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Abstract— The performance of industrially successful model
predictive control (MPC) and offset-free MPC is reliant on
identifying an adequate linear state-space model using plant
data. While the models for MPC can be identified using one
of many subspace identification methods, there are no methods
for identifying the linear disturbance models used in offset-
free MPC. Here we formulate a series of maximum likelihood
estimation (MLE) problems for identifying linear disturbance
models. To formulate the first problem, the state is estimated as
a linear combination of past inputs and outputs, and the state-
space model is then written as a linear estimation problem.
The second problem is formulated as a linear estimation
problem relating the long-range prediction error sequence to
the disturbance and noise sequences. The last problem is simply
a covariance estimation problem for the noises in the linear
disturbance model. Each MLE problem has a closed-form
solution. While size of the second MLE problem makes it
computationally demanding, it can be simplified considerably
in the case where the system has no integrators. Hardware
experiments (TCLab, an Arduino-based heat transport labora-
tory) demonstrate that the proposed method generates offset-
free performance under realistic conditions on systems without
integrators. Numerical simulation experiments demonstrate
that the results also generalize to systems with integrators.

I. INTRODUCTION

Model predictive control (MPC) is the most successful

advanced control method in the chemical process indus-

tries [1]. MPC is an advanced feedback control technique in

which an optimal control problem is solved on-line [2]. Since

MPC is formulated as an optimization problem, it can han-

dle physical and safety constraints and optimize economic

objectives, which are key requirements for operating a safe

and profitable chemical plant. In offset-free MPC the plant

model is modified to include additional states that account

for disturbances and model error, effectively adding integral

control to the MPC algorithm. Offset-free MPC can achieve

offset-free tracking of setpoints even under significant plant-

model mismatch, which is crucial for profitability in the

modern chemical industry. The performance of both MPC

and offset-free MPC relies on identifying an adequate model

using data from the plant. For MPC, the model can be

identified using subspace identification (SID) methods [3].

Prior to this work, there were no existing methods for

identifying the models used in offset-free MPC.

Subspace methods were developed as an extension of

Ho and Kalman’s seminal paper on realization theory [4],

[5]. All of these methods formulate an extended state-space
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model and approximate low-rank projections of vectors of

future data on vectors of past data [3]. In canonical variate

analysis (CVA) methods, the state is estimated from the

low-rank projection and the model parameters follow by

linear estimation [6]. In N4SID and MOESP, the model

parameters are extracted from the projections using matrix

factorizations [7], [8]. While the CVA methods estimate

the complete process and measurement noise covariances,

the other methods (N4SID and MOESP) produce only the

Kalman filter gain. All three of these methods fall under

a unifying theorem proposed in [9]. These methods cannot

enforce the special structure found in linear disturbance

models and are thus insufficient for offset-free MPC.

Some researchers have proposed using auto-regressive

integrating moving average (ARIMA) models to allow MPC

to reject disturbances [10], [11], [12]. The integrating terms

allow for correction to plant-model mismatch. However these

proposals focus on either dynamic matrix control applica-

tions or SISO systems, which excludes the vast majority of

control systems that are relevant to the chemical process

industries. Others have proposed a semi-infinite program

approach to select the disturbance model for offset-free

nonlinear MPC [13]. In this approach, the disturbance model

which maximizes the size of the set of observable steady-

states is selected. Such an approach only makes sense in the

case of offset-free nonlinear MPC, however, as every steady-

state is observable for linear systems. Moreover, the selected

disturbance model is not necessarily an accurate model of

the disturbances and may produce a suboptimal estimator.

We propose a first-of-its-kind method for identifying the

disturbance models used in offset-free MPC. This method

is formulated as a series of three maximum likelihood

estimation (MLE) problems. In the first, the state is estimated

as a linear combination of a finite number of past inputs

and outputs, and the state-space model is written as a

linear estimation problem. In the second, the long-range

prediction error sequence is related to the disturbance and

noise sequences through a linear model. The last problem

is a covariance estimation problem for the noises in the

disturbance model. Closed form solutions for these problems

are provided. While the second MLE problem is shown to

be computationally demanding, it is nonetheless considerably

cheaper when the system itself has no integrators. Finally, the

method’s application to offset-free MPC for systems without

integrators is validated with hardware experiments on the

TCLab, an Arduino-based heat transport laboratory [14]. The

generalization to systems with integrators is demonstrated

through numerical simulations of a tank draining system.



II. SYSTEMS OF INTEREST

We refer to the general stochastic linear system as the

standard model,

x+ = Ax+Bu+ w (1a)

y = Cx+Du+ v (1b)
[

w

v

]

∼ N(0, S) (1c)

where x ∈ R
n is the state, u ∈ R

nu is the input, y ∈
R

ny is the measured output, and w ∈ R
n, v ∈ R

ny are the

process and measurement noises, respectively. We assume

(w, v) is uncorrelated in time. Assuming the standard model

is observable, there exists a Kalman filter gain K such that

the plant equations (1) can be rewritten in so-called predictor

form,

x̂+ = AK x̂+BK

[

u

y

]

(2a)

y = Cx̂+Du+ ey (2b)

where AK = A − KC, BK = [B − KD, K], and the

innovations ey := y−Cx̂−Du ∼ N(0, Re) are uncorrelated

in time. The predictor form is particularly important for both

subspace identification methods and our proposed method.

We make the following assumptions about the system (1).

Assumption 1: The system (1) is minimal, i.e., (A,C) is

observable and (A, [B, K]) is controllable. The estimator is

stable, i.e. the eigenvalues of AK lie within the unit circle.

We refer to the following special case of the stochastic

linear system as the disturbance model,

x+ = Ax+Bu+Bdd+ w (3a)

d+ = d+ wd (3b)

y = Cx+Du+ Cdd+ v (3c)




w

wd

v



 ∼ N(0, Sd) (3d)

where d ∈ R
ny is the integrating disturbance state and

wd ∈ R
nd is the driving noise for the disturbances. Again,

we assume (w,wd, v) is uncorrelated in time.

Instead of directly identifying the disturbance model (3),

we will first identify the standard model (1), augment that

system with parameters Bd ∈ R
n×nd and Cd ∈ R

ny×nd ,

and finally estimate the augmented noise covariance Sd of

(3). Two of the sufficient conditions for offset-free MPC to

work are that nd = ny and the following rank condition is

satisfied [15], [16]:

rank

[

A− I Bd

C Cd

]

= n+ nd (4)

It is worth noting that for each (A,B,C,D) all disturbance

models (Bd, Cd) that satisfy (4) are equivalent up to a

similarity transformation [17], making it unnecessary to

estimate the parameters (Bd, Cd) from data. In the special

case where A contains no integrators and nd = ny , the so-

called output disturbance model (Bd, Cd) = (0, Iny
) satisfies

the rank condition (4). More generally, if A contains no

integrators and nd = ny , then (4) is satisifed by Bd = 0
and any Cd invertible. This special case is shown to be a

numerically advantageous choice in our algorithm.

III. DISTURBANCE MODEL IDENTIFICATION

The goal of disturbance model identification is to find pa-

rameters (Â, B̂, Ĉ, D̂, Bd, Cd, Ŝd) that capture the behavior

of available input/output data {u(0), y(0), . . . , u(N), y(N)}.

In this section, we identify the parameters with three con-

secutive MLE problems.

A. Maximum likelihood estimation of the standard model

It is well known from subspace identification methods that

the state can be well-approximated by a linear combination

of sufficient past information (Thm. 1 in Appendix),

x(k) ≈ CpZ(k)

where Z(k) := [u(k−1)′, y(k−1)′, · · · , u(k−p)′, y(k−
p)′]′ and Cp := [BK , AKBK , · · · , A

p−1
K BK ] is full rank.

Given the SVD of the data matrix,

H =
[

Z(p) · · · Z(N)
]

≈ U1S1V
′
1 (5)

we can define the estimated state as

x̂(k) = U ′
1Z(k)

which we show in the Appendix (Thm. 2) is an approxima-

tion of the state up to a similarity transformation,

x(k) ≈ T x̂(k)

for some nonsingular T ∈ R
n×n. Using the estimated state,

one can stack the equations (1) to write a simple linear

estimation problem with i.i.d. Gaussian noise

s(k) = Θt(k) + e(k), e(k)
iid
∼ N(0, S) (6)

for k = p, . . . , N − 1, where

s =

[

x̂+

y

]

, t =

[

x̂

u

]

, e =

[

w

v

]

, Θ =

[

A B

C D

]

The MLE solution for this model is then

Θ̂ =

[

Â B̂

Ĉ D̂

]

=





N−1
∑

k=p

s(k)t(k)′









N−1
∑

k=p

t(k)t(k)′





−1

(7a)

Ŝ =
1

Ns

N−1
∑

k=p

(s(k)− Θ̂t(k))(s(k)− Θ̂t(k))′ (7b)

where Ns = N − p [18, Thm. 8.2.1], [19, pp. 404-411].

It is worth noting that the solution derived here is similar

to the Larimore-type subspace method [3], [6], [20]. In par-

ticular, Larimore’s CVA algorithm treats states as canonical

variables of the past data vectors Z(k) projected onto the

space of future data Y (k) = [y(k)′, · · · , y(k+f−1)′]′ and

derives the parameters based on these approximated states.

In fact, any subspace method which estimates parameters

(A,B,C,D, S) can be substituted for this step. The method

above was chosen for its simplicity.



B. Maximum likelihood estimation of the disturbances

To estimate the disturbance sequence, we treat the esti-

mated state x̂ and parameters (Â, B̂, Ĉ, D̂, Ŝ) as the true

parameters in the model (3) and a the disturbance sequence

that corrects for the model error. Let (Bd, Cd) be any

matrices that satisfy the offset-free rank condition (4). The

true long-range output is

y(k) = ĈÂk−px̂(p) +

k−1
∑

j=p

ĈÂk−j−1B̂u(j) + D̂u(k)

+

k−1
∑

j=p

ĈÂk−j−1(Bdd(j) + w(j)) + Cdd(k) + v(k)

and the predicted long-range output is

ŷ(k) = ĈÂk−px̂(p) +

k−1
∑

j=p

ĈÂk−j−1B̂u(j) + D̂u(k)

for each k = p, . . . , N − 1. Next, we define the long-range

prediction error as z(k) := y(k)− ŷ(k) which gives

z(k) =

k−1
∑

j=p

ĈÂk−j−1(Bdd(j) + w(j)) + Cdd(k) + v(k)

Rewriting this as a linear model,

z − Ad = Be ∼ N(0,V) (8)

where z := [z(p)′, . . . , z(N − 1)′]′ is the sequence of long-

range prediction errors, d := [d(p)′, . . . , d(N − 1)′]′ is the

sequence of disturbances, e := [e(p)′, . . . , e(N − 1)′]′ is

the noise sequence, and

A :=











Cd

ĈBd Cd

...
. . .

. . .

ĈÂN−p−2Bd . . . ĈBd Cd











,

B :=











B0

B1 B0

...
. . .

. . .

BN−p−1 . . . B1 B0











,

B0 :=
[

0 Iny

]

,

Bj :=
[

ĈÂj−1 0
]

∀j ≥ 1,

V := B(INs
⊗ Ŝ)B′

The model (8) has a MLE solution due to [21] and [22,

p. 313]:

d̂ = (A′
V

†
0A)

†
A

′
V

†
0z (9)

where V0 := V+AA
′. This is an O(N3) computation with

O(N2) memory requirements. Notice that when Bd = 0 and

Cd is invertible, A = IN ⊗Cd and V0 are also invertible and

(A′
V

†
0A)

†
A

′
V

†
0 = A

−1 = IN ⊗ C−1
d

Therefore (9) is equivalently written

d̂(k) = C−1
d z(k) (10)

which is an O(N) computation without additional memory

requirements. It is clear that whenever the system is free

of integrators, the simplified solution (10) should be used.

A similarity transformation can be used to find the desired

disturbance model after the output disturbance model is

found [17].

Given the estimated states and disturbances, one can stack

the equations (3) to write a simple covariance estimation

problem of i.i.d. Gaussian noise

ẽ(k) = s̃(k)− Θ̃t̃(k)
iid
∼ N(0, Sd) (11)

for k = p, . . . , N − 1, where

s̃ =





x̂+

d̂+

y



 , t̃ =





x̂

d̂

u



 , Θ̃ =





Â Bd B̂

0 I 0

Ĉ Cd D̂



 (12)

The MLE solution for this model is then

Ŝd =
1

Ns

N−1
∑

k=p

ẽ(k)ẽ(k)′ (13)

where Ns = N − p [18, Thm. 8.2.1], [19, pp. 404-411].

Thus, we have found the complete set of parameters for the

model (3) which concludes our description of the algorithm.

IV. TCLAB EXPERIMENTS

The TCLab hardware (Fig. 1) is a simple two-input, two-

output heat transport laboratory system on which MIMO

controllers can be quickly implemented [14]. Moreover, it

is a prototypical system of the form (3) with the state

x = [TS,1, TS,2, TH,1, TH,2]
′ as the temperatures near

the sensors and heaters, the disturbance d = [Ta,1, Ta,2]
′ as

environmental temperatures, the input u = [Q̇1, Q̇2]
′ as the

heater duties, and the measured output y = [T1, T2]
′ as the

temperatures measured by the sensors. The method described

herein is evaluated via experiments on this hardware.

A. Standard model

To gather data on the TCLab hardware, we first warmed

up the hardware by running both heaters at 30% voltage for

7 minutes, then manipulated the input with a PRBS signal

(119 minutes, N = 7139). An additional pulse was added

at the end to ensure the input data had a mean of 30%.

From the input-output data generated by this experiment,

we fit the model parameters (7a) using p = 50 and n =
6.1Noting that the system started at equilibrium x(0) = 0,

we then computed the long-range predictions as ŷ(k) =
∑k−1

j=0 ĈÂk−j−1B̂u(j) + D̂u(k), which are presented in

Fig. 2. Notice that there is a drift in the underlying data (a

result of the TCLab not being fully warmed up and a slow

change in the ambient temperature). Step responses of the

identified model show moderate interaction between the two

heater-sensor units (Fig. 3). We posit the inverse responses in

1The parameters n and p were tuned by hand, although they can also
be selected by minimizing either the Aikaike or Bayesian information
criterion [23], [24]. In general, we found larger values of n and p produce
better model fit and state approximations, whereas computation time and
model complexity increase correspondingly.







offset-free MPC. We provide closed-form solutions to these

problems and discuss numerical considerations in the design

of the disturbance model. The method is tested on the TCLab

hardware, which shows the estimated disturbance model is

sufficient to achieve offset-free control in realistic conditions.

No method prior to this work has estimated the full distur-

bance model for offset-free MPC. As such, the properties of

the closed-loop system, especially with regards to systems

with explicit integrators, remain an open area of research.

There are many possibilities for future research into variants

on this method and for comparisons of various methods with

hardware and numerical simulation experiments. Finally,

while we tuned the parameters n and p by hand, future

work could explore their selection via information criteria

methods [23], [24].

VII. APPENDIX

Theorem 1: For the system (1), there exists a constant ε ∈
[0, 1) such that for each p ≥ n,

x(k) = CpZ(k) +O(εp+1)

where Z(k) := [u(k−1)′, y(k−1)′, · · · , u(k−p)′, y(k−
p)′]′ and Cp := [BK , AKBK , · · · , Ap−1

K BK ] is full rank.

Proof: Starting with the predictor form (2) and applying

recursion,

x(k) = A
p
Kx(k − p) +

k−1
∑

j=k−p

A
k−j−1
K BK

[

u(j)
y(j)

]

If AK is strictly stable and the state is bounded,

A
p
Kx(k − p) = O(εp+1)

where ε = σ1(AK) ∈ [0, 1) and σj(·) denotes the j-th

singular value of the argument (·). More importantly, the

state can now be written approximately as a function of a

finite number of past input-output pairs,

x(k) =

k−1
∑

j=k−p

A
k−j−1
K BK

[

u(j)
y(j)

]

+O(εp+1)

= CpZ(k) +O(εp+1)

Notice that the Cp contains the controllability matrix (which

is full rank because (AK , BK) is controllable) and thus Cp
is full rank.

Theorem 2: Consider the system (1). For each p ≥ n,

there exists a matrix U1 ∈ R
(ny+nu)p×n with orthonormal

columns, nonsingular matrix T ∈ R
n×n, and constants ε ∈

[0, 1) and δ ∈ R>0 such that

x(k) = T x̂(k) +O(max{εp+1, δ})

where x̂(k) = U ′
1Z(k).

Proof: Take an economic SVD of the data matrix,

H =
[

Z(p) . . . Z(N)
]

= U1S1V
′
1 +O(δ)

where δ = σn+1(H). We can estimate the states as x̂(k) =
U ′
1Z(k) and therefore Z(k) = U1x̂(k) + O(δ). Finally, we

have the result

x(k) = T x̂(k) +O(max{εp+1, δ})

by Theorem 1 where T = CpU1 ∈ R
n×n is invertible because

it is the product of full row and column rank matrices.
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