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A quantum system’s energy landscape may have points where multiple energy surfaces are degenerate
and that exhibit singular geometry of the wave function manifold, with major consequences for the
system’s properties. Ultracold atoms in optical lattices have been used to indirectly characterize such
points in the band structure. We measured the non-Abelian transformation produced by transport
directly through the singularities. We accelerated atoms along a quasi-momentum trajectory that enters,
turns, and then exits the singularities at linear and quadratic band-touching points of a honeycomb
lattice. Measurements after transport identified the topological winding numbers of these singularities
to be 1 and 2, respectively. Our work introduces a distinct method for probing singularities that
enables the study of non-Dirac singularities in ultracold-atom quantum simulators.

nergy surfaces are used to describe the
structure and dynamics of quantum
systems whose Hamiltonians contain one

or more continuous parameters. Notable
examples include band structure, which
describes the motion of single particles within
a crystal as a function of their quasi-momentum,
and the potential energy surfaces that describe
molecules as a function of their nuclear co-
ordinates. Each point on an energy surface
corresponds to an eigenenergy and an eigen-
state of the physical system. Although the
energies themselves are highly important for
explaining material (7, 2) and chemical (3-6)
properties, so too are the local geometry and
global topology of the eigenstate manifolds.
The geometry of an eigenstate manifold can
be revealed through transport of a quantum
state along a smooth path of parameters that
define the system’s Hamiltonian. This trans-
port is generally nonholonomic, meaning that
the state generated by transport from an initial
to a final point depends on the path along which
the system was transported. Such transport has
been explored mainly in the two limiting cases
in which the energy spectrum of a system is
either largely gapped (7, 8) or entirely gapless
(9) along a closed loop in parameter space. In
the former limit, the state-space geometry gen-
erates a Berry phase; in the latter, the non-
holonomy generalizes to a Wilson loop operator
that describes a path-dependent rotation within
the degenerate subspace. In terms of |ug’>, the
cell-periodic part of the Bloch wave function that
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describes a single particle, both types of dynam-
ics derive from the Berry connection matrix,
A" = i(ug|Og|ug'), which expresses the local
geometry of state space. Focusing on the case
of band structure, n and m are band indices,
and ¢ is the quasi-momentum. In the gapped
limit, the Berry phase is determined solely by
one (Abelian) diagonal element of this matrix;
in the gapless limit, off-diagonal elements enter,
leading to non-Abelian state rotations (10).

In this work, we explored the nonholonomy
of transport through a state space containing
singular points of degeneracy. One example of
such points, which we probed experimentally,
is the Dirac points of degeneracy between the
n = 1and n = 2 bands of the two-dimensional
honeycomb lattice, lying at the K and K’
points of the Brillouin zone (Fig. 1). Away from
these points, the energy gap between the
touching bands grows linearly with quasi-
momentum. The singular state geometry around
each linear band-touching point (LBTP) has

Fig. 1. Experimental scheme.

(A) lllustration of an optical honeycomb
lattice with two sites (“A” and “B") in
the unit cell, formed by overlapping
three A = 1064-nm wavelength light
beams (red arrows). Offsetting the
optical frequencies of two lattice
beams by 8wy »(t) accelerates the
lattice and drives lattice-trapped

profound implications for the material proper-
ties of graphene—for example, related to Klein
tunneling of electrons through potential bar-
riers (II) and the appearance of a half-integer
quantum Hall effect (12). The Dirac point of
the honeycomb lattice has been explored also
in ultracold-atom experiments (13), including
interferometric measurements of the Berry
phase produced along trajectories that circle
the Dirac point (74) and direct mapping of
the Bloch-state structure across the Brillouin
zone (15-17).

Crystalline materials may also host a singular
quadratic band-touching point (QBTP), about
which the energy gap between two bands
grows quadratically with quasi-momentum.
As before, the QBTP can profoundly affect
material properties. For example, the singu-
lar QBTP is predicted to produce an anoma-
lous Landau-level spectrum (I8). Interactions
can destabilize a QBTP, leading to topologi-
cally protected edge states, nematic phases,
and both quantum anomalous Hall and spin
phases (19-22). The role of QBTPs is being
investigated intensely in both untwisted and
twisted bilayer graphene (23-27). Despite their
importance, QBTPs have remained unexplored
in ultracold-atom systems.

Using ultracold atoms within an optical lat-
tice, we demonstrated that transport of a quan-
tum state through a singular band-touching
point leads to a non-Abelian, coherent state
rotation between bands, with the rotation
depending on the relative orientation of path
tangents entering and exiting the singular
point. Further, we have shown that this de-
pendence characterizes and distinguishes the
Bloch-state geometry surrounding linear and
quadratic band-touching singularities.

First, we considered the s-orbital LBTP of a
two-dimensional honeycomb optical lattice
(Fig. 1). To probe this Dirac point, we prepared

K’/ M \ K

atoms through a trajectory in quasi-
momentum. (B) The n = {1, 2, 3, 4}
Brillouin zones of the honeycomb
lattice are shown in green, blue, pink,
and purple, respectively. (C) The band
structure of the honeycomb lattice
(plotted with potential depth of

20 kHz x h) exhibits an LBTP in 2
the s-orbital band manifold at q = K

E(q)/h (kHz)

| O—

and a QBTP in the p-orbital band M
manifold at q = T.

16 September 2022

r K M
Quasi-momentum

1 of 4

€20C ‘[Z aunf uo 1{9[9}[.19{{ erurojife) jo Al!S.ISA!Hf] e g.IO'QOHQ!OS'MAAAA//:SleI{ WoIJ papeo[umo(J


mailto:charles.d.brown@yale.edu
mailto:dmsk@berkeley.edu

RESEARCH | REPORT

an optically trapped 87Rb Bose-Einstein con-
densate and then slowly ramped up an over-
lain static honeycomb lattice, placing the atoms
initially at the I'-point of the n = 1 band. Next,
we applied a fictitious force to the gas by ac-
celerating the optical lattice potential to a
velocity vy,(%). Although the atoms remained
at zero quasi-momentum in the laboratory
frame, they evolved to nonzero velocity v =
hq/m = -y, in the lattice frame, where 7 is
Planck’s constant A divided by 2x, q is the
lattice-frame quasi-momentum, and m is the
atomic mass.

To demonstrate the nonholonomy gener-
ated by the LBTP, we accelerated the atoms
on a trajectory that proceeded at constant ac-
celeration from I to K (at quasi-momentum
qg) and then at a different constant acceler-
ation to 24 distinct points on a circle lying at
a distance of 0.4||qk || from the K-point. The
turning angle between the rays entering and
leaving the K-point, as defined in Fig. 2A, was
varied in equal steps over 6 € [0, 2r]. We then
performed “band mapping” by smoothly ramp-
ing off the lattice potential at the fixed final
quasi-momentum—that is, with the lattice at a
constant final laboratory-frame velocity. This
ramp maps the population in each band onto
a distinct momentum state. Measuring this
momentum distribution quantified band pop-
ulations in the moving lattice.

Transport along paths passing through the
singular LBTP led to interband transitions
that varied with the turning angle (Figs. 2, C
and D). For trajectories that entered the
singularity and then reversed onto themselves
(6 = 0), the population remained nearly en-
tirely in the initial 7 = 1 band. For trajectories
that continued with constant tangent through
the singularity (6 = =), the atoms underwent a
near complete transition to the upper n = 2
bands [seen also in (28)]. Over the full range
of 0, each population underwent one cycle of
oscillation.

The unit-cell wave function of the n = 1 and
n = 2 Bloch states near the Dirac point can be
represented as a pseudo-spin-1/2 vector, with
s-orbital Wannier states at the lattice sites A
and B representing the up- and down-spin
basis states. In this basis, the Bloch states
are eigenstates of the Hamiltonian Hy gp =
-B(q)-o, where B(q) is a pseudo-magnetic
field that lies in the transverse pseudo-spin
plane, and o is the vector of Pauli matrices. B(q)
has a magnitude B = /v, ||q — qx|| that varies
linearly with distance from the singularity and
has an orientation (in the proper gauge) that is
radially outward from K (Fig. 2B). Here, vy is
the group velocity near the Dirac point. The 2r
rotation of B(q) about the Dirac point is re-
sponsible for the n-valued Berry phase of
trajectories that encircle the Dirac point (14).

This pseudo-spin model explains our obser-
vations. The atomic pseudo-spin entering the
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Fig. 2. Non-Abelian state rotations around a Dirac point. (A) Enlarged view of Brillouin zone map. Atoms
are loaded into the state n = 1, q = I in the lattice and transported (trajectory indicated with red arrows) at
constant accelerations from I' — K and then from K to a final point lying on a circle of diameter 0.8||qx]|
centered at the Dirac point. In this particular experiment, the atoms evolve between the n =1and n = 2
bands. The colors of the Brillouin zones do not indicate the state of the atomic wave packet along the
trajectory. Rather, the color scheme is used to interpret the band index of atoms after a band-mapping
measurement. (B) Bloch states near the Dirac point are described as pseudo-spin-1/2 states in a pseudo-
magnetic field (black arrows) that points radially outward from, and wraps once around, the Dirac point.
(C) Band-mapping images at the final quasi-momentum, with overlain Brillouin zone maps, show that the
band populations vary with turning angle 6. A third, short-length, and adiabatic translation step ensures
that band mapping does not occur near a Brillouin zone boundary so that there is no ambiguity in the band
index of atoms [(31), section 3]. Scale bar, 0.1 mm. (D) Fractional band populations N,/Nia (7 = 1, green;
n =2, blue; sum of other bands, gray) versus 6. Means and standard mean errors are determined from
seven repeated measurements. The green and blue dashed lines indicate a c0s%(6/2) and sin®(6/2)

dependence, respectively.

Dirac point along a ray experiences a pseudo-
magnetic field whose orientation n remains
constant and whose magnitude smoothly tunes
to zero. Under this field, the initial-state pseudo-
spin remains aligned along n. Departing the
Dirac point, the pseudo-spin experiences a
magnetic field along a new orientation m, with
n - m = cosf, and a magnitude increasing
linearly with time. The pseudo-spin is thus
placed in a superposition of eigenstates, with
population cos®(6/2) in the m-oriented pseudo-
spin eigenstate (n = 1 bands) and sin*(8/2) in
the orthogonal state (n = 2 bands). This simple
prediction is in good agreement with our data
(Fig. 2D), with residual differences accounted
by numerical simulations (fig. S6) of the dy-
namics of noninteracting atoms over the finite
duration of our experimental stages (29).

We found that passage through the Dirac
point produces a phase-coherent superposition
of band states. Such coherence was demon-
strated by allowing the atoms to evolve at the
final point of the trajectory for a variable time
before measuring populations in a basis differ-
ent from the local energy eigenbasis. Temporal
oscillations in these measurements, with a fre-
quency matching the calculated gap between the
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n =1and n = 2 bands, demonstrate the coher-
ence of the atomic state after transport (fig. S3).

The energy-time uncertainty relation places
a bound on how finely the singular point can
be located by our method. We considered a
trajectory where the acceleration has mag-
nitude a near the singularity. The system
spends a time &t ~ (#/ma)dq within d¢q of the
singularity; the energy gap has magnitude
SE ~ hvgdq in that vicinity. Setting (82)(8E) ~ A
establishes that the band structure is effectively
gapless within a quasi-momentum distance of
8q = R~+/mah/v, of the singularity. That is,
the nonholonomy generated by the singular
point should be observed also for finite time
trajectories that pass within the effective radius,
R, of the singularity.

We measured R by driving the atoms along
a family of trajectories (Fig. 3A) that connect
between the initial I'-point to a final I'-point
that is one reciprocal lattice vector away, and
by performing band-mapping measurements
at the final point. These trajectories cross
the boundary between the first and second
Brillouin zones at nine equally spaced points
along the K’ - M - K line. As shown in Fig. 3B
for various traversal times t, we observed that
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trajectories that pass directly through either
Dirac point yield a band population distribu-
tion that is independent of t, with ~3/4 of the
atoms transferring to the upper band. By con-
trast, for traversal times that are longer and for
paths that veer farther from the Dirac points, the
transition between bands is increasingly sup-
pressed, demonstrating that R decreases with
decreasing a (increasing t). At first glance, the
experiment of Fig. 3 is analogous to Majorana
losses. The study presented in Fig. 3 is quite
close to Majorana’s description (30) and to the
picture of the “Majorana hole” that appears in
a spherical quadrupole magnetic trap. How-
ever, a difference between our experiment and
magnetic traps is that in traps, the spin flips
that occur because of transport through the state
geometry of the system lead to loss, whereas in
our experiment, they led to transitions between
trapped bands of the lattice.

The singularity at an LBTP can be charac-
terized by two different experimental methods:
either by Berry phase measurements along tra-
jectories that encircle the singularity (74), or as
shown here, through state rotations produced
along trajectories that pass through the singu-
larity. These two methods are related but non-
equivalent. Berry phase measurements measure
the integrated Berry flux, which is determined
from a diagonal element of the Berry connection
matrix Ag". A n-valued flux was found pinned to
the singular point. By contrast, the non-Abelian
state rotations detected in our method derived
directly from the off-diagonal elements Ag™,
with n = 1 and m = 2 being the two crossing
bands (31). Further, different from Berry phase
measurements, our method can be regarded
as measuring the Hilbert-Schmidt quantum
distance d?(q,q')=1— | <u}1 |u}l> |2 (32, 33),
with q identified as a point along the input path
into, and q'’ as a point along the exit path from,
the singularity. The oscillation of the 7 = 1 band
population as a function of the turning angle
reveals the quantum distance to undergo one
complete oscillation between zero and unity
on a contour encircling the LBTP.

The distinction between these two methods
is notable in the case of a QBTP. Similar to the
LBTP, a singular QBTP also carries concen-
trated Berry flux that is restricted, assuming
time reversal and Cs symmetry, to be 0 or
+21 (20). However, these values of Berry
phase are undetectable with interference
measurements. By contrast, our method un-
covers the characteristic nonholonomy of the
singular QBTP and the concomitant modu-
lation of the quantum distance around the
singular point.

For a singular QBTP, the geometric struc-
ture of Bloch states of the two intersecting
bands at the vicinity of the singularity can
again be described as those of a pseudo-spin
in a pseudo-magnetic field. Different from the
LBTP, in this work the pseudo-magnetic field,
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lying in the transverse pseudo-spin plane, has
a magnitude that increases quadratically with
distance to the singularity and has an orienta-
tion that wraps by an angle of 4xt along a path
encircling the singularity (Fig. 4B).

‘We probed this geometric structure at the
QBTP that occurs at I' between the n = 3 and
n = 4 bands of the honeycomb lattice. For this,
we first loaded the Bose-Einstein condensate
into the n = 3 bands of the lattice by means of
“inverse band mapping.” In previous work (34),
such loading into excited bands was realized
with moving atoms in a static lattice; in this
study, we realized similar state-preparation

Fig. 3. Effective size of a Dirac singularity.

(A) lllustration of quasi-momentum trajectories
over which the atoms are transported for the
measurements in (B). Each trajectory connects
two different I'-points but traverses one of nine
equally spaced points along the K" = M - K line.
(B) Fractional n = 1 band population plotted,

for different trajectory traversal times t, against
the trajectory midpoints from (A). Means and
standard mean errors are generated from three to
five repeated measurements. (C) An effective radius
R (plotted normalized by hk = h/1) is defined

for each t by the distance along the K’ - M - K
line for which the threshold Ni/Niota = 0.5 is
fulfilled. R diminishes with larger t

Fig. 4. Non-Abelian state A
rotations around a QBTP.

with static atoms loaded into a moving lattice.
Specifically, we gradually increased the depth
of a honeycomb lattice moving with velocity
Vg that is located within the third Brillouin
zone in the extended zone scheme (Fig. 4A).
Then, we accelerated atoms (in the lattice
frame) at constant acceleration along the path
Q — T, into the QBTP, and then turning by an
angle 0, accelerated the atoms at a different
constant acceleration out of the QBTP and to
the edge of the Brillouin zone. Final points
were chosen as ones where populations in the
n = 3 and n = 4 bands were easily distin-

guished with band mapping.

1
T(ms)

A
=

M
Trajectory midpoint

(A) Atoms are prepared
in the n = 3 bands at Q,
transported (along red
arrows) to the QBTP at I,
and then transported to

a final quasi-momentum for
band mapping. In this
particular experiment, the C

atoms evolve between the 1.0
n=3and n =4 bands.

The colors of the Brillouin

zones do not indicate the

state of the atomic wave B
packet along the trajectory.
Rather, the color scheme is
used to interpret the band
index of atoms after a
band-mapping measurement.
(B) The pseudo-magnetic field
(black arrows) describing the 0

g e

(]
]

Bloch state geometry wraps 0
twice in orientation for one
revolution around the QBTP.

/2 n 3172
Turning angle, 6

(C) A plot of normalized band population as a function of 8, collected by analyzing band-mapping data
(fig. S2). Red circles indicate the n = 3 bands; purple circles indicate the n = 4 band; and gray circles
indicate bands with n # 3, 4. Mean and standard mean errors are determined from seven repeated
measurements. The dashed pink and purple lines indicate a cos?(6) and sin®(6) dependence, respectively.
Our numerical simulations suggest that the data does not reach unity oscillation amplitude owing to
nonadiabaticity in the band-mapping procedure (fig. S6).

16 September 2022

3 of 4

€20C ‘[Z aunf uo AQ[Q}[JQE{ erurojife) jo Al!S.IQA!Hf] e g.IO'QOHQ!OS'AAAAAA//:SleI{ WoIJ papeo[umo(J



RESEARCH | REPORT

We observed a nonholonomy at the QBTP
that was distinct from that observed at the
LBTP. Specifically, we observed two cycles of
oscillation in the final band populations over
the interval 6 € [0, 2r]. This behavior is ex-
plained well by the pseudo-spin representa-
tion of the singular QBTP. Different from the
LBTP, pseudo-magnetic-field orientations along
the incoming (n) and outgoing (m) paths were
related as n - m = cos26. The nonholonomy of
the QBTP produced populations of cos*(0) and
sin%(©) in the n = 3 (initial) and n = 4 bands,
respectively.

The amplitude of the observed oscillation is
lower than suggested by this simple theory;
again, we ascribe this difference to dynamical
effects of our finite-duration acceleration and
band-mapping stages. Nevertheless, the peri-
odicity of the oscillations, combined with the
known time reversal and Cs symmetry of our
lattice, unambiguously determined the topological
winding number around the QBTP to be well
defined and equal to 2 (31).

‘We have demonstrated transport of a quan-
tum system through singular band-touching
points with different topological winding num-
bers. We observed non-Abelian, coherent state
rotation between bands. The dependence of
this rotation on the relative orientation of path
tangents entering and exiting the singular
point unambiguously measured the winding
number.

Our method of probing band structure could
be applied to gain insight on other band
structure singularities and on interaction effects.
It would be interesting to study higher-order
singular band-touching points, between more
than two bands. We deliberately minimized
interaction effects in these experiments, but
in future work, it will be interesting to ob-
serve potential interaction-induced instabilities
of Dirac points, QBTPs, or other band-touching

Brown et al., Science 377, 1319-1322 (2022)

points. The path-dependent non-Abelian non-
holonomy observed in this work may also
pertain to chemical systems, in which poten-
tial energy surfaces are endowed similarly with
conical intersections (3-6), suggesting a poten-
tial route for quantum state control in optically
driven molecules.
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Zooming through singularities

Singularities in the band structure of materials often have a profound influence on their properties. Like the better-
known Dirac points, in which linearly dispersing bands touch, quadratic band-touching points can lead to exotic effects.
Brown et al. introduce a method of studying both of these types of singularities in a cold atom quantum system. In their
experiment, atoms of rubidium-87 were placed in a honeycomb optical lattice and driven through the singularities along
various trajectories by accelerating the lattice potential. By measuring the band population, the researchers were able
to determine the winding number of the singularities. —JS
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