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ABSTRACT: Measuring the parameters that control the deformability and strength of soils through either laboratory
experiments or in situ testing is critical for numerous applications in geotechnical engineering. While image- and wave-based
techniques are increasingly prevalent, there is a perpetual need for techniques capable of sensing local, nonlinear properties,
for which mechanical testing is the only viable option. Existing methods for inferring mechanical properties have evolved
largely by trial and error, and there is no general, systematic approach for evaluating one possible approach against another.
As a first step toward addressing these challenges, this paper describes a quantitative metric that can discriminate between
different types of mechanical tests with respect to how well they are able to recover the true mechanical properties of the
material. The metric is devised by (1) creating a min-max optimization of parameter sensitivities, considering the local and
global topological properties of the forward model, and (2) evaluating the metric for fundamental material tests.

RESUME: La mesure des paramétres qui controlent la déformabilité et la résistance des sols, par des expériences en laboratoire
ou des testes in situ, est essentielle pour de nombreuses applications en génie géotechnique. Alors que les techniques basées sur
I'image et les ondes sont de plus en plus répandues, il existe un besoin perpétuel de techniques capables de détecter des propriétés
locales non linéaires, pour lesquelles les testes mécaniques sont la seule option viable. Les méthodes existantes pour déduire les
propriétés mécaniques ont évolué en grande partie par essai et erreur et il n'y a pas d'approche générale et systématique pour
¢évaluer une approche possible par rapport a une autre. Comme premicre étape pour relever ces défis, cet article décrit une métrique
quantitative qui peut discriminer entre différents types de testes mécaniques en ce qui concerne leur capacité a récupérer les
véritables propriétés mécaniques du matériau. La métrique est congue en (1) créant une optimisation min-max des sensibilités des
parametres en tenant compte des propriétés topologiques locales et globales du modele direct et (2) en évaluant la métrique pour
les testes de matériaux fondamentaux.
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1 INTRODUCTION the mathematical construction of the proposed quantitative
metric is outlined in detail in Section 3. Finally, in Section
4, implementation of the quantitative metric for the
fundamental material tests of spring extension and uniaxial
compression provides information on the optimal test in the

context of the proposed quantitative metric.

Currently, there is no quantitative, unbiased technique to
compare different testing methods for measuring the
mechanical properties of materials. This holds for the
plethora of tests devised for laboratory and field testing of
soils as well as material testing in general. For example, for
the simple choice of whether to use force or displacement
control for uniaxial compression of metals, although certain

2 THOUGHT EXPERIMENT

standards such as ASTM E9 (2019) give ample direction to
use displacement control, no guidance or mention is given
for a force-controlled test. Quantitative comparison of
material test methods is critical for accurate and efficient
assessment of material test methods for various objectives.
Key benefits are (1) the ability to specify the optimal testing
method for a specific application and (2) the ability to inform
the development of new testing methods for optimal
performance. A test can more accurately return the true
mechanical properties of a material when the sensitivity of
the material parameter/s of interest are maximized (Hill
1998) while minimizing sensitivity to all other components
of the test (Taguchi et al. 2000).

This paper proposes a quantitative metric, which
combines the work of Hill (1998) and Taguchi et al. (2000)
to introduce a min-max sensitivity analysis, allowing the
user to directly compare material tests. A thought
experiment involving the determination of a spring constant
is first introduced in Section 2, which gives context to the
implementation of the proposed quantitative metric. Then,

As an explicit example, this paper first considers the simple
problem of measuring spring constant & for a linear spring.
Moreover, the analysis based on the proposed quantitative
metric aims to answer the following question: if faced with
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Figure 1. Springs of various spring constants (k;, k>, k3, and ky)
determined by imposing/measuring force, F, and displacement, J
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several springs of unknown spring constants (Figure 1), what
is the optimal test to run on these specimens? In other words,
what type of test, which may be unique to each spring, will
most accurately return the true spring constant?

For the simple case of determining a spring constant, one
has a single choice to make: (1) apply a force to the spring
and measure the displacement, or (2) prescribe a
displacement and measure the resulting force. The first
option, referred to as a "force-controlled" test, is perhaps the
most common for evaluating spring constants. The
simplicity of being able to hang weights from a spring and
measure the resulting displacement is often easier than
attempting to control the displacement and measure the force
(e.g., using a load cell), which represents the second choice
of a "displacement-controlled" test. The analysis presented
in this paper does not consider the practicality of conducting
either force- or displacement-controlled tests and considers
only the accuracy to which the spring constant can be
calculated. Assuming idealized testing conditions where
deviations in force and displacement are the only sources of
error, inaccuracy is introduced in one of two ways for a
force-controlled test: (1) the measurement of displacement
differs from the true value, or (2) the prescribed force differs
from the intended value. Similarly, for a displacement-
controlled test, inaccuracy arises due to errors in either (1)
measured force or (2) prescribed displacement.

The quantitative metric is applied to the extension of a
spring in order to make a direct comparison of force-
controlled and displacement-controlled tests, as well as
determine the optimal testing configuration. The same
analysis is then extended to investigate the uniaxial
compression test, retaining some of the simplicity of the
spring test while incorporating more testing parameters.

3 CONSTRUCTION OF QUANTITATIVE METRIC

Construction of the quantitative metric is non-trivial, and the
following sections detail the choices made in converging on
the form proposed in this work:

_l n i a_aﬁi,avg 2
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Variables in Eq. (1) are defined as follows: n = number of
test parameters, w; = i component of a vector of given
weights, a = output parameter, f; = i component of a vector
of input parameters, d@df; = i component of a vector of
the sensitivities of the output parameter to the input
parameters, and Biag = i component of a vector of the
average input parameters over their expected ranges.

The general form of the quantitative metric is

0= 2 (2ot ] o
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In this work, sensitivities d@/0f; are considered as the main
component for optimization, and their selection is further
discussed in Section 3.1. By implementing weights wi,
individual sensitivities can be minimized or maximized,
which is also further discussed in Section 3.1. The
summation includes the overall normalization by m, as well
as the exponents p, ¢, and r, which are all positive integers
selected by the user. The selection of these integers is
outlined in Section 3.2. The normalization of all the
sensitivities (to produce dimensionless quantities) is

achieved by including fi norm/0norm, as discussed in detail in
Section 3.3.

3.1 Sensitivities and min-max optimization

Sensitivity (0a/0f) is a measure of how much a change in
the input will change the output. By investigating this as the
measure of the quality of a test, the influence of all aspects
of'the test on the output can be assessed. Particularly relevant
applications of sensitivity to the analysis presented here are
works in robust design and topological sensitivity analysis
(Park et al., 2006; Eschenauer et al., 1994; Novotny et al.,
2003), soil and groundwater parameter determination (Hill
1992; Hill 1998; Calvello & Finno 2004), population
biology (Heppell et al. 2000; Link & Doherty 2002) and
other environmental modeling applications for ranking,
mapping or screening of data (Pianosi et al. 2016).
Topological sensitivity analysis uses sensitivities to
determine redundant components of a design that can be
removed. Robust design assesses areas that have minimal
influence on the design, such that design or manufacturing
tolerances can be increased. Studies pertaining to
groundwater and soil parameter determination use
sensitivities to determine which parameters have the greatest
influence on the output and therefore are most easily
discovered. Finally, population biology and other
environmental modeling applications use the sensitivities of
animal populations to various events as a means of
investigating the past, present, and future of our natural
world. All the previously mentioned fields of research focus
on local sensitivities, which consider only one set of
parameters for any given analysis. The implementation of
sensitivity analysis presented in this paper requires the
analysis of global sensitivities. In global sensitivity analysis,
consideration must be given to the variation of parameters
across their respective parameter space. The sensitivity
function is used here to refer to the variation of sensitivity
across the parameter space.

Positive and negative weights w; can be applied to
individual sensitivities to minimize and maximize these
quantities, respectively. The sensitivity of the output to the
relevant material parameters to be determined should be
maximized to enhance test accuracy. At the same time, the
sensitivity of the output to all other inputs should
simultaneously be minimized to reduce their influence on the
output. Such min-max optimization is achieved by
minimizing the value of Q and including negative weights
for sensitivities that should be maximized. By including
negative weights, one is minimizing the negative of
corresponding terms, resulting in a maximization of the
term. Weights other than unity can be added to increase or
decrease the significance of particular sensitivities.
However, such a possibility is not addressed in this work,
where weights w; take values of —1 or +1 depending on
whether the corresponding sensitivity should be maximized
or minimized, respectively.

3.2 Sensitivity combinations

A combination technique is required for the analysis of
multiple parameter sensitivities through a single quantitative
metric, denoted here by Q. In this work, sensitivities are
combined through simple summation. There are various
methods available for which most cases result in similar or
the same outcomes of the optimization problem. A selection



of options is provided here, along with applicable reasoning
as to the proposed method.

Normalization of Q by the number of parameter
sensitivities assessed allows for comparison across tests with
a varying number of parameters. Therefore, m = n in Eq. (2)
for all the following applications.

The metric given by Eq. (1) arises for a particular choice
of exponents p, g, and r in Eq. (2). A sum of absolute values
is achieved when p = ¢ = 2 and » = 1. This method is
particularly effective when large and isolated errors are
present in a data set (Dielman 1986; Ge 1997), although, in
this application, the forward models are known and free of
error. Alternatively, an absolute value is undesirable as it
introduces complications for further analytical analysis due
to the non-smoothness of the resulting function. A “sum of
squares” is achieved with Eq. (2) whenp =2 andg=r=1.
This method theoretically produces the same result as the
sum of absolute values when no error is present and is
especially easy to work with mathematically. Although it
does not perform well with outliers in a data set, it has been
shown to perform well with a normally distributed error (Ge
1997). The square root of the sum of squares is achieved with
Eq. (2) when both p =7 =2 and ¢ = 1. Although commonly
used in similar applications (Hill 1998; Calvello & Finno
2004), this is undesirable for the specific application here.
The addition of the square root hinders the possibility of
using a negative metric in the presence of maximized
sensitivities. It is therefore determined that the mean sum of
squares is the most suitable combination technique due to the
mathematical tractability and the same performance in
optimization with the presence of a lack of error. Future
work may consider alternatives, including the various
options described above.

3.3 Sensitivity normalization

The parameter sensitivities are dimensional and require
normalization to be correctly summed. Normalization must
be achieved without distorting the trends of parameter
sensitivity variation across the parameter range; otherwise,
the normalization would influence the optimization. The
various forms considered for the B;norm/@norm
normalization terms in Eq. (1) are outlined here, with their
applicability to the optimization procedure detailed.

Hill (1992) normalizes the sensitivity by the input
parameter resulting in a normalization term of 1/f;. In this
case, the sensitivity term will remain dimensional. All terms
in the quantitative metric have units of the output parameter
and can therefore be summed. Although this method
normalizes the sensitivities to have common units, they are
not scaled by the input variable, and therefore a direct
comparison is heavily weighted toward input parameters
with larger magnitudes.

In the field of population biology, sensitivities are
normalized by a multiplication of the input and output
parameters, a technique known as elasticity (Link &
Doherty, 2002). For application into the quantitative metric,
the normalization term becomes a/f; not only making the
result dimensionless but also scaling such that comparisons
are reasonable. However, as with the normalization only by
the input parameter presented above, the scaling of the
sensitivity by the input is not appropriate to this application
of optimization. Alternatively, applying this normalization
and making the sensitivity independent of the output
parameter, a, will not influence the results of an
optimization. The output factors all sensitivity functions

equally, meaning that the combined minimum will occur at
the same location, with only the value of the metric scaled
by a function of the output.

To achieve a normalization of the input parameter that
does not distort the sensitivity function yet still produces a
dimensionless metric and scales the sensitivities to
comparable magnitudes, the normalization of the input
parameter must be constant. Possibilities include making the
numerator of the normalization term in Eq. (2) equal to the
minimum or maximum expected parameter (f;norm =
Bimin OF Bimax), the range of expected parameters
(Binorm = Birange)> or the average expected parameter
defined as the midpoint across an expected range (B; norm =
Biavg)- In this work, the average parameter f; 4 is
considered favorable as it presents the least variation across
the various parameter sensitivity functions. It has particular
benefits when the minimum value of a parameter range does
not approach zero, or the range is very narrow, for example,
in the case of a friction angle. All these terms are considered
subjective, and their values should be selected with
consideration given to any relevant testing apparatus
restrictions and general limits on the expected input
parameters.

Finally, it can be seen that the proposed metric in Eq. (1)
is obtained from the general form of Eq. (2) by selecting
Aporm = a. Simplicity is the main factor motivating this
choice, though one can envision other possibilities that are
not explored here.

The final normalization, as presented in Eq. (1),
combines normalization by the output parameter and
average input parameter. This creates a quantitative metric
that is independent of the output parameter and provides a
consistent scaling across each of the independent sensitivity
functions.

4 IMPLEMENTATION OF QUANTITATIVE METRIC

The quantitative metric has been designed with such
versatility that it can be implemented for any problem. Here
the implementation is demonstrated first through the
extension of a spring and then with a uniaxial compression
test. The quantitative metric is used to inform the decision of
(1) a force- or displacement-controlled test and (2) the
optimal configuration of a test considering all possible
variables.

4.1 Spring extension

As described in Section 2, the first test considered in this
paper involves the extension of a spring to determine the
spring constant k. This example allows for the
implementation of the proposed metric and comparison of
tests in one of the simplest conceivable forms. The forward
model for spring extension is

F
k=5 (3)

In an actual test, & is an unknown but fixed constant that
is determined by applying displacement and measuring force
(displacement control) or applying force and measuring
displacement (force control). If k£ were considered constant
in the optimization of Q, the force-displacement ratio for the
spring extension test would also be constant due to the
simplicity of the forward model. Therefore, optimization of
the test is best analyzed by allowing all components of the



test to be variable. In this case, that means that the &, F, and
o are considered variables in the optimization.

When a spring extension test is run as a displacement-
controlled test, variables in Eq. (1) are @ = F, f; = k, and
B, = 4. It may be noted that sensitivity of the force to the
displacement, which is controlled, is minimized to reduce
the influence of potential variation in this quantity (i.e.,
error) on the measured output F. At the same time, the
sensitivity of measured force F to the spring constant is
maximized. The resulting quantitative metric is

Qspring,pc = %[_ (Z_Z kf;”g)z + (g_g 6?9)2] @

Equation (4) includes the general form of the sensitivities
0a/d . At first glance, one might be inclined to include the
length of the spring, L, in the quantitative metric (3 = L).
However, the inclusion of L results immediately in Eq. (4)
since dF /0L = 0.

Upon substituting the derivatives of the forward model
given by Eq. (3) into Eq. (4), the quantitative metric becomes

Qspring,DC = %[_ (6 k{;i)z + (k 6;&)2] (5)

Further substitution using for the forward model for ¢/F and
k/F can be made to ascertain

Qspring,DC = %[_ (k{;:g)z + (6‘1%)2] ©

Equation (6) reveals that the optimization can be
analyzed independent of the output parameter F.
Furthermore, Eq. (6) takes a sufficiently simple form such
that the trend towards optimal can be seen without an
optimization solver. In searching for the optimal test, the
objective is to minimize Eq. (6). Without implementing
bounds on the variables in Eq. (6), the analytical solution
results in 0 — o and £ — 0. As k and J must be positive
constants  within  limits determined by practical
considerations, constraints need to be added to bound the
results. It can be seen by assessing Eq. (6) with constraints,
QO will be minimized when J is at its upper limit and & is at
its lower limit.

For a practical application, k is a fixed property of the
spring, and the practical outcome is that the optimal
displacement-controlled test should have the largest
displacement possible. The large displacement will
minimize the influence of any variation in displacement on
F and therefore produce the most accurate estimate of £.

For a force-controlled test, « =8, f; =k and §, = F.
The sensitivity of the displacement to the force is minimized,
and the sensitivity of the displacement to the spring constant
is maximized:

Qspring,FC = %[_ (%ki%)z + (g%)z] )

Upon substituting the derivatives of the forward model
given by Eq. (3), the quantitative metric becomes

Qspring,FC = %[_ (;_fki%)z + (%F‘i%)z] (8)

Further substitution using the forward model of Eq. (3)
for F/6 and 1/ results in

Qupringre =3[~ (*22)" + (%22)’] ©)

The progression from Eq. (7) to Eq. (9) is similar to that
for displacement control, where Eq. (9) includes the critical
substitution revealing simplification of the optimization and
independence from the output parameter o.

The optimal configuration for a force-controlled test can
be determined through the minimization of Q given by Eq.
(9). As with displacement control, without the
implementation of constraints, there is no sensible analytical
solution. Once constraints are implemented, it can be seen
that the ideal test will occur when F is maximized, and £ is
minimized. Similar to displacement control, for a practical
application, when £ is constant, a large force will minimize
the sensitivity to variation in force, resulting in the optimal
test. In both force- and displacement-controlled cases, a test
of constant £ can be improved by increasing the applied force
and displacement.

For the purpose of this paper, force- and displacement-
controlled tests will be compared directly. Justification for
direct comparison of Qspring pc, and Qspring Fc is not provided
here due to constraints on the length of the article but will be
provided in a forthcoming article by the co-authors. The
comparison of Egs. (6) and (9) can be used to conclude
whether force or displacement control is preferred. A
displacement-controlled test is preferred when

Qspring,DC < Qspring,FC (10)

By substituting Eq. (6) and (9) into this expression, Eq.
(10) becomes

e s ]l G o

With the aid of Eq. (3), simplification and rearrangement of
Eq. (11) gives

ko < Favs (12)

5 avg

Equation (12) shows that the decision to use force or
displacement control depends on the comparison of the
spring constant to the average force and displacement, Fayg
and Javg, to which physical meaning can be ascribed as
discussed in further detail below. This result is possible due
to the normalization of sensitivities creating a quantitative
metric that is independent of the output. The significant
contribution of the substitution made to get from Eq. (5) to
(6), and Eq. (8) to (9) results in the comparison of force- and
displacement-controlled tests subsequently becoming only a
comparison of the sensitivity of force to displacement and
displacement to force.

Equation (12) suggests that in order to determine which
test is preferable, one must first know critical details about
the testing apparatus, referred to her simply as the
"machine." Interpreting Fag and davg as representative of the
force and displacement that the machine is capable of
measuring or applying, the ratio Fag/davg can be interpreted
as machine stiffness. Figure 2 illustrates how machine
stiffness can be represented in the plane created by
representing Fave and davg along the vertical and horizontal
axes, respectively.

Because spring stiffness k is unknown, Eq. (12) also
reveals that the optimal test cannot be determined without
prior knowledge. Application of Eq. (12) to determine the
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Figure 3. Normalized force controlled to displacement comparison
for spring extension

optimal test requires an estimate of k. A machine capable of
applying small displacement and measuring large force is
optimal for a spring with large stiffness (kiarge), as depicted
in Figs. 2 and 3. Correspondingly, a machine capable of
applying small force and measuring large displacement is
optimal for springs with low stiffness (ksma). Significantly,
Eq. (12) shows that as the spring constant decreases, the
more likely it is that one should run a displacement-
controlled test. Likewise, increasing spring stiffness makes
it more likely that one should run a force-controlled test.
Figure 3 summarizes this concept.

For the springs shown schematically in Fig. 1, assuming
they are the same material, the spring represented by
stiffness k; likely has a lower k than that of k,. It is,
therefore, likelier that the spring with stiffness k; should be
tested in displacement control. This is indicated in Figure 3,
which shows that smaller values of k produce a greater area
over which displacement control is preferred. For the fourth
spring, with a higher k,, it is likelier that force control will
be optimal. The exact threshold determining which test is
optimal depends on the machine stiffness Fuvg/davg and the
exact value of k.

4.2 Uniaxial compression

The wuniaxial compression test appears regularly in
geotechnical engineering and includes additional geometric

components compared to the previous example. The forward
model for a uniaxial compression test is

_r
E—sbd (13)

Variables in Eq. (13) are as follows: E = elastic modulus of
the material, ' = force, J = displacement, L = sample length,
b = sample width, and d = sample depth. While a circular
cross-section is typically utilized in practice, a rectangular
cross-section is here used to highlight the influence of
geometric variables.

The added complexity of additional components allows
the optimization to hold the material parameter (elastic
modulus E) constant and optimize overall geometric
components, as well as force and displacement. This is of
benefit to a situation where the material for testing is known,
and the determination of the ideal testing configuration is of
interest.

For the displacement-controlled uniaxial compression
test, a=F, and B =][E5Lb,d]. The resulting
quantitative metric is

0 1 (BF Ea,,g)z + (ap 6a,,g)2 + (ap Lm,g)z
uni,DC = 5 9E F a5 F aL F

() + ()] a

Equation (12) shows the general form including
derivatives, and by making the substitution for the
derivatives using the forward model of Eq. (13), the
quantitative metric becomes

Ounine =2 _(&J_d@)u(ﬂ_w@)ﬂ
uni,DC = 5 L F L F

ERey ] o

This can be simplified by making an additional
substitution for the forward model (Eq. 13) into each of the
sensitivity terms, resulting in

_1 Eavg 2 5avg 2 Lavg 2
Quninc =3 [‘ () +(5) + () +
bavg 2 davg 2
(5 + () (16)
As was the case for spring extension, the result of Eq.
(16) is independent of the output parameter F.

For the force-controlled uniaxial compression test, @ =
Sand B = [E, F,L,b,d]. The resulting quantitative metric is

0 1 (as Ea,,g)z + (as Fa,,g)z 4+ (aa La,,g)z +
unLFC = 5 9E & aF & L &

G5 + G5 an

Making the substitution for the derivatives using the
forward model (Eq. 13) gives

1 —FL Eag\? L Fapg)?
Qunifc—a[— (o s) + () +
(Lﬂ)z + (—FL bavg)z + (—FL davg)z] (18)
Ebd & Eb2d & Ebd? §

Further substitution of the forward model (Eq. 13) in
each of the sensitivity terms results in
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As in the case of the spring, by comparing the results for
force and displacement control (Eqgs. (16) and (19)), the
following inequality indicating when displacement control
test is preferred can be determined:

< Lavg (20)

avg

oim
[=7)

Upon substituting for F/d, Eq. (20) can alternatively be
written to show dependence on the material parameter and
geometric configuration explicitly:

Ebd _ Favg
< Savg (21)

Overall conclusions from this analysis of the uniaxial
compression test are similar to those obtained for spring
extension (Section 4.1). For the case of displacement
control, Equation (16) for uniaxial compression takes a
similar form to Eq. (6) for spring extension but with three
additional terms corresponding to the three geometric
parameters (L, b, and d). Equation (21) indicates that
displacement control is preferred when the stiffness of the
specimen, given by Ebd/L, is small relative to machine
stiffness (Favg/(savg).

Consideration to the optimal configuration of the
uniaxial compression test for either force or displacement
control is significantly more complicated due to the
variability of five or six parameters in the optimization
(depending on if the material parameter is variable or not),
coupled with the nonlinear constraint introduced by Eq. (13).
An optimization solver is required for such an analysis,
which is considered in a forthcoming article by the co-
authors.

5 CONCLUDING REMARKS

This paper proposes a quantitative metric that allows for
optimization of testing configurations, including general
cases extending well beyond the specific examples
considered in this article.

The simple example of spring extension demonstrates
how the proposed metric can be applied for the selection of
the test type and ideal testing configuration. With the
selected normalization method, the choice to run a force- or
displacement-controlled test is effectively determined by
machine stiffness, as well as spring stiffness. Since spring
stiffness is unknown prior to testing, an estimate must be
made for practical determination of the optimal
configuration. The smaller the spring constant, the more
likely a displacement-controlled test will be preferred. As
the spring constant increases, so does the likelihood that
force control is preferred. When assessing the force- and
displacement-controlled tests individually, the quantitative
metric decreases (becomes closer to optimal) as the spring
stiffness is reduced. In other words, accuracy generally
deteriorates as stiffness increases. For a displacement-
controlled test, the objective is to minimize the sensitivity of
the displacement with respect to the force, resulting in a
large force. Alternatively, in a force-controlled test, the
objective is to minimize the sensitivity of force with respect
to displacement, resulting in a preferred large displacement.

Furthermore, implementation of the quantitative metric
for the uniaxial compression test displays a similar
discriminator with respect to the comparison of force and
displacement control: the stiffness of the material. The added
complexity of additional geometric components means that
the selection of the test is not entirely dependent on the
material parameter. However, as an area of future work,
optimization can be completed numerically for specific
values of the material parameter.

Future work will implement the quantitative metric to
compare different testing methods with larger numbers of
contributing factors and implement for use in finite element
analysis for topology optimization for optimal soil parameter
determination. Application of the proposed metric to more
complex problems, including those relevant to laboratory
testing and in situ testing in geotechnical engineering, is a
potentially fruitful area of future research.
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