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ABSTRACT
Performance of caching algorithms not only determines the quality

of experience for users, but also affects the operating and capital ex-

penditures for cloud service providers. Today’s production systems

rely on heuristics such as LRU (least recently used) and its variants,

which work well for certain types of workloads, and cannot effec-

tively cope with diverse and time-varying workload characteristics.

While learning-based caching algorithms have been proposed to

deal with these challenges, they still impose assumptions about

workload characteristics and often suffer poor generalizability.

In this paper, we propose Raven, a general learning-based caching

framework that leverages the insights from the offline optimal Be-

lady algorithm for both in-memory and content caching. Raven

learns the distributions of objects’ next-request arrival times with-

out any prior assumptions by employing Mixture Density Network
(MDN)-based universal distribution estimation. It utilizes the esti-
mated distributions to compute the probability of an object that

arrives farthest than any other objects in the cache and evicts the

one with the largest such probability, regulated by the sizes of ob-

jects if appropriate. Raven (probabilistically) approximates Belady

by explicitly accounting for the stochastic, time-varying, and non-

stationary nature of object arrival processes. Evaluation results on

production workloads demonstrate that, compared with the best

existing caching algorithms, Raven improves the object hit ratio

and byte hit ratio by up to 7.3% and 7.1%, respectively, reduces the

average access latency by up to 17.9% and the traffic to the origin

servers by up to 18.8%.

CCS CONCEPTS
• Theory of computation → Caching and paging algorithms;
• Computing methodologies → Machine learning.
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1 INTRODUCTION
Caches are an integral part of various computer systems and net-

works. With today’s large-scale, geographically distributed cloud

services, the performance of caches not only determines the quality

of experience (QoE) for users, but also affects the operating and

capital expenditures for cloud service providers. For example, by

caching frequently accessed data originating from a backend data

store, in-memory caching systems such as Memcached [29] and

Redis [51] can significantly reduce the access latency and speed

up repeated computations for web applications [2, 78]. Likewise,

judiciously caching objects in content delivery networks (CDNs)

not only accelerates the response time to user requests, but also

reduces the WAN (wide-area network) bandwidth consumption

between CDN nodes and the origin content servers [1, 68]. With

the rise of 5G networks and edge computing, the role of caching

will become ever profound.

Optimizing cache performance has been a long standing and

widely studied problem. Various heuristic caching policies from

simple ones such as least recently used (LRU) and least frequently

used (LFU), to more sophisticated ones (see, e.g., [4, 5, 11, 13, 14, 26,
45, 46, 55, 56]) have been proposed and developed over the years.

Challenges in the design of effective caching algorithms lie in that

the workload characteristics (e.g., object access patterns or request
processes) are unknown, cannot be neatly modeled mathematically,

and often vary over time. As a result, an effective heuristics designed

for one type of workload may not work well when applied to other

types of workloads, or when the workload characteristics change.

Coping with such challenges has led to learning-based caching al-
gorithms. One popular approach is to apply machine learning to

predict object popularities over time [16, 43, 69, 70, 77]. These al-

gorithms are essentially analogous to the LFU policy, and hence

are no longer the “optimal” policy for recency-pattern workloads.

Another popular approach is to apply online learning or reinforce-

ment learning to directly learn a caching policy by optimizing a

certain reward or regret function [41, 49, 58, 64, 79]. These learning

algorithms either still impose explicit or implicit strong assump-

tions about workloads, or resort to “black-box” deep reinforcement

learning which has significant complexity and suffer from poor

stability, generalizability, and explainability.

A particularly promising approach for designing cache algo-

rithms is to leverage Belady algorithm [8] for cache decision mak-

ing [9, 37, 39, 50, 60, 68]. Given a workload, Belady always evicts

the object whose next request arrival time is the farthest in the
future among all objects currently in the cache. This strategy is prov-
ably optimal, however it is an offline algorithm, which assumes the
knowledge of all future requests. Hence, the key issue here is how to

leverage the insight of Belady in cache algorithm designs without
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the knowledge of future request arrival processes. One line of pur-

suit is to directly learn and imitate the decision making of Belady

algorithm, e.g., via reinforcement learning [50], or directly learn
and predict the objects’ next request arrival times [68] and apply

Belady algorithm in one way or another. A major issue all these

Belady-based algorithms overlook is the fact that the decisions

made by Belady are deterministic and specific to a given workload.

In other words, given that the real-world caching environment is

inherently stochastic, time-varying, and often nonstationary, the
decisions made by Belady are sample-path specific. The existing

Belady-based algorithms fundamentally ignore the stochasticity,
time-varying, and nonstationary nature of object arrival processes.

In this paper, we present Raven, a Belady-guided, learning-based

caching framework for both in-memory and content caching. Dif-

ferent from existing algorithms that are also inspired by the Belady

algorithm (see §2), Raven explicitly accounts for the stochastic, time-
varying, and nonstationary nature of object arrival processes while

making caching decisions. For this, we first design a mixture den-

sity network (MDN) to learn arrival processes of objects based on

their historical requests. Then, we propose an estimated version

of order statistics to rank objects for eviction decisions based on

the estimated arrival processes. To efficiently and practically learn

distributions of object next-arrival times, we judiciously design our

MDN to address four major challenges: i) scaling to millions of

objects, ii) estimating any unknown distribution without any prior

assumptions, iii) modeling the nonstationarity of the distribution,

and iv) handling data scarcity of distribution estimation for infre-

quent objects. As for the rank order statistics of objects in cache, we

employ two sampling techniques to estimate the probability that an

object’s “residual time” to the next request given the current time

is the farthest in the future than all other objects. Raven selects the

object with the largest estimated probability for eviction and has a

constant eviction time. To further cope with objects with variable

sizes, Raven explicitly incorporates the object size in caching deci-

sion making to achieve different goals, e.g., to optimize the object

hit ratio for improved QoE performance, or to optimize the byte hit

ratio to reduce the WAN bandwidth consumption.

Compared to previous Belady-based caching algorithms [38, 40,

50, 61, 68], our method has three major benefits. First, it is more

general and can be applied to any object arrival process and cache

system setting, as it does not rely on any feature engineering, only

the objects’ past request times. Second, our method is more stable

in its decision making by explicitly accounting for the stochasticity

of the arrival processes and learning the distribution (see evaluation

results §3.5). Last but not the least, we add explainability to the

performance of our framework by approximating the full decision-

making process of the Belady algorithm. For example, apart from

the (unavoidable) errors in the estimation of (unknown) next-arrival

time distributions, the gap between the optimal Belady decisions

and those by Raven can be largely attributed to the uncertainty and

randomness inherent in the object (request) arrival processes.

We evaluate Raven
1
on synthetic workloads with various arrival

processes to prove the concepts of Raven, as well as large-scale real-

world traces, which have more complicated request patterns and

object size distributions, to validate the performance improvement

1
The source code of Raven is available at https://github.com/RavenCaching.

and scalability of Raven. On three CDN production cache traces

and three in-memory cache traces from Twitter, Raven consistently

outperforms the state-of-the-art caching algorithms across all ex-

periments. Overall, Raven improves the object hit ratio and byte

hit ratio by up to 7.3% and 7.1%, respectively, reduces the average

access latency by up to 17.9% and backend traffic by up to 18.8%.

2 BACKGROUND, RELATEDWORK, AND
MOTIVATION

Caching mechanisms have been studied extensively since 1960s.

Most earlier designs have relied on various heuristics that often

impose strong assumptions on the object request arrival processes,

such as the object arrivals following a Poisson process or more

generally an Independent Reference Model (IRM). The classical ex-

amples are LRU (least recent used) and many of its variants, which

have been widely used in existing systems. The other example is

LFU (least frequently used) policy, which yields the optimal object

hit ratio under the (stationary) Poisson or IRM assumption. Most

cache heuristics are improvements upon these two basic policies,

more recent examples include TinyLFU [26], ARC [55], and Hyper-

bolic [13]; the literature is too numerous to list here. We refer the

reader to several survey papers and relevant recent research papers

(and references therein) [5, 6, 13, 27, 31, 42, 45, 53, 55–57, 65]
2
. In

the following, we focus instead on learning-based cache policies.

This provides the background and motivation for the design of our

proposed Raven framework.

2.1 General Learning-based Adaptive Caching
Algorithms

A key problem that plagues heuristics-based caching algorithms

in practice is that i) cache workloads, or object arrival processes,

come from an unknown distribution or process that cannot be

neatly modeled mathematically; and ii) they often change over

time. This has led to a flurry of interest in learning-based caching

mechanism designs utilizing historical data, see e.g., [16, 43, 49,
64, 69, 70]. Many of the learning-based caching algorithms focus

on predicting object popularity. One line of research still makes

explicit model assumptions about the object popularity distribution

or arrival processes, and relies on machine learning methods, e.g.,
Bayesian inference, to estimate model parameters. For example,

the most recent caching algorithm LHR [77] estimates hazard rates

to represent object popularity by assuming request processes are

Poisson. The main drawback of these popularity-estimation-based

learning algorithms is that they are essentially an adaptive version

of LFU, namely cache most popular objects only. In other words,

they ignore the temporal dynamics of the object arrival processes;

in contrast, a cache oracle in fact may not always cache the most

popular objects as we discuss in §2.3.

Another popular line of research casts the caching problem as

learning how to make caching decisions to optimize predefined

cache utility (aka rewards or regret). They either apply online learn-

ing [58] or reinforcement learning [41, 64, 79] algorithms to dy-

namically learn the optimal policy for decision-making. Unfortu-

nately, due to the large state-action space, they are significantly

2
For more details; this GitHub repository [73] also contains a list of popular cache

policies and their implementations.

https://github.com/RavenCaching
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more complex, sensitive to hyper-parameters, and often suffer from

delayed rewards leading to slow reaction times in dynamic envi-

ronments [9]. In fact, these issues have led the authors in [44] to

conclude that caching is “not amenable to training good policies.”

In addition, the models learned through these methods often lack

stability, generalizability, and explainability.

2.2 Learning-Augmented Caching Algorithms
In general, caching algorithms based on ML models work well with

accurate predictions, but can perform poorly when prediction er-

rors are large. To be robust to prediction errors, another line of

research, called learning-augmented algorithms [3, 17, 52, 63, 74],

treats the ML algorithm as an "oracle" and focuses on redesigning

online caching algorithms to leverage ML predictions with an em-

phasis on deriving bounds on worst-case performance (with respect

to optimal offline algorithms, or bounds on competitive ratios. For

example, Lykouris et al. [52] proposed PredictiveMarker, which aug-

ments the classic MARKER algorithm [28] with ML predictions of

object reuse distance. PredictiveMarker achieves good competitive

ratio and is robust even when the predictions are completely wrong.

While learning-augmented algorithms provide theoretically prov-

able upper bounds on competitive ratio, competitive analysis fails

to distinguish between practical and theoretical algorithms [13, 52].

2.3 Belady-based Learning Algorithms
For a given workload where all objects are of fixed size, we in

fact know the cache oracle for making optimal eviction decisions

to maximize object hit ratio. This is Belady’s MIN algorithm [8],

known since 1966, which is an offline algorithm assuming that all

future object request arrival times are known. Upon a cache miss,

Belady algorithm always evicts the object in the cache whose next
request arrival time is the farthest in the future among all objects

in the cache. This insight has given rise to several papers which

employ Belady algorithm to guide eviction decisions. The earliest

work [61], as well as more recent ones [38, 40], directly emulate
Belady algorithm for caching and prefetching decisions using a

window of past memory accesses in hardware cache designs.

More closely related to our work, Berger [9] first advocates di-

rectly learning from the optimal caching decisions using machine

learning, and proposes LFO for CDN cachingwhich trains a gradient

boosting decision tree using manually-designed features as a binary
classifier for caching decisions. Designed formemory cache systems,

Parrot [50] uses a deep reinforcement learning (DRL) framework

to imitate Belady algorithm for caching decisions based on past

requests and current cache state. Unlike LFO, Parrot avoids feature

engineering, but the heavy DRL framework makes it difficult to

scale to systems with millions of objects. The recent learning-based

caching algorithm, LRB [68], also leverages Belady algorithm for

caching decisions. However, in contrast to LFO and Parrot, instead

of imitating the “optimal decisions” made by Belady (via either a

learned binary classifier or via a DRL framework), LRB aims to

directly learn and predict the next arrival times of object requests,
and then resorts to a relaxed Belady algorithm for caching evic-

tions. Similar to LFO, LRB employs a gradient boosting machine

(GBM) [30] based on manually-designed features. While LRB has

shown superior performance over existing caching algorithms in

terms of byte hit ratios for CDN caching, the manual feature engi-

neering limits its applicability and generalizability to more general

object arrival processes and non-CDN application scenarios (e.g.,
in-memory cache systems). The ad hoc manner in which features

are selected and constructed also obscures its explainability.

2.4 Casting Arrival Process Estimation as the
Key to Belady-Guided Caching Design

A key challenge in directly applying Belady algorithm to caching

systems lies in that the optimal decisions made by Belady are (work-

load or) sample-path specific. Hence, directly imitating the decisions

made by Belady algorithm as in [9, 50] to learn a cache policy may

not be the best approach (see the evaluation results in §3.5). A per-

haps more effective approach is to learn and predict the objects’

future next-arrival times, and then apply the same optimal strategy

used in Belady algorithm for making caching decisions, namely,

evicting the object with the farthest next arrival time. The problem

then boils down to effectively predicting object next-arrival times

given the inherent stochasticity, uncertainty, and non-stationarity
in the time-varying object arrival processes.

Unlike LRB which directly predicts a deterministic estimation
of object next-arrival time based on hand-crafted features, our

proposed framework, Raven, utilizes probabilistic estimation of

next-arrival time. It models an object’s next-arrival time as a non-

stationary distribution and predicts the next-arrival time as a list of

possible values by sampling from the distribution. This probabilistic

estimation not only provides the expectation, but also the variance

of the next-arrival time. On the other hand, LRB predicts next-

arrival time as a single value (typically around the mean value).

This deterministic estimation does not convey any variability or

stochasticity of the arrival process. For example, considering a

scenario where the next-arrival time distributions of N objects have

the same mean but different variances. It will be challenging for

LRB to differentiate the N objects as the predictions of LRB are

around the mean value. However, Raven can differentiate them by

considering their variances, and preferably evicts the object with the

largest variance. By utilizing the power of probabilistic estimation,

Raven accounts for the inherent stochastic and time-varying nature

of object arrival processes, and probabilistically approximate Belady.

Therefore, Raven is more stable, generalizable, and explainable.

3 LEARNING OBJECT ARRIVAL PROCESSES
TO APPROXIMATE BELADY

Belady algorithm has been proven to be the optimal caching policy

on traces where objects have identical size [8]. Based on knowledge

of future requests, Belady evicts the object whose next request is the

farthest. To approximate Belady, this section introduces an online

caching algorithm, named Raven, which utilizes machine learning

to learn arrival processes of objects. Then, evict the object with the

largest probability of being the selected victim by Belady. We will

discuss the design details of Raven in §4.

3.1 Raven Framework
We design a powerful density estimation neural network to learn

and predict object next-arrival times, considering the inherent
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Figure 1: Overview of the Raven framework. It estimates the arrival processes of objects using Density Estimation Neural
Network. The priority score of an object is derived from the estimated arrival process and represents the probability that the
object arrives farthest in the future compared to other cached objects. When a cache miss happens, the object with the largest
priority score is evicted.

stochasticity, uncertainty, and nonstationarity in the time-varying

object arrival processes. Upon a cache miss, based on the predicted

arrival processes of cached objects, Raven evicts the object with the

largest probability that its next arrival is the farthest. We further

extend Raven to be aware of variable object sizes in §3.4.

The framework of Raven is depicted in Fig. 1. It consists of three

major components: i) Density Estimation Network which uses a

memory window of past requests as training data and estimates

arrival processes of objects based on their historical inter-arrival

time information, ages, and sizes (§4.2); ii) Priority Score which

computes the probability that an object will arrive farthest (§3.3 &

§3.4); iii) Caching Policy which ranks the cached objects based on

their priority scores, then evicts the one with the largest score to

approximate Belady.

The caching process in Fig. 1 works as follows. For each object

in cache, Raven maintains a feature vector, namely, object size, age,

and history embedding automatically extracted by the density esti-

mation network (§4.2.1). Upon a new request for object 𝑂𝑖 , Raven

records its information to construct training dataset to later update

the density estimation network (§4.1). Upon a cache miss, a number

of cached objects are randomly sampled as eviction candidates, then

their next arrival processes are predicted based on their feature

vectors via the density estimation network (§4.2.2 & §4.2.3). The

priority scores of eviction candidates are derived from the estimated

arrival processes, and the object with the largest score is evicted.

3.2 Learning Arrival Processes
Problem formulation.We represent the overall request arrival

process generated by a large population of users as the superposi-

tion of many independent random processes, each referring to an

individual object [70]. The arrival process of an object is character-

ized by a sequence of increasing arrival times {𝑡1, ..., 𝑡𝑁 } or equiv-
alently by a sequence of inter-arrival times {𝜏1, ..., 𝜏𝑁−1}, where
𝜏𝑖 = 𝑡𝑖+1 − 𝑡𝑖 . Inferring the arrival process is equivalent to estimat-

ing 𝑝 (𝜏) from the observed inter-arrival times, where 𝑝 (𝜏) is the
density distribution of the inter-arrival time 𝜏 , priorly unknown,
and time-varying in practice.

Universal Arrival Process Approximation. Learning object
arrival processes for caching has four major challenges: 1) scaling to
millions of objects; 2) estimating arbitrary arrival processes with-

out any prior assumptions; 3) modeling nonstationarity of arrival

processes; and 4) solving data scarcity caused by infrequent ob-

jects while estimating distributions. To address these challenges,

we design a mixture density network (MDN) (i.e., a specific type

of density estimation network) [12, 54, 66]. Unlike previous works

which assume a pre-specified arrival model (e.g., Poisson process

[70, 77], renewal process [43], self-exciting process [69]), the univer-

sal approximation capability of our MDN enables Raven to estimate

arbitrary arrival processes. To account for the nonstationarity of ar-

rival processes, the proposed MDN uses a recurrent neural network

(RNN) layer to automatically extract temporal dependency features

from objects’ historical inter-arrival times. Therefore, an object’s

estimated arrival process depends on its history. Our MDN maps

objects with different arrival histories to different arrival processes,

and hence scales to millions of objects. As for data scarcity, we

solve it by using survival probability and data from a large number

of infrequent objects. Our MDN is described in detail in §4.2.

3.3 Predicting the Farthest Next (Request)
Arrival of an Object

Based on the estimated object arrival processes, to approximate

Belady which evicts the object with the largest residual time, Raven

calculates the order statistics (denoted as priority scores) of objects

to rank objects in cache and find the farthest arrival object.

Priority Score. The priority score of an object is defined as the

probability that its residual time
3
is greater than the residual time of

any other object in cache. Let’s denote the age of an object𝑂 𝑗 as 𝑎 𝑗
and its residual time as 𝑅 𝑗 . The priority score 𝑝 𝑗 of𝑂 𝑗 is calculated

as:

𝑝 𝑗 = 𝑃𝑟 {𝑅 𝑗 > 𝑅1, ..., 𝑅 𝑗 > 𝑅𝑘 , ..., 𝑅 𝑗 > 𝑅𝐶 } (1a)

=

∫ ∞

0

𝑝𝑅 𝑗
(𝑡)

∏
𝑘≠𝑗

𝐹𝑅𝑘 (𝑡)𝑑𝑡 (1b)

≈
∑𝑀
𝑚=1 𝐼 {𝑟 𝑗𝑚 > 𝑟𝑘𝑚,∀𝑘, 𝑘 ≠ 𝑗}

𝑀
(1c)

where𝐶 is themaximumnumber of objects in cache. 𝑝𝑅 𝑗
(𝑡) is object

𝑂 𝑗 ’s residual time density distribution, and 𝐹𝑅𝑘 (𝑡) is object 𝑂𝑘 ’s
cumulative distribution function. Both 𝑝𝑅 𝑗

(𝑡) and 𝐹𝑅𝑘 (𝑡) depend
on object’s history and can be easily obtained by our MDN in

closed-form. 𝑟 𝑗𝑚 is the m-th sample drawn from𝑂 𝑗 ’s residual time

distribution 𝑝𝑅 𝑗
(𝑡). 𝑀 is the total residual time sample number.

𝐼 {𝑟 𝑗𝑚 > 𝑟𝑘𝑚,∀𝑘, 𝑘 ≠ 𝑗} is 1 if the m-th residual time sample of 𝑂 𝑗
is greater than the m-th residual time sample of any other objects

and is 0 otherwise. Appendix A shows the full proof.

3
Residual time is defined as given an object’s current age, the time it takes for its

next-arrival.
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Figure 2: Hit ratios on synthetic traces (C: Cache Size).
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The proposed priority score represents the probability that an

object is the selected victim by Belady. It approximates Belady

while taking the randomness and uncertainties of arrival processes

into consideration. While the exact priority score in Equation 1b

is optimal, it is too complicated and computationally expensive.

To reduce runtime during eviction, Raven approximates the exact

priority score with residual time samples as in Equation 1c. The

complexity of this approximation is 𝑂 (𝑀), where𝑀 is the residual

time sample number. As 𝑀 increases, the approximated priority

score converges to the exact priority score (see more discussion of

residual time sample number𝑀 in §4.3.2).

3.4 Dealing with Variable Object Sizes
In reality, object sizes can span several orders of magnitude, es-

pecially in CDNs and web applications. The goal of a caching al-

gorithm can be to maximize either object hit ratio (OHR) or byte

hit ratio (BHR), depending on the penalty of a cache miss. Toward

these two different goals, two Belady variants are widely used as

optimal algorithms [10, 68]. This subsection describes how Raven

is extended to be size-aware based on the Belady variants.

OHR goal. OHR goal treats the cost of each cache miss equally,

and aims at caching as many objects as possible with limited cache

space. To maximize OHR, a widely-used extension of Belady is

to evict the object with the highest cost = object size × next-use

distance. A more accurate upper bound on OHR is provided by

practical flow-based offline optimal (PFOO) algorithm [10]. Overall,

these two algorithms imply that a caching algorithm should keep

small objects that will result in a cache hit quickly to maximize

OHR. Based on this insight, Raven augments the original priority

score (see Equation 1) with object size: 𝑝𝑖 = 𝑠𝑖 ×𝑝𝑖 and ranks objects
based on the new priority scores.

BHR Goal. BHR goal values the cost of each cache miss with

regard to its object size, and aims at reducing the traffic and expense

of fetchingmissed objects. The original Belady algorithm is believed

to be a near-optimal algorithm in this case, and has been used as a

guideline in LRB [68] to maximize BHR. Therefore, Raven uses the

original priority score to achieve the BHR goal.

3.5 Simulation Results
This subsection uses three synthetic traces to show that Raven

can adapt to different workloads, and consistently outperforms

the state-of-the-art caching algorithms. Each trace contains 10M

requests of 1000 objects. To represent different workloads, the inter-

arrival time distributions in the three traces are Poisson, Uniform,

and Pareto distributions, respectively. We compare Raven with

heuristics algorithms (e.g., Hyperbolic [13], LFUDA, LRU, GDSF,
and LHD [7]), as well as learning-based algorithms (e.g., LRB [68],

LHR [77], Parrot [50], and PredictiveMarker
4
[52]). More details

about the experiment setup are described in Appendix C.1. The

results on real-world traces are shown in §5.

Fig. 2a shows the hit ratio results on the three traces where all

objects have the same size, and the cache size is configured to hold

100 objects. Raven consistently achieves the best hit ratio across

all traces. We further use rank-order error to compare the four

best-performing learning-based algorithms. Rank-order error of an

evicted object is the difference between its ranking using a caching

algorithm and its true ranking using the future request times. Fig. 3

shows the CDF of rank-order errors on the Uniform trace. The

average and variance (see details in Table 6) of rank-order errors

of Raven are consistently the smallest, which indicate that Raven

has more accurate and stable predictions of objects’ future arrivals,

because it explicitly accounts for the stochastic nature of object

request arrival processes. More results of hit ratio and rank-order

errors are shown in Appendix C.2.

Fig. 2b and Fig. 2c show the OHR and BHR performance on the

three traces where objects have variable sizes, and cache size is

configured to be 80 KB (i.e., 10% of the total unique bytes). Parrot and

PredictiveMarker are excluded as they cannot handle variable object

sizes. Results on more cache size settings can be found in Appendix

C.3. This evaluation shows that Raven consistently achieve the best

object hit ratios, best byte hit ratios, and outperforms the other

learning-based algorithms.

4 DESIGN OF RAVEN
Raven uses a well-designed ML model to learn arrival processes

of objects and approximates Belady in a practical manner. Accom-

plishing this requires addressing the following key design issues:

i) Training data. How much past information is needed and how

to use this historical data for training? ii)ML architecture. How
to efficiently learn arbitrary arrival processes for millions of ob-

jects while considering the nonstationarity nature and the scarcity

of data? iii) Eviction rule. How to utilize the estimated arrival

processes to quickly calculate priority scores and rank objects to

evict? This section describes the key components of Raven that

help address these design issues.

4.1 Training Data
Overall, Raven keeps information about objects that have been pre-

viously requested within the training window. This historical data

4
The comparison with [52] on the dataset used in [52] is shown in Appendix B.
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is used for training the ML model to estimate the arrival processes

of objects at the end of every training window. We now describe

how to choose the window size and construct the training data.

As arrival processes of objects may be nonstationary and have

diurnal or time-of-day patterns [15, 71, 78], Raven considers the

size of a window measured in terms of the elapsed time since the

last training or the beginning of the trace. Choosing the window

size is important to the performance of Raven. If the window size

is too small, the request sequences of all objects may be too short,

and Raven will not have enough training data for its ML model to

learn arrival processes and nonstationarity. If the window size is

too large, it may increase the memory overhead, processing time,

and training time. To account for diurnal patterns and reduce the

training frequency, we set the window size to be 1 day.

In reality, the historical data in a window of 1 day can be more

than hundreds of millions due to the high request rate. To address

this “data explosion”, Raven periodically takes a random sample of

objects, and only records information of the sampled objects. Each

object has the same probability to be sampled, because we want

to avoid biasing the training data towards popular objects which

has many requests. The sampling rate is determined such that the

number of unique bytes of the sampled objects is no more than

5× the cache size. We choose 5× the cache size as upper bound,

because it is large enough to characterize the workload patterns in 1

day, and similar window setting has also been used in [77]
5
. In our

experiments, we find that larger window size further increases the

training time and overhead, without a noticeable improvement on

hit ratios. The typical numbers of objects and numbers of request

samples in training datasets are shown in the Appendix D.

We remark that the training data can be streamed to another

dedicated machine to train the ML model. At the beginning of a

trace, we use LRU as a fallback until the ML model is trained.

4.2 ML Architecture
This subsection introduces the ML model used by Raven to learn

arrival processes and how we design it to handle 1) scalability,
i.e., learning the arrival processes of millions of objects at scale; 2)

universal estimation, i.e., estimating arbitrary arrival processes

without any prior assumptions; 3) nonstationarity, i.e., capturing
the nonstationarity of arrival processes; 4) data scarcity, i.e., coping
with infrequent objects whose request sequences are short in nature;

The architecture of the proposed ML model is illustrated in Fig. 4.

Next, we describe its components and design rationale.

4.2.1 Input data: inter-arrival times, object size, and age.
Raven uses 3 inputs to its ML model: past inter-arrival times, object

size, and age. Unlike previous learning-based caching algorithms

(e.g., LRB [68], LHR [77]) which rely on manually-designed fea-

tures, Raven uses raw data and employs neural networks (NN) to

automatically extract features.

History embedding. To extract temporal dependency features,

Raven uses a single-layer RNN [25] to process an object’s histori-

cal inter-arrival times, and embed the arrival history into a fixed-

dimensional vector 𝒉 (i.e., the hidden state of RNN). The RNN unit

can be either vanilla RNN, or LSTM, or GRU. The type of RNN

5
Instead of using 4× the cache size as in [77], Raven uses 5× because the MDN is more

complicated than GBM used in [77].

RNN𝜏i-1 hi
𝑝(𝑅𝑖|𝝓()

𝜙i

MLP GMM

[si, ai]
parameter
vector

Figure 4: The architecture ofmixture density network (MDN).
MDN outputs mixture distribution parameters to represent
any object’s residual time distribution conditional on its size,
age, and history embedding.

unit is a parameter that can be configured and we use GRU in our

experiments. According to our experimental experiences, different

RNN units do not make a significant difference, and a 32-128 RNN

hidden-state size works well in most cases. A larger or smaller

hidden-state size would have slightly worse performance. An ob-

ject’s history embedding is continuously updated as its new arrival

time is observed. Unlike LRB and LHR which consider fixed-length

short-term relationships (e.g., LRB uses past 32 inter-arrival times),

Raven takes both short-term and long-term temporal relationships

into consideration by utilizing RNN. This allows Raven to solve the

nonstationarity issue caused by time-varying access patterns.

In addition to temporal dependency features, we also use ob-

ject size, denoted as 𝑠 , and age (i.e., time since the latest request),

denoted as 𝑎, to infer its future arrival process. These two pieces

of information are easy to obtain and intuitively correlate with

different access patterns.

4.2.2 Model: Mixture Density Network. Raven achieves scala-
bility by using a global mixture density network (MDN) [12, 54, 66]

to learn arrival processes for millions of objects. Our MDN is built

upon the Gaussian mixture model (GMM), and approximates an

arbitrary arrival process as a mixture of log-normal distributions,

since inter-arrival times are positive. MDN scales GMM by employ-

ing a simple feedforward neural network to automatically extract

features from input data, then map them to the parameters of GMM.

Therefore, different objects will have different features and are

mapped to different arrival processes.

In this work, the feedforward neural network is a three-layer

fully connected multilayer perceptron (MLP) with the ReLU acti-

vation function used in hidden layers. The input of MLP is object

size, current age, and history embedding. Denote the input at time

𝑡 as 𝒙 = [𝒉𝑡 , 𝑠, 𝑎], where 𝒉𝑡 = 𝑅𝑁𝑁 (𝜏𝑡−1,𝒉𝑡−1). The output of

MLP is the parameters of GMM, i.e., the mixture weights 𝝎, the
mixture means 𝝁, and the standard deviations 𝒔. Denote the output
as 𝝓 = [𝝎, 𝝁, 𝒔]) and it is obtained by

𝝎 = softmax(𝑾𝜔 𝒄+𝒃𝜔 ) 𝝁 =𝑾𝜇𝒄+𝒃𝜇 𝒔 = exp(𝑾𝑠 𝒄+𝒃𝑠 ) (2)

where 𝒄 is the output of MLP’s last hidden layer,

𝒄 = 𝑅𝑒𝐿𝑈 (𝑾2𝑅𝑒𝐿𝑈 (𝑾1𝒙 + 𝒃1) + 𝒃2) (3)

To enforce the constraints on the distribution parameters 𝝓, softmax

and exp transformation are applied.𝑾∗ and 𝒃∗ are the learnable
parameters of MLP.

4.2.3 Prediction Target: residual time distribution. Raven
uses the predicted GMM parameter vector 𝝓 to estimate residual
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time distributions for objects:

𝑝 (𝑅 |𝝓) =
𝐾∑︁
𝑘=1

𝜔𝑘
1

𝑅𝑠𝑘
√
2𝜋

exp(− (log𝑅 − 𝜇𝑘 )2

2𝑠2
𝑘

) (4)

where 𝐾 is the number of mixture components, 𝜔𝑘 , 𝜇𝑘 , and 𝑠𝑘 , re-

spectively, represent the weight, mean, and the standard deviation

of the 𝑘-th Gaussian component. Note that the residual time distri-

bution is a conditional distribution that depends on object size, age,

and arrival history, i.e., 𝑝 (𝑅 |𝝓) = 𝑝 (𝑅 |𝑠, 𝑎,𝑯 ), where 𝑯 represents

object historical inter-arrival times.

Since arbitrary stationary distributions can be approximated by

a mixture of Gaussian distributions [12] and the nonstationarity of

distributions can be captured by RNN, Raven achieves universal ar-
rival process estimation by combining RNN and GMM. The detailed

proof of universal arrival process estimation by combining RNN

and MDN is shown in [66].

4.2.4 Loss Function: log-likelihood and survival probabil-
ity. Raven trains MDN by maximizing log-likelihood and survival

probability of object request sequences which happened during

the training window. To be more specific, we assume that at the

end of the current training window time 𝑡 , the training dataset

consists of N objects, and each object has an (𝑚𝑖 + 1)-length arrival

time sequence [𝑡1, 𝑡2, ..., 𝑡𝑚𝑖+1] (i.e.,𝑚𝑖 -length inter-arrival time se-

quence [𝜏1, 𝜏2, ..., 𝜏𝑚𝑖
]) and a survival time 𝑡 − 𝑡𝑚𝑖+1. To obtain an

age associated with a past inter-arrival time sample 𝜏𝑖 , we randomly

sample age 𝑎𝑖 from the uniform distribution𝑈 [0, 𝜏𝑖 ] and the corre-

sponding residual time 𝑅𝑖 is 𝜏𝑖 − 𝑎𝑖 . Same logic applies to obtaining

an age associated with a survival time. Let’s denote the parameters

of MDN as 𝜽 . We find the optimal parameters by maximizing the

following loss function:

𝜽★ = max

𝜽

1

𝑁

∑︁
𝑂𝑖

(
𝑚𝑖∑︁
𝑖

log𝑝 (𝑅𝑖 |𝝓𝒊)+

log 𝑃𝑟 {𝑅𝑚𝑖+1 > 𝑡 − 𝑡𝑚𝑖+1 − 𝑎𝑚𝑖+1 |𝝓𝑚𝑖+1 })
(5)

where 𝝓 is the output of our MDN and is determined by MDN pa-

rameters 𝜽 , 𝑝 (𝑅𝑖 |𝝓𝒊) is the likelihood of observing residual time 𝑅𝑖 ,

and 𝑃𝑟 {𝑅𝑚𝑖+1 > 𝑡 − 𝑡𝑚𝑖+1 −𝑎𝑚𝑖+1 |𝝓𝑚𝑖+1 } is the survival probability
that the residual time is greater than the survival time minus age.

Typically people utilize log-likelihood to learn distributions of se-

quences [18, 24, 66]. In this paper, we additionally include survival

probability [66] to help model short sequences, since the object

popularity distribution is “long tailed” in production traces, where

a small portion of objects have massive requests, while others have

much less or even a few requests. By considering survival proba-

bility and learning from a large number of short sequences, MDN

is able to map the history embeddings of infrequent objects with

large survival times to distributions where large residual times

have higher probabilities. Hence, MDN solves the data scarcity is-

sue caused by infrequent objects. To demonstrate the data scarcity

in the six production traces (see §5.1.1 for details of real-world

traces), Table 8 in the Appendix E shows the number of one-hit

wonders
6
under different cache size settings. The impact of survival

probability is shown in Fig. 5, which compares the performance of

6
One-hit wonders refer to cached objects that are never accessed before they are

evicted due to their lack of popularity.
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Raven with and without the survival probability. We can notice that

the performance of Raven improves on all traces, with significant

increases on Wiki 18 and Wiki 19 traces.

4.3 Eviction Rule
In this subsection, we describe how Raven approximates the priority

score defined in Equation 1 by two sampling techniques to quickly

rank objects to evict.

4.3.1 Samples from cached objects. Raven randomly samples

cached objects to get eviction candidates, then runs a batch predic-

tion for all candidates to estimate their residual time distributions

and calculate their priority scores. Raven evicts the object with

the highest priority score, which means that it has the highest

probability of its next arrival request being the farthest among the

other candidates. This sampling technique is widely used in recent

caching policies [7, 13, 59, 68]. Similar to previous works, we choose

random sample size as 64 samples. Randomly sampling 64 cached

objects to evaluate reduces inference time and achieves constant

ranking time with respect to the number of cached objects.

4.3.2 Samples from residual time distributions. Raven uses

samples from candidates’ residual time distributions to approximate

their priority scores as defined in Equation 1c. The complexity of

this approximation is 𝑂 (𝑀), where𝑀 is the residual time sample

number. As𝑀 increases, the approximated priority score converges
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Table 1: Key properties of the six production cache traces used throughout our evaluation.
Wiki 18 Wiki 19 Wikimedia 19 Twitter C17 Twitter C29 Twitter C52

Total Requests 2.8 billion 2.7 billion 208 million 9.7 billion 3.8 billion 12.5 billion

Total Bytes 90 TB 99 TB 6.4 TB 5.1 TB 1.7 TB 2.9 TB

Unique Objects 38 million 51 million 49 million 29 million 326 million 728 million

Unique Bytes 5.5 TB 8.3 TB 1.3 TB 5.2 GB 115 GB 100 GB

Duration 15 days 21 days 21 days 8 days 5 days 6 days

Request Object Size

Mean 34 KB 40 KB 33 KB 575 B 482 B 258 B

Max 1.2 GB 1.3 GB 6.6 MB 1.4 KB 712 KB 9.2 KB

to the exact priority score defined in Equation 1b. The theoretical

selection of minimum sample size varies for different use cases.

Generally 30-100 sample sizes are sufficient to conduct significant

statistics [36] or get a meaningful result [21]. Based on our empirical

experiences, the impact of residual time sample number on hit

ratios is shown in Fig. 6, and its impact on the average eviction

time is shown in Fig. 7. To achieve a reasonable tradeoff between

approximation accuracy and computation time, Raven chooses the

residual time sample size𝑀 as 100.

4.4 Putting It All Together
Putting all of the above components together, we have the complete

design of Raven as shown in Fig. 1. Raven learns from the requested

objects in a training window. A sampling process continuously

samples requested objects to generate the training dataset. At the

end of the training window, Raven starts training an MDN model

and empties the training dataset. After that, whenever a training

window is reached again, Raven repeats the process and replaces

the old model with the new one. If the current requested object is

not cached, we need to evict an object. Raven randomly samples 64

eviction candidates from the cached objects, runs MDN to predict

their residual time distributions, draws 100 residual time samples

from each predicted distributions, and calculates the priority scores.

Then, Raven evicts the candidate with the highest priority score,

which represents the candidate with the highest probability of

having the largest residual time.

4.5 Implementation
Raven is implemented in Python and uses PyTorch [22] for ML

related tasks. The whole pipeline contains 3600 lines of code. We

expose the same interfaces as LRB, namely, lookup() for cache

lookup and admit() for admission upon a cache miss. To allow

direct comparison with Apache Traffic Server (ATS) which powers

CDN servers, we integrate Raven with ATS, based upon LRB proto-

type, which integrates LRB caching algorithm with ATS [68]. Since

the ATS is implemented in C++, Raven is integrated by employing

a Python/C++ wrapper in-between Raven and ATS. When the in-

terface from ATS, e.g., lookup() or admit(), is called, the wrapper
redirects the call to Raven sub-system for further execution. By this

means, ATS can directly utilize Raven with minor modifications.

5 EVALUATION
We evaluate Raven on real-world cache traces to explore the follow-

ing questions: 1) What is the performance of Raven compared to the

state-of-the-art (SOTA) caching algorithms in terms of OHR, BHR,
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Figure 8: The object size and popularity distributions of the
six production traces.

traffic reduction, latency, and throughput under various cache size

settings? 2) What is the gap between Raven and optimal algorithms

(OPTs)? 3)What is the performance of Raven prototype compared to

the ATS production system in terms of OHR, BHR, traffic reduction,

and what is the cost of its implementation overhead?

5.1 Methodology
This subsection describes the real-world cache traces, the experi-

ment setup of our simulation and testbed, the state-of-the-art algo-

rithms, and the parameter settings of Raven.

5.1.1 Real-world Traces. We use three public CDN production

traces from Wikipedia 2018, 2019 [68], Wikimedia 2019 [75] and

three public in-memory production traces from Twitter in 2020 [78].

The Wikipedia traces are collected from nodes in a metropolitan

area and serve a mixture of web, photo, and other media content

for Wikipedia pages. The Wikimedia dataset is a restricted public

snapshot of the wmf.webrequest table intended for caching research,
which contains data on all the hits to Wikimedia’s servers. As for

Twitter traces, we use three miss-ratio-related traces from Twitter

in-memory cache cluster 17, cluster 29, and cluster 52. We convert

the in-memory trace format to our format by simply summing key

size and value size to be the object size.

We summarize key properties of the traces in Table 1. Addition-

ally, we show the characteristics and request patterns of the traces

in Fig. 8. The object size distribution in Fig. 8a shows that object

sizes in CDN traces can span more than eight orders of magnitude,

whereas for in-memory traces (i.e., Twitter) the variance of object
sizes is much smaller. The object popularity distribution in Fig. 8b

shows that all workloads approximately follow a Zipf distribution.

Appendix F further analyzes the distributions of request numbers

and requested bytes over object size and frequency.
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Figure 9: Object hit ratios and byte hit ratios on production traces with different cache sizes. Raven consistently outperforms
all SOTAs in all traces and cache sizes combinations.

5.1.2 State-of-the-Art Algorithms. We compare Raven with 14

state-of-the-art eviction algorithms. To improve readability, we only

show the eight best-performing algorithms which can be catego-

rized into: 1) learning-based algorithms: LRB [68], LHR [77]
7
; and

2) heuristics-based algorithms: LHD [7], GDSF, Hyperbolic [13],

LFUDA, LRU, and ThS4LRU. We exclude Parrot [50] and Predictive-

Marker [52] from comparison because they cannot handle variable

object sizes and do not scale to production traces.

5.1.3 Raven Settings. Unless otherwise noted, we use the fol-
lowing default values to evaluate Raven. With respect to the hyper-

parameters of our mixture density network, the number of Gaussian

mixture components K is 64, the RNN unit is GRU, the RNN hidden

state (history embedding) size is 32 for CDN traces and 16 for Twit-

ter traces to reduce the memory overhead in the case of in-memory

traces. The learning rate is 0.001, and 20% of the training dataset

are with-held as validation dataset. The training process is stopped

early if the validation error is no longer decreasing in the previous

consecutive 200 epochs. We use the first 20% of every trace to esti-

mate the request rate and tune the sampling rate to construct the

training dataset.

5.1.4 Testbed and Simulation Settings. In our prototype testbed
andCDN caching simulation, three components are involved, namely,

client, caching server, and origin server. Similar to the settings used

in LRB [68] and LHR [77], we assume the trace-based simulation

runs in an ideal environment where the network transmission rate

7
For fairness, we remove the admission control of LHR and use its eviction algorithm,

since all other SOTAs and Raven don’t do admission control. Appendix G compares

Raven to SOTA admission algorithms, i.e., AdaptSize [11] and the original LHR. The

results show that Raven without admission control improves OHR up to 4.8% and BHR

up to 12.1%, compared to the best performing admission algorithm.

is 8 Gbps. For latency measurements, to simulate network RTTs, we

add a 10 ms delay to the link between client and caching server, and

a 100 ms delay to the link between origin and caching server [68].

Similarly, in-memory experiments involve client, memory, and data-

base. We add a 100 𝜇s delay to the memory access and a 10 ms delay

to the database access [19]. Cache sizes used for different traces

are selected based on the total active bytes of each trace. All ex-

periments are carried out on a server, which has one AMD Ryzen

Threadripper PRO 3995WXwith 1 TB RAM and one NVIDIA A6000

GPU with 48 GB RAM.

5.2 Raven vs. State-of-the-Art Algorithms
We compare Raven to 14 state-of-the-art cache eviction algorithms

using simulations with various cache size settings on the six pro-

duction traces described earlier. To improve readability, we show

only the best eight algorithms.

5.2.1 Hit Ratios. Fig. 9 shows the object hit ratios (OHR) and

byte hit ratios (BHR) for each eviction algorithm with different

cache sizes using the six traces. Raven consistently outperforms

the best state-of-the-art algorithms. Across all experiment settings,

Raven improves OHR by 2.6%-7.3% with an average of 4.0%, and

improves BHR by 0.5%-7% with an average 3.7%. Note that the

improvement of BHR on Wiki 2018 and Wiki 2019 traces are not

significant compared to LRB. But, such small BHR improvement

help reduce WAN traffic by 4.5% compared to LRB, as shown later.

More hit ratio results over 5 cache sizes and the full comparison to

the 14 baselines can be found in Appendix H.

To better understand the results, we zoom into the caching per-

formance of different algorithms on different traces. In general,

heuristic algorithms perform well on certain type of workload, but
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Figure 10: Simulated traffic and latency on production traces with different cache sizes. Raven consistently outperforms all
SOTAs in all traces and cache sizes combinations. Small improvements in hit ratios correspond to a high improvement in traffic
and latency reduction.

may perform poorly on other types of workloads. For example,

GDSF achieves high OHR on Wikipedia traces, but low OHR on

Twitter cluster 17 trace. LRU obtains high BHR on Twitter traces,

but low BHR on Wikipedia traces. On the Wikipedia traces, com-

pared to existing learning-based algorithms, namely LHR and LRB,

Raven improves OHR by 10% and BHR by 1%. The difference be-

tween OHR and BHR improvements on the Wikipedia traces is

due to the distributions of object requests and requested bytes, as

shown in Fig. 18 (Appendix F). Overall, most of the requests in the

Wikipedia traces are from objects with frequency greater than 200

(i.e., relatively popular objects). However, most of the requested

bytes are from objects with frequency less than 200 (i.e., unpopular
objects). Since modeling unpopular objects is more challenging than

modeling popular objects, the BHR improvement on the Wikipedia

traces is less than the OHR improvement.

5.2.2 Traffic, Latency, and Throughput. Fig. 10a shows the

wide-area network traffic and the database read traffic for each

algorithm. Raven robustly outperforms the best state-of-the-art

algorithms (SOTAs). Overall, it reduces the backend traffic between

the caching server and the origin server by 2.6%-18.8% with an

average of 10.4%. Note that Raven simultaneously achieves the

largest hit ratio and the least traffic whereas none of the SOTAs

does so. For example, while LRB achieves the highest byte hit ratio

and least traffic among SOTAs on CDN traces, it exhibits high hit

ratios, but large database traffic on Twitter traces.

Fig. 10b shows the average latency for each algorithm. Compared

to the SOTAs, Raven reduces the average latency by 4.7%-17.9%

with an average of 10.1%. These results show that although the

ML inference time of Raven (i.e., 50 𝜇s) is larger than SOTAs, the

Table 2: Simulated average throughput on a cache of 128GB,
128GB, 16GB, 4MB, 64MB, and 32 MB for Wiki 18, Wiki 19,
Wikimedia 19, Twitter 17, Twitter 29, and Twitter 52 respec-
tively.

Raven LHR LRB LRU
wiki 18 (Gbps) 6.46 5.91 5.83 5.32

wiki 19 (Gbps) 6.00 5.56 5.55 5.04

wikimedia 19 (Gbps) 3.50 3.33 3.10 3.11

twitter 17 (K Requests/s) 18.09 16.87 14.46 16.23

twitter 29 (K Requests/s) 19.95 17.13 14.78 15.54

twitter 52 (K Requests/s) 21.97 19.62 12.21 16.57

hit ratio improvement of Raven dramatically reduces latency, as

the backend fetch time is significantly greater than the ML infer-

ence time. Table 2 summarizes the average throughput of LRU (the

default algorithm in production systems), LRB, LHR, and Raven.

We can notice that Raven consistently improves throughput over

SOTAs across all traces. The memory overhead and running time

of the machine learning based algorithms are shown in §6.1.1.

5.3 Raven vs. OPT
We have seen that Raven significantly outperforms SOTAs. Now, we

compare Raven with the offline optimal algorithm Belady
8
and an

online optimal algorithmHRO [77]. Fig. 11 compares their object hit

ratios (OHR) and byte hit ratios (BHR) on all six production traces

with different cache sizes. We also include the best performing

SOTA on each trace and cache size. We find that Raven indeed is

8
Here we refer to both Belady and Belady-Size as Belady.



Raven: Belady-Guided, Predictive (Deep) Learning for In-Memory and Content Caching CoNEXT ’22, December 6–9, 2022, Roma, Italy

Wiki 18
Wiki 19

Wikimedia 19
Twitter C17

Twitter C29
Twitter C52

32GB 64GB 16GB 4MB 64MB 32MB0.00

0.25

0.50

0.75

Ob
je

ct
 H

it 
Ra

tio

Wiki 18
Wiki 19

Wikimedia 19
Twitter C17

Twitter C29
Twitter C52

256GB 256GB 16GB 4MB 64MB 32MB

By
te

 H
it 

Ra
tio

Belady Raven SOTA HRO

Figure 11: Raven vs OPT on hit ratios.

0 3 6 9 12 15 18 21
Time (Day)

0.52

0.53

0.54

0.55

0.56

Ob
je

ct
 H

it 
Ra

tio

ATS
Raven

0 3 6 9 12 15 18 21
Time (Day)

0.62

0.63

0.64

By
te

 H
it 

Ra
tio

ATS
Raven

Figure 12: Raven vs unmodified ATS.

closer to Belady. Raven reduces the OHR gap between SOTAs and

Belady by 37.2% on average, and reduces the BHR gap between

SOTAs and Belady by 29.2% on average. One interesting observation

is that HRO performs well on certain traces, but poorly on Twitter

C17 and C52, which shows that HRO is workload specific. The

poor generalizability of HRO is due to its similarity to LFU policy

and its simplified assumptions of arrival processes. HRO estimates

hazard rates to represent object popularity based on the assumption

that request processes are Poisson. The remaining gap between

Raven and Belady is due to the distribution estimation error of our

ML model and the randomness of realization of objects’ arrival

processes. We leave the improvements of distribution estimation

for future work.

5.4 Performance of ATS with Raven
In this section, we compare Raven prototype and an unmodified

Apache Traffic Server (ATS) with respect to hit ratios, WAN traf-

fic, and implementation overhead. The results are measured using

Wikimedia 2019 trace with a cache of 32 GB.

Hit Ratios. Fig. 12 compares the object hit ratio and byte hit

ratio of Raven and unmodified ATS. Overall, Raven achieves both

higher object hit ratio and byte hit ratio than ATS. We can notice

that Raven reaches higher OHR and BHR after its neural network

is trained in the warm-up stage, and continues to improve hit ratios

with a quicker rate than ATS.

Implementation Overhead. Table 3 compares the overhead

of Raven against unmodified ATS in terms of throughput, latency,

and traffic. We also measure the max throughput, the 90
𝑡ℎ

and

99
𝑡ℎ

percentile latency, and the 95
𝑡ℎ

percentile bandwidth, as these

metrics are the basis of some CDN contracts [1, 68]. The OHR

and BHR of Raven is 4.5% and 3% greater than ATS. This hit ratio

improvement allows Raven to improve the average latency by 9.4%

and the 90
𝑡ℎ

percentile latency by 8.9% compared to ATS. As for

the 99
𝑡ℎ

percentile latency, Raven and ATS are the same, because

the latency to the origin server dominates. With respect to traffic,

Raven reduces the averageWAN traffic by 9.9% and reduces the 95
𝑡ℎ

Table 3: Resource usage for Raven and unmodified ATS in
production-speed experiments.

Metrics Raven ATS
P90 Latency (ms) 145.64 160.00

P99 Latency (ms) 220 220

avg. Latency (ms) 97.85 107.97

P95 Traffic (Gbps) 4.67 5.06

avg. Traffic (Gbps) 2.58 2.86

max Throughput (Gbps) 10.46 10.46

avg. Throughput (Gbps) 4.13 3.76

percentile traffic by 7.6% over ATS. Lastly, Raven has no measurable

throughput overhead.

6 DISCUSSION
In this section, we show the memory overhead and running time

of the three machine learning based caching algorithms. Then we

discuss the methods to amortize and reduce the machine learning

overhead of Raven. To study Raven’s implications on IT economics,

we present some examples of cache cluster costs with the assump-

tion of allocating the simple heuristics algorithm more caching

capacity to achieve the same hit ratio as Raven. Besides, we high-

light limitations and future directions of arrival process estimation.

6.1 Machine Learning Overhead & Economics
6.1.1 Machine Learning Overhead. We compare the memory

overhead and running time of the three learning-based algorithms:

Raven, LHR, and LRB. For each object in cache, themetadata used by

Raven to infer its residual time distribution is its history embedding,

current age, and object size. Therefore, the metadata memory of

each object in cache is 136 bytes on CDN traces, and 72 bytes on

Twitter traces according to the different RNN hidden state size

settings. The metadata used by LHR and LRB to make an inference

for an object is the size of their manually defined features which

takes 84 bytes and 176 bytes, respectively. Overall, Raven’s metadata

memory overhead is less than LRB, but greater than LHR.

We further summarize the average running time of cache lookup,

eviction, and training ML models. Across all experiments, the av-

erage lookup time of the three algorithm is about 50 ns and is

negligible. The average eviction time of LRB, LHR, and Raven is

about 3 𝜇s, 6 𝜇s, and 50 𝜇s, respectively. The inference of neural

networks used by Raven is slightly slower than gradient boost

machines used by LRB and LHR. Nevertheless, all these three al-

gorithms are highly efficient in terms of prediction time. As for

ML training, through a trace-based simulation, the total training

time of LRB, LHR, and Raven is 14 hours, 110 hours, and 26 hours,

respectively. The total training time of Raven is less than LHR, but

greater than LRB. Although the gradient boost machine adopted by

LRB and LHR is more lightweight than the neural network utilized

by Raven, LRB and LHR need to constantly train their ML models to

attain good performance. In contrast, Raven is highly generalizable,

and trains the neural network way less frequently, as it depends

on deep learning to learn general distributions. Moreover, due to

the generalizability of deep learning, the neural network of Raven
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Table 4: Simplified estimation of AWS VM cost for caching clusters which use Raven or LRU to achieve the same hit ratio.
In-memory Cluster [34] CDN Cluster with EBS [33] CDN Cluster with SSD [35]

Raven LRU Raven LRU Raven LRU
RAM Config 32 GB 128 GB NA NA NA NA

Disk Config NA NA 12.8 TB 25.6 TB 12.8 TB 25.6 TB

VM Type t4g.micro (t4g.small, t4g.medium) t3.medium t3.medium g4dn.2xlarge g4dn.2xlarge

# VM 64 (41, 23) 100 100 57 114

GPU Server g4ad.xlarge NA g4ad.xlarge NA g4ad.xlarge NA

# GPU 1 NA 1 NA 1 NA

Monthly Price $1,240 $2,631 $6,225 $7,872 $54,322 $108,099

can be trained on a dedicated server, and then applied to 20s or

1000s of cache servers, since the size of production cache clusters

typically ranges from 20 to thousands instances [78]. Therefore,

the computation overhead and cost of training neural networks

can be amortized over multiple cache servers. Whereas, methods

using “classical” machine learning, such as LRB and LHR, need to

be trained on a per-trace/server basis.

In addition, the training process of Raven can be optimized to

further reduce the cost. For example, the RNN module can be re-

placed with the SRU [47, 48], which is an efficient implementation

of the recurrent neural units, and can reduce 28.1% of the training

time without performance reduction based on our empirical results.

We leave the module optimization and fine-tuning for future work.

Finally, the training cost can be further reduced by sharing the GPU

server among multiple clusters and minimizing the retraining fre-

quency. Currently, Raven retrains its neural network every training

window, which can be reduced by retraining only when request

patterns change significantly between two consecutive windows.

However, this could degrade the model’s accuracy due to errors of

pattern change detection.

6.1.2 Impacts on IT Economics. To study deep learning’s im-

plications on IT economics, we use AWS VMs as an example to

estimate the cost of in-memory and CDN cache clusters, which use

Raven or LRU to achieve the same hit ratio, in a simplified manner.

The cost is estimated for simplified clusters which are biased to-

wards using many smaller nodes to limit the blast radius of node

failures, whereas real deployments of production cluster are far

more complicated. However, our cost comparisons are still valid, as

we are interested in comparing the different caching policies under

the same settings of these simplified clusters. Based on the evalua-

tion results in §5.2 and Appendix H, LRU needs 4× the cache size as

Raven to achieve the same object hit ratio on the in-memory traces,

and needs 2× the cache size as Raven to achieve the same byte

hit ratio on the CDN traces. We assume the servers of in-memory

cache clusters are AWS ElastiCache [34] instances, the servers of

CDN cache clusters are Elastic Compute Cloud (EC2) instances in

AWS Wavelength zone (i.e., 5G edge infrastructure) [35], and the

GPU server is an EC2 instance in the AWS Region zone [33]. The

number of VM/instances for each cluster is determined to meet

its allocated cache size configuration, as well as to have the same

number of CPU cores in the two clusters
9
. For Raven’s cache cluster

consisting of multiple instances, the additional GPU cost used for

training its neural network gets amortized, as Raven requires a

smaller cache size to achieve the same hit ratio, hence reducing the

9
CDN cluster with SSD is an exception, because AWS does not support SSD size

customization for this type of instance.

overall cluster expenses. As shown in Table 4, Raven reduces 52.9%

of the cost for the in-memory cache cluster, 20.9% of the cost for the

CDN cache cluster which uses Elastic Block Store (EBS) to cache

contents, and 49.7% of the cost for the CDN cache cluster which

uses SSD to cache contents, compared to the corresponding clusters

using LRU with larger capacity to achieve the same hit ratio.

6.2 Improving Arrival Processes Estimation
Raven assumes that the collected training data characterizes future

request arrival processes relatively well. If the next-arrival time

distributions of new objects have significant differences, it will be

challenging for Raven to accurately estimate their arrival processes.

Besides, as the cache capacity increases to hold more objects, differ-

entiating between unpopular objects becomes more important and

also challenging for Raven, as estimating arrival processes through

a few samples is difficult. We leave the improvement of distribution

estimation for future work. We also want to point out that contin-

ual learning [62, 67] and meta learning [76] are promising ways to

overcome these two challenges.

7 CONCLUSION
Raven is a Belady-guided, learning-based caching framework for

both in-memory and content caching. Compared to state-of-the-art

caching algorithms, Raven is more general, stable, and explainable.

These advantages stem from the key design choices of Raven which

explicitly account for the stochastic and nonstationary nature of

object arrival processes by learning the (unknown) distributions

of object next-request arrival times and estimating the rank order

statistics of objects in the cache for decision-making. Evaluation on

production CDN and in-memory traces demonstrates that Raven

can adapt to different workloads and consistently outperforms the

state-of-the-art caching policies in terms of object and byte hit

ratios, traffic, and latency reductions.
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A PROOF OF PRIORITY SCORE EQUATION 1
Proof. Priority score 𝑝 𝑗 of an object 𝑂 𝑗 is defined as the proba-

bility that the object will arrive farthest, i.e., the residual time 𝑅 𝑗 of

the object is greater than the residual time of any other objects in

cache:

𝑝 𝑗 = 𝑃𝑟 {𝑅 𝑗 > max

𝑘
𝑅𝑘 , 𝑘 ≠ 𝑗}

= 𝑃𝑟 (𝑅 𝑗 > 𝑅1, 𝑅 𝑗 > 𝑅2, · · · , 𝑅 𝑗 > 𝑅𝑘 , · · · , 𝑅 𝑗 > 𝑅𝐶 )
(𝑘 ≠ 𝑗 , 𝐶 is cache size)

=

∫ ∞

0

· · ·
∫ ∞

0

𝑝𝑅1𝑅2 · · ·𝑅𝐶 (𝑟1, 𝑟2, · · · , 𝑟𝐶 )𝑑𝑟1𝑑𝑟2 · · ·𝑑𝑟𝐶

(𝑅 𝑗 > 𝑅𝑘 , 𝑘 ≠ 𝑗 )

=

∫ ∞

0

· · ·
∫ ∞

0

[
𝑝𝑅1 · · ·𝑅𝐶−1 (𝑟1, · · · , 𝑟𝐶−1)𝑑𝑟1 · · ·𝑑𝑟𝐶−1∫ 𝑟 𝑗

0

𝑝𝑅𝐶 (𝑟𝐶 )𝑑𝑟𝐶
]

(𝑅 𝑗 > 𝑅𝑘 , 𝑘 ≠ 𝑗,𝐶 , independence assumption)

=

∫ ∞

0

· · ·
∫ ∞

0

𝑝𝑅1𝑅2 · · ·𝑅𝐶−1 (𝑟1, 𝑟2, · · · , 𝑟𝐶−1)

𝑃𝑟 (𝑅𝐶 ≤ 𝑟 𝑗 |𝜏𝐶 > 𝑎𝐶 )𝑑𝑟1𝑑𝑟2 · · ·𝑑𝑟𝐶−1

(𝑅 𝑗 > 𝑅𝑘 , 𝑘 ≠ 𝑗,𝐶)

.

.

.

=

∫ ∞

0

𝑝𝑅 𝑗 (𝑟 𝑗 )
∏
𝑘≠𝑗

𝑃𝑟 (𝑅𝑘 ≤ 𝑟 𝑗 |𝜏𝑘 > 𝑎𝑘 )𝑑𝑟 𝑗

=

∫ ∞

0

𝑝𝑅 𝑗 (𝑡)
∏
𝑘≠𝑗

𝑃𝑟 (𝑅𝑘 ≤ 𝑡 |𝜏𝑘 > 𝑎𝑘 )𝑑𝑡

=

∫ ∞

0

𝑝𝑅 𝑗 (𝑡)
∏
𝑘≠𝑗

𝐹𝑅𝑘 (𝑡)𝑑𝑡

where

𝐹𝑅 (𝑡) = 𝑃𝑟 (𝑅 ≤ 𝑡 |𝜏 > 𝑎) = 𝑃𝑟 (𝑅 ≤ 𝑡, 𝜏 > 𝑎)
𝑃𝑟 (𝜏 > 𝑎)

=
𝑃𝑟 (𝜏 − 𝑎 ≤ 𝑡, 𝜏 > 𝑎)

𝑃𝑟 (𝜏 > 𝑎) (𝑅 = 𝜏 − 𝑎)

=
𝑃𝑟 (𝑎 < 𝜏 ≤ 𝑡 + 𝑎)

𝑃𝑟 (𝜏 > 𝑎)

=
𝐹𝜏 (𝑡 + 𝑎) − 𝐹𝜏 (𝑎)

1 − 𝐹𝜏 (𝑎)
□

B RAVEN VS. PREDICTIVEMARKER ON CITI
DATASET

We compare Raven with PredictiveMarker [52] on the Citi dataset

that is used in [52]. The Citi dataset comes from a bike sharing

platform operating in New York City. For each month of 2017, the

first 25,000 bike trips are extracted and a request in each trace

corresponds to the starting station of a trip. The source code of

Table 5: Competitive ratios and average miss ratios on the
Citi dataset.

Metric LRU PredictiveMarker Raven
Competitive ratio 1.971 1.942 1.799
Average Miss ratio 0.665 0.658 0.616

Table 6: Statistics of Rank Order Errors on synthetic datasets.

Trace Policy Mean Median P90 Variance

Pareto

Parrot 40.54 37 81 26.87

LRB 32.20 25 75 26.86

LHR 31.11 24 73 26.58

Raven 28.44 20 70 26.13

Poisson

Parrot 23.64 14 63 24.41

LRB 17.52 6 57 24.12

LHR 22.77 12 65 25.57

Raven 17.34 5 57 24.05

Uniform

Parrot 16.01 6 49 21.70

LRB 9.38 1 34 18.60

LHR 13.07 1 50 22.74

Raven 7.92 1 31 18.39

PredictiveMarker and processed Citi dataset are available at [3].

The raw Citi dataset is publicly available at [20].

The Citi dataset used for evaluation consists of 12 traces, each of

25,000 length. We use the first 15,000 requests to train the Mixture

Density Network of Raven and report evaluation results on the

remaining 10,000 requests. Same as [52], we set the cache size to

100. Table 5 shows the competitive ratios and average miss ratios

over the 12 bike trip traces. Raven outperforms PredictiveMarker by

7.4% in terms of competitive ratio and by 6.4% in terms of average

miss ratio.

C EXPERIMENT ON SYNTHETIC TRACES
C.1 Experiment Setup
We evaluate Raven on three synthetic traces in an idealized setting.

Each trace contains 10M requests of 1000 objects whose popularities

follow a Zipf distribution with 𝛼 = 0.8. The inter-arrival time

distributions of objects in the three traces are Poisson, Uniform, and

Pareto distributions, respectively. We further assign sizes sampled

from a uniform distribution 𝑈 (10, 1600) to the objects based upon

the independence assumption of object size [10]. We use the first

5M requests to train our machine learning model to learn the inter-

arrival time distributions, and evaluate the caching performance on

the second 5M requests. We compare Raven with state-of-the-art

heuristics algorithms (e.g.,Hyperbolic [13], GDSF, LHD [7], LFUDA,

and LRU) and learning-based algorithms (e.g., LRB [68], LHR [77],

PredictiveMarker [52], and Parrot [50]).

C.2 Results on Synthetic Traces with Identical
Object Size

Fig. 13 shows the object hit ratios with various cache sizes on

the three synthetic traces mentioned in §3.5. The results show that
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Figure 13: Object hit ratios on the three synthetic traces with identical object size.
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Figure 14: PDF of rank-order errors on the three synthetic traces with cache size configured to hold 100 object entries.

Raven achieves best performance across various traces and different

cache size settings.

Fig. 14 shows the rank-order errors of Parrot, LRB, LHR, and

Raven on the three synthetic traces with the cache size configured

to hold 100 object entries. The statistics (i.e.,mean, median, 90% per-

centile, and variance) of the rank-order errors are listed in Table 6.

All these results show that the average rank-order errors of Raven

across traces are consistently the smallest, which indicates that

its predictions of objects’ future arrivals are more accurate than

LRB, LHR, and Parrot. Besides, Raven has the smallest variance

of rank-order errors, which indicates that Raven has more stable

prediction performance when making caching decisions, because

it explicitly accounts for the stochastic nature of object request

arrival processes.

C.3 Results on Synthetic Traces with Variable
Object Size

Fig. 15 and Fig. 16 show the object hit ratios and byte hit ratios with

various cache size settings on the three synthetic traces with vari-

able object size. The results show that Raven consistently achieves

the best OHR and BHR performance across various traces on differ-

ent cache size settings.

D TRAINING DATA SIZE
Table 7 shows the average object number and request sample num-

ber in training datasets for the caching settings used in §5.2. The

sample rate of the six production traces on the various caching

settings ranges from 0.3% to 73%. Based on the sample rate, the

number of request samples in the training data ranges from 0.8

million to 65 millions. Since each object has the same probability to

be sampled, the characteristics of request samples in the training

Table 7: Average object number and request sample number
in training datasets.

# objects # samples

Wiki 18

C=32 GB 499 K 16 M

C=128 GB 2 M 65 M

Wiki 19

C=64 GB 1 M 25 M

C=128 GB 2 M 51 M

Wikimedia 19

C=8 GB 455 K 3 M

C=16 GB 910 K 6 M

Twitter C17

C=2 MB 11 K 781 K

C=4 MB 22 K 2 M

Twitter C29

C=32 MB 186 K 4 M

C=64 MB 373 K 8 M

Twitter C52

C=16 MB 170 K 5 M

C=32 MB 339 K 10 M

data remains similar to the characteristics of the full trace in the

training window. Therefore, even after sampling, the training data

characterizes the original request patterns in the training window

quite well.

E ONE-HIT WONDER NUMBERS
Table 8 shows the average one-hit wonder numbers within one

million requests for the caching settings used in §5.2. One-hit won-

ders are cached objects that are accessed once and then cached

yet never read again before they are evicted due to their lack of

popularity. The number of one-hit wonders of a workload is related

to the cache size and also caching policies. From the table, we can

see that Belady, as an optimal policy, has the least one-hit wonders
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Figure 15: Object hit ratios on the three simulation traces with variable object size.

80 160 240 320 400
Cache Size (KB) on Poisson

0.4

0.6

0.8

By
te

 H
it 

Ra
tio

80 160 240 320 400
Cache Size (KB) on Pareto

80 160 240 320 400
Cache Size (KB) on Uniform

LRU LFUDA Hyperbolic LHD GDSF LRB LHR Raven

Figure 16: Byte hit ratios on the three simulation traces with variable object size.

Table 8: Average one-hit wonder numbers within one million requests in the six production traces.
LRU LFUDA LRB LHR Raven Belady

Wiki 18

C=32 GB 339 K 292 K 238 K 187 K 138 K 124K

C=128 GB 172 K 159 K 134 K 77 K 65 K 44 K

Wiki 19

C=64 GB 321 K 286 K 235 K 162 K 140 K 124 K

C=128 GB 219 K 191 K 157 K 98 K 93 K 72 K

Wikimedia 19

C=8 GB 286 K 319 K 289 K 265 K 240 K 127 K

C=16 GB 203 K 245 K 227 K 188 K 171 K 70 K

Twitter C17

C=2 MB 290 K 840 K 349 K 367 K 296 K 188 K

C=4 MB 217 K 524 K 265 K 258 K 238 K 130 K

Twitter C29

C=32 MB 239 K 262 K 246 K 211 K 188 K 158 K

C=64 MB 195 K 222 K 192 K 171 K 152 K 126 K

Twitter C52

C=16 MB 216 K 272 K 313 K 168 K 150 K 129 K

C=32 MB 177 K 222 K 216 K 138 K 123 K 105 K

across all workloads and cache size settings. After Belady, Raven,

in most cases, has the least one-hit wonders.

F DISTRIBUTION OF OBJECT REQUEST
NUMBERS AND REQUESTED BYTES

Fig. 17 and Fig. 18 show the request number and the requested byte

distributions over object size and object frequency, respectively. We

create log-scale bins of object size and frequency, and add up the

total requests and total requested bytes for each bin. This allows us

to analyze the characteristics of different traces and reason about

what is needed to achieve good OHR and BHR for different traces.

From Fig. 17, we can see that on theWiki 18 and 19 traces: i) with

respect to the total request number, most requests are from objects

with sizes in the range (200B, 500KB), and ii) with respect to the

total requested bytes, most of the requested bytes are from objects

with sizes greater than 200B. The Wikimedia 19 trace is totally

different from the other 2 CDN traces. Most requests and requested

bytes in Wikimedia 19 trace are from objects with sizes in the range

(6KB, 160KB). On Twitter traces, particular size classes have more

requests and requested bytes.

From Fig. 18, we can see that: i) with respect to the total request

number, most requests in Wiki 18 are from objects with frequency

greater than 200; and most requests inWiki 19 are from objects with

frequency in range (200, 500k). In contrast, ii) objects with frequency

less than 200 in Wiki 18 and Wiki 19 contribute to a significant

portion of the requested bytes. This indicates that OHR can be

optimized by predicting popular objects (frequency > 200), while

BHR optimization requires good prediction on unpopular objects

as well. The Wikimedia 19 trace is totally different from the other 2
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Figure 17: The distribution of object requests and requested bytes among different object size ranges.
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Figure 18: The distribution of object requests and requested bytes among different object frequency ranges.

CDN traces. Most requests and requested bytes in Wikimedia 19 are

from objects with frequency less than 1k. Therefore, the modeling

of unpopular objects is important to achieve good OHR and BHR

on Wikimedia 19 trace. As for twitter in-memory traces, they have

various patterns. Almost all object frequency ranges are important.

G RAVEN VS. ADMISSION ALGORITHMS
Fig. 19 shows that although Raven doesn’t adopt admission algo-

rithms, it still consistently outperforms other methods with admis-

sion controls, such as AdaptSize, original LHR, and other baseline

methods mentioned in section 5.1.2 (marked as SOTA).

Specifically, from Fig. 19a, we can see that Raven without admis-

sion control improves OHR from 0.3% to 4.8% with an average of

2.7% on different datasets and settings. Meanwhile, Fig. 19b shows

that Raven improves BHR from 5.9% to 12.1% with an average of

8.2%. The improvement is calculated by absolute value instead of

relative value. Those results again validate the effectiveness and ro-

bustness of Raven. It is reasonable to expect that Raven can achieve

better performance with the help of the admission algorithm and

we leave those designs for future work.

H RESULTS ON MORE CACHE SIZE SETTINGS
AND FULL BASELINES

Fig. 20 shows the object hit ratio results on the Twitter cluster

29 trace in 5 cache size settings ranging from 32 MB to 512 MB,

and the byte hit ratio results on the Wikimedia 2019 trace in 5

cache size settings ranging from 4 GB to 64 GB. We can see that

Raven achieves the best OHR and BHR across all cache settings. The

improvement of OHR and BHR is larger on smaller cache sizes. As

the cache size increases, the margin decreases and different policies

have relatively same performance.

Fig. 21 shows the OHR of the 14 baselines on the Twitter cluster29

trace with a cache size of 32 MB and the BHR of the 14 baselines

on the Wikimedia 2019 trace with a cache size of 8 GB. The 14

baselines are 1) heuristics algorithms: LRU, ThS4LRU [32], Random,

LFUDA [4], LRUK [56], Hyperbolic [13], GDSF [4], FIFO, ThLRU; 2)

learning-based algorithms: LRB [68], UCB [23], LHD [7], LHR [77],
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Figure 19: Raven compared to admission algorithms and outperforms them. LHR w/ admission is the original version.
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Figure 20: Results of object hit ratio and byte hit ratio on
more cache size settings for a subset of workloads.

Twitter C29 (C=32MB)
0.0

0.2

0.4

0.6

0.8

Ob
je

ct
 H

it 
Ra

tio

Wikimedia 19 (C=8GB)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

By
te

 H
it 

Ra
tio

LRU
LFUDA
Hyperbolic

ThS4LRU
LHD
GDSF

LRB
LHR
FIFO

UCB
LRUK
ThLRU

Random
LeCaR
Raven

Figure 21: Comparison to 14 baseline algorithms.

LeCaR [72]. Raven performs best among the 14 baseline caching

policies.
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