed when applied on a downstream task. By studying
the contextualized embeddings in pre-trained networks, it has been demonstrated that the learned
representations from these redundant models are highly anisotropic [49, 26]. Furthermore, [70, 74, 86,
68] employ knowledge distillation and sparse approximation to enhance the efficiency of transformers.
Our FourierFormer is complementary to these methods and can be combined with them.

6 Concluding Remarks

In this paper, we establish the correspondence between the nonparametric kernel regression and the
self-attention in transformer. We then develop the generalized Fourier integral estimators and propose
the FourierFormer, a novel class of transformers that use the generalized Fourier integral estimators to
construct their attentions for efficiently capturing the correlations between features in the query and
key vectors. We theoretically prove the approximation guarantees of the generalized Fourier integral
estimators and empirically validate the advantage of FourierFormer over the baseline transformer
with the dot-product attention in terms of accuracy and head redundancy reduction. It is interesting
to incorporate robust kernels into the nonparametric regression framework of FourierFormer to
enhance the robustness of the model under data perturbation and adversarial attacks. A limitation of
FourierFormer is that it still has the same quadratic computational and memory complexity as the
baseline transformer with the dot-product attention. We leave the development of the linear version
of FourierFormer that achieves linear computational and memory complexity as future work. It is
worth noting that there is no potential negative societal impacts of FourierFormer.
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Supplement to ''FourierFormer: Transformer Meets Generalized
Fourier Integral Theorem"

In the supplementary material, we collect proofs, additional theories, and experiment results deferred
from the main text. In Appendix C, we provide additional theoretical results for generalized Fourier
density estimator and for generalized Fourier nonparametric regression estimator. We provide proofs
of key results in the main text and additional theories in Appendix D. We present experiment details
in Appendix A while including additional experimental results in Appendix E.

A Experiment Details

This section provides the details of the model and training for experiments in Section 4. All of our
experiments are conducted on a server with 4 NVIDIA A100 GPUs.

A.1 Language Modeling

Datasets and metrics WikiText-103 is a collection of articles from Wikipedia, which have long
contextual dependencies. The training set consists of about 28 K articles containing 103\ running
words; this corresponds to text blocks of about 3600 words. The validation and test sets have 218 K
and 246 K running words, respectively. Each of them contains 60 articles and about 268 K words. Our
experiment follows the standard setting [46, 71] and splits the training data into L-word independent
long segments. For evaluation, we use a batch size of 1, and process the text sequence with a sliding
window of size L. The last position is used for computing perplexity (PPL) except in the first segment,
where all positions are evaluated as in [1, 71].

Models and baselines Our implementation is based on the public code by [71].! We use their
small and medium models in our experiments. In particular, for small models, the key, value, and
query dimension are set to 128, and the training and evaluation context length are set to 256. For
medium models, the key, value, and query dimension are set to 256, and the training and evaluation
context length are set to 384. In both configurations, the number of heads is 8, the feed-forward layer
dimension is 2048, and the number of layers is 16.

In our experiments on WikiText-103 in Section 4.1, we let R be a learnable scalar initialized to 2
and choose ¢(z) = z*. The same setting is used for all attention units in the model; each unit has a
different R. We observe that by setting R to be a learnable vector [Ry, ..., Rp] ', the FourierFormer
gains advantage in accuracy but with the cost of the increase in the number of parameters. When R is
a vector [Ry, ..., Rp]", the equation of the Fourier Attention is given by

N D sin(R; (qij—kij))
Zi:1 AL Hj:l ¢ (W)
N D sin(R;(qij—ki;
S e (M)

We provide an ablation study for the effect of R and ¢ in Section E.

hi = fn.r(a;) = Vie[N]. (16)

A.2 Image Classification

Datasets and metrics The ImageNet dataset [22, 67] consists of 1.28 M training images and 50K
validation images. For this benchmark, the model learns to predict the category of the input image
among 1000 categories. Top-1 and top-5 classification accuracies are reported.

Models and baselines We use the DeiT-tiny model [79] with 12 transformer layers, 4 at-
tention heads per layer, and a model dimension of 192. To train the models, we follow the same
setting and configuration as for the baseline [79].>

Similar to the setting for language modeling, in our experiments on ImageNet image classification,
we set R to be a learnable scalar initialized to 1 and choose ¢(x) = 2*. Different attention units have
different R.

A.3 UEA Time Series Classification

Following [93], we choose 10 out of 30 datasets in the benchmark [5], which vary in input sequence
lengths, the number of classes, and dimensionality, to evaluate our models on temporal sequences.

"Implementation available at https://github.com/IDSTA/Imtool-fwp.
*Implementation available at https:/github.com/facebookresearch/deit.
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The test accuracy is reported as an evaluation for the benchmark.

Models and baseline For all experiments in this task, we adapt the setups and configura-
tions as in [93] 3 (for the PEMS-SF, SelfRegulationSCP2, UWaveGestureLibrary datasets) and [95]
4 (for the other tasks). The number of heads is 8 in all models, whereas the model dimension and
number of transformer layers are varied.

A.4 Reinforcement learning on the D4RL benchmark

Datasets and metrics In the D4RL benchmark [29], which consists of the continuous control tasks
for offline reinforcement learning, we choose HalfCheetah, Hopper, and Walker as experiment
environments and Medium-Expert, Medium, and Medium-Replay as behavior policies. This selection
is adapted from [93].

Models and baseline The models trained on this benchmark has the same configuration as
in [93], with 3 transformer layers and 4 heads per layer. In our DARL experiments, we choose
¢ = z* and the initial value of the learnable scalar R to be 1.

A.5 Machine Translation

Datasets and metrics The IWSLT’ 14 De-En dataset consists of 170K training sentence pairs, 7K
validation pairs, and 7K test pairs. In this task, the model does the translation from German to
English. To measure the performance of the trained model, the BLEU score [55] is used

Models and baselines The architecture of the Fourierformer and the baseline contains 12
transformer layers with 4 heads per layer. Our implementation is based on the public code
https://github.com/pytorch/fairseq/tree/main/examples/translation. In our Fourierformer models, we
choose ¢(z) = 22 and the initialization R;y;; = 1.0.

B Background

B.1 Kernel Density Estimation

Kernel density estimation (KDE) is the application of kernel smoothing for probability density
estimation, i.e., a non-parametric method to estimate the probability density function of a random
variable based on kernels as weights. Let (z1,xo,...,z,) be i.i.d. samples drawn from some
univarite distribution with an unknown density f at any given point . We are interested in estimating
the shape of this function f. Its kernel density estimator is

s 1 — 1 & —
fh(x):nZKh(x—mi)znth<x hl‘)7 )
i=1 i=1

where K is the kernel and h > 0 is a smoothing parameter called the bandwidth. A kernel with
subscript h is called the scaled kernel and defined as K (z) = 1/hK (z/h).

B.2 Nonparametric Kernel Regression

Kernel regression is a nonparametric technique to estimate the conditional expectation of a random
variable. The objective is to find a non-linear relation between a pair of random variables X and Y. In
any nonparametric regression, the conditional expectation of a variable Y relative to a variable X may
be written:

E(Y|X) = m(X), (18)
where m is an unknown function.
Nadaraya—Watson kernel regression Nadaraya—Watson kernel regression estimates m as a locally
weighted average, using a kernel as a weighting function. The Nadaraya—Watson estimator is given
by

ﬁlh(x) _ Zznzl Kh(l‘ — xl)yl
Z?:l Knp(x — ;) ’

where K, is a scaled kernel with a bandwidth h.

19)

3Implementation available at https://github.com/thuml/Flowformer.
“Implementation available at https:/github.com/gzerveas/mvts_transformer.
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B.3 Fourier Integral Theorem

The Fourier integral theorem [92, 7] has been used in nonparametric mode clustering, deconvolution
problem, and generative modeling [33]. It is a combination of Fourier transform and Fourier inverse
transform. In particular, for any function p € Ly (R”), the Fourier integral theorem is given by

pa) = ﬁ / |, costs™ @ - wptu)ayds
G dm [ [ eos(sT @ www)auds

1P
1 sin(R(z; —y;))
- Jm / py)dy, (20)
7P RS RD]-:-[l (J—yj) ()

where = (z1,...,2p), ¥y = (y1,.--,YD), 8 = (81,...,8p), and R is the radius. Here, the first
equality in equation (20) is due to

lim cos(s' (x —y))ds = / cos(s' (x —y))ds

R—o0 [-R,R)P RD

and the final equality in equation (20) is due to
= sin(R(z; — y;))
/ cos(s' (x —y))ds = H SR ~ i)
[-R.R]P j i

for all y € RP. Equation (20) suggests that pr(x) := 25 o HJD=1 %p(y)dy can be

used as an estimator of the function p.

C Additional Theoretical Results

In this section, we provide additional theoretical results for generalized Fourier density estimator in
Appendix C.1 and for generalized Fourier nonparametric regression estimator in Appendix C.2.

C.1 Generalized Fourier density estimator

We now establish the MISE rate of p%vR in equation (12) when ¢(2) = 2! and I € {1,2}. We
consider the following tail bounds on the Fourier transform of the true density function p as follows.

Definition 3 (/) We say that p is supersmooth of order « if we have universal constants C and Cy
such that the following inequalities hold for almost surely x € RP:

D
Pa)| < Crexp | —Co [ > |yl

Here, p denotes the Fourier transform of the function p.

(2) The function p is ordinary smooth of order 3 if there exists universal constant c such that the
following inequality holds for almost surely x € RP:

D 1

P()] < c- .Hl7<1+|xj|ﬁ>'

The notions of supersmoothness and ordinary smoothness had been used widely in deconvolution
problems [28] and density estimation problems [20, 82, 33]. The supersmooth condition is satisfied
when the function p is Gaussian distribution or Cauchy distribution while the ordinary smooth
condition is satisfied when the function p is Laplace distribution and Beta distribution.

Based on the smoothness conditions in Definition 3, we have the following result regarding the
mean-square integrated error (MISE) of the function generalized Fourier density estimator (12) (see
equation (13) for a definition of MISE) when ¢(z) = 2! and | € {1, 2}.
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Theorem 3 (a) When ¢(z) = z, the following holds:

* (Supersmooth setting) If the true density function p is supersmooth function of order « for
some o > 0, then there exists universal constants Cy,Ca, and Cs such that as long as
R > Cy we have

_ i _ RD
MISE(p%’R) < Oy (Rmdx{l—a,O} eXp(—CgRO‘) + N) .

* (Ordinary smooth setting) If the true density function p is ordinary smooth function of order
B for some 3 > 1, then there exists universal constants ¢ such that

RD
MISE(pY, ) < ¢ (R—BH + N) .

(b) When ¢(z) = 22, the following holds

* (Supersmooth setting) If the true density function p is supersmooth function of order o for
some o > 0, then there exists universal constants C| and C) such that as long as R > C
we have

1 RP
) /

* (Ordinary smooth setting) If the true density function p is ordinary smooth function of order

B for some 3 > 3, then there exists universal constants ¢’ such that

4 (1 | RP

Proof of Theorem 3 is in Appendix D.2. A few comments with the results of Theorem 3 are in order.

When ¢(z) = z: As part (a) of Theorem 3 indicates, when the function p is supersmooth, by choosing

1/
the radius R to balance the bias and variance, we have the optimal R as R = (%) and the

log(N)D/a
N

MISE rate of the generalized Fourier density estimator p‘ﬁh , becomes O ( ) . It indicates

that, the MISE rate of p(ﬁ,  1s parametric when the function p is supersmooth. On the other hand,

when the function p is ordinary smooth, the optimal R becomes R = O(N BT ) and the MISE

B—1
rate becomes O (N T DFB-1 ) . It is slower than the MISE rate when the function p is supersmooth.

When ¢(z) = z2: The results of part (b) of Theorem 3 demonstrate that the upper bounds for the
MISE rate of the generalized Fourier density estimator p‘ﬁh  1s similar for both the supersmooth and

ordinary smooth settings. The optimal radius R = O (N D+r2> and the MISE rate of the estimator is
o (n"7%).
C.2 Generalized Fourier nonparametric regression estimator

In this appendix, we provide additional result for the mean square error (MSE) rate of the generalized
Fourier nonparametric regression estimator f, g in equation (14) when ¢(z) = z, namely, the setting
of the Fourier integral theorem. The results when ¢(z) = z! for | € {2,3,4,5} are left for the future
work.

When ¢(z) = z, the MSE rate of fx g had been established in Theorem 9 of Ho et al. [33] when the
function p is supersmooth function. Here, we restate that result for the completeness.

Theorem 4 Assume that the function p is supersmooth function of order « for some o« > 0 and
supgerp |P(k)| < oo. Furthermore, we assume that the function f in the nonparametric regression

model (3) is such that supgcgro | f2(k)p(k)| < oo and

D
[Fp@®)] < CLQ(tal, ltal, -ty exp | —Co | Do 14517 | |
j=1

21



where f.p(t) is the Fourier transform of the function f.p, Cy and Cs are some universal constants,
and Q(|t11, |t2l, - - -, [tp|) is some polynomial function of |t1], . . ., |t p| with non-negative coefficients.
Then, we can find universal constants C's, Cy, C5 such that as long as R > C3 we have

maX{Qdeg(Q)""Q—QOé,O} _ o M
E [(fw.r(k) — f(k)?] < G2 exp (—2C,R) 4 UL+C

p*(k)J(R) 7
where deg(Q) denotes the degree of the polynomial function Q, J(R) = 1 —
Rmax{2—2a,0} Cxp(72CQRa)+RD 101%(1\112)

p?(k) )

Proof of Theorem 4 is similar to the proof of Theorem 9 of Ho et al. [33]; therefore, it is omitted.

1/
The result of Theorem 4 indicates that the optimal radius R = (%) and the MSE rate of the

10g(N)D/"‘)
N .

generalized Fourier nonparametric regression estimator fy g is O (
D Proofs
In this Appendix, we provide proofs for key results in the paper and in Appendix C.

D.1 Proof of Theorem 1

Recall that, k1, ko, ..., ky € RP arei.i.d. samples from the density function p. In equation (12),
the generalized Fourier density estimator of py is given by:
p¢ <sm ; —kij)))
N,R — )
i=1j=1 R(k; k”)

where A = quS(““(z))dz ki = (ki,...,kip), and k = (k1,...,kp). Direct calculation
demonstrates that

b o sin i — Y
Elp p(k)] = %) /RD H ¢ (W) p(y)dy

(kj — ;)
D
1 / sin(y;) Y
=—= ¢< p(k:——) dy. 21
AP RD ]];[1 Yj R
An application of Taylor expansion up to the m-th order indicates that
p(k-2)= 3 H ) SR k) + Riky) 22)
R R|a\a' , / aka e
0<|al<m
where a = (a1, ..., Qq), |a] = Z;l:l aj, and R(k,y) is Taylor remainder admitting the following
form:
_ m+1 & O™ p
Rk, y) = Z m+151 H / (=" DleP (k - R) dt. (23)
|B|l=m+1
Plugging equations (22) and (23) into equation (21), we find that
E[pY, n(k)]
k 1 sin(y; ¢ 3"1‘]) k)d
URST DY Rla\a'/RD,H ( )H " ke (k)Y
1<]la|<m =1 j=1
D 1 m—+1
1 m+1 sin yJ m 0" g ty
+EIBI Rm+1ﬂ'/ H ( )1:[ / (=" (k= 3 ) dydt.
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According to the hypothesis that [, ¢ ( ““(z)> 23dz =0 forall 1 < j < m, we obtain that

/RD H <Sm - ) ﬁ(_yj)aj aa‘:f (k)dy =0

Yj =1

for any o = (a,. .., aq) such that 1 < |a| < m. Collecting the above results, we arrive at

E[p% 7 (k)] — p(k)|

1 +1 = L am+1
~|aD RTZL@-HBI/ H¢(Sln >H / (=™

|Bl=m+1
<sm Yj >
Yj
p

D
1 m+1 /
<a5 > g ), 1L
— D m—+1 23|
|8l=m+1 R Bl Jgo j=1
am
Since the function p € C™T(RP), we can find positive constant M such that || 57 (B)||oo <M
forall 3 = (B1,...,0Bq) such that |5| = m + 1. Therefore, we find that

D
Elpb n (k)] ~p(k)| < o5 %/RDH <smyjyj>

|Bl=m+1 j=1

i X . H! ()

[Bl=m+1

y
k— Y qydt
R>y

m+1
(1 ‘3 ( )’ddt.

b

|5de/ (1 —t)™dt

H ;1% dy.

For any 5 = (1, ..., 0p) such that | 3| = m + 1, an application of the AM-GM inequality indicates
that Hle ly;|% < m(Z]D:l ly;|™*1). Hence, putting these results together leads to

E[pS, n(k)] — p(k)| < Ajfgﬂ py) 6, H\ (ni) y)\ Zw et dy,

sin(z)

From the hypothesis, we have f ‘qﬁ ( ) ‘ |z|mT1dz < co. As a consequence, we can find a
universal constant C' depending on A and d such that
C
E[p o (k)] —p(k)| < Rl

forall k € RP.

Bounding the variance: We now move to bound the variance of p‘ﬁﬁ (k). Indeed, direct computation
indicates that

2P sin .
VarlpS (k)] = i Var H¢( (it~ Ka))

S E ch (Sm KK_;)))
S [ 1 (22 (s~ o= Sl [ T (82

where the variance and the expectation are taken with respect to K = (K 1,..., K 4) ~ p. As

fR ®? (%) dz < oo, there exists a universal constant C’ depending on A and D such that

C'RP
Var[p}y (k)] < =

As a consequence, we obtain the conclusion of the theorem.
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D.2 Proof of Theorem 3
From the Plancherel theorem, we obtain that

L [0t =)k = s [ [ i) =pt0)] . @)

where ﬁ‘ﬁ[ r and D are respectively the Fourier transforms of py r and p. From the definition of

generalized Fourier density estimator p(ﬁ[’ g in equation (12), it is clear that
1 D
PR () = 5 D exp(it ki) [ Ka(t)).
i=1 j=1

o7

for any ¢ = (t1,...,tp) € RP where we define Kg(y) := % [, Ro (%) exp(iyz)dx
for any y € R. To ease the presentation, we denote Kr(t) := Hle Kr(t;) and pn(t) =
LS exp(itTk;) forany t = (t1,ta,...,tp) € RP. Based on these notations, we can rewrite

PRr(®) = on(t)Kr(?)

Direct calculation shows that Exn [on(¢)] = P(t) for any ¢t € RP where kY := (ky,...,k,).
Furthermore, we have

By low (1)) = Elpw (o (~t)) = B K}V > exp(z't%») G > exp(—itTk»)]

= % (N]\_f 1)E [exp(it " k) exp(—it ' k)]
R

Collecting the above results, we have the following equations:

e [ [ a0~ 0] dt] =By [ [ fow01Kn(o) - pi0)) e
~ g | [ [6onl)  HODKR(t) ~ 501~ Kn(0)]”at
= [, Bup [ton(®) ~ BOF] K3(0) + 700 - Knlt)*dt

~ = 1 . _
- [ o0 -Eawpas g [ o- |p<t>|2>K%<t>c(i;)

Combining the results from equations (24) and (25), we find that
¢ ¢ 2
MISE(S, ) = By | [ [0 a0 ~ 98] ]

= (271)0 (/RD pP(t)(1— Kg(t)*dt + %/Ro(l — |ﬁ(t)|2)f(§(t)dt) . (26)

D.2.1 When ¢(z) = z

We first consider the setting when ¢(z) = z, namely, the setting of the Fourier integral theorem.
Under this setting, direct computation indicates that

d
Kr(t) =[] Lui<n-
i=1
Given the smoothness assumptions on the function p, we have two settings on that function.
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Supersmooth setting of the function p: When the function p is supersmooth density, we have

D
Pt)] < Crexp | —Co | > [t;1* ] |,
j=1

where C7 and C5 are some universal constants. Therefore, we find that

D
/ P2(t)(1 — Kp(t))?dt = / p(t)dt < Cl/ exp | —Cs Z [t | | dt
RD RP\[-R,R]P RP\[-R,R]P =

D D
<oy [ew|-ca| Sl |t
i=1"DBi j=1
(27

where B; := {t € R : |t;| > R}. We now proceed to bound [, exp (—02 (Zle |tj|a)) dt for
all i € [D]. Indeed, we have that

D D—1
[oew | -co [Tl | Jat=([ew(-calelac) - [ expl-calalis
B = R |z|>R

C D-1
= 2% 51 / exp(—Calz|™)dx.
(2CI'(1/ ) |2|>R

k3

When o« > 1, we have that

/ exp (—Cox®) dx S/ 2 Lexp (—Coz®) dr = exp(—C3R*) /(Cha).
R R

When « € (0,1), then we find that

/ eXp(—nga)dx:/ 2 7 exp(—Chx®)dx

R R
Ri=%exp (—CoRY) 1—-a [™
< —Coz™)d
= Char * CoaRe /R exp(=Caa”)dz,
When the R is such that R* > 2%;3) , the above inequality becomes
© 2RI~ —C9 R
/ exp(—Caz®)dx < exp (=Cs )
R CQO[

Collecting the above results, we arrive at
4Rmax{17a,0}
/ exp(—Csz|*)de < ———— exp(—CyR%). (28)
| R Cra

Plugging the inequality (28) into the inequality (31), there exists universal constant C's depending on
« and D such that

/ P2(t)(1 — Kg(t))%dt < C3 R>{1=2.0} exp(—C, R?). (29)
RD
On the other hand, we also have
L apwpRima< L [ ke < (30)
N RD p R - N ]RD R - N ’

Combining the results from equations (29) and (30), we obtain that

; RP
MISE(p%’R) <Cy (Rmax{l—a,o} exp(—C1 R%) + N) )
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As a consequence, we obtain the conclusion of Theorem 3 under the supersmooth setting of the
function p and ¢(z) = 2.

Ordinary smooth setting of the function p: The proof of Theorem 3 when the function p is ordinary
smooth also proceeds in the similar fashion as that when p is supersmooth. In particular, we have

D D
_ 1
p2(t)(1 — Kp(t))%dt < §/ ||7dt, 31
/Rnp()( ~(®)) _673:1 B, o (1+14517) b

where B; := {t € R : |t;| > R}. By simple algebra, we obtain that

D D-1
1 1 1
Ildtz(/dx) / ———dx
/B o (T 1517) ® 1+ |z|° wi>r 1+ [2]P

1 b=l 9
< - d — = _RAHL
(41+uwm> 51

Putting the above results together leads to
/D P2(t)(1 — Kg(t)%dt < c;R™PHY, (32)
R

where ¢; is some universal constant.

Similar to the supersmooth setting, we also can bound the variance & [ (1 — [D(2)|?) K3 (¢)dt
under the ordinary smooth setting as follows:

L[ a-popriwe< 33
N RD p R - N '
Combining the results from equations (32) and (23), we obtain that
RD
MISE(p}, ;) < c2 (R—ﬁ“ + N) ,

where ¢, is a universal constant. As a consequence, we obtain the conclusion of Theorem 3 under the
ordinary smooth setting of the function p and ¢(z) = z.

D.2.2 When ¢(z) = 2°

When ¢(2) = 22, which corresponds to the Féjer integral setting, we find that

d

_ 1 t;

Kr(t) = 5p II (2 - ‘RD 1t <2ry-
=1

Given the formulation of the function K, we first bound & [, (1 — [p(¢)|?)K%(t)dt. Indeed,
direct calculation shows that

D
1 R B 1 _ 1 |x‘
= 1— p®)|PKZ(t)dt < — K(t)dt = — / 2-—0d
N RD( [p(t)|") KR() = N Jao r(t) N2P ( |z|<2R R ’
2D RP

Now, we proceed to upper bound [, , p*(£)(1 — Kr(t))2dt. We have two settings of the function p.

Supersmooth setting of the function p: Given the above formulation of the function K z, we have

/ﬁ%ﬂ—mmwa:/ P2 (1)t
RD

RP\[-2R,2R]P
+ / P(t) (1 -
[-2R,2R]P
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By using the similar argument as when ¢(z) = z, when p is supersmooth function, we obtain that
/ pA(t)dt < ¢y R 1=} exp(—CHRY), (36)
RP\[-2R,2R]

where C{ and C7 are universal constants. On the other hand, we have

/[QRQR]D () (1 - ﬁ <1 _ ;;4))2 it

i=1

D D ] 2
SC’/ exp | —C i < ) dt
oo (e () ) (-1

=1

D
exp | =Ca | D [t]* H;%;n“dt (37)
j=1

where () is some universal constant. Here, iy, ...,%,, in the sum satisfy that they are pairwise
different and 1 < 44, ...,4,, < D. Now, simple calculations indicate that

S ILZ, 2
= K2
L s |0 (1007 | e =

Jj=1

D
1
T /Dexp —Cy | Y 11" Ht2dt§R2m, (38)
R X
Jj=1

where C5 is some universal constant. Combining the results from equations (37) and (38), there
exists universal constant C's depending on D such that

D 2
-9 _ B M 03
/[—2R,2R]Dp ®) (1 H ( 2R>> dt < R (39)

=1
Plugging the inequalities (36) and (39) to equation (35) leads to the following bound
Gy _ Ci

T2 S (40)

[, P00 - Ba(t)?de < CiRmx1-20) exp(-CyRe) +
RD

Combining the results from equations (34) and (40), we have

¢ ~ (1  RP

As a consequence, we obtain the conclusion of Theorem 3 when ¢(z) = 22 and the function p is
supersmooth function.

Ordinary smooth setting of the function p: Using similar proof argument as that of the supersmooth
setting of the function p, as 8 > 3, we find that

D 2
~2 7 2 ¢ H2 |t |
‘4Dp“xl_Khu»dt§Bﬁ14:42Rmpp(ﬂ<1_11<1_2R>> dt

=1
C C1 Co
SR TR S R
where c, ¢1, co are universal constants. Combining the inequalities (34) and (41), we obtain the

conclusion of Theorem 3 under the ordinary smooth setting of the function p and ¢(z) = 2.

D.3 Proof of Theorem 2

Our proof strategy is to first bound the bias of fx (k) and then establish an upper bound for the
variance of fy r(k) for each k € RP.

(41)
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D.3.1 Upper bound on the bias

Recall that in equation (14), we define fn g(k) as follows:
N sin(R(k; —kij))
Z‘—l Vi Hg l(b( R(k-—ku)] ) . CLN)R(k)
sin(R(k; —k; L,
ST o (BREtad) b (k)
where p(ﬁ,) (k) is generalized Fourier density estimator in equation (12) while a, (k) is defined as

follows:
rD N D sin(R(k; — kij))
an,r(k) = WAD ;Vig¢ (R(k;—/fzg)) .

fNﬁ(k) =

)

Simple algebra leads to

a - ¢ - _p®
() — Flk) = ~.r(k) p(fk()k)PN,R(k) I (fn,r(E) f(k;(),il;(k) Pn,R(k))- (42)

Therefore, via an application of Cauchy-Schwarz inequality we obtain that

(E[fn,r(k)] — f(k))?

_ (Blavato — st ®)])” (B [(nth) — 10 0) e n(8)])

< (k) " (k)

_ (Blavats) — s 9])” Bt~ 5B [(008) )]

= P2(k) ' (k) "

where the second inequality is due to the standard inequality E?(XY') < E(X?)E(Y?) for all the
random variables X, Y.

According to the assumptions of Theorem 2 and the result of Theorem 1, we have

C CoRP
E [(p(k) ~ pn(k)?] < Sy + (44)

where C7 and C5 are some universal constants in Theorem 1.

Now, we proceed to bound |E [a ~N.r(k) — f(k)pn r(k)]|. Direct calculation demonstrates that

Blavah) = 45 [ U o (T ) s )y

i [T (B ) B Baw

An application of Taylor expansion up to the m- th order indicates that

o, 01 _
p<k_%>: 2 lala!H ~Yj) 81@5 k) + Ri(k,y),

0<|ax|<m
Y\ _ a\alf _
f <k B E> - Z R|a|a| H y] Ok k) + RQ(ka y)v (46)
0<|a|<m
where a = (ax, ..., aaq), la] = 27:1 a;, and Rl(k, y), Ra(k, y) are Taylor remainders admitting
the following forms:
D
_ m + 1 am+1p
Ri(k,y) = Z m_Hﬁ' H —y;) / 1—6)™ T k— E dt,
|Bl=m+1
D
m + 1 Bj m 8m+1f ty
) mﬂ(—w) A (-5 z— 5 )d. (4D
|B]l=m+1 j=1
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Combining equations (46) and (47), we obtain that

AT A 1 D ey @l DS
(=) (k=R) = 3 e o)™ G 0 g ®)
0<|al,|B|<m j=1

D
1 a_ala\p _
| X g [ S k) | Ralk.w)
0<|a|<m ti=1

la| B ) )
2 Rl H(*yj)“"a f(k) Ri(k,y) + Ri(k,y)Ra(k,y).

sm(z)

As we have fR 0] 2/dz = 0forall 1 < j < m, plugging the equation in the above display to

equation (45) leads to
Elan,r(k)] = f(k)E [p?(/yR(k)} + B1+ Ba + B3 + By,
where By, By, B3, B, are defined as follows:

1 sin(y;) a]+5j olalp — alBlf

m+1<|a|+|8|<2m

D
sin 1 Qlal _
Bz = AD/ H < yj) > Fatar L w)™ 8,:;0(’6) Ry (k, y)dy,
Ci=1

0<lal<m

sin(y; 8\ lf _
3 AD /RD H < ) Z |a|al H yﬂ aka (k) Rl(kay)dy7

Yi 0<|a|<m

By = AD/ H (Sm yj) 1(k,y) Ra (k. y)dy.

Since we have [ ‘gzb (“m(z )‘ |z7dz < oo forany m + 1 < j < 2m + 2 and py, f € C™FL(RY),

we find that as long as R > ¢ for some given constant ¢

D
1 1 sin(y

Bl < — E _

[Bil < AD Rlel+8la14! /RDJH < )

m+1<|a|+|B|<2m =1
where ¢ is some universal constant depending on A, D, and ¢. Furthermore, we find that

C1
D
1 m+1 sin y]
_ 1 __m+l
1Bl < 55 > Rlel+m+14141 /RD . ( )
=1

= R
0<|a|<m,|B|=m+1
1 m—+1
m ot f C2
X \/0 (1 - t) || 8’(:’6 ||00dydt —_— R7n+1’

where cs is some universal constant depending on A, d, and ¢. Similarly, we also can demonstrate
that B3 < c3/R™t! and By < c¢4/R*™*Y for some universal constants c3 and c4. Putting the
above results together, we arrive at the following bound:

H\ O i S L
Yi Ok " 9B 10

|°‘J +8;

/

c
[E [an.r(k) = F0DR o] < - (48)
Plugging the results from equations (44) and (48) to equation (43), we obtain that

2(c')? 2F [(fn.r(k) — f(k))? C CyRP
(B [fn,r(k)] - f(k))* < pz(k)(Rz)(m“) + [ N};(z(;g) )] (Rz(mlﬂ) 2N ) '

(49)
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D.3.2 Upper bound on the variance

Now, we study the variance of fn r(k). By taking variance both sides of the equation (42), we obtain
that

amﬂmf@b%ﬂ@+ﬁmﬂm)fﬂwp%)pﬁﬂmv
p

) (
var(fn,r(k)) = var ( p(k) (k)

(50)
Upper bound of 75: To upper bound 75, we utilize the following lemma.
Lemma 1 Assume that the function ¢ and pq satisfy the assumptions of Theorem 1. Furthermore,

#(2) < C as long as |z| < 1 for some universal constant C. Then, for almost all k € RP, there exist
universal constants C' such that

P (‘P?@,R(k) —p(k)\ > <R7,1L+1 /B 10]%(2/6)» <.

Proof of Lemma 1 is given in Appendix D.4. Now given the result of Lemma 1, we denote B as the
event such that

‘pﬁ/,R(k)p(k)lgc’(RiH " RDlo];g[@/(s))

where C” is a universal constant in Lemma 1. Then, we obtain P(B) > 1 — . Hence, we have the
following bound with 75:

b = E |(f.r(k) = F(R)*(p(k) — p},(K))*|B| P(B)

+E [(fn.n(k) = (k)2 (p(R) ~ b n(R))*| B P(B°)

< 2K [(fn,r(k) — f(k))?] (R2(3n+1) + dl 13%[(2/6) +9 (pQ(k) + C/i’)) ’

where ¢’ is some universal constant and the final inequality is based on the inequalities: P(B¢) < §
and (p(k) — ply p(K))? < 2002 (k) + (0 p)?(K)) < 2 (p2(k) + Cj@”) where C'is a universal

constant such that ¢(z) < C when |z| < 1. By choosing ¢ such that § =
obtain that

RD
NG (R)+CPRIDAD) e

D
1 R log(NR)>7 1)

T, <'E [(fN,R(k’) - f(k)>2] (Rz(m+1) + N

for some universal constant ¢’/ when R is sufficiently large.

Upper bound of T1: As v; = f(k;) + ¢, for all i € [N], direct calculation shows that

EEK;i%iU%ﬂﬂmqi¢Cﬂ£$L£?v

1=

+
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An application of Cauchy-Schwarz inequality leads to

p N D sin j — Rij 2
Ty < 2R (iAP (f(ki)—f(k))H¢<m>)

2
1 = sin(R(k; — kij
+ 2E (NT['D Zeznd)(](%(k(_ku))))) =2(51 + 52).

2
Since we have E {(11, Y oic1 Zi) } < ~E[Z2] + E? [Zy] for any i.id. samples Z1,..., 2y, we
obtain that

R2D 2D o [sin(R(k; — X ;
S1 < Nz [(f(X)—f(kD j];[lcb (M)

R2?D D /sin(R(k; — X))
+ I e (T2
AP [ ]1;[1 R(kj — X;)
where the outer expectation is taken with respectto X = (X 1,...,X 4) ~ p. From the result in

equation (48), we have

2D D sin j — X ¢
BB | 700 - 500 T o (s X).j)j»)] = E* o) o)) < ey

where ¢’ is some universal constant. In addition, an application of Cauchy-Schwarz inequality leads
to

e o s e (857
sﬁlﬁ (F2(X) + £ ﬁ¢2(8m XX_‘)”))]

- [T (52 (e )l ) <
< 2R X Pl 4 8 /RDH o (22D gy

Since we have [, ¢?(sin(z)/z)dz < oo, it indicates that we can find a universal constant ¢’ such that

R?D 0 sin(R(k; — X ;))
E X) — (k)2 2 J J
e {(f( )= s T (522
Jj=1
Putting the above results together, we obtain that

c " RE(|[f2 X plloo + f2(k))

"RP (|12 x pllo + 2(K))
- N A2D :

81 < oty + 2D (52)
Similarly, since E(¢;) = 0 and var(e;) = o2 for all i € [N], we have
2R _ | 5 sin(R(k; — X ;)) "0 RP ||p||oe R
_ 7]}3 2 J -J < S 53
%2 = Naep E ¢ ( R(kj — X ;) ) = NA2D &3
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where ¢’’’ is some universal constant. Combining the results from equation (52) and equation (53),
we find that

(54)

T <C((||f2><poo+f2(k)+0'2||p||oo)RD 1 )

N + R2(m+1)

where C'is some universal constant. Plugging the bounds of 73 and 7% from equations (51) and (54)
into equation (50), when R > C’ where C’ is some universal constant, we have

! D o
SB[t = 10°) (g + )
(U Y
p2(k) N R2(m+1) |7’

where C1{, C}, CY, are some universal constants. Combining the results with bias and variance in
equations (49) and (55), we obtain the following bound:

2(c')? 2E [(fn.r(k) — f(k))?] ( G CzRD>
p2(k)R2(m+1) pQ(k) R2(m+1) N

var(fn r(k)) <

+ (55)

E [(fv,r(k) — f(k))?] <

C ) 1 RPlog(NR)
+ ZW}@)]E [(fn.r(K) = f(K))?] (RQ(W'H) + N )

Cy ((f(k)+C5RP 1
pQ(k) N + R2(m+1) |~
As a consequence, we obtain the conclusion of the theorem.

D.4 Proof of Lemma 1

Invoking triangle inequality, we obtain that

Phnlk) = (k)| < |p% p(k) — B [p% 5 (8)] | + [ |9 nW)] —pR)|. 56)

+

If we denote v; = ff—ﬁ Hle @ (%) for all « € [N], then as sin(R(k; — ki;)/(R(k; —
ki;)) < 1forall j € [D] we have |v;| < CPRP /AP for all i € [N] where C is the constant such
that ¢(z) < C when |z| < 1. Furthermore, from the proof of Theorem 1 we have var(v;) < C'RP
where C’ > 0 is some universal constant. Given these bounds of v; and var(v;), for any ¢t € (0, C"']
Bernstein’s inequality shows that

1 & N2
P||— — K > <2 — .
( N ;V il = t) < 2exp ( 2C7RD + 2CDRDt/(3AD))

By choosing t = C'y/RP log(2/5) /N, where C is some universal constant, we find that

P

/N

Phn(®) —E [p} a(k)]| > ¢) =P (‘Jif ﬁ:v R

> t) < 4. (57)

From the result of Theorem 1, there exists universal constant ¢ such that
[E [0, (k)] = plk)| < c/R7H. (58)

Plugging the bounds (57) and (58) into the triangle inequality (56), we obtain the conclusion of the
lemma.

E Additional Experimental Results

E.1 Effect of ¢

Using the WikiText-103 language modeling as a case study, we analyze the effect of ¢(x) on the
performance of FourierFormer. In particular, we set ¢(z) = x* and compare the performance of
FourierFormer for £ = 1,2, 3,4 and 6. We keep other settings the same as in our experiments in
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Table 7. Ablation study on how the choice of ¢(x) = z* influences the performance of FourierFormer.
Odd values of k cause training to diverge. For even values of k, greater k yields better perplexity
(PPL), but the improvement is small for & > 4. Other choices of ¢ such as ¢(z) = |z|, ReLU(z), and
sigmoid(x) yield worse results.

Method Valid PPL Test PPL
Baseline dot-product (small) 33.15 34.29
FourierFormer, ¢(z) = 2 (small) 32.09 33.10
FourierFormer, ¢(z) = «* (small) 31.86 32.85
FourierFormer, ¢(z) = 2° (small) 31.84 32.81
FourierFormer, ¢(z) = z (small) not converge  not converge
FourierFormer, ¢(z) = x> (small) not converge  not converge
FourierFormer, ¢(z) = |z| (small) 33.12 34.18
FourierFormer, ¢(z) = ReLU(z) (small) 33.87 35.01
FourierFormer, ¢(z) = sigmoid(x) (small) not converge not converge

Table 8. Ablation study on how the initialization of R influences the performance of FourierFormer.
When R is initialized to a too small or too big value, the PPL of the trained FourierFormer is reduced.
Rinic = 1, 2, 3 yield the best results. Fourierformer with learnable vectors R yields better results than
Fourierformer of the same setting using learnable scalars R with the cost of increasing the number of
parameters in the model.

Method Valid PPL  Test PPL
Baseline dot-product (small) 33.15 34.29
FourierFormer, Rjni = 0.1 (small) 32.04 33.01
FourierFormer, Rini = 1.0 (small) 31.89 32.87
FourierFormer, R = 2.0 (small) 31.86 32.85
FourierFormer, Rini = 3.0 (small) 31.90 32.88
FourierFormer, Rjnii = 4.0 (small) 32.58 33.65
FourierFormer, R, = 2.0 (small, R is a vector) 31.82 32.80

Section 4.1. We summarize our results in Table 7. We observe that for odd values of k such as
k =1, 3, the training diverges, confirming that negative density estimator cause instability in training
FourierFormer (see Remark 3.1). For even values of k such as k = 2,4, 6, we observe that the
greater value of k results in better valid and test PPL. However, the gap between k = 4 and k = 6 is
smaller compared to the gap between £ = 2 and k = 4, suggesting that using £ > 4 does not add
much advantage in terms of accuracy. We have also studied other choices of ¢ that are nonnegative
functions such as ¢(x) = |z|, ReLU(z), and sigmoid(x). Those functions yield worse results than
¢(x) = x*™. We summarize these results in Table 7.

E.2 Effect of the Initialization of R

In this section, we study the effect of the initialization value of R on the performance of FourierFormer
when trained for the WikiText-103 language modeling and summarize our results in Table 8. Here we
choose R to be learnable scalars as in experiments described in our main text. Other settings are also
the same as in our experiments in Section 4.1. We observe that when R is initialized too small (e.g.
Rinie = 0.1) or too big (e.g. Rinie = 4), the PPL of the trained FourierFormer decreases. Riye = 1,2, 3
yield best results. We also study the performance of the FourierFormer when R is chosen to be a
learnable vector, R = [Ry,..., R D}T. We report our result in the last row of Table 8. FourierFormer
with R be learnable vectors achieves better PPLs than FourierFormer with R be learnable scalars of
the same setting. As we mentioned in Section A, this advantage comes with an increase in the number
of parameters in the model. Finally, from our experiments, we observe that making R a learnable
parameter yields better PPLs than making R a constant and selecting its value via a careful search.

E.3 Efficiency Analysis

We have included quantitative results on the runtime and GPU memory usage of the FourierFormer
versus the baseline softmax transformer in Table 9.

E.4 Synthetic Examples for Density Estimation and Nonparametric Regression via The
Generalized Fourier Integral Theorem

We empirically confirm Theorem 1 for density estimation and Theorem 2 for nonparametric regression
using the Generalized Fourier Integral Theorem in this section. In Figure 1, we show that the
generalized Fourier density estimator can approximate (A) 1-D and (B) 2-D Gaussian distribution

33



Table 9. Runtime and GPU memory usage of the FourierFormer vs. the baseline softmax transformer.
Both models are trained for the WikiText-103 language modeling task.

Model Runtime (Train) GPU Memory (Train) Runtime (Test) GPU Memory (Test)
(miliseconds/sample) (GB) (miliseconds/sample) (GB)

Baseline softmax (small) 5.41 1.43 1.53 0.94

FourierFormer (small) 6.00 1.43 1.70 0.94

= Ground Truth Density Estimated Density

0.40
035 \
0.30
0.25
0.20
0.15

0.10

0.05

Figure 1. (A) 1-D and (B) 2-D Gaussian distributions and their estimated densities via Fourier Integral
theorem.

@ Ground Truth Prediction

Figure 2: Non-parametric regression via the Fourier Integral theorem.

with a dense covariance matrix well, which further verify Theorem 1. In Figure 2, we show that the
generalized Fourier nonparametric regression estimator can approximate the function that maps from
a random variable to another random variable, which further verify Theorem 2.

In particular, for the density estimation experiments, we sample 100000 data points from the 1-D and
2-D Gaussian distribution and estimate the density for 1000 uniformly sampled test points. The mean
square errors (MSE) are 1.29 x 1075 and 2.42 x 10~ for the 1-D and 2-D case, respectively. For the
non-parametric regression task, we build a training dataset with 90000 correlated normally distributed
samples and choose a 3-degree polynomial as the ground truth function. The MSE between ground
truth labels and predictions is 0.06.
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