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ABSTRACT

Performance of caching algorithms not only determines the quality
of experience for users, but also affects the operating and capital ex-
penditures for cloud service providers. Today’s production systems
rely on heuristics such as LRU (least recently used) and its variants,
which work well for certain types of workloads, and cannot effec-
tively cope with diverse and time-varying workload characteristics.
While learning-based caching algorithms have been proposed to
deal with these challenges, they still impose assumptions about
workload characteristics and often suffer poor generalizability.

In this paper, we propose Raven, a general learning-based caching
framework that leverages the insights from the offline optimal Be-
lady algorithm for both in-memory and content caching. Raven
learns the distributions of objects’ next-request arrival times with-
out any prior assumptions by employing Mixture Density Network
(MDN)-based universal distribution estimation. It utilizes the esti-
mated distributions to compute the probability of an object that
arrives farthest than any other objects in the cache and evicts the
one with the largest such probability, regulated by the sizes of ob-
jects if appropriate. Raven (probabilistically) approximates Belady
by explicitly accounting for the stochastic, time-varying, and non-
stationary nature of object arrival processes. Evaluation results on
production workloads demonstrate that, compared with the best
existing caching algorithms, Raven improves the object hit ratio
and byte hit ratio by up to 7.3% and 7.1%, respectively, reduces the
average access latency by up to 17.9% and the traffic to the origin
servers by up to 18.8%.

CCS CONCEPTS

« Theory of computation — Caching and paging algorithms;
» Computing methodologies — Machine learning.
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1 INTRODUCTION

Caches are an integral part of various computer systems and net-
works. With today’s large-scale, geographically distributed cloud
services, the performance of caches not only determines the quality
of experience (QoE) for users, but also affects the operating and
capital expenditures for cloud service providers. For example, by
caching frequently accessed data originating from a backend data
store, in-memory caching systems such as Memcached [29] and
Redis [51] can significantly reduce the access latency and speed
up repeated computations for web applications [2, 78]. Likewise,
judiciously caching objects in content delivery networks (CDNs)
not only accelerates the response time to user requests, but also
reduces the WAN (wide-area network) bandwidth consumption
between CDN nodes and the origin content servers [1, 68]. With
the rise of 5G networks and edge computing, the role of caching
will become ever profound.

Optimizing cache performance has been a long standing and
widely studied problem. Various heuristic caching policies from
simple ones such as least recently used (LRU) and least frequently
used (LFU), to more sophisticated ones (see, e.g., [4, 5, 11, 13, 14, 26,
45, 46, 55, 56]) have been proposed and developed over the years.
Challenges in the design of effective caching algorithms lie in that
the workload characteristics (e.g., object access patterns or request
processes) are unknown, cannot be neatly modeled mathematically,
and often vary over time. As a result, an effective heuristics designed
for one type of workload may not work well when applied to other
types of workloads, or when the workload characteristics change.
Coping with such challenges has led to learning-based caching al-
gorithms. One popular approach is to apply machine learning to
predict object popularities over time [16, 43, 69, 70, 77]. These al-
gorithms are essentially analogous to the LFU policy, and hence
are no longer the “optimal” policy for recency-pattern workloads.
Another popular approach is to apply online learning or reinforce-
ment learning to directly learn a caching policy by optimizing a
certain reward or regret function [41, 49, 58, 64, 79]. These learning
algorithms either still impose explicit or implicit strong assump-
tions about workloads, or resort to “black-box” deep reinforcement
learning which has significant complexity and suffer from poor
stability, generalizability, and explainability.

A particularly promising approach for designing cache algo-
rithms is to leverage Belady algorithm [8] for cache decision mak-
ing [9, 37, 39, 50, 60, 68]. Given a workload, Belady always evicts
the object whose next request arrival time is the farthest in the
future among all objects currently in the cache. This strategy is prov-
ably optimal, however it is an offline algorithm, which assumes the
knowledge of all future requests. Hence, the key issue here is how to
leverage the insight of Belady in cache algorithm designs without
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the knowledge of future request arrival processes. One line of pur-
suit is to directly learn and imitate the decision making of Belady
algorithm, e.g., via reinforcement learning [50], or directly learn
and predict the objects’ next request arrival times [68] and apply
Belady algorithm in one way or another. A major issue all these
Belady-based algorithms overlook is the fact that the decisions
made by Belady are deterministic and specific to a given workload.
In other words, given that the real-world caching environment is
inherently stochastic, time-varying, and often nonstationary, the
decisions made by Belady are sample-path specific. The existing
Belady-based algorithms fundamentally ignore the stochasticity,
time-varying, and nonstationary nature of object arrival processes.

In this paper, we present Raven, a Belady-guided, learning-based
caching framework for both in-memory and content caching. Dif-
ferent from existing algorithms that are also inspired by the Belady
algorithm (see §2), Raven explicitly accounts for the stochastic, time-
varying, and nonstationary nature of object arrival processes while
making caching decisions. For this, we first design a mixture den-
sity network (MDN) to learn arrival processes of objects based on
their historical requests. Then, we propose an estimated version
of order statistics to rank objects for eviction decisions based on
the estimated arrival processes. To efficiently and practically learn
distributions of object next-arrival times, we judiciously design our
MDN to address four major challenges: i) scaling to millions of
objects, ii) estimating any unknown distribution without any prior
assumptions, iii) modeling the nonstationarity of the distribution,
and iv) handling data scarcity of distribution estimation for infre-
quent objects. As for the rank order statistics of objects in cache, we
employ two sampling techniques to estimate the probability that an
object’s “residual time” to the next request given the current time
is the farthest in the future than all other objects. Raven selects the
object with the largest estimated probability for eviction and has a
constant eviction time. To further cope with objects with variable
sizes, Raven explicitly incorporates the object size in caching deci-
sion making to achieve different goals, e.g., to optimize the object
hit ratio for improved QoE performance, or to optimize the byte hit
ratio to reduce the WAN bandwidth consumption.

Compared to previous Belady-based caching algorithms [38, 40,
50, 61, 68], our method has three major benefits. First, it is more
general and can be applied to any object arrival process and cache
system setting, as it does not rely on any feature engineering, only
the objects’ past request times. Second, our method is more stable
in its decision making by explicitly accounting for the stochasticity
of the arrival processes and learning the distribution (see evaluation
results §3.5). Last but not the least, we add explainability to the
performance of our framework by approximating the full decision-
making process of the Belady algorithm. For example, apart from
the (unavoidable) errors in the estimation of (unknown) next-arrival
time distributions, the gap between the optimal Belady decisions
and those by Raven can be largely attributed to the uncertainty and
randomness inherent in the object (request) arrival processes.

! on synthetic workloads with various arrival
processes to prove the concepts of Raven, as well as large-scale real-
world traces, which have more complicated request patterns and
object size distributions, to validate the performance improvement

We evaluate Raven

I The source code of Raven is available at https://github.com/RavenCaching.
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and scalability of Raven. On three CDN production cache traces
and three in-memory cache traces from Twitter, Raven consistently
outperforms the state-of-the-art caching algorithms across all ex-
periments. Overall, Raven improves the object hit ratio and byte
hit ratio by up to 7.3% and 7.1%, respectively, reduces the average
access latency by up to 17.9% and backend traffic by up to 18.8%.

2 BACKGROUND, RELATED WORK, AND
MOTIVATION

Caching mechanisms have been studied extensively since 1960s.
Most earlier designs have relied on various heuristics that often
impose strong assumptions on the object request arrival processes,
such as the object arrivals following a Poisson process or more
generally an Independent Reference Model (IRM). The classical ex-
amples are LRU (least recent used) and many of its variants, which
have been widely used in existing systems. The other example is
LFU (least frequently used) policy, which yields the optimal object
hit ratio under the (stationary) Poisson or IRM assumption. Most
cache heuristics are improvements upon these two basic policies,
more recent examples include TinyLFU [26], ARC [55], and Hyper-
bolic [13]; the literature is too numerous to list here. We refer the
reader to several survey papers and relevant recent research papers
(and references therein) [5, 6, 13, 27, 31, 42, 45, 53, 55-57, 65]2. In
the following, we focus instead on learning-based cache policies.
This provides the background and motivation for the design of our
proposed Raven framework.

2.1 General Learning-based Adaptive Caching
Algorithms

A key problem that plagues heuristics-based caching algorithms
in practice is that i) cache workloads, or object arrival processes,
come from an unknown distribution or process that cannot be
neatly modeled mathematically; and ii) they often change over
time. This has led to a flurry of interest in learning-based caching
mechanism designs utilizing historical data, see e.g., [16, 43, 49,
64, 69, 70]. Many of the learning-based caching algorithms focus
on predicting object popularity. One line of research still makes
explicit model assumptions about the object popularity distribution
or arrival processes, and relies on machine learning methods, e.g.,
Bayesian inference, to estimate model parameters. For example,
the most recent caching algorithm LHR [77] estimates hazard rates
to represent object popularity by assuming request processes are
Poisson. The main drawback of these popularity-estimation-based
learning algorithms is that they are essentially an adaptive version
of LFU, namely cache most popular objects only. In other words,
they ignore the temporal dynamics of the object arrival processes;
in contrast, a cache oracle in fact may not always cache the most
popular objects as we discuss in §2.3.

Another popular line of research casts the caching problem as
learning how to make caching decisions to optimize predefined
cache utility (aka rewards or regret). They either apply online learn-
ing [58] or reinforcement learning [41, 64, 79] algorithms to dy-
namically learn the optimal policy for decision-making. Unfortu-
nately, due to the large state-action space, they are significantly

2For more details; this GitHub repository [73] also contains a list of popular cache
policies and their implementations.
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more complex, sensitive to hyper-parameters, and often suffer from
delayed rewards leading to slow reaction times in dynamic envi-
ronments [9]. In fact, these issues have led the authors in [44] to
conclude that caching is “not amenable to training good policies.”
In addition, the models learned through these methods often lack
stability, generalizability, and explainability.

2.2 Learning-Augmented Caching Algorithms

In general, caching algorithms based on ML models work well with
accurate predictions, but can perform poorly when prediction er-
rors are large. To be robust to prediction errors, another line of
research, called learning-augmented algorithms [3, 17, 52, 63, 74],
treats the ML algorithm as an "oracle" and focuses on redesigning
online caching algorithms to leverage ML predictions with an em-
phasis on deriving bounds on worst-case performance (with respect
to optimal offline algorithms, or bounds on competitive ratios. For
example, Lykouris et al. [52] proposed PredictiveMarker, which aug-
ments the classic MARKER algorithm [28] with ML predictions of
object reuse distance. PredictiveMarker achieves good competitive
ratio and is robust even when the predictions are completely wrong.
While learning-augmented algorithms provide theoretically prov-
able upper bounds on competitive ratio, competitive analysis fails
to distinguish between practical and theoretical algorithms [13, 52].

2.3 Belady-based Learning Algorithms

For a given workload where all objects are of fixed size, we in
fact know the cache oracle for making optimal eviction decisions
to maximize object hit ratio. This is Belady’s MIN algorithm [8],
known since 1966, which is an offline algorithm assuming that all
future object request arrival times are known. Upon a cache miss,
Belady algorithm always evicts the object in the cache whose next
request arrival time is the farthest in the future among all objects
in the cache. This insight has given rise to several papers which
employ Belady algorithm to guide eviction decisions. The earliest
work [61], as well as more recent ones [38, 40], directly emulate
Belady algorithm for caching and prefetching decisions using a
window of past memory accesses in hardware cache designs.
More closely related to our work, Berger [9] first advocates di-
rectly learning from the optimal caching decisions using machine
learning, and proposes LFO for CDN caching which trains a gradient
boosting decision tree using manually-designed features as a binary
classifier for caching decisions. Designed for memory cache systems,
Parrot [50] uses a deep reinforcement learning (DRL) framework
to imitate Belady algorithm for caching decisions based on past
requests and current cache state. Unlike LFO, Parrot avoids feature
engineering, but the heavy DRL framework makes it difficult to
scale to systems with millions of objects. The recent learning-based
caching algorithm, LRB [68], also leverages Belady algorithm for
caching decisions. However, in contrast to LFO and Parrot, instead
of imitating the “optimal decisions” made by Belady (via either a
learned binary classifier or via a DRL framework), LRB aims to
directly learn and predict the next arrival times of object requests,
and then resorts to a relaxed Belady algorithm for caching evic-
tions. Similar to LFO, LRB employs a gradient boosting machine
(GBM) [30] based on manually-designed features. While LRB has
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shown superior performance over existing caching algorithms in
terms of byte hit ratios for CDN caching, the manual feature engi-
neering limits its applicability and generalizability to more general
object arrival processes and non-CDN application scenarios (e.g.,
in-memory cache systems). The ad hoc manner in which features
are selected and constructed also obscures its explainability.

2.4 Casting Arrival Process Estimation as the
Key to Belady-Guided Caching Design

A key challenge in directly applying Belady algorithm to caching
systems lies in that the optimal decisions made by Belady are (work-
load or) sample-path specific. Hence, directly imitating the decisions
made by Belady algorithm as in [9, 50] to learn a cache policy may
not be the best approach (see the evaluation results in §3.5). A per-
haps more effective approach is to learn and predict the objects’
future next-arrival times, and then apply the same optimal strategy
used in Belady algorithm for making caching decisions, namely,
evicting the object with the farthest next arrival time. The problem
then boils down to effectively predicting object next-arrival times
given the inherent stochasticity, uncertainty, and non-stationarity
in the time-varying object arrival processes.

Unlike LRB which directly predicts a deterministic estimation
of object next-arrival time based on hand-crafted features, our
proposed framework, Raven, utilizes probabilistic estimation of
next-arrival time. It models an object’s next-arrival time as a non-
stationary distribution and predicts the next-arrival time as a list of
possible values by sampling from the distribution. This probabilistic
estimation not only provides the expectation, but also the variance
of the next-arrival time. On the other hand, LRB predicts next-
arrival time as a single value (typically around the mean value).
This deterministic estimation does not convey any variability or
stochasticity of the arrival process. For example, considering a
scenario where the next-arrival time distributions of N objects have
the same mean but different variances. It will be challenging for
LRB to differentiate the N objects as the predictions of LRB are
around the mean value. However, Raven can differentiate them by
considering their variances, and preferably evicts the object with the
largest variance. By utilizing the power of probabilistic estimation,
Raven accounts for the inherent stochastic and time-varying nature
of object arrival processes, and probabilistically approximate Belady.
Therefore, Raven is more stable, generalizable, and explainable.

3 LEARNING OBJECT ARRIVAL PROCESSES
TO APPROXIMATE BELADY

Belady algorithm has been proven to be the optimal caching policy
on traces where objects have identical size [8]. Based on knowledge
of future requests, Belady evicts the object whose next request is the
farthest. To approximate Belady, this section introduces an online
caching algorithm, named Raven, which utilizes machine learning
to learn arrival processes of objects. Then, evict the object with the
largest probability of being the selected victim by Belady. We will
discuss the design details of Raven in §4.

3.1 Raven Framework

We design a powerful density estimation neural network to learn
and predict object next-arrival times, considering the inherent
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Figure 1: Overview of the Raven framework. It estimates the arrival processes of objects using Density Estimation Neural
Network. The priority score of an object is derived from the estimated arrival process and represents the probability that the
object arrives farthest in the future compared to other cached objects. When a cache miss happens, the object with the largest

priority score is evicted.

stochasticity, uncertainty, and nonstationarity in the time-varying
object arrival processes. Upon a cache miss, based on the predicted
arrival processes of cached objects, Raven evicts the object with the
largest probability that its next arrival is the farthest. We further
extend Raven to be aware of variable object sizes in §3.4.

The framework of Raven is depicted in Fig. 1. It consists of three
major components: i) Density Estimation Network which uses a
memory window of past requests as training data and estimates
arrival processes of objects based on their historical inter-arrival
time information, ages, and sizes (§4.2); ii) Priority Score which
computes the probability that an object will arrive farthest (§3.3 &
§3.4); iii) Caching Policy which ranks the cached objects based on
their priority scores, then evicts the one with the largest score to
approximate Belady.

The caching process in Fig. 1 works as follows. For each object
in cache, Raven maintains a feature vector, namely, object size, age,
and history embedding automatically extracted by the density esti-
mation network (§4.2.1). Upon a new request for object O;, Raven
records its information to construct training dataset to later update
the density estimation network (§4.1). Upon a cache miss, a number
of cached objects are randomly sampled as eviction candidates, then
their next arrival processes are predicted based on their feature
vectors via the density estimation network (§4.2.2 & §4.2.3). The
priority scores of eviction candidates are derived from the estimated
arrival processes, and the object with the largest score is evicted.

3.2 Learning Arrival Processes

Problem formulation. We represent the overall request arrival
process generated by a large population of users as the superposi-
tion of many independent random processes, each referring to an
individual object [70]. The arrival process of an object is character-
ized by a sequence of increasing arrival times {t, ..., tN } or equiv-
alently by a sequence of inter-arrival times {ry, ..., 7y—1}, where
7; = tiy1 — t;. Inferring the arrival process is equivalent to estimat-
ing p(7) from the observed inter-arrival times, where p(7) is the
density distribution of the inter-arrival time z, priorly unknown,
and time-varying in practice.

Universal Arrival Process Approximation. Learning object
arrival processes for caching has four major challenges: 1) scaling to
millions of objects; 2) estimating arbitrary arrival processes with-
out any prior assumptions; 3) modeling nonstationarity of arrival
processes; and 4) solving data scarcity caused by infrequent ob-
jects while estimating distributions. To address these challenges,
we design a mixture density network (MDN) (i.e., a specific type

of density estimation network) [12, 54, 66]. Unlike previous works
which assume a pre-specified arrival model (e.g., Poisson process
[70, 77], renewal process [43], self-exciting process [69]), the univer-
sal approximation capability of our MDN enables Raven to estimate
arbitrary arrival processes. To account for the nonstationarity of ar-
rival processes, the proposed MDN uses a recurrent neural network
(RNN) layer to automatically extract temporal dependency features
from objects’ historical inter-arrival times. Therefore, an object’s
estimated arrival process depends on its history. Our MDN maps
objects with different arrival histories to different arrival processes,
and hence scales to millions of objects. As for data scarcity, we
solve it by using survival probability and data from a large number
of infrequent objects. Our MDN is described in detail in §4.2.

3.3 Predicting the Farthest Next (Request)
Arrival of an Object

Based on the estimated object arrival processes, to approximate
Belady which evicts the object with the largest residual time, Raven
calculates the order statistics (denoted as priority scores) of objects
to rank objects in cache and find the farthest arrival object.

Priority Score. The priority score of an object is defined as the
probability that its residual time is greater than the residual time of
any other object in cache. Let’s denote the age of an object O; as a;
and its residual time as R;. The priority score p; of Oj is calculated
as:

pj=Pr{Rj >Ry, ...Rj > Ry, ..., R > Re} (1a)

[ om0 [ 1 rar (1b)

k#j

SM  Krjm > rims Ve k # j}
~ i (1¢)

where C is the maximum number of objects in cache. p R, (t) is object
Oj’s residual time density distribution, and Fg, (t) is object Og’s
cumulative distribution function. Both pg; (t) and Fg, (t) depend
on object’s history and can be easily obtained by our MDN in
closed-form. rjp, is the m-th sample drawn from O;’s residual time
distribution PR, (¢). M is the total residual time sample number.
Hrjm > Tm» Yk, k # j} is 1if the m-th residual time sample of O;
is greater than the m-th residual time sample of any other objects
and is 0 otherwise. Appendix A shows the full proof.

3Residual time is defined as given an object’s current age, the time it takes for its
next-arrival.
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Figure 2: Hit ratios on synthetic traces (C: Cache Size).

The proposed priority score represents the probability that an
object is the selected victim by Belady. It approximates Belady
while taking the randomness and uncertainties of arrival processes
into consideration. While the exact priority score in Equation 1b
is optimal, it is too complicated and computationally expensive.
To reduce runtime during eviction, Raven approximates the exact
priority score with residual time samples as in Equation 1c. The
complexity of this approximation is O(M), where M is the residual
time sample number. As M increases, the approximated priority
score converges to the exact priority score (see more discussion of
residual time sample number M in §4.3.2).

3.4 Dealing with Variable Object Sizes

In reality, object sizes can span several orders of magnitude, es-
pecially in CDNs and web applications. The goal of a caching al-
gorithm can be to maximize either object hit ratio (OHR) or byte
hit ratio (BHR), depending on the penalty of a cache miss. Toward
these two different goals, two Belady variants are widely used as
optimal algorithms [10, 68]. This subsection describes how Raven
is extended to be size-aware based on the Belady variants.

OHR goal. OHR goal treats the cost of each cache miss equally,
and aims at caching as many objects as possible with limited cache
space. To maximize OHR, a widely-used extension of Belady is
to evict the object with the highest cost = object size X next-use
distance. A more accurate upper bound on OHR is provided by
practical flow-based offline optimal (PFOO) algorithm [10]. Overall,
these two algorithms imply that a caching algorithm should keep
small objects that will result in a cache hit quickly to maximize
OHR. Based on this insight, Raven augments the original priority
score (see Equation 1) with object size: p; = s; X p; and ranks objects
based on the new priority scores.

BHR Goal. BHR goal values the cost of each cache miss with
regard to its object size, and aims at reducing the traffic and expense
of fetching missed objects. The original Belady algorithm is believed
to be a near-optimal algorithm in this case, and has been used as a
guideline in LRB [68] to maximize BHR. Therefore, Raven uses the
original priority score to achieve the BHR goal.

3.5 Simulation Results

This subsection uses three synthetic traces to show that Raven
can adapt to different workloads, and consistently outperforms
the state-of-the-art caching algorithms. Each trace contains 10M
requests of 1000 objects. To represent different workloads, the inter-
arrival time distributions in the three traces are Poisson, Uniform,
and Pareto distributions, respectively. We compare Raven with

(c) Variable Size Traces (C=80KB)
Figure 3: CDF of rank-order er-

rors on the Uniform trace.

heuristics algorithms (e.g., Hyperbolic [13], LFUDA, LRU, GDSF,
and LHD [7]), as well as learning-based algorithms (e.g., LRB [68],
LHR [77], Parrot [50], and PredictiveMarker* [52]). More details
about the experiment setup are described in Appendix C.1. The
results on real-world traces are shown in §5.

Fig. 2a shows the hit ratio results on the three traces where all
objects have the same size, and the cache size is configured to hold
100 objects. Raven consistently achieves the best hit ratio across
all traces. We further use rank-order error to compare the four
best-performing learning-based algorithms. Rank-order error of an
evicted object is the difference between its ranking using a caching
algorithm and its true ranking using the future request times. Fig. 3
shows the CDF of rank-order errors on the Uniform trace. The
average and variance (see details in Table 6) of rank-order errors
of Raven are consistently the smallest, which indicate that Raven
has more accurate and stable predictions of objects’ future arrivals,
because it explicitly accounts for the stochastic nature of object
request arrival processes. More results of hit ratio and rank-order
errors are shown in Appendix C.2.

Fig. 2b and Fig. 2c show the OHR and BHR performance on the
three traces where objects have variable sizes, and cache size is
configured to be 80 KB (i.e., 10% of the total unique bytes). Parrot and
PredictiveMarker are excluded as they cannot handle variable object
sizes. Results on more cache size settings can be found in Appendix
C.3. This evaluation shows that Raven consistently achieve the best
object hit ratios, best byte hit ratios, and outperforms the other
learning-based algorithms.

4 DESIGN OF RAVEN

Raven uses a well-designed ML model to learn arrival processes
of objects and approximates Belady in a practical manner. Accom-
plishing this requires addressing the following key design issues:
i) Training data. How much past information is needed and how
to use this historical data for training? ii) ML architecture. How
to efficiently learn arbitrary arrival processes for millions of ob-
jects while considering the nonstationarity nature and the scarcity
of data? iii) Eviction rule. How to utilize the estimated arrival
processes to quickly calculate priority scores and rank objects to
evict? This section describes the key components of Raven that
help address these design issues.

4.1 Training Data

Overall, Raven keeps information about objects that have been pre-
viously requested within the training window. This historical data

4The comparison with [52] on the dataset used in [52] is shown in Appendix B.
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is used for training the ML model to estimate the arrival processes
of objects at the end of every training window. We now describe
how to choose the window size and construct the training data.

As arrival processes of objects may be nonstationary and have
diurnal or time-of-day patterns [15, 71, 78], Raven considers the
size of a window measured in terms of the elapsed time since the
last training or the beginning of the trace. Choosing the window
size is important to the performance of Raven. If the window size
is too small, the request sequences of all objects may be too short,
and Raven will not have enough training data for its ML model to
learn arrival processes and nonstationarity. If the window size is
too large, it may increase the memory overhead, processing time,
and training time. To account for diurnal patterns and reduce the
training frequency, we set the window size to be 1 day.

In reality, the historical data in a window of 1 day can be more
than hundreds of millions due to the high request rate. To address
this “data explosion”, Raven periodically takes a random sample of
objects, and only records information of the sampled objects. Each
object has the same probability to be sampled, because we want
to avoid biasing the training data towards popular objects which
has many requests. The sampling rate is determined such that the
number of unique bytes of the sampled objects is no more than
5% the cache size. We choose 5% the cache size as upper bound,
because it is large enough to characterize the workload patterns in 1
day, and similar window setting has also been used in [77] 3. In our
experiments, we find that larger window size further increases the
training time and overhead, without a noticeable improvement on
hit ratios. The typical numbers of objects and numbers of request
samples in training datasets are shown in the Appendix D.

We remark that the training data can be streamed to another
dedicated machine to train the ML model. At the beginning of a
trace, we use LRU as a fallback until the ML model is trained.

4.2 ML Architecture

This subsection introduces the ML model used by Raven to learn
arrival processes and how we design it to handle 1) scalability,
i.e., learning the arrival processes of millions of objects at scale; 2)
universal estimation, i.e, estimating arbitrary arrival processes
without any prior assumptions; 3) nonstationarity, i.e., capturing
the nonstationarity of arrival processes; 4) data scarcity, i.e., coping
with infrequent objects whose request sequences are short in nature;
The architecture of the proposed ML model is illustrated in Fig. 4.
Next, we describe its components and design rationale.

4.2.1 Input data: inter-arrival times, object size, and age.
Raven uses 3 inputs to its ML model: past inter-arrival times, object
size, and age. Unlike previous learning-based caching algorithms
(e.g., LRB [68], LHR [77]) which rely on manually-designed fea-
tures, Raven uses raw data and employs neural networks (NN) to
automatically extract features.

History embedding. To extract temporal dependency features,
Raven uses a single-layer RNN [25] to process an object’s histori-
cal inter-arrival times, and embed the arrival history into a fixed-
dimensional vector h (i.e., the hidden state of RNN). The RNN unit
can be either vanilla RNN, or LSTM, or GRU. The type of RNN

SInstead of using 4 the cache size as in [77], Raven uses 5X because the MDN is more
complicated than GBM used in [77].
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Figure 4: The architecture of mixture density network (MDN).
MDN outputs mixture distribution parameters to represent
any object’s residual time distribution conditional on its size,
age, and history embedding.

unit is a parameter that can be configured and we use GRU in our
experiments. According to our experimental experiences, different
RNN units do not make a significant difference, and a 32-128 RNN
hidden-state size works well in most cases. A larger or smaller
hidden-state size would have slightly worse performance. An ob-
ject’s history embedding is continuously updated as its new arrival
time is observed. Unlike LRB and LHR which consider fixed-length
short-term relationships (e.g., LRB uses past 32 inter-arrival times),
Raven takes both short-term and long-term temporal relationships
into consideration by utilizing RNN. This allows Raven to solve the
nonstationarity issue caused by time-varying access patterns.

In addition to temporal dependency features, we also use ob-
ject size, denoted as s, and age (i.e., time since the latest request),
denoted as a, to infer its future arrival process. These two pieces
of information are easy to obtain and intuitively correlate with
different access patterns.

4.2.2 Model: Mixture Density Network. Raven achieves scala-
bility by using a global mixture density network (MDN) [12, 54, 66]
to learn arrival processes for millions of objects. Our MDN is built
upon the Gaussian mixture model (GMM), and approximates an
arbitrary arrival process as a mixture of log-normal distributions,
since inter-arrival times are positive. MDN scales GMM by employ-
ing a simple feedforward neural network to automatically extract
features from input data, then map them to the parameters of GMM.
Therefore, different objects will have different features and are
mapped to different arrival processes.

In this work, the feedforward neural network is a three-layer
fully connected multilayer perceptron (MLP) with the ReLU acti-
vation function used in hidden layers. The input of MLP is object
size, current age, and history embedding. Denote the input at time
t as x = [hy,s,a], where hy = RNN(t;—1,ht—1). The output of
MLP is the parameters of GMM, i.e., the mixture weights w, the
mixture means g, and the standard deviations s. Denote the output
as ¢ = [w, p, s]) and it is obtained by

o = softmax(Wy,c+b,) p=Wyc+b, s=exp(Wsc+bs) (2)
where c is the output of MLP’s last hidden layer,
¢ = ReLU(W3ReLU(W1x + b1) + b2) (3)

To enforce the constraints on the distribution parameters ¢, softmax
and exp transformation are applied. W, and b, are the learnable
parameters of MLP.

4.2.3 Prediction Target: residual time distribution. Raven
uses the predicted GMM parameter vector ¢ to estimate residual
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where K is the number of mixture components, wg., ik, and si, re-
spectively, represent the weight, mean, and the standard deviation
of the k-th Gaussian component. Note that the residual time distri-
bution is a conditional distribution that depends on object size, age,
and arrival history, i.e., p(R|¢) = p(R|s, a, H), where H represents
object historical inter-arrival times.

Since arbitrary stationary distributions can be approximated by
a mixture of Gaussian distributions [12] and the nonstationarity of
distributions can be captured by RNN, Raven achieves universal ar-
rival process estimation by combining RNN and GMM. The detailed
proof of universal arrival process estimation by combining RNN
and MDN is shown in [66].

4.24 Loss Function: log-likelihood and survival probabil-
ity. Raven trains MDN by maximizing log-likelihood and survival
probability of object request sequences which happened during
the training window. To be more specific, we assume that at the
end of the current training window time t, the training dataset
consists of N objects, and each object has an (m; + 1)-length arrival
time sequence [t1, t2, ..., tm;+1] (i.e., m;-length inter-arrival time se-
quence [71, T2, ..., Try; ]) and a survival time ¢ — ty,+1. To obtain an
age associated with a past inter-arrival time sample 7;, we randomly
sample age a; from the uniform distribution U [0, 7;] and the corre-
sponding residual time R; is 7; — a;. Same logic applies to obtaining
an age associated with a survival time. Let’s denote the parameters
of MDN as 6. We find the optimal parameters by maximizing the
following loss function:

1 &
0* = — ! Ri|¢i
max ;(Z og p(Rilgp)+ o

IOgPr{Rmi+1 >t - tmi+1 - ami+1|¢m,~+1 })

where ¢ is the output of our MDN and is determined by MDN pa-
rameters 0, p(R;|¢;) is the likelihood of observing residual time R;,
and Pr{Rm;,, >t —tm;+1 — Gm;+1 |¢mi+1} is the survival probability
that the residual time is greater than the survival time minus age.

Typically people utilize log-likelihood to learn distributions of se-
quences [18, 24, 66]. In this paper, we additionally include survival
probability [66] to help model short sequences, since the object
popularity distribution is “long tailed” in production traces, where
a small portion of objects have massive requests, while others have
much less or even a few requests. By considering survival proba-
bility and learning from a large number of short sequences, MDN
is able to map the history embeddings of infrequent objects with
large survival times to distributions where large residual times
have higher probabilities. Hence, MDN solves the data scarcity is-
sue caused by infrequent objects. To demonstrate the data scarcity
in the six production traces (see §5.1.1 for details of real-world
traces), Table 8 in the Appendix E shows the number of one-hit
wonders ¢ under different cache size settings. The impact of survival
probability is shown in Fig. 5, which compares the performance of

®One-hit wonders refer to cached objects that are never accessed before they are
evicted due to their lack of popularity.
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Raven with and without the survival probability. We can notice that
the performance of Raven improves on all traces, with significant
increases on Wiki 18 and Wiki 19 traces.

4.3 Eviction Rule

In this subsection, we describe how Raven approximates the priority
score defined in Equation 1 by two sampling techniques to quickly
rank objects to evict.

4.3.1 Samples from cached objects. Raven randomly samples
cached objects to get eviction candidates, then runs a batch predic-
tion for all candidates to estimate their residual time distributions
and calculate their priority scores. Raven evicts the object with
the highest priority score, which means that it has the highest
probability of its next arrival request being the farthest among the
other candidates. This sampling technique is widely used in recent
caching policies [7, 13, 59, 68]. Similar to previous works, we choose
random sample size as 64 samples. Randomly sampling 64 cached
objects to evaluate reduces inference time and achieves constant
ranking time with respect to the number of cached objects.

4.3.2 Samples from residual time distributions. Raven uses
samples from candidates’ residual time distributions to approximate
their priority scores as defined in Equation 1c. The complexity of
this approximation is O(M), where M is the residual time sample
number. As M increases, the approximated priority score converges
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Table 1: Key properties of the six production cache traces used throughout our evaluation.

Wiki 18 | Wiki 19 | Wikimedia 19 | Twitter C17 | Twitter C29 | Twitter C52

Total Requests 2.8 billion | 2.7 billion 208 million 9.7 billion 3.8 billion 12.5 billion
Total Bytes 90 TB 99 TB 6.4 TB 5.1 TB 1.7 TB 29TB
Unique Objects 38 million | 51 million 49 million 29 million 326 million 728 million
Unique Bytes 5.5TB 83 TB 1.3TB 5.2 GB 115 GB 100 GB
Duration 15 days 21 days 21 days 8 days 5 days 6 days
Request Object Size Mean 34 KB 40 KB 33 KB 575 B 482 B 258 B

Max 1.2 GB 1.3 GB 6.6 MB 1.4 KB 712 KB 9.2KB

to the exact priority score defined in Equation 1b. The theoretical
selection of minimum sample size varies for different use cases.
Generally 30-100 sample sizes are sufficient to conduct significant
statistics [36] or get a meaningful result [21]. Based on our empirical
experiences, the impact of residual time sample number on hit
ratios is shown in Fig. 6, and its impact on the average eviction
time is shown in Fig. 7. To achieve a reasonable tradeoff between
approximation accuracy and computation time, Raven chooses the
residual time sample size M as 100.

4.4 Putting It All Together

Putting all of the above components together, we have the complete
design of Raven as shown in Fig. 1. Raven learns from the requested
objects in a training window. A sampling process continuously
samples requested objects to generate the training dataset. At the
end of the training window, Raven starts training an MDN model
and empties the training dataset. After that, whenever a training
window is reached again, Raven repeats the process and replaces
the old model with the new one. If the current requested object is
not cached, we need to evict an object. Raven randomly samples 64
eviction candidates from the cached objects, runs MDN to predict
their residual time distributions, draws 100 residual time samples
from each predicted distributions, and calculates the priority scores.
Then, Raven evicts the candidate with the highest priority score,
which represents the candidate with the highest probability of
having the largest residual time.

4.5 Implementation

Raven is implemented in Python and uses PyTorch [22] for ML
related tasks. The whole pipeline contains 3600 lines of code. We
expose the same interfaces as LRB, namely, lookup() for cache
lookup and admit() for admission upon a cache miss. To allow
direct comparison with Apache Traffic Server (ATS) which powers
CDN servers, we integrate Raven with ATS, based upon LRB proto-
type, which integrates LRB caching algorithm with ATS [68]. Since
the ATS is implemented in C++, Raven is integrated by employing
a Python/C++ wrapper in-between Raven and ATS. When the in-
terface from ATS, e.g., Llookup () or admit(), is called, the wrapper
redirects the call to Raven sub-system for further execution. By this
means, ATS can directly utilize Raven with minor modifications.

5 EVALUATION

We evaluate Raven on real-world cache traces to explore the follow-
ing questions: 1) What is the performance of Raven compared to the
state-of-the-art (SOTA) caching algorithms in terms of OHR, BHR,
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Figure 8: The object size and popularity distributions of the
six production traces.

traffic reduction, latency, and throughput under various cache size
settings? 2) What is the gap between Raven and optimal algorithms
(OPTs)? 3) What is the performance of Raven prototype compared to
the ATS production system in terms of OHR, BHR, traffic reduction,
and what is the cost of its implementation overhead?

5.1 Methodology

This subsection describes the real-world cache traces, the experi-
ment setup of our simulation and testbed, the state-of-the-art algo-
rithms, and the parameter settings of Raven.

5.1.1 Real-world Traces. We use three public CDN production
traces from Wikipedia 2018, 2019 [68], Wikimedia 2019 [75] and
three public in-memory production traces from Twitter in 2020 [78].
The Wikipedia traces are collected from nodes in a metropolitan
area and serve a mixture of web, photo, and other media content
for Wikipedia pages. The Wikimedia dataset is a restricted public
snapshot of the wmf. webrequest table intended for caching research,
which contains data on all the hits to Wikimedia’s servers. As for
Twitter traces, we use three miss-ratio-related traces from Twitter
in-memory cache cluster 17, cluster 29, and cluster 52. We convert
the in-memory trace format to our format by simply summing key
size and value size to be the object size.

We summarize key properties of the traces in Table 1. Addition-
ally, we show the characteristics and request patterns of the traces
in Fig. 8. The object size distribution in Fig. 8a shows that object
sizes in CDN traces can span more than eight orders of magnitude,
whereas for in-memory traces (i.e., Twitter) the variance of object
sizes is much smaller. The object popularity distribution in Fig. 8b
shows that all workloads approximately follow a Zipf distribution.
Appendix F further analyzes the distributions of request numbers
and requested bytes over object size and frequency.
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Figure 9: Object hit ratios and byte hit ratios on production traces with different cache sizes. Raven consistently outperforms

all SOTAs in all traces and cache sizes combinations.

5.1.2 State-of-the-Art Algorithms. We compare Raven with 14
state-of-the-art eviction algorithms. To improve readability, we only
show the eight best-performing algorithms which can be catego-
rized into: 1) learning-based algorithms: LRB [68], LHR [77]7; and
2) heuristics-based algorithms: LHD [7], GDSF, Hyperbolic [13],
LFUDA, LRU, and ThS4LRU. We exclude Parrot [50] and Predictive-
Marker [52] from comparison because they cannot handle variable
object sizes and do not scale to production traces.

5.1.3 Raven Settings. Unless otherwise noted, we use the fol-
lowing default values to evaluate Raven. With respect to the hyper-
parameters of our mixture density network, the number of Gaussian
mixture components K is 64, the RNN unit is GRU, the RNN hidden
state (history embedding) size is 32 for CDN traces and 16 for Twit-
ter traces to reduce the memory overhead in the case of in-memory
traces. The learning rate is 0.001, and 20% of the training dataset
are with-held as validation dataset. The training process is stopped
early if the validation error is no longer decreasing in the previous
consecutive 200 epochs. We use the first 20% of every trace to esti-
mate the request rate and tune the sampling rate to construct the
training dataset.

5.14 Testbed and Simulation Settings. In our prototype testbed
and CDN caching simulation, three components are involved, namely,
client, caching server, and origin server. Similar to the settings used
in LRB [68] and LHR [77], we assume the trace-based simulation
runs in an ideal environment where the network transmission rate

7For fairness, we remove the admission control of LHR and use its eviction algorithm,
since all other SOTAs and Raven don’t do admission control. Appendix G compares
Raven to SOTA admission algorithms, i.e., AdaptSize [11] and the original LHR. The
results show that Raven without admission control improves OHR up to 4.8% and BHR
up to 12.1%, compared to the best performing admission algorithm.

is 8 Gbps. For latency measurements, to simulate network RTTs, we
add a 10 ms delay to the link between client and caching server, and
a 100 ms delay to the link between origin and caching server [68].
Similarly, in-memory experiments involve client, memory, and data-
base. We add a 100 us delay to the memory access and a 10 ms delay
to the database access [19]. Cache sizes used for different traces
are selected based on the total active bytes of each trace. All ex-
periments are carried out on a server, which has one AMD Ryzen
Threadripper PRO 3995WX with 1 TB RAM and one NVIDIA A6000
GPU with 48 GB RAM.

5.2 Raven vs. State-of-the-Art Algorithms

We compare Raven to 14 state-of-the-art cache eviction algorithms
using simulations with various cache size settings on the six pro-
duction traces described earlier. To improve readability, we show
only the best eight algorithms.

5.2.1 Hit Ratios. Fig. 9 shows the object hit ratios (OHR) and
byte hit ratios (BHR) for each eviction algorithm with different
cache sizes using the six traces. Raven consistently outperforms
the best state-of-the-art algorithms. Across all experiment settings,
Raven improves OHR by 2.6%-7.3% with an average of 4.0%, and
improves BHR by 0.5%-7% with an average 3.7%. Note that the
improvement of BHR on Wiki 2018 and Wiki 2019 traces are not
significant compared to LRB. But, such small BHR improvement
help reduce WAN traffic by 4.5% compared to LRB, as shown later.
More hit ratio results over 5 cache sizes and the full comparison to
the 14 baselines can be found in Appendix H.

To better understand the results, we zoom into the caching per-
formance of different algorithms on different traces. In general,
heuristic algorithms perform well on certain type of workload, but
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Figure 10: Simulated traffic and latency on production traces with different cache sizes. Raven consistently outperforms all
SOTAs in all traces and cache sizes combinations. Small improvements in hit ratios correspond to a high improvement in traffic

and latency reduction.

may perform poorly on other types of workloads. For example,
GDSF achieves high OHR on Wikipedia traces, but low OHR on
Twitter cluster 17 trace. LRU obtains high BHR on Twitter traces,
but low BHR on Wikipedia traces. On the Wikipedia traces, com-
pared to existing learning-based algorithms, namely LHR and LRB,
Raven improves OHR by 10% and BHR by 1%. The difference be-
tween OHR and BHR improvements on the Wikipedia traces is
due to the distributions of object requests and requested bytes, as
shown in Fig. 18 (Appendix F). Overall, most of the requests in the
Wikipedia traces are from objects with frequency greater than 200
(i.e., relatively popular objects). However, most of the requested
bytes are from objects with frequency less than 200 (i.e., unpopular
objects). Since modeling unpopular objects is more challenging than
modeling popular objects, the BHR improvement on the Wikipedia
traces is less than the OHR improvement.

5.2.2 Traffic, Latency, and Throughput. Fig. 10a shows the
wide-area network traffic and the database read traffic for each
algorithm. Raven robustly outperforms the best state-of-the-art
algorithms (SOTAs). Overall, it reduces the backend traffic between
the caching server and the origin server by 2.6%-18.8% with an
average of 10.4%. Note that Raven simultaneously achieves the
largest hit ratio and the least traffic whereas none of the SOTAs
does so. For example, while LRB achieves the highest byte hit ratio
and least traffic among SOTAs on CDN traces, it exhibits high hit
ratios, but large database traffic on Twitter traces.

Fig. 10b shows the average latency for each algorithm. Compared
to the SOTAs, Raven reduces the average latency by 4.7%-17.9%
with an average of 10.1%. These results show that although the
ML inference time of Raven (i.e., 50 us) is larger than SOTAs, the

Table 2: Simulated average throughput on a cache of 128GB,
128GB, 16GB, 4MB, 64MB, and 32 MB for Wiki 18, Wiki 19,
Wikimedia 19, Twitter 17, Twitter 29, and Twitter 52 respec-

tively.

Raven | LHR | LRB | LRU
wiki 18 (Gbps) 6.46 5.91 5.83 5.32
wiki 19 (Gbps) 6.00 5.56 5.55 5.04
wikimedia 19 (Gbps) 3.50 | 3.33 | 3.10 | 3.11
twitter 17 (K Requests/s) 18.09 | 16.87 | 14.46 | 16.23
twitter 29 (K Requests/s) 19.95 | 17.13 | 14.78 | 15.54
twitter 52 (K Requests/s) 21.97 | 19.62 | 12.21 | 16.57

hit ratio improvement of Raven dramatically reduces latency, as
the backend fetch time is significantly greater than the ML infer-
ence time. Table 2 summarizes the average throughput of LRU (the
default algorithm in production systems), LRB, LHR, and Raven.
We can notice that Raven consistently improves throughput over
SOTAs across all traces. The memory overhead and running time
of the machine learning based algorithms are shown in §6.1.1.

5.3 Raven vs. OPT

We have seen that Raven significantly outperforms SOTAs. Now, we
compare Raven with the offline optimal algorithm Belady® and an
online optimal algorithm HRO [77]. Fig. 11 compares their object hit
ratios (OHR) and byte hit ratios (BHR) on all six production traces
with different cache sizes. We also include the best performing
SOTA on each trace and cache size. We find that Raven indeed is

8Here we refer to both Belady and Belady-Size as Belady.



Raven: Belady-Guided, Predictive (Deep) Learning for In-Memory and Content Caching

77 Belady Raven SOTA E=0 HRO
o
£0.75 2
o A 2
£0.50 ; 1 -
5 ° il
2025 bl | N =3 o \
o A el o A

o
o
s

32GB 64GB 16GB éMB 164MB QBZME’L
oAy a2 A oo
N e A eX el el
W e T

256(3%3 ZSBGQB 16GB éMB 164MB ()BZMB’L
A AY D A o
N A el e Ve
W W '\V;\“\e’( ‘“\‘K < \N“‘ ! \N“‘

Figure 11: Raven vs OPT on hit ratios.

0567 _ aTs — ATS
_% 0.55 Raven g 0.64 Raven
o ©
£0.54 <

I
= 0.63
$ 0.53 g
a >
o oM
0.52 0.62
0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21

Time (Day) Time (Day)

Figure 12: Raven vs unmodified ATS.

closer to Belady. Raven reduces the OHR gap between SOTAs and
Belady by 37.2% on average, and reduces the BHR gap between
SOTAs and Belady by 29.2% on average. One interesting observation
is that HRO performs well on certain traces, but poorly on Twitter
C17 and C52, which shows that HRO is workload specific. The
poor generalizability of HRO is due to its similarity to LFU policy
and its simplified assumptions of arrival processes. HRO estimates
hazard rates to represent object popularity based on the assumption
that request processes are Poisson. The remaining gap between
Raven and Belady is due to the distribution estimation error of our
ML model and the randomness of realization of objects’ arrival
processes. We leave the improvements of distribution estimation
for future work.

5.4 Performance of ATS with Raven

In this section, we compare Raven prototype and an unmodified
Apache Traffic Server (ATS) with respect to hit ratios, WAN traf-
fic, and implementation overhead. The results are measured using
Wikimedia 2019 trace with a cache of 32 GB.

Hit Ratios. Fig. 12 compares the object hit ratio and byte hit
ratio of Raven and unmodified ATS. Overall, Raven achieves both
higher object hit ratio and byte hit ratio than ATS. We can notice
that Raven reaches higher OHR and BHR after its neural network
is trained in the warm-up stage, and continues to improve hit ratios
with a quicker rate than ATS.

Implementation Overhead. Table 3 compares the overhead
of Raven against unmodified ATS in terms of throughput, latency,
and traffic. We also measure the max throughput, the 90" and
99th percentile latency, and the 95th percentile bandwidth, as these
metrics are the basis of some CDN contracts [1, 68]. The OHR
and BHR of Raven is 4.5% and 3% greater than ATS. This hit ratio
improvement allows Raven to improve the average latency by 9.4%
and the 90*" percentile latency by 8.9% compared to ATS. As for
the 991" percentile latency, Raven and ATS are the same, because
the latency to the origin server dominates. With respect to traffic,
Raven reduces the average WAN traffic by 9.9% and reduces the 95"
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Table 3: Resource usage for Raven and unmodified ATS in
production-speed experiments.

Metrics Raven | ATS
P90 Latency (ms) 145.64 | 160.00
P99 Latency (ms) 220 220
avg. Latency (ms) 97.85 | 107.97
P95 Traffic (Gbps) 4.67 5.06
avg. Traffic (Gbps) 2.58 2.86
max Throughput (Gbps) | 10.46 | 10.46
avg. Throughput (Gbps) 4.13 3.76

percentile traffic by 7.6% over ATS. Lastly, Raven has no measurable
throughput overhead.

6 DISCUSSION

In this section, we show the memory overhead and running time
of the three machine learning based caching algorithms. Then we
discuss the methods to amortize and reduce the machine learning
overhead of Raven. To study Raven’s implications on IT economics,
we present some examples of cache cluster costs with the assump-
tion of allocating the simple heuristics algorithm more caching
capacity to achieve the same hit ratio as Raven. Besides, we high-
light limitations and future directions of arrival process estimation.

6.1 Machine Learning Overhead & Economics

6.1.1 Machine Learning Overhead. We compare the memory
overhead and running time of the three learning-based algorithms:
Raven, LHR, and LRB. For each object in cache, the metadata used by
Raven to infer its residual time distribution is its history embedding,
current age, and object size. Therefore, the metadata memory of
each object in cache is 136 bytes on CDN traces, and 72 bytes on
Twitter traces according to the different RNN hidden state size
settings. The metadata used by LHR and LRB to make an inference
for an object is the size of their manually defined features which
takes 84 bytes and 176 bytes, respectively. Overall, Raven’s metadata
memory overhead is less than LRB, but greater than LHR.

We further summarize the average running time of cache lookup,
eviction, and training ML models. Across all experiments, the av-
erage lookup time of the three algorithm is about 50 ns and is
negligible. The average eviction time of LRB, LHR, and Raven is
about 3 us, 6 ps, and 50 ps, respectively. The inference of neural
networks used by Raven is slightly slower than gradient boost
machines used by LRB and LHR. Nevertheless, all these three al-
gorithms are highly efficient in terms of prediction time. As for
ML training, through a trace-based simulation, the total training
time of LRB, LHR, and Raven is 14 hours, 110 hours, and 26 hours,
respectively. The total training time of Raven is less than LHR, but
greater than LRB. Although the gradient boost machine adopted by
LRB and LHR is more lightweight than the neural network utilized
by Raven, LRB and LHR need to constantly train their ML models to
attain good performance. In contrast, Raven is highly generalizable,
and trains the neural network way less frequently, as it depends
on deep learning to learn general distributions. Moreover, due to
the generalizability of deep learning, the neural network of Raven
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Table 4: Simplified estimation of AWS VM cost for caching clusters which use Raven or LRU to achieve the same hit ratio.

In-memory Cluster [34] CDN Cluster with EBS [33] | CDN Cluster with SSD [35]
Raven LRU Raven LRU Raven LRU
RAM Config 32 GB 128 GB NA NA NA NA
Disk Config NA NA 12.8 TB 25.6 TB 12.8 TB 25.6 TB
VM Type t4g.micro (t4g.small, t4g.medium) | t3.medium | t3.medium g4dn.2xlarge| g4dn.2xlarge
#VM 64 (41, 23) 100 100 57 114
GPU Server gdad.xlarge | NA gdad.xlarge | NA gdad.xlarge | NA
# GPU 1 NA 1 NA 1 NA
Monthly Price | $1,240 $2,631 $6,225 $7,872 $54,322 $108,099

can be trained on a dedicated server, and then applied to 20s or
1000s of cache servers, since the size of production cache clusters
typically ranges from 20 to thousands instances [78]. Therefore,
the computation overhead and cost of training neural networks
can be amortized over multiple cache servers. Whereas, methods
using “classical” machine learning, such as LRB and LHR, need to
be trained on a per-trace/server basis.

In addition, the training process of Raven can be optimized to
further reduce the cost. For example, the RNN module can be re-
placed with the SRU [47, 48], which is an efficient implementation
of the recurrent neural units, and can reduce 28.1% of the training
time without performance reduction based on our empirical results.
We leave the module optimization and fine-tuning for future work.
Finally, the training cost can be further reduced by sharing the GPU
server among multiple clusters and minimizing the retraining fre-
quency. Currently, Raven retrains its neural network every training
window, which can be reduced by retraining only when request
patterns change significantly between two consecutive windows.
However, this could degrade the model’s accuracy due to errors of
pattern change detection.

6.1.2 Impacts on IT Economics. To study deep learning’s im-
plications on IT economics, we use AWS VMs as an example to
estimate the cost of in-memory and CDN cache clusters, which use
Raven or LRU to achieve the same hit ratio, in a simplified manner.
The cost is estimated for simplified clusters which are biased to-
wards using many smaller nodes to limit the blast radius of node
failures, whereas real deployments of production cluster are far
more complicated. However, our cost comparisons are still valid, as
we are interested in comparing the different caching policies under
the same settings of these simplified clusters. Based on the evalua-
tion results in §5.2 and Appendix H, LRU needs 4 the cache size as
Raven to achieve the same object hit ratio on the in-memory traces,
and needs 2Xx the cache size as Raven to achieve the same byte
hit ratio on the CDN traces. We assume the servers of in-memory
cache clusters are AWS ElastiCache [34] instances, the servers of
CDN cache clusters are Elastic Compute Cloud (EC2) instances in
AWS Wavelength zone (i.e., 5G edge infrastructure) [35], and the
GPU server is an EC2 instance in the AWS Region zone [33]. The
number of VM/instances for each cluster is determined to meet
its allocated cache size configuration, as well as to have the same
number of CPU cores in the two clusters®. For Raven’s cache cluster
consisting of multiple instances, the additional GPU cost used for
training its neural network gets amortized, as Raven requires a
smaller cache size to achieve the same hit ratio, hence reducing the

9CDN cluster with SSD is an exception, because AWS does not support SSD size
customization for this type of instance.

overall cluster expenses. As shown in Table 4, Raven reduces 52.9%
of the cost for the in-memory cache cluster, 20.9% of the cost for the
CDN cache cluster which uses Elastic Block Store (EBS) to cache
contents, and 49.7% of the cost for the CDN cache cluster which
uses SSD to cache contents, compared to the corresponding clusters
using LRU with larger capacity to achieve the same hit ratio.

6.2 Improving Arrival Processes Estimation

Raven assumes that the collected training data characterizes future
request arrival processes relatively well. If the next-arrival time
distributions of new objects have significant differences, it will be
challenging for Raven to accurately estimate their arrival processes.
Besides, as the cache capacity increases to hold more objects, differ-
entiating between unpopular objects becomes more important and
also challenging for Raven, as estimating arrival processes through
a few samples is difficult. We leave the improvement of distribution
estimation for future work. We also want to point out that contin-
ual learning [62, 67] and meta learning [76] are promising ways to
overcome these two challenges.

7 CONCLUSION

Raven is a Belady-guided, learning-based caching framework for
both in-memory and content caching. Compared to state-of-the-art
caching algorithms, Raven is more general, stable, and explainable.
These advantages stem from the key design choices of Raven which
explicitly account for the stochastic and nonstationary nature of
object arrival processes by learning the (unknown) distributions
of object next-request arrival times and estimating the rank order
statistics of objects in the cache for decision-making. Evaluation on
production CDN and in-memory traces demonstrates that Raven
can adapt to different workloads and consistently outperforms the
state-of-the-art caching policies in terms of object and byte hit
ratios, traffic, and latency reductions.
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A PROOF OF PRIORITY SCORE EQUATION 1

PROOF. Priority score p/ of an object O j is defined as the proba-
bility that the object will arrive farthest, i.e., the residual time RJ of
the object is greater than the residual time of any other objects in
cache:

pl =Pr{R/ > m]?ka,k #j}

=Pr(R) >R R/ > R%--- ,RI > RF,... R/ > RO)

(k # j, C is cache size)
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Pr(t > a)
_Fe(t+a) - Fr(a)
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]

B RAVEN VS. PREDICTIVEMARKER ON CITI
DATASET

We compare Raven with PredictiveMarker [52] on the Citi dataset
that is used in [52]. The Citi dataset comes from a bike sharing
platform operating in New York City. For each month of 2017, the
first 25,000 bike trips are extracted and a request in each trace
corresponds to the starting station of a trip. The source code of
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Table 5: Competitive ratios and average miss ratios on the
Citi dataset.

Metric LRU | PredictiveMarker | Raven
Competitive ratio | 1.971 1.942 1.799
Average Miss ratio | 0.665 0.658 0.616

Table 6: Statistics of Rank Order Errors on synthetic datasets.

Trace Policy || Mean | Median | P90 | Variance
Parrot || 40.54 37 81 26.87
Pareto LRB 32.20 25 75 26.86
LHR 31.11 24 73 26.58
Raven || 28.44 20 70 26.13
Parrot 23.64 14 63 24.41
Poisson LRB 17.52 6 57 24.12
LHR 22.77 12 65 25.57
Raven || 17.34 5 57 24.05
Parrot 16.01 6 49 21.70
Uniform LRB 9.38 1 34 18.60
LHR 13.07 1 50 22.74
Raven 7.92 1 31 18.39

PredictiveMarker and processed Citi dataset are available at [3].
The raw Citi dataset is publicly available at [20].

The Citi dataset used for evaluation consists of 12 traces, each of
25,000 length. We use the first 15,000 requests to train the Mixture
Density Network of Raven and report evaluation results on the
remaining 10,000 requests. Same as [52], we set the cache size to
100. Table 5 shows the competitive ratios and average miss ratios
over the 12 bike trip traces. Raven outperforms PredictiveMarker by
7.4% in terms of competitive ratio and by 6.4% in terms of average
miss ratio.

C EXPERIMENT ON SYNTHETIC TRACES
C.1 Experiment Setup

We evaluate Raven on three synthetic traces in an idealized setting.
Each trace contains 10M requests of 1000 objects whose popularities
follow a Zipf distribution with & = 0.8. The inter-arrival time
distributions of objects in the three traces are Poisson, Uniform, and
Pareto distributions, respectively. We further assign sizes sampled
from a uniform distribution U(10, 1600) to the objects based upon
the independence assumption of object size [10]. We use the first
5M requests to train our machine learning model to learn the inter-
arrival time distributions, and evaluate the caching performance on
the second 5M requests. We compare Raven with state-of-the-art
heuristics algorithms (e.g., Hyperbolic [13], GDSF, LHD (7], LFUDA,
and LRU) and learning-based algorithms (e.g., LRB [68], LHR [77],
PredictiveMarker [52], and Parrot [50]).

C.2 Results on Synthetic Traces with Identical
Object Size

Fig. 13 shows the object hit ratios with various cache sizes on
the three synthetic traces mentioned in §3.5. The results show that
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Figure 14: PDF of rank-order errors on the three synthetic traces with cache size configured to hold 100 object entries.

Raven achieves best performance across various traces and different
cache size settings.

Fig. 14 shows the rank-order errors of Parrot, LRB, LHR, and
Raven on the three synthetic traces with the cache size configured
to hold 100 object entries. The statistics (i.e., mean, median, 90% per-
centile, and variance) of the rank-order errors are listed in Table 6.
All these results show that the average rank-order errors of Raven
across traces are consistently the smallest, which indicates that
its predictions of objects’ future arrivals are more accurate than
LRB, LHR, and Parrot. Besides, Raven has the smallest variance
of rank-order errors, which indicates that Raven has more stable
prediction performance when making caching decisions, because
it explicitly accounts for the stochastic nature of object request
arrival processes.

C.3 Results on Synthetic Traces with Variable
Object Size

Fig. 15 and Fig. 16 show the object hit ratios and byte hit ratios with
various cache size settings on the three synthetic traces with vari-
able object size. The results show that Raven consistently achieves
the best OHR and BHR performance across various traces on differ-
ent cache size settings.

D TRAINING DATA SIZE

Table 7 shows the average object number and request sample num-
ber in training datasets for the caching settings used in §5.2. The
sample rate of the six production traces on the various caching
settings ranges from 0.3% to 73%. Based on the sample rate, the
number of request samples in the training data ranges from 0.8
million to 65 millions. Since each object has the same probability to
be sampled, the characteristics of request samples in the training

Table 7: Average object number and request sample number
in training datasets.

# objects | # samples
Wiki 18 CC :13228%1?3 429 ?\AK 22 ﬁ
Wiki 19 CC=216248GGI?3 ; 1\1\;1[ ?1; x
Wikimedia 19 CC :186%BB 3?2 E z ﬁ
Twitter C17 g:j xg ;; E 7; i\AK
TwiterCzp [ Co2MB || 186K | M
Twitter C52 gz;g ﬁg ;;g E 1501\1/\[/1

data remains similar to the characteristics of the full trace in the
training window. Therefore, even after sampling, the training data
characterizes the original request patterns in the training window
quite well.

E ONE-HIT WONDER NUMBERS

Table 8 shows the average one-hit wonder numbers within one
million requests for the caching settings used in §5.2. One-hit won-
ders are cached objects that are accessed once and then cached
yet never read again before they are evicted due to their lack of
popularity. The number of one-hit wonders of a workload is related
to the cache size and also caching policies. From the table, we can
see that Belady, as an optimal policy, has the least one-hit wonders
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Figure 15: Object hit ratios on the three simulation traces with variable object size.
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Figure 16: Byte hit ratios on the three simulation traces with variable object size.

Table 8: Average one-hit wonder numbers within one million requests in the six production traces.

LRU | LFUDA | LRB | LHR | Raven | Belady

Wiki 18 C=32GB 339K 292 K 238K | 187K 138 K 124K
C=128 GB 172 K 159 K 134K | 77K 65 K 44 K

Wiki 19 C=64 GB 321K 286 K 235K | 162K 140 K 124 K
C=128 GB 219K 191 K 157K | 98K 93 K 72 K

Wikimedia 19 C=8 GB 286 K 319K 289K | 265K 240 K 127 K
C=16 GB 203 K 245 K 227K | 188 K 171 K 70 K

Twitter C17 C=2 MB 290 K 840 K 349K | 367K 296 K 188 K
C=4 MB 217K 524 K 265K | 258 K 238 K 130 K

Twitter C29 C=32 MB 239 K 262 K 246K | 211K 188 K 158 K
C=64 MB 195K 222 K 192K | 171K 152 K 126 K

Twitter C52 C=16 MB 216 K 272K 313K | 168K 150 K 129 K
C=32 MB 177 K 222 K 216 K | 138 K 123 K 105 K

across all workloads and cache size settings. After Belady, Raven,
in most cases, has the least one-hit wonders.

F DISTRIBUTION OF OBJECT REQUEST
NUMBERS AND REQUESTED BYTES

Fig. 17 and Fig. 18 show the request number and the requested byte
distributions over object size and object frequency, respectively. We
create log-scale bins of object size and frequency, and add up the
total requests and total requested bytes for each bin. This allows us
to analyze the characteristics of different traces and reason about
what is needed to achieve good OHR and BHR for different traces.

From Fig. 17, we can see that on the Wiki 18 and 19 traces: i) with
respect to the total request number, most requests are from objects
with sizes in the range (200B, 500KB), and ii) with respect to the

total requested bytes, most of the requested bytes are from objects
with sizes greater than 200B. The Wikimedia 19 trace is totally
different from the other 2 CDN traces. Most requests and requested
bytes in Wikimedia 19 trace are from objects with sizes in the range
(6KB, 160KB). On Twitter traces, particular size classes have more
requests and requested bytes.

From Fig. 18, we can see that: i) with respect to the total request
number, most requests in Wiki 18 are from objects with frequency
greater than 200; and most requests in Wiki 19 are from objects with
frequency in range (200, 500k). In contrast, ii) objects with frequency
less than 200 in Wiki 18 and Wiki 19 contribute to a significant
portion of the requested bytes. This indicates that OHR can be
optimized by predicting popular objects (frequency > 200), while
BHR optimization requires good prediction on unpopular objects
as well. The Wikimedia 19 trace is totally different from the other 2
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Figure 17: The distribution of object requests and requested bytes among different object size ranges.
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Figure 18: The distribution of object requests and requested bytes among different object frequency ranges.

CDN traces. Most requests and requested bytes in Wikimedia 19 are
from objects with frequency less than 1k. Therefore, the modeling
of unpopular objects is important to achieve good OHR and BHR
on Wikimedia 19 trace. As for twitter in-memory traces, they have
various patterns. Almost all object frequency ranges are important.

G RAVEN VS. ADMISSION ALGORITHMS

Fig. 19 shows that although Raven doesn’t adopt admission algo-
rithms, it still consistently outperforms other methods with admis-
sion controls, such as AdaptSize, original LHR, and other baseline
methods mentioned in section 5.1.2 (marked as SOTA).
Specifically, from Fig. 19a, we can see that Raven without admis-
sion control improves OHR from 0.3% to 4.8% with an average of
2.7% on different datasets and settings. Meanwhile, Fig. 19b shows
that Raven improves BHR from 5.9% to 12.1% with an average of
8.2%. The improvement is calculated by absolute value instead of
relative value. Those results again validate the effectiveness and ro-
bustness of Raven. It is reasonable to expect that Raven can achieve

better performance with the help of the admission algorithm and
we leave those designs for future work.

H RESULTS ON MORE CACHE SIZE SETTINGS
AND FULL BASELINES

Fig. 20 shows the object hit ratio results on the Twitter cluster
29 trace in 5 cache size settings ranging from 32 MB to 512 MB,
and the byte hit ratio results on the Wikimedia 2019 trace in 5
cache size settings ranging from 4 GB to 64 GB. We can see that
Raven achieves the best OHR and BHR across all cache settings. The
improvement of OHR and BHR is larger on smaller cache sizes. As
the cache size increases, the margin decreases and different policies
have relatively same performance.

Fig. 21 shows the OHR of the 14 baselines on the Twitter cluster29
trace with a cache size of 32 MB and the BHR of the 14 baselines
on the Wikimedia 2019 trace with a cache size of 8 GB. The 14
baselines are 1) heuristics algorithms: LRU, ThS4LRU [32], Random,
LFUDA [4], LRUK [56], Hyperbolic [13], GDSF [4], FIFO, ThLRU; 2)
learning-based algorithms: LRB [68], UCB [23], LHD [7], LHR [77],
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Figure 19: Raven compared to admission algorithms and outperforms them. LHR w/ admission is the original version.
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