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Abstract— The performance of industrially successful model
predictive control (MPC) and offset-free MPC is reliant on
identifying an adequate linear state-space model using plant
data. While the models for MPC can be identified using one
of many subspace identification methods, there are no methods
for identifying the linear disturbance models used in offset-
free MPC. Here we formulate a series of maximum likelihood
estimation (MLE) problems for identifying linear disturbance
models. To formulate the first problem, the state is estimated as
a linear combination of past inputs and outputs, and the state-
space model is then written as a linear estimation problem.
The second problem is formulated as a linear estimation
problem relating the long-range prediction error sequence to
the disturbance and noise sequences. The last problem is simply
a covariance estimation problem for the noises in the linear
disturbance model. Each MLE problem has a closed-form
solution. While size of the second MLE problem makes it
computationally demanding, it can be simplified considerably
in the case where the system has no integrators. Hardware
experiments (TCLab, an Arduino-based heat transport labora-
tory) demonstrate that the proposed method generates offset-
free performance under realistic conditions on systems without
integrators. Numerical simulation experiments demonstrate
that the results also generalize to systems with integrators.

I. INTRODUCTION

Model predictive control (MPC) is the most successful
advanced control method in the chemical process indus-
tries [1]. MPC is an advanced feedback control technique in
which an optimal control problem is solved on-line [2]. Since
MPC is formulated as an optimization problem, it can han-
dle physical and safety constraints and optimize economic
objectives, which are key requirements for operating a safe
and profitable chemical plant. In offset-free MPC the plant
model is modified to include additional states that account
for disturbances and model error, effectively adding integral
control to the MPC algorithm. Offset-free MPC can achieve
offset-free tracking of setpoints even under significant plant-
model mismatch, which is crucial for profitability in the
modern chemical industry. The performance of both MPC
and offset-free MPC relies on identifying an adequate model
using data from the plant. For MPC, the model can be
identified using subspace identification (SID) methods [3].
Prior to this work, there were no existing methods for
identifying the models used in offset-free MPC.

Subspace methods were developed as an extension of
Ho and Kalman’s seminal paper on realization theory [4],
[5]. All of these methods formulate an extended state-space
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model and approximate low-rank projections of vectors of
future data on vectors of past data [3]. In canonical variate
analysis (CVA) methods, the state is estimated from the
low-rank projection and the model parameters follow by
linear estimation [6]. In N4SID and MOESP, the model
parameters are extracted from the projections using matrix
factorizations [7], [8]. While the CVA methods estimate
the complete process and measurement noise covariances,
the other methods (N4SID and MOESP) produce only the
Kalman filter gain. All three of these methods fall under
a unifying theorem proposed in [9]. These methods cannot
enforce the special structure found in linear disturbance
models and are thus insufficient for offset-free MPC.

Some researchers have proposed using auto-regressive
integrating moving average (ARIMA) models to allow MPC
to reject disturbances [10], [11], [12]. The integrating terms
allow for correction to plant-model mismatch. However these
proposals focus on either dynamic matrix control applica-
tions or SISO systems, which excludes the vast majority of
control systems that are relevant to the chemical process
industries. Others have proposed a semi-infinite program
approach to select the disturbance model for offset-free
nonlinear MPC [13]. In this approach, the disturbance model
which maximizes the size of the set of observable steady-
states is selected. Such an approach only makes sense in the
case of offset-free nonlinear MPC, however, as every steady-
state is observable for linear systems. Moreover, the selected
disturbance model is not necessarily an accurate model of
the disturbances and may produce a suboptimal estimator.

We propose a first-of-its-kind method for identifying the
disturbance models used in offset-free MPC. This method
is formulated as a series of three maximum likelihood
estimation (MLE) problems. In the first, the state is estimated
as a linear combination of a finite number of past inputs
and outputs, and the state-space model is written as a
linear estimation problem. In the second, the long-range
prediction error sequence is related to the disturbance and
noise sequences through a linear model. The last problem
is a covariance estimation problem for the noises in the
disturbance model. Closed form solutions for these problems
are provided. While the second MLE problem is shown to
be computationally demanding, it is nonetheless considerably
cheaper when the system itself has no integrators. Finally, the
method’s application to offset-free MPC for systems without
integrators is validated with hardware experiments on the
TCLab, an Arduino-based heat transport laboratory [14]. The
generalization to systems with integrators is demonstrated
through numerical simulations of a tank draining system.
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II. SYSTEMS OF INTEREST

We refer to the general stochastic linear system as the
standard model,

2T =Ax+ Bu+w (1a)
y=Cz+ Du+v (1b)
[ﬂ~N&$ (1o)

where x € R”™ is the state, u € R™ is the input, y €
R™ is the measured output, and w € R", v € R™ are the
process and measurement noises, respectively. We assume
(w, v) is uncorrelated in time. Assuming the standard model
is observable, there exists a Kalman filter gain K such that
the plant equations (1) can be rewritten in so-called predictor
form,

T = Ag# + Bx m (2a)

y=C2+ Du+ey

where Ay = A — KC, Bx = [B— KD, K], and the
innovations e, := y—C&—Du ~ N(0, R,.) are uncorrelated
in time. The predictor form is particularly important for both
subspace identification methods and our proposed method.
We make the following assumptions about the system (1).

Assumption 1: The system (1) is minimal, i.e., (4, C) is
observable and (A, [B, K]) is controllable. The estimator is
stable, i.e. the eigenvalues of Ag lie within the unit circle.

We refer to the following special case of the stochastic
linear system as the disturbance model,

(2b)

vt = Az 4+ Bu + Bgd +w (3a)
dt =d+wy (3b)
y=Cx+ Du+ Cyd+v 3¢)
w
wq | ~ N(0,5,) (3d)
v

where d € R™ is the integrating disturbance state and
wgq € R™ is the driving noise for the disturbances. Again,
we assume (w,wq,v) is uncorrelated in time.

Instead of directly identifying the disturbance model (3),
we will first identify the standard model (1), augment that
system with parameters By € R™*"4 and Cy € R"™v*"d,
and finally estimate the augmented noise covariance S; of
(3). Two of the sufficient conditions for offset-free MPC to
work are that ngy = n, and the following rank condition is
satisfied [15], [16]:

A—T By
c oy

It is worth noting that for each (A, B, C, D) all disturbance
models (Bg,Cq4) that satisfy (4) are equivalent up to a
similarity transformation [17], making it unnecessary to
estimate the parameters (Bg, Cy) from data. In the special
case where A contains no integrators and nq = n,, the so-
called output disturbance model (Bq, Cq) = (0, I, ) satisfies

rank [ } =n-+ng 4

the rank condition (4). More generally, if A contains no
integrators and ng = n,, then (4) is satisifed by Bg = 0
and any C} invertible. This special case is shown to be a
numerically advantageous choice in our algorithm.

III. DISTURBANCE MODEL IDENTIFICATION

The goal of disturbance model identification is to find pa-
rameters (121, B,C,D, By, C4, S’d) that capture the behavior
of available input/output data {u(0), y(0),...,u(N),y(N)}.
In this section, we identify the parameters with three con-
secutive MLE problems.

A. Maximum likelihood estimation of the standard model

It is well known from subspace identification methods that
the state can be well-approximated by a linear combination
of sufficient past information (Thm. 1 in Appendix),

(k) ~ CpZ (k)

where Z(k) = [u(k—1), y(k—=1), -, u(k—p), y(k—
p)'] and C, = [Bx, AxBr, ---, A% 'Bg] is full rank.
Given the SVD of the data matrix,

H = [Z(p) Z(N)] = U151V (5)
we can define the estimated state as
a(k) = Ui Z(k)

which we show in the Appendix (Thm. 2) is an approxima-
tion of the state up to a similarity transformation,

(k) ~ T#(k)

for some nonsingular 7" € R"*". Using the estimated state,
one can stack the equations (1) to write a simple linear
estimation problem with i.i.d. Gaussian noise

s(k) = Ot(k) + e(k),

for k=p,...,N — 1, where
at T w A B
=[5] =l] =[] oo B

The MLE solution for this model is then

e(k) % N(0,5) ©6)

—1

~ ~ N-—-1 N-1
o-— [é g} _ kzzp s(k)E (k) kzz,, H)E (kY
(7a)
R e . .
§= 5 2 (s(k) = Ot(k))(s(k) — ot(k)) (7b)
S k:p

where Ny, = N — p [18, Thm. 8.2.1], [19, pp. 404-411].

It is worth noting that the solution derived here is similar
to the Larimore-type subspace method [3], [6], [20]. In par-
ticular, Larimore’s CVA algorithm treats states as canonical
variables of the past data vectors Z(k) projected onto the
space of future data Y (k) = [y(k)’, ---, y(k+f—1)"] and
derives the parameters based on these approximated states.
In fact, any subspace method which estimates parameters
(A, B,C, D, S) can be substituted for this step. The method
above was chosen for its simplicity.
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B. Maximum likelihood estimation of the disturbances

To estimate the disturbance sequence, we treat the esti-
mated state & and parameters (A,B,C',ﬁ,é’) as the true
parameters in the model (3) and a the disturbance sequence
that corrects for the model error. Let (Bg4,C4) be any
matrices that satisfy the offset-free rank condition (4). The
true long-range output is

k—1
+ Z CA*=I71Bu(j) + Du(k)

y(k) = CAM 73

k—
Z CAFI7Y(Byd(j) + w(j)) + Cad(k) + v(k)

and the predzcted long-range output is

k—1
j(k) = CAFPi(p) + 3 CA* 7 Bu(j) + Du(k)
Jj=p
for each k = p,..., N — 1. Next, we define the long-range
prediction error as z(k) := y(k) — (k) which gives
k—1
k) =D CAY 7 (Bad(j) +w(f)) + Cad(k) + v(k)
Jj=p

Rewriting this as a linear model,
z— Ad =Be~ N(0,V) (8)

where z := [z(p)/, ...,

z(N —1)"]" is the sequence of long-
range prediction errors, d = d(p)’, ( — 1) is the
sequence of disturbances, e := [e (p) e(N — 1) is
the noise sequence, and

- o,
CBy Cq

A= ) ) ,
_C’AN—p—QBd éBd Cy
"B,

By By
B:= . ] ,

Byv_yo1 ... By B

BO = [O Iny] N

=[CAT-Y o] Vji=x1,

V:=B(Iy, ® S)B
The model (8) has a MLE solution due to [21] and [22,
p- 3131
d=(A'VIA)AV]z 9)
where Vo := V + AA’. This is an O(N?3) computation with

O(N?) memory requirements. Notice that when By = 0 and
Cy is invertible, A = Iy ® Cy and V are also invertible and

AVIAAVI =A = Iy ® O
Therefore (9) is equivalently written

d(k) = C;'2(k) (10)

which is an O(N) computation without additional memory
requirements. It is clear that whenever the system is free
of integrators, the simplified solution (10) should be used.
A similarity transformation can be used to find the desired
disturbance model after the output disturbance model is
found [17].

Given the estimated states and disturbances, one can stack
the equations (3) to write a simple covariance estimation
problem of i.i.d. Gaussian noise

é(k) = (k) — O (k) * N(0, S4) (11)
for k=p,...,N — 1, where
&t #]  _ [A Bs B
§=|dt|, t=1|d|, ©=|0 I 0 (12)
Yy u C Cqy D
The MLE solution for this model is then
=
& ~ ~ /
Si= kZ &(k)é(k) (13)
=p

where Ny = N — p [18, Thm. 8.2.1], [19, pp. 404-411].
Thus, we have found the complete set of parameters for the
model (3) which concludes our description of the algorithm.

IV. TCLAB EXPERIMENTS

The TCLab hardware (Fig. 1) is a simple two-input, two-
output heat transport laboratory system on which MIMO
controllers can be quickly implemented [14]. Moreover, it
is a prototypical system of the form (3) with the state
x = [Tsa, Tsg2, Tua, Tupo) as the temperatures near
the sensors and heaters, the disturbance d = [ a1 T, as
environmental temperatures, the input v = [Qq, Q3] as the
heater duties, and the measured output y = [T, T»]’ as the
temperatures measured by the sensors. The method described
herein is evaluated via experiments on this hardware.

A. Standard model

To gather data on the TCLab hardware, we first warmed
up the hardware by running both heaters at 30% voltage for
7 minutes, then manipulated the input with a PRBS signal
(119 minutes, N = 7139). An additional pulse was added
at the end to ensure the input data had a mean of 30%.
From the input-output data generated by this experiment,
we fit the model parameters (7a) using p = 50 and n
6.!Noting that the system started at equilibrium z(0) =
we then computed the long-range predictions as 7(k)
Z o CAR=I=1Bu(j) + Du(k), which are presented in
Flg 2 Notice that there is a drift in the underlying data (a
result of the TCLab not being fully warmed up and a slow
change in the ambient temperature). Step responses of the
identified model show moderate interaction between the two
heater-sensor units (Fig. 3). We posit the inverse responses in

S

IThe parameters n and p were tuned by hand, although they can also
be selected by minimizing either the Aikaike or Bayesian information
criterion [23], [24]. In general, we found larger values of n and p produce
better model fit and state approximations, whereas computation time and
model complexity increase correspondingly.
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Heater 1 (Q1)
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Temp 1
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Temp 2

Heater 2 (Q2)

TC Lab

Fig. 1. Temperature Control Lab developed by Hedengren [14].
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Fig. 2. Input-output data (red and blue points and lines) and estimated
model fits (magenta and cyan lines) for the TCLab hardware. The model
was fit according to Theorems 1 and 2 and Equation (7a) using p = 50 and
n = 6.

the interactions are numerical artifacts of the state estimation
procedure. The singular values of H are shown in Fig. 4. It
is worth noting that the singular values are large even at the
chosen cutoff, which motivates future work on developing
the method for computing the state from the past data.

B. Disturbance model

Since the TCLab system has no intrinsic integrators, we
used an output disturbance model (Bg,Cy) = (0, I2) and
utilized the simplification (10). The disturbance sequence for
the TCLab data (Fig. 2) was estimated as the long-range
prediction errors (Fig. 5, top). The disturbance sequence is
clearly correlated in time. However, when the disturbance
estimates are differenced, the differences are uncorrelated in
time (Fig. 5, bottom). These results are expected, and suggest
the integrating disturbance model (3) is a good description
of the TCLab system.

C. Closed-loop offset-free MPC

For brevity, we refer the reader to [15], [16], [17] for
a description of the components of the offset-free MPC
algorithm. The result of the closed-loop experiment of offset-
free MPC on the TCLab is presented in Fig. 6. The TCLab
was warmed up for 5 minutes prior to the experiment,
and two difficult setpoint changes were applied. For this
experiment, the controller is able to achieve nearly offset-
free performance.

(o Qo

0.6
0.10 4
0.4 -
T1
0.2 - 0.05 4
0.0 1 : : 0.00 : .
0 200 400 600 0 200 400 600
0.15 4 0.4 4
T, 0-10 7
0.2 -
0.05
0.00 0.0 4
T T T T
0 200 400 600 0 200 400 600
Time (s) Time (s)
Fig. 3. The estimated model’s unit step responses (in deviation variables)

of the two measured temperature outputs to the two heater inputs. Top row:
output 'Tl, bottom row: output 75, left column: input @)1, right column:

input Q2.
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oi(H) 102 4 »ﬁ"‘\““‘*»......_
10' Hosm——

T T T T T T T T T
0 25 50 75 100 125 150 175 200
i

Fig. 4. Singular values from the SVD of the H matrix (5) generated by
the TCLab data (Fig. 2). The first 6 singular values are kept (red x) and
the remaining are discarded (blue +).

V. DRAINING TANK SIMULATION

To evaluate the method on a system with integrators, we
considered the following draining tank problem

hi=F, —E;, i=1,2

where the h; are tank levels, F; are the feed rates, and F;
are the effluent rates. Assume the first tank effluent and the
second tank feed are linked, F5 = F. In deviation variables,
the tank levels are the states h; — h; s = x;, the tank feeds
are the inputs with input disturbances F; — F; s = u; + d;,
and the second tank drains on its own E5 = x5. This gives
the following discrete-time system of the form (3),

1 0 1 -1
+ _
v _[0 el]“{o 1—61](“+d)+w

d+:d+wd
y=x+v

w

Wy NN(O,Sd)

v

where the noise covariance was chosen as
1 1 1 1 9 1 1
_ 1 1 1000 1
sa=qans ([3 3.7 4]0

Data was gathered in a similar manner to the TCLab
hardware. The simulation was started at steady-state, then the
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Fig. 5. (Top) Disturbance estimates as long-range prediction errors
d(k) = y(k) — 9(k) for the two temperatures. (Bottom) Driving noise
of the disturbance estimates wq (k) = d(k + 1) — d(k).

Ty
. P s .
2 50 f ‘ 2
2 v/ |
% "L Wil ';J“M‘ A (sl /‘v"\w
g |
£ 451 lgw /
= |l ‘ |
AR
40 T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
60 -
N — @1
— — @
X 40 1
5 iy
<
£ 201 p—

T T
0 500 1000 1500 2000 2500 3000 3500
Time (s)

Fig. 6. Closed-loop MPC experiment on the TCLab using the model
(3). All outputs are treated as controlled variables (rsp(k) = ysp(k)), the
estimator initial guess is zero ((£(0),d(0)) = (0,0)), and the following
target calculator and regulator tuning was used: N =50, Qs = I, Rs =
R=10"2],and Q = C'QsC

input was manipulated with a PRBS signal (/N = 170). We
fit the model parameters (7a) using p = 4 and n = 4. The
long-range predictions are presented in Fig. 7. Notice that
there is a drift in the underlying data due to the addition of an
integrating disturbance. Since the tank system has integrating
modes, we used an input disturbance model (By,Cy) =
(B,0), and the disturbance sequence for the simulated data
(Fig. 7) was estimated using (9). The disturbance sequence
is clearly correlated in time (Fig. 8, top). Moreover, when
the disturbance estimates are differenced, the differences are
uncorrelated in time (Fig. 8, bottom). These results validate
the use of (9) to estimate the disturbance sequence.

The result of the closed-loop simulation on the tank system
is presented in Fig. 9. The tanks started at the origin, and two
difficult setpoint changes were applied. For this experiment,
the controller appears to achieve zero expected offset.

VI. CONCLUSION

We formulate a series of maximum likelihood problems
to estimate the parameters of the disturbance models used in

40
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0 20 40 60 80 100 120 140 1()0

ul

u2

T T T T
80 100 120 140 160
k

Fig. 7. Input-output data (red and blue points and lines) and estimated
model fits (magenta and cyan lines) for the draining tank simulation. The
model was fit according to Theorems 1 and 2 and Equation (7a) using p = 4
and n = 4.
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0 20 40 60 80 100 120 140 160

Fig. 8.  (Top) Disturbance estimates for the two flowrates, computed
according to (9). (Bottom) Driving noise of the disturbance estimates
wq(k) = d(k + 1) — d(k).
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Fig. 9. Closed-loop offset-free MPC experiment on the simulated tank. All
outputs are treated as controlled variables (rsp (k) = ysp(k)), the estimator
initial guess is zero ((&(0),d(0)) = (0,0)), and the following target
calculator and regulator tuning was used: N =10, Qs =1, Rs =R =1,
and Q = C'QsC
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offset-free MPC. We provide closed-form solutions to these
problems and discuss numerical considerations in the design
of the disturbance model. The method is tested on the TCLab
hardware, which shows the estimated disturbance model is
sufficient to achieve offset-free control in realistic conditions.

No method prior to this work has estimated the full distur-
bance model for offset-free MPC. As such, the properties of
the closed-loop system, especially with regards to systems
with explicit integrators, remain an open area of research.
There are many possibilities for future research into variants
on this method and for comparisons of various methods with
hardware and numerical simulation experiments. Finally,
while we tuned the parameters n and p by hand, future
work could explore their selection via information criteria
methods [23], [24].

VII. APPENDIX

Theorem 1: For the system (1), there exists a constant € €
[0,1) such that for each p > n,

z(k) = CpZ(k) + O(eP*1)
where Z (k) = [u(k—=1), y(k—1), -, u(k—p), y(k—
p)') and C, := [Br, Ax B, ---, A% 'By] is full rank.
Proof: Starting with the predictor form (2) and applying
recursion,

k—1 .
z(k) = AP 2(k — p) + Ab=i-1lp {“(J.)}
(8) = Aigalh =)+ D A7 B[y
Jj=k—p
If Ak is strictly stable and the state is bounded,
Aba(k—p) = O("H)

where ¢ = 01(Ag) € [0,1) and o,(-) denotes the j-th
singular value of the argument (-). More importantly, the
state can now be written approximately as a function of a

finite number of past input-output pairs,

S u(j)

)= 3 i e [Lf] o
Jj=k—p
=C,Z(k) + O(eP)

Notice that the C, contains the controllability matrix (which
is full rank because (Ax, Br) is controllable) and thus C,
is full rank. [ ]
Theorem 2: Consider the system (1). For each p > n,
there exists a matrix U; € Ry +7u)PXn with orthonormal

columns, nonsingular matrix 7" € R™*"™, and constants ¢ €
[0,1) and § € R+q such that

z(k) = Ti(k) + O(max{eP™!, §})
where (k) = U{ Z(k).
Proof: Take an economic SVD of the data matrix,

where 0 = 0,1 (H). We can estimate the states as Z(k) =
Ui Z(k) and therefore Z(k) = UyZ(k) + O(J). Finally, we
have the result

(k) = T#(k) + O(max{eP*1, 6})

by Theorem 1 where T' = C,U; € R"*" is invertible because
it is the product of full row and column rank matrices. M
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