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Abstract

Recent technological advances allow for the collection of massive data in
the study of complex phenomena over time and/or space in various fields.
Many of these data involve sequences of high-dimensional or non-Euclidean
measurements, where change-point analysis is a crucial early step in under-
standing the data. Segmentation, or offline change-point analysis, divides
data into homogeneous temporal or spatial segments, making subsequent
analysis easier; its online counterpart detects changes in sequentially ob-
served data, allowing for real-time anomaly detection. This article reviews a
nonparametric change-point analysis framework that utilizes graphs repre-
senting the similarity between observations. This framework can be applied
to data as long as a reasonable dissimilarity distance among the observations
can be defined. Thus, this framework can be applied to a wide range of appli-
cations, from high-dimensional data to non-Euclidean data, such as imaging
data or network data. In addition, analytic formulas can be derived to control
the false discoveries, making them easy off-the-shelf data analysis tools.
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1. INTRODUCTION

Given recent technological advancements, scientists in many fields are collecting massive data
for studying complex phenomena over time and/or space. Such data often involve sequences of
high-dimensional or non-Euclidean measurements that cannot be analyzed through traditional
approaches. Insights on such data often come from segmentation, or offline change-point analysis,
which divides a completely observed sequence into homogeneous temporal or spatial segments,
or its online counterpart, which detects changes in sequentially observed data. They are crucial
early steps in understanding the data and in detecting anomalous events.

Change-point analysis has been extensively studied for univariate and low-dimensional data
(for various aspects of classic change-point analysis, see Siegmund 1985, Basseville & Nikiforov
1993, Brodsky & Darkhovsky 1993, Carlstein et al. 1994, Cs6rgé & Horvith 1997, Chen & Gupta
2000). However, many applications involve moderate- to high-dimensional data or even non-
Euclidean data, including the following:

m Network evolution: Data on networks have become increasingly common. For example,
emails, phone or online chat records, and records of communications within scientific collab-
orations can be used to construct networks of social interactions among individuals (Barabasi
et al. 2002, Kossinets & Watts 2006, Eagle et al. 2009). High-throughput biological exper-
iments have led to the ubiquitous study of protein- or gene-interaction networks (Wagner
2001, Pastor-Satorras et al. 2003, Huang et al. 2009). A large part of these studies is char-
acterizing how the network evolves over time, for example, whether there is an abrupt shift
in network connectivity at any given time. Here, the observation at each time point is a
graphical encoding of the network.

m Image analysis: Image data collected over time appear in diverse applications, from
neuroscience (Cabeza & Nyberg 2000) to video surveillance (Collins et al. 2000) to cli-
matology (Long et al. 2001). The detection of abrupt events, such as regional brain
activation/deactivation, security breaches, or storms, can be formulated as a change-point
problem (Radke et al. 2005, Tian et al. 2005). Temporal video segmentation is also common
in indexing, annotating, and retrieving digital materials (Koprinska & Carrato 2001, Li et al.
2002, Guimaries et al. 2003). In all these applications, the data at each time point consist of
the digital encoding of an image.

m Sequence or text analysis: In genomic sequence analysis, it is often of interest to find re-
gions of the genome with different DNA-word compositions, such as regions from external
sources caused by horizontal gene transfer (Tsirigos & Rigoutsos 2005). Similar problems
arise in text analysis. For example, many classic works in both western and eastern liter-
ature have ongoing authorship debates (Guia & Wittlin 1999, Riba & Ginebra 2006, Hu
etal. 2014). A data-driven approach is to statistically test for abrupt changes in writing style,
which can be reflected by word usage. In both settings, each observation in the sequence is
a vector of word counts over a large dictionary of words.

m Multiple sensor detection: In a sensor network, hundreds or thousands of sensors are de-
ployed to detect events of interest. For example, hundreds of monitors are placed worldwide
to detect solar flares, which are large energy releases from the Sun and can affect Earth’s
ionosphere and disrupt long-range radio communications (Kappenman 2012, Qu et al.
2005). Many times, the structure of the sensor network can be used to boost the power of
the detection. Here, the observation can be viewed as a structured vector or a semistructured
vector.

m Transportation data: Volumes of transportation data are collected over time, including ride-
sharing and taxi data. For example, the New York City Taxi & Limousine Commission
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provides public information on taxi pickup and drop-off dates/times, longitude and latitude
coordinates of pickup and drop-off locations, trip distances, and driver-reported passenger
counts. These datasets can be analyzed for disruptions or changes in traffic patterns. Here,
the observation could be a grid of longitude-latitude points, with each cell representing the
frequency of rides in that area for a particular unit of time.

m Neuropixels data: Electrophysiological recording techniques have become more sophisti-
cated, incorporating simultaneous spiking data from increasing numbers of neurons across
multiple brain regions. In particular, hair-thin probes densely packed with hundreds of
recording sites, called Neuropixels, can record spiking activity from hundreds or even thou-
sands of cells (Jun et al. 2017, Stringer et al. 2019). The combined high temporal resolution
and broad spatial coverage of these probes offer a new picture of the coordinated activity in
the brain. Here, the observation is a high-dimensional vector, with the coordinates of the
vector dependent in an unknown way.

The field of change-point analysis is thriving, given the challenges arising in various fields.
Now, the ability to deal with high-throughput data and data with complicated structures is be-
coming a necessity. Recent developments include the introduction of faster algorithms (Killick
etal. 2012, Niu & Zhang 2012, Celisse et al. 2018), effective ways of detecting multiple change-
points (Fryzlewicz 2014, 2020; Frick et al. 2014; Zou et al. 2020; Chen et al. 2021), simultaneously
detecting change-points in multiple sequences (Zhang et al. 2010, Xie & Siegmund 2013, Chan
& Walther 2015, Wang & Samworth 2018), and nonparametric approaches with mild conditions
on the data (Desobry et al. 2005, Harchaoui et al. 2009, Lung-Yut-Fong et al. 2011, Matteson &
James 2014).

However, methods for multivariate data are limited in many ways, and there is little research
for non-Euclidean data. For change-point analysis on multivariate data, most work is based on
parametric methods. For example, the problem of detecting common mean shifts in a sequence
of independent multivariate observations has been studied under the assumption of multivariate
Gaussian distribution with identity covariance (Zhang et al. 2010, Siegmund et al. 2011, Xie &
Siegmund 2013) and with general covariance (Srivastava & Worsley 1986, James et al. 1992). For
sequences of networks, parametric methods have been proposed that make specific assumptions
about the underlying network structure (Wang et al. 2014). In general, parametric change-point
tests for multivariate/non-Euclidean data only work under stringent assumptions and are not
robust to the violation of these assumptions. Also, existing parametric methods cannot be ap-
plied to very high dimensions unless strong assumptions are made to avoid the estimation of a
large number of nuisance parameters. In the nonparametric context, methods based on kernels
(Desobry et al. 2005, Harchaoui et al. 2009, Garreau & Arlot 2018, Arlot et al. 2019, Chang et al.
2019), marginal rank statistics (Lung-Yut-Fong et al. 2011), and U-statistics (Matteson & James
2014) were proposed. These are more broadly applicable than parametric methods. However,
these nonparametric tests did not offer a fast analytical formula for false positive control.

In many modern data applications, due to the large volume of the data sequences, one would
like to have fast ways, such as analytic p-value approximations, of controlling type I errors in
change detection to make the method useful for large datasets. This was equipped in many
parametric approaches, such as those of Zhang et al. (2010), Niu & Zhang (2012), and Xie &
Siegmund (2013). However, the parametric approaches with fast type I error control either target
univariate/low-dimensional data, or analyze high-dimensional data but require the coordinates
of the high-dimensional vector to be independent, which is far from an adequate way to analyze
many modern data sequences. For nonparametric methods applicable for high-dimensional data
and beyond, it is usually difficult to provide a generic analytic way to control type I error.
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Chen & Zhang (2015) proposed a new nonparametric approach that utilizes similarity infor-
mation among observations—a similarity graph is constructed on the observations, and the test
statistic is defined on the graph. The authors worked out a way to derive analytic formulas to ap-
proximate the permutation p-values, making the method straightforward to apply to large datasets.
Later, Chu & Chen (2019) proposed new test statistics that could detect more general changes.
Both Chen & Zhang (2015) and Chu & Chen (2019) focused on offline change-point detection.
In some applications, it is important to detect changes on the fly. Chen (2019b) solved this is-
sue by proposing an online approach based on k-nearest neighbors (,.-NNs), and Chu & Chen
(2022) proposed additional stopping rules to improve the detection power. Since all these meth-
ods utilize a similarity graph constructed on the observations, we refer to them as graph-based
change-point methods. In the following, these methods are discussed in detail. The methods de-
scribed below are implemented in R packages gSeg (for offline detection) and gStream (for online
detection).

2. OFFLINE GRAPH-BASED CHANGE-POINT FRAMEWORK

Letyy,ys,. ..,y be the data sequence, where y, could lie in a high-dimensional or a non-Euclidean
space. Here, we focus on the single change-point alternative to illustrate the idea—that is, there
possibly exists a time t such that y, has one distribution for # < 7 and another distribution for
t > 7. The changed interval alternative, where there exists a time interval (zy, 7] such thaty,
has one distribution for ¢ € (t4, 7] and possibly another distribution for ¢ ¢ (zy, 7,], has similar
fundamental ideas (for details, see Chen & Zhang 2015, Chu & Chen 2019).

2.1. Graph-Based Test Statistics

The building blocks of the graph-based change-point detection framework are graph-based two-
sample tests, which are tests based on a similarity graph constructed on all observations, with
each observation a node in the graph. The similarity graph can be a given graph that reflects
the similarity between observations (Chen & Zhang 2013). More generally, it can be constructed
based on a similarity measure through a certain criterion, such as a minimum spanning tree (MST)
(Friedman & Rafsky 1979), which is a tree connecting all observations with the total distance
across edges minimized, a minimum distance pairing (Rosenbaum 2005), a nearest neighbor graph
(Henze 1988), or a graph constructed from domain knowledge. Let G be the similarity graph on
all observations in the sequence. Four statistics are considered by Chen & Zhang (2015) and Chu
& Chen (2019), and they are all based on three quantities computed from the graph. Let g;(r) =
I(; > 1), where I(") is the indicator function that takes value 1 if event A4 is true and 0 otherwise.
The three quantities are as follows:

Ro@®) = Y L(git) # g;(®)),

())eG

Ri@t)= Y I(git) =git)=0), and

(:))eG
Rt)= > I(git) = git) = 1).
@:))eG
Since each # divides the observations into two samples, these three quantities are the number of

edges connecting observations between the two samples (Ry(?)) or within each sample (R; (?), R (2)).
Figure 1 illustrates the computation of R,(z), i = 0, 1, 2 on a small artificial dataset.
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The computation of Ry(2), Ri(#), and R (¢) for four different times 7 on a small artificial dataset of length 7z = 20, with G the minimum
spanning tree on the Euclidean distance. Each point corresponds to one observation labeled by its index. The first 10 points are
randomly drawn from A(0, 1), and the next 10 points are randomly drawn from A((2,2)7, ), where A is the normal distribution.
Each ¢ divides the observations into two groups, one group for observations before and at ¢ (red circles) and the other group for
observations after ¢ (blue triangles). We see that G, the graph in each panel, does not change as # changes, but the group identities of
some observations change, causing Ro(z) (bold edges), R1(t) (edges connecting the circles), and Ry (¢) (edges connecting the triangles) to change.

The four statistics considered are listed below:

_ R(t) — ERy(1))

20 =" @) -
_ R.(@) — E(R, (1)) _n—t—1 t—1
Zw(t) - Var(Rw(t)) ) Rw(t) - n—2 Rl (t) + P ZRZ(t)’ 2

(R~ ER @) ,I<R1<t>—E<R1(t>>> ~ ((&(t)))
S(t)_<Rz(t)—E(Rz(t))> R - BRey) TV )

M) = maxZu(0), Zas®, Zaste) = RO R = RO - R, 4
d

where the expectation and variance are defined under the permutation null distribution, i.e., 1 /7!
probability is placed on each of the n! permutations of {y;: ¢ = 1, ..., n}. These four statistics are
referred to as original, weighted, generalized edge-count, and max-type edge-count statistics, re-
spectively. They each have certain advantages under different scenarios. The original and weighted
edge-count statistics, Zy(#) and Z (%), aim to detect mean shifts. The original edge-count statistic,
Zy(2), tends to do well when the change in mean is near the center of the sequence but suffers from
a variance boosting problem when the number of observations before and after ¢ are unequal. The
weighted edge-count statistic, Z(t), resolves this variance boosting problem by weighting R, (¢)
and R, (z) with the inverse of their corresponding sample sizes. Observe that Zy(z) and Z(z) are
equivalent when the number of observations before and after # are equal.

Both Zy(#) and Z () are designed so that a relatively small Ry(z) [or relatively large R;(z)
and R,(7)] provide evidence against the null hypothesis of no distributional difference. The
intuition is straightforward: If the observations before and after ¢ really do come from different
distributions, then observations would tend to be closer to those from the same distribution,
resulting in a relatively small Ry at #. This rationale holds particularly well when the change is
in mean only and/or the data are relatively low dimensional. However, when the dimension of
the data is moderate or high and the change in distribution is not only in mean—for example,
a change in variance is also present—this rationale breaks down. This is a result of the curse
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The profiles of original, weighted, generalized, and max-type edge-count statistics (Zo, Zw, S, and M, respectively) over time 7 for the
small artificial dataset in Figure 1.

of dimensionality; in high-dimensional space, observations that are similar (i.e., from the same
distribution) are not necessarily close in distance. To resolve this, the test statistics S(¢) and M(z)
were proposed to target more general changes. The generalized edge-count statistic S(z) is defined
to be more robust to the curse of dimensionality: It allows either direction of R;(z) — E(R(?))
and R, (?) — E(R,(?)) to contribute to the test statistic. Interestingly, S(#) can be decomposed into
two uncorrelated quantities, Z,(¢) and Zg(?), where Z,(¢) is sensitive to changes in location and
Zgit(t) is sensitive to changes in scale (see Chu & Chen 2019, lemma 3.1). This inspired the
max-type edge-count statistic M(z), which takes the maximum of Z,,(¢) and |Zy(z)|. Both S and
M are recommended for general changes, and their power performance tends to be similar. For
more detailed reasoning and comparisons of the test statistics, readers are directed to Friedman &
Rafsky (1979), Chen & Zhang (2015), Chen & Friedman (2017), Chen et al. (2018), and Chu &
Chen (2019).

The profiles of the four scan statistics on the artificial dataset in Figure 1 are shown in Figure 2.
It is clear that the scan statistics all achieve a maximum at v = 10:

max Zy(2),

ny<t<m

max Z(t),

ny<t<my

max S(),

ny<t<my

and max M(¢) (ng,n prespecified).

ny<t<m

2.2. Analytical p-Value Approximations

The null hypothesis of no change-point is rejected when the maximum scan statistic is greater
than some threshold. When # is small, this threshold could be determined by performing ran-
dom permutations directly. However, when 7 is large, this becomes computationally prohibitive,
and Chen & Zhang (2015) and Chu & Chen (2019) provided accurate analytic formulas to ap-
proximate the permutation p-value for each of the scan statistics, allowing fast application of the
methods.

To obtain these analytical p-value approximations, the asymptotic properties of the stochastic
processes Zy(t), Z(t), S(t), and M(z) were studied. Since S(#) can be decomposed into the sum of
squares of Z,(#) and Zg(7), and due to the way M(7) is defined, this boils down to studying the
basic processes Z,(¢), and Z (7). Under certain conditions on the graph, the limiting distributions
of {Zy([nu]): 0 < u < 1}, {Zgg([nu]): 0 < u < 1}, and {Z([nu]): 0 < # < 1} converge to Gaussian
processes in finite-dimensional distributions (Chen & Zhang 2015, theorem 3.1, and Chu & Chen
2019, theorem 4.1). The proofs for these theorems utilize Stein’s method (Chen & Shao 2005). Ex-
plicit expressions for the covariance functions of the Gaussian processes are also derived through
combinatorial analysis (Chen & Zhang 2015, lemma 3.3, and Chu & Chen 2019, theorem 4.3).
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Using these results, the asymptotic approximations of the tail probabilities are derived:

p < max Zo(t) > b) ~ b (b) / N By @)v(by/2h7 () /n)dx, 5.
ny=<t=mnp 1}

n
P( max Z,(t) > b) ~ b (b) / B (2)v(by) 2% (x) /m)dx, 6.
ng<t=<my o

—b2 p2m pil
P( max S(t) > b) ~be / / W (o, ) (V 2 (v, ) mydedw,  and 7.
o Jo

ng<t<m 2

*©

P( max M(t) > b) =1- P( max |Zgg(t)| < b) P( max Z.(t) < b) R
ny<t<my ny=t=mnp no=t=mnp

where P (max,,og,fn1 | Zaige ()] < b) ~ 1 —2bo(b) f;?] B Qv (b, (2% 0(x) /m)da.
"The functions b (x), b} (x), and b, (x) capture the autocorrelation of the processes Z(t), Zy (1),
and Zy(?), respectively, and are defined as follows:

Py = — 2
= 2l =) Al =)+ (= 202 — 4r0)’
sy L
b (x) = (1 —x) and
1
Big(x) = m,

with 7= lim, o |Gl/n, 7 = lim, oo Y0 1G1?/IGl, and  #*(x, ) = k% (x)sin*(w) +
h(x) cos’(w). Observe that the p-value approximations for Z(r), S(z), and M(t) are
distribution-free and do not depend on the underlying similarity graph G at all.

The approximations also require the function v(x). This function is closely related to the
Laplace transform of the overshoot over the boundary of a random walk. A simple approximation
given by Siegmund et al. (2007) is sufficient for numerical purposes:

@/x)(Px/2) — 0.5)
(@/2)®(x/2) + p(x/2)’

where ®(-) and ¢(-) denote the standard normal cumulative density function and standard normal

9.

v(x) ~

density function, respectively.

For finite sample sizes, convergence of the limiting distributions to normal can be slow, es-
pecially near the boundaries of the sequence. This problem can become more severe when the
dimension is high. Figure 3 plots the skewness of Zy(¢), Z (), and Zg (7). It is clear that when
t moves away from the center of the sequence, the statistic Z(#) is right skewed and Z(z) is left
skewed. On the other hand, Zg(?) is right skewed for small values of # and left skewed for large
values of 7. To make the analytical p-value approximations practical for finite sample sizes, adjust-
ments are made in the form of skewness correction. Since the extent of the skewness depends on #,
we adopt a skewness correction approach that does the correction up to different extents based on
the amount of skewness at each value of . The approach aims to provide a better approximation to
the marginal distributions P(Zy(z) > b), P(Z(t) > b), and P(Zgi(¢) > b). This skewness correction
involves computing the third moment of the test statistics, which can be done using combinatorial
analysis. By incorporating the skewness correction, approximations to the tail probabilities are im-
proved for the test statistics Zy(2), Zy (), and M(z). Although skewness correction can be done for
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Plots of skewness of Zy(7), Zw(z), and Zgig(?) against ¢ for a sequence of 1,000 observations randomly generated from N (0,1;¢p). The
graph is the minimum spanning tree constructed on the L, distance.

S(z), the approach relies heavily on extrapolation. Therefore, while both S(z) and M(#) can be used
to detect general changes, M(?) is often preferred since a more accurate p-value approximation can
be obtained by incorporating skewness correction.

3. ONLINE GRAPH-BASED CHANGE-POINT FRAMEWORK

For online detection, observations are continually arriving, and the aim is to detect changes on the
fly. Examples include fraud detection (Bolton & Hand 2001, Chandola et al. 2009), disease surveil-
lance and medical monitoring (Wong et al. 2003, Pervaiz et al. 2012, Malladi et al. 2013, Zhang
etal. 2013, Dehning et al. 2020), and network intrusions (Tartakovsky et al. 2006, Xie et al. 2011).
The online detection setting can be formulated as follows: The observations Y,,2 = 1,2,...,n,...
are identically distributed from an unknown distribution Fy. If there is a change-point at ,
the observations after T are from a different unknown distribution F;. No constraints on how
the change happens are imposed. For example, if the observation is a high-dimensional vector, the
change may occur in a subset of (unknown) data streams, and the subset may be of size one.

The setup is as follows: We assume that there are N historical observations, and we begin
the online testing from observation Ny + 1 until the test declares a change happened. Since the
similarity graph updates as new observations arrive, the main challenge in extending the offline
framework to online is to understand the dynamics of the series of similarity graphs. Chen (2019b)
considered similarity structure represented by nearest neighbors (NN). It turns out that the dy-
namics of NN graphs can be characterized by a small number of events: the updates of mutual
NN, shared NN, and all three-way interactions among the NN relations. Given the data and
a similarity measure, these events can be directly analyzed and analytical expressions for these
events can be derived. Concrete stopping rules that incorporate these quantities are proposed for
Zy by Chen (2019b) and versions for Z,, S, and M are extended by Chu & Chen (2022). For all
the stopping rules, analytical formulas for false discovery control are also derived.

3.1. Comparison of Stopping Rules

We first discuss the rationale for how the stopping rules are constructed. Let z be the index of the
observation we are currently observing, and let Z, (¢, ) be the online version of Zy(z), which is the
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standardized between-sample edge-count. Chen (2019b) considered three stopping rules:

Tl(bl):inf{n—No: max Z|y(t,n)>b1,nzNo}, 10.
ny<t<n—mn
Tz(bz)zinf’n—No: max Z‘y(t,n)>b2,nzN0], and 1.
n—mny <t<n—mn
Ty(b;) = inf {n “No:  max  Zpy(t,n) > by,n> NO}, 12.
n—mny <t <n—mng

with 7,71, and L prespecified. Here, b1, 4,, and b5 are chosen so that the false discovery rate for each
stopping rule is controlled at a prespecified level. The stopping rule 71 is fairly straightforward: n,
is chosen so as to avoid fluctuations in the test statistic at the boundaries while still retaining fast
detection. However, T} keeps early observations as candidate change-points, which could result
in efficiency loss when # is large. Therefore, 7> only keeps those more recent observations as
candidate change-points. For both 7; and 75, at time #, the #-NNs are considered from among
all » observations. Another modification is to construct the directed #-NN graphs from only the L
most recent observations ¥, 141, . . ., 1;; this gives rise to T3, with Z7 (¢, #) denoting the between-
sample edge-count two-sample test constructed from only the L most recent observations.

The performances of stopping rules are conventionally evaluated by their detection delay, de-
fined as the time elapsed between when the change occurs and its detection, while controlling the
false discovery rate at a prespecified level. Chen (2019b) compared the average detection delay of
the three stopping rules and found that 73 has some advantages. Since T3 is only constructed from
the L most recent observations, it is not affected by where t is located. In contrast, the detection
delay of Ty and T5 can be affected by the location of the change-point in the sequence. More-
over, T retains a computational advantage since only the L most recent observations need to be
stored. In what follows, the new stopping rules refer to 75 such that graph-based test statistics are
constructed on the L most recent observations.

3.2. Sequential Detection Based on k-Nearest Neighbors

For online detection, the test statistics are analogous to their offline counterparts. We denote Zj,y,
Stiys Wiy, and My, to be the online versions of Zy, S, Z,,, and M, respectively. Key differences are
that the test statistics are defined explicitly for directed #-NN graphs, and the directed #-NN graph

is constructed on only the most recent L observations: Y,_j 11, . . . , Y,,, where # denotes the current
. . . . A
observation we are observing. Specifically, for any » > Ny and i,j e ny, = {n — L+ 1,...,n}, we
let
Af;'L),l.]. =1 (Y;istherth-NN of Y; among Y,_;1,...,Y,).

In terms of graph construction, each observation points to its # NNs. For example, if Af;;) =1

then Y; is the 7th NN of ¥; and there is a directed edge from Y7 pointing to 1} (if » < k). We define
4, = S A” . to be the indicator function that Y, is one of the first £ NNs of Y; among the

nLj
observations in 7;,. We use y;s to denote the realizations of Y;s and let ﬂ;’bi = Zle ﬂgz,ij with
af;L)’ij =1 (y, is the 7th NN of y; among y,_141, . ..,¥a)-

For any n, each t e {n — L +1,...,n} divides the data sequence into two groups: those

observations between # — L + 1 and ¢ (sample 1) and those observations after 7 (sample 2). Let
Boi(t, 1), Byi(t, nr), and By (¢, nr) be the indicator random variables that denote whether the
observations Y; and Y; belong to different samples, both belong to sample 1, or both belong to
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sample 2, respectively. The graph-based quantities are defined as

Ror(t,n) = Z Z Af + AL DBoy(tnL),

i=n—L+1 j=n—L+1
n

Rirt,m) = ) Z Al i +AL DBt and

i=n—L+1 j=n—-L=1

Rzl(t n) - Z Z (AnL ij nsz)Bz lj(t 711)

i=n—L+1 j=n—L=1

Itis clear that Ry (¢, 7) is twice the number of edges in the £-NN graph connecting observations
before ¢ and after #, Ry ;.(¢, n) is twice the number of edges connecting observations before ¢, and
R, (¢, ) is twice the number of edges connecting observations after z. Then Zpy, Syy, W1y, and
My can be constructed from these quantities in a similar way as their offline versions. Under
the permutation distribution, the analytical expressions for the expectation and variance can be
derived, and explicit expressions are provided by Chen (2019b) and Chu & Chen (2022).

The stopping rules based on the graph-based test statistics under #-NN are defined as follows:

Ty(by) = inf [n Not, max  Zy(em) > bZ], 13.
Ty(bs) = inf {n No: | max  Spy(em) > bg}, 14.
Ty (by) = inf {n No:, max  Wiy(tn) > bW}, and 15.
Tai(byr) = inf { n=Np:  max  Myy(tn) > bM}. 16.

The rationale of the test statistics is the same as in the offline setting, and each stopping rule
has a niche where it dominates. For mean changes, we recommend using the stopping rule based
on Wy since it has shorter detection delay and higher power compared with Zy. For general
changes, the stopping rules based on Sy and My, can be used.

3.3. Average Run Length

We would like to determine the thresholds by, bs, by, and by in a way that controls the false
discovery rate. In the online setting, a common way to measure the false discovery rate is the
average run length, i.e., the expected time to stop when there is no change-point. Therefore, we
would like to choose the thresholds so that each of Eo(T(02)), Eco(Ts(bs)), Ec(Tu(bw)), and
Eoo(Tm(by)) is a prespecified value, for example, 10,000.

When the underlying distribution of the sequence is known, the thresholds can be obtained
via Monte Carlo simulations. However, in many applications, the distribution of the sequence
is unknown. Furthermore, since new observations keep arriving, resampling-based methods,
such as permutation or bootstrap, are not applicable. Therefore, to make the method useful
for real applications, analytical expressions for the average run lengths were derived. To obtain
these expressions, the limiting distribution of the basic random fields {Z},(z, %)}, {Dyy(z, #)}, and
{Wiy(t,n)} were studied, where {Dr;(t,7)} is the online version of Zgg. Under conditions on
the graph, {Z1,(t,n)}, {Driy(¢,7)}, and {Wy(¢,7)} converge to two-dimensional Gaussian ran-
dom fields in finite-dimensional distributions. To fully specify the Gaussian random fields, the
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covariance functions of the processes are derived. This involves studying the dynamics of the
k-NN series as the new observations are added. It turns out that a few key quantities are enough
to characterize their dynamics, i.e.,

X, = Z (A;;L i +A:,;L ],> (A:L i +A:¢—L ]’) ’

i,jemyNny,

X, = > (A al,) (A +45,,), and

iemyNny; jemy; leny,

X = Z (A;i ij +A;I 71) (A:L Ir +A”L ’/)

i,jemy,Ony 1 reny,

with 7, 2 (m — L+ 1,...,m} and m < n. These boil down to obtaining analytical expressions
for the updates of mutual NNs (E(X})), shared NNs (E(X})), and three-way interactions of NNs
(E(X3)). We refer readers to Chen (2019b) and Chu & Chen (2022) for a more technical treatment
of the asymptotic results.

The analytical expressions for the average run lengths are

Ly27 exp(t/2)

Eo(T7(b2)) ~ . o
B, 2 g2 gz 22820 )/ L (220 (/L
Foo (Tiy (b)) ~ L/27 exp(ty /2) "
f”o/L &, 1(x)gW2(x)"(\/sz 2gw, l(x)/L)V(\/Z ng(x)/L)dx
Eoo(T5(bs) ¥~ 7 exp(bs/2) i 10
B s [ by, @)ha (x, )v(y/ 2bshi @, 0)/L)v(y/ 2bshy (v, )/ L)dxde
Eno(Tis (b)) ~ Lv/2x exp(ti,/2) o

25, fno/L 2p,1(x)gp, (x)v(\/Zb%)gD,l(x)/L)v\/2b2DgD,2 (x)/L)dx
Here, v(-) is defined as in Equation 9, and

16x(1 — 2)(k + proo) + 2(1 — 22)* (g0 — & + k)

gz,l(x) =

ol(x)

162%(1 = 2) (Prpo + oo + &2 + 2900 — 2410
gz,z(x) o)

|- Q0. = 3qiee + K +B) + 2(qoo — K +4)

o?(x) ’
1

gW,1(x) = my

xZ_x+1 kagfl)—loo
gwp(x) = :

x(1—2)  k+ proo
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1
gD,1(x) =

2x(1 — x)’
10g400 — 4kqy ), o, — (6K — 10k) 1
go2(®) = 2o — & + &) T (i)

where
o (x) = 4l — 2)(dx(1 — 2)(k + pro) + (1 — 20)* (qroo — K + k),

k k
P = peokr), gl = goolh,7),
r=1 r=1

k k
Pl = D bk +1,7), and ¢, =" gulk+1,7).

r=1 r=1

Here, pioo is the limiting expected number of mutual NNs a node has in £-NN, g is the
limiting expected number of nodes that share a NN with another node in £-NN, po(7, 5) is the
limiting expected number of mutual NNs shared between the 7th and sth NN, and ¢ (7, ) is
the limiting expected number of nodes shared between the 7th and sth NNs. In practice, these
quantities can be estimated through historical data and can further be updated by new observations
as long as no change-point is detected. To obtain more accurate approximations of the thresholds,
skewness correction is also implemented for the stopping rules 77, Ty, and Tj;.

4. REAL DATA APPLICATIONS

To illustrate the graph-based change-point approach, we apply the test statistics to data obtained
from the New York City Taxi & Limousine Commission to see whether or not we can detect
a change in travel patterns. This dataset provides information on taxi pickup and drop-off date,
time, and longitude-latitude coordinates. We focus only on those taxi trips that began at John
F. Kennedy International Airport, and for each trip, we count the number of taxi drop-offs that
occur within various locations of New York City. Explicitly, using longitude-latitude coordinates,
we create a 30 by 30—cell grid of New York City and count the number of taxi drop-offs that fall
within each cell. Then for each day, we have a 30 by 30 matrix such that each matrix element
represents the number of taxi drop-offs in each location.

4.1. Offline Setting

In this setting, we are interested in detecting intervals of change, rather than a single change-
point. Let 4; be the 30 by 30 matrix on day 7. The L;; norm is used to construct the MST
graph representing similarity between days. The results can be seen in Table 1. The edge-count
statistic Zy(t1, t;) reports November 21-December 31, 2015 (days 52-92), as the changed inter-
val result. The remaining graph-based test statistics all report Christmas and the preceding week,
December 18-December 25, 2015 (days 79-86), as the changed interval. All these tests reject the
null hypothesis of no change, with p-value < 0.001.

As there might be more than one changed interval, we further perform the tests on the period
October 1-December 17, 2015. During this time period, Z(#;, ;) selects October 27-December
17,2015 (days 27-78), as the changed interval, while S(#1, 1,), Z,,(#1, t2), and M(t1, ) all report the
week including Thanksgiving, November 20-27, 2015 (days 51-58), as the changed interval. All
these tests reject the null hypothesis of no change as well, with p-value < 0.001.
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Table 1 Changed interval results and corresponding p-values (reported in parentheses) for
dataset of NYC taxi pickups from JFK
Time period
(2015) Zy Zy S M
Oct. 1-Dec. 31 Nov. 21-Dec. 31 Dec. 18-Dec. 25 Dec. 18-Dec. 25 Dec. 18-Dec. 25
(<0.001) (<0.001) (<0.001) (<0.001)
Oct. 1-Dec. 17 Oct. 27-Dec. 17 Nov. 20-Now. 27 Nov. 20-Now. 27 Nov. 20-Now. 27
(0.0011) (<0.001) (<0.001) (<0.001)
Oct. 1-Nov. 20 Oct. 22-Nov. 19 Nov. 16-Nov. 19 Nov. 16-Nov. 19 Nov. 16-Nov. 19
(0.0017) (0.0414) (0.0109) (0.0428)
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Zy, Zy, S, and M indicate original, weighted, generalized, and max-type edge-count statistics, respectively. Abbreviations:
JFK, John F. Kennedy International Airport; NYC, New York City. Table adapted with permission from Chu & Chen
(2019) published in The Annals of Statistics.

We further continue this process by performing the test on the period October 1-
November 20, 2015. The original edge-count test Z(¢;, t,) reports a changed interval from
October 22-November 19, 2015 (days 22-50). It reject the null hypothesis of no change as well,
with a small p-value (0.0017). S(#1, 12), Zy(t1, t2), and M(#;, t,) report a changed interval of Novem-
ber 16-19, 2015 (days 47-50) but fail to reject the null hypothesis at the 0.01 significance level.

From the reported changed intervals, the results from the three new tests are more sensible: the
week including Thanksgiving, and Christmas and the preceding week. To perform an additional
sanity check, we plot the distance matrix of this whole period (Figure 4«). It is evident that there
is some change occurring around day 60 and day 80, matching with the results from the test
statistics Zy, S, and M. On the other hand, the distance matrix for the first 51 days seems much
more uniform (Figure 45).

For comparison, two recently proposed nonparametric change-point methods and one para-
metric approach were considered as alternative methods to detect changes in the New York City
taxi dataset. Arlot et al. (2019) considered a penalized kernel least squares estimator, first proposed
by Harchaoui & Cappé (2007) and made computationally more efficient by Celisse et al. (2018).

a Distance b 50 Distance
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Figure 4

(@) Heatmap of L1 distance matrix for the period of October 1-December 31,2015 (indexed by 1, . ..,92). Thanksgiving is day 57 and
Christmas is day 86, and it is evident that some changes occur in this timeframe. (b)) Heatmap of L1 ; distance matrix for the period of
October 1-November 20, 2015. Figure adapted with permission from Chu & Chen (2019) published in The Annals of Statistics.
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Table 2 Change-point results for dataset of NYC taxi pickups from JFK

Method Estimated change-points
Kernel multiple change-point detection No change-points detected.
(Harchaoui & Cappé 2007, Arlot et al. 2019)
Random forest change-point detection Oct. 20 (day 20), Dec. 7 (day 68), and Dec. 26 (day 87)

(Londschien et al. 2022)
Change-point estimation via sparse projection | NA
(Wang & Samworth 2018)

The third technique was not suitable for the dataset and returned an error. Abbreviations: JFK, John F. Kennedy
International Airport; NA, not applicable; NYC, New York City.

Applied to the New York City taxi dataset, for a range of penalties, the kernel multiple change-
point approach either detected almost all time points as change-points or none at all. Given these
results, we conclude the approach was unable to recover any meaningful change-points in the
sequence. A random forest approach to change-point detection was proposed by Londschien
et al. (2022). While the current implementation does not support changed-intervals, these results
are somewhat comparable to the results obtained using the newer graph-based test statistics (see
Table 2). Examining Figure 44, there does not appear to be any signal around day 20. However,
there is a signal around day 60 and day 80, which may be what the Londschien et al. (2022) ap-
proach is picking up on for the latter change-points (days 68 and 87). Finally, Wang & Samworth
(2018) proposed a parametric approach to high-dimensional change-point estimation via sparse
projection. However since their method assumes normality and focuses on detecting sparse mean
change, it is not appropriate for the New York City taxi dataset. Moreover, the implementation
of their approach involves rescaling the data matrix by estimating the standard deviation through
median absolute deviation. For the New York City taxi dataset, which consists of a sequence of
sparse count matrices, this can result in a standard deviation of 0, leading to fatal errors in the
implementation.

4.2. Online Setting

Here, we focus on trips from two different time periods: the months of June—July and November,
2015. The dataset had been completely collected at the time of analysis. However, we treat it as if
the data were being sequentially observed in order to illustrate how the proposed method works.

To detect changes in the months of June—July 2015, we use data from the month of May as
historical data. Applying the offline change-point detection method of Chen & Zhang (2015)
and Chu & Chen (2019) on the observations in May, we find there is no change-point in the
first 30 days, so we set L = 30, ny = 5, and n; = L — ny. We denote as A, the 30 by 30 matrix
on day 7. The L;; norm is used to construct the ¥-NN graph representing similarity between
days. Here, the stopping rules Ty, Ty, and T all report a stopping time of July 3 and July 4,
whereas T is unable to detect any anomaly event (Table 3). The change-point triggering these
stopping times is estimated to be June 29. To perform a sanity check, we plot a heatmap of the L, ;
distance matrix used to construct the £-NN graph (Figure 54). Based on the heatmap, we can see
there is a clear signal happening around day 60, which corresponds with the results from Ty, Ty,
and Ts.

To detect changes in November 2015, we use data from the months of September and
October 2015 as historical data. Applying the offline change-point detection method of Chen
& Zhang (2015) and Chu & Chen (2019) on the observations in September and October, we find
there is no change-point in the first 50 days. Therefore, we treat the first 50 observations from
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Table 3 Detected stopping times for dataset of NYC taxi pickups from JFK for May 31-
July 31,2015

Reported stopping times Estimated change-point
Tz NA NA
Tw Jul. 3-4 June 29 (day 60)
Ty Jul. 34 June 29 (day 60)
Ts Jul. 3-5 June 29 (day 60)

The stopping rule 7z does not detect any anomaly event. The stopping rules Ty, Ty, and T all detect an anomaly event
on July 3 and July 4. Abbreviations: JFK, John F. Kennedy International Airport; NA, not applicable; NYC, New York City.
Table adapted with permission from Chu & Chen (2022); © 2022 IEEE.

September 1-October 20 as historical observations, and we begin the test at October 21. We set
L =50,ny=8,and n; = L — ny. The stopping times based on T, Ty, Ty, and T report back dates
that seem to be quite reasonable (see Table 4). We see that multiple stopping times are caused by
the same anomaly event. When the signal is large enough, the graph-based test statistics perform
similarly: All are able to detect a change in travel patterns close to Thanksgiving. Again, to check
our results, we plot a heatmap of the L;; distance matrix used to the construct the #-NN graph
(Figure 5b). We can see that there is a clear signal starting roughly around day 82, which matches
the results reported from the test statistics.

5. RECENT ADVANCEMENTS
5.1. Dealing with Repeated Observations

The graph-based approach relies on a similarity graph constructed on the observations. When
there are repeated observations in the data or ties in the pairwise distance matrix, which is common
for discrete data, such as network data, the conventional ways of constructing the similarity graphs,
such as the #-MST, are problematic, as there could be multiple optimal graphs according to the
graph construction rule and the results on different optimal graphs could be completely different.
Song & Chen (2022) explored this problem on a phone-call network dataset studied by Chen &
Zhang (2015). This phone-call network dataset was built from a study conducted by the MIT
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(2) Heatmap of Ly distance matrix for the period of May 31-July 31, 2015 (indexed by 31, ..., 92). (b)) Heatmap of L, ; distance matrix
for the period of October 21-November 30, 2015 (indexed by 51,. .., 91). Figure adapted with permission from Chu & Chen (2022);

© 2022 IEEE.
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Table 4 Detected stopping times for dataset of NYC taxi pickups from JFK for October
21-November 30, 2015

Reported stopping times Estimated change-point
Tz Nov. 27-31 Nov. 21 (day 82)
Tw Now. 28 Nov. 21 (day 82)
Ty Nov. 28 Nov. 21 (day 82)
Ts Nov. 27-30 Nov. 21 (day 82), Nov. 23 (day 84)

The stopping times Tz, T, Ty, and T all detect an anomaly event. Abbreviations: JFK, John F. Kennedy International
Airport; NA, not applicable; NYC, New York City. Table adapted with permission from Chu & Chen (2022); © 2022 IEEE.

Media Laboratory, in which the phone-call information of participating university students and
staff was logged (Eagle et al. 2009). Chen & Zhang (2015) extracted the information of callers and
callees and constructed phone-call networks on the participants for each day, with the nodes of the
networks indicating the participants and an edge pointing from one node to another if there was a
phone call between the two persons. The direction is from the caller to the callee (the phone-call
networks on three days are shown in Figure 6). The study lasted for 330 days, so the length of the
sequence is 330. However, there are only 290 distinct observations, i.e., the phone-call networks on
some days are exactly the same, and thus there are many MSTs. Song & Chen (2022) checked the
graph-based testing procedures on three randomly chosen MSTs, and their p-values are provided
in Table 5. It is clear that the conclusion could be completely different even for the same testing
procedure when a different MST is used.

To solve this problem, Song & Chen (2022) adopted ideas from Chen & Zhang (2013) and
Zhang & Chen (2022) to combine information from these optimal graphs. In particular, the
following algorithm is used to construct a candidate graph.

Algorithm 1 (Graph construction for data with repeated observations).

1. Construct a graph on distinct values and denote this by Cy.
2. For each distinct value, randomly choose one observation and connect them based

on Cj.
3. For each distinct value with more than one observation, connect those observations
by a tree.
October 28, 2004 October 31,2004 December 3, 2004
Y -
N7 b
/ ~ A'\‘ . ~
\
%
! = i 1 II o
i L I '}'
I~ \'l
~ 7 it X\/‘
"
f —
Figure 6

Phone-call networks on three representative days. Nodes indicate the participants; an edge points from one node to another if there
was a phone call between the two persons, and the direction is from the caller to the callee.
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Table 5 p-Values and corresponding test statistics (in parentheses) for four testing

procedures proposed by Chen & Zhang (2015) and Chu & Chen (2019)

MST #1 MST #2 MST #3
MaXyy<t<n, Z0(2) 0.09 (2.32) 0.91 (0.92) 0.51(1.57)
Mmax, <<n, S(t) 0.04 (13.61) 0.08 (12.31) 0.01 (16.36)
MaXyy <1<y Lo () 0.44 (2.11) 0.02 3.49) 0.88 (1.54)
MaXy<t<n, M(t) 0.09 (3.05) 0.02 3.49) 0.05 3:27)

max, <<y, takes the maximum value for 7 in the range of (1, 71). Test statistics are Zy, original; S, generalized; Z,
weighted; and M, max-type. Abbreviation: MST, minimum spanning tree. Table adapted from Song & Chen (2022),
“Asymptotic Distribution-Free Changepoint Detection for Data with Repeated Observations,” Biometrika 109(3),
pp- 783-98, by permission of Oxford University Press.

One good choice of Cj is the union of all MSTs on the distinct values. There are still many
graphs constructed by Algorithm 1. Song & Chen (2022) studied two approaches to make use of
these graphs:

1. Averaging: compute the test statistic for each graph from Algorithm 1 and take the average
2. Union: take the union of all graphs from Algorithm 1 and compute the test statistic on the
union graph

Since there are millions of graphs constructed from Algorithm 1, it is infeasible to obtain all the
graphs to conduct either the averaging or union approach. Song & Chen (2022) worked out
analytic expressions for both approaches. Here, we use slightly different notations as there are
repeated observations. Suppose that there are K distinct values. Each time, ¢, divides the sequence
into two groups, before or at time # (group 1) and after time 7 (group 2). Let 7;(¢) be the number of
observations in group 7 (i = 1, 2) and category k (k= 1,..., K) and m (k = 1, ..., K) be the num-
ber of observations in category k. Notice that mz, = ny(¢) + n(t) (k = 1,. .., K), Zle mp = n,
Zle n(t) =t,and Zle nyt) =n—t.
The new scan statistics under the averaging approach are

max Zy)(t), max Zg»(), max S,@), and max My (@),
ny<t=<mny ny<t<mny ny<t<mnj

ny=t=m
where
Zo (@) = Ro,y () — E(Ro (4 (2))
“ Var(Ro.w(®))
Ry () — E(Ry»)®)) n—t—1 t—1
Zw ) = — . , Ryw@®)=———Ri )+ Ry (@), d
() VarRe ) wt) = ———Riw® + —Ry@), an
Rt () — E (Raite ) (1))
Ziat: - - 7Ridt:Rﬂt_Rﬂt7
dit ) () A Rom ) dife @) () = R () — Ra 0 (2)
with
K
2m1(t ) (t) 11 ()12 () + 11, ()12, (2)
Row(®) = Z o * Z nm ’
k=1 (u,0)eCy v

R = Y HOUO D | O

7,7
k=1 (u,0)eCy wy

Ro(®) = f W by mlm@)

7,7y
k=1 k (u,v)eCy wty
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Stage 1 53 293

Stage 2 28 289 323
Stage 3 52 247

Stage 4 140 247

Stage 5 68 140 164

Stage 6 66 97 164

Stage 7 79

Averaging/union (days)

Averaging: 53 68 97 140 164 247 289
Union: 28 52 66 79 140 164 247 164 323
Shared: 52 67 140 164 247 291

Figure 7

Estimated change-points and the order where change-points are detected in the averaging and union
approaches, for the phone-call network dataset. Here, stage 1 is applying the approaches to the entire
sequence, stage 2 is applying the approaches to the sub-sequences divided by the detected change-point from
the previous stage, and so on. The method stops when no further change-points can be detected. Figure
adapted from Song & Chen (2022), “Asymptotic Distribution-Free Changepoint Detection for Data with
Repeated Observations,” Biometrika 109(3), pp. 783-98, by permission of Oxford University Press.

The new scan statistics under the union approach are defined similarly, with

K
Ro (@) = Z ne()ny(t) + Z ("m(t)nzv(l‘) + n1u(f)”2u(l‘)),

k=1 (u,v)eCy
K
t t)—1
Rl,(n)(t) = Z % + Z nlu(t)nlv(t)7 and
k=1 (u,v)eCy
K
12 () (2 (t) — 1
Ruofe) = 3 OCHOZD 5 et
k=1 (u,v)eCy

Song & Chen (2022) further worked out analytic p-value approximations for the new scan statistics
to make the new tests easy off-the-shelf tools for analyzing large datasets.

The new generalized scan statistics are applied to the phone-call network dataset, and the re-
sults are presented in Figure 7. A change-point £ is defined to be detected by both approaches if
they each find a change-point within the set [f — 2, ¥ + 2], and the shared change-point is com-
puted as the floor of the average of the two change-points detected by the two approaches. Since
the underlying distribution of the dataset is unknown, a sanity check is done with the distance
matrix of the dataset (Figure 8). It is evident that there are some signals in this dataset and the
results from the new tests are a reasonably good match to the signals.

5.2. A Faster Algorithm

When the graph is not given, the recommended graph to use in the graph-based change-point
detection framework is the 2-MST graph due to its high power and relatively low computa-
tional cost. However, when the sequence is long (e.g., hundreds of thousands of observations),
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Figure 8

Heatmap of L1 norm distance matrix corresponding to 330 networks in the phone-call network dataset.
Change-points returned by the averaging and union tests, and the shared change-points, computed as the
floor of the average of the two change-points detected by the two approaches, are shown. Figure adapted
from Song & Chen (2022), “Asymptotic Distribution-Free Changepoint Detection for Data with Repeated
Observations,” Biometrika 109(3), pp. 783-98, by permission of Oxford University Press.

constructing the #-MST is time consuming: It requires O(dn*) time to compute the distance ma-
trix among 7 d-dimensional observations, so it takes at least O(dn?) time to construct the k-MST
from the original data when the pairwise distances were not provided in the beginning, which is
usually the case. Recently, Liu & Chen (2022) extended the framework to directed approximate
k-NN graphs. The new method on the directed approximate #-NN graph has power on par with
the method on the #-MST graph, while the approximate #-NNs can be obtained in a much faster
way. The time complexity of the entire method is O(dn(logn + k log d) + nk?), reducing time cost
significantly.

The new test is applied to a functional MRI (fMRI) dataset (large d = 96 x 96 x 48 =
442,368 and moderate » = 598) (Table 6) and a Neuropixels dataset (moderate d, specified in
Table 7, and large » = 39,053). The estimated change-points and runtimes are presented in
Tables 6 and 7. We can see a clear improvement in runtime using the new approach based on the
directed approximated 5-NN graph compared with the standard graph-based framework under
the 5-MST.

Table 6 Results of two change-point detection methods on an fMRI dataset with two subjects

Subject Method T p-Value Time cost (minutes)
SID-000005 New (d-a5NN) 437 <0.001 3.8
5-MST 437 <0.001 120.9
SID-000024 New (d-a5NN) 260 <0.001 3.9
5-MST 260 <0.001 147.8

The change-point is given by 7. Abbreviations: 5-MST, 5-minimum spanning tree; d-aSNN, directed approximated
S-nearest neighbors; fMRI, functional MRI. Table adapted with permission from Liu & Chen (2022); © 2022 IEEE.
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Table 7 Results of two change-point detection methods on a Neuropixels dataset

Brain region Method T p-Value Time cost (minutes)
Caudate putamen (d = 176) New (d-a5NN) 35,148 <0.001 7.7
5-MST 35,056 <0.001 96.1
Frontal motor (d = 78) New (d-a5NN) 31,081 <0.001 6.0
5-MST 32,242 <0.001 77.8
Hippocampus (d = 265) New (d-a5NN) 4,109 <0.001 20.7
5-MST 4,382 <0.001 159.1
Lateral septum (d = 122) New (d-a5NN) 29,616 <0.001 11.4
5-MST 29,636 <0.001 89.3
Midbrain (d = 127) New (d-a5NN) 20,580 <0.001 13.9
5-MST 20,590 <0.001 105.6
Superior colliculus (d = 42) New (d-a5NN) 23,539 <0.001 4.0
5-MST 31,328 <0.001 65.4
Somatomotor (d = 91) New (d-a5NN) 30,316 <0.001 7.6
5-MST 30,312 <0.001 81.9
Thalamus (d = 227) New (d-a5NN) 28,613 <0.001 217
5-MST 28,608 <0.001 146.1
V1 (d=334) New (d-a5NN) 30,226 <0.001 17.5
5-MST 30,338 <0.001 173.8

The change-point is given by . Abbreviations: 5-MST, 5-minimum spanning tree; d-a5NN, directed approximated 5-nearest neighbors. Table adapted
with permission from Liu & Chen (2022); © 2022 IEEE.
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5.3. Finding Multiple Change-Points

It is common that a sequence has more than one change-point. The traditional approaches,
binary segmentation (Vostrikova 1981) and circular binary segmentation (Olshen et al. 2004),
have their drawbacks (Fryzlewicz 2014). Thus, Zhang & Chen (2021) adapt the idea of wild
binary segmentation (Fryzlewicz 2014) and seeded binary segmentation (Kovics et al. 2020) to
the graph-based framework to find a pool of candidate change-points. They then propose a
pseudo-Bayesian information criterion for change-point selection. Simulation studies show that
this approach has superb performance compared with other state-of-the-art methods in dealing
with high-dimensional/non-Euclidean data.

5.4. Dealing with Locally Dependent Data

Local dependency is common in time-series data and spatial data. For example, in social networks,
relationships among people last over an extended time, and in neuroimaging, neurons react over
an extended time, resulting in similar images over consecutive time points. Modeling and adjusting
for local dependence in change-point detection through traditional parametric approaches are not
realistic in high-dimensional settings unless strong assumptions are imposed. Chen (2019a) pro-
posed using circular block permutation to approximate the null distribution and achieved a good
balance between preserving the power of the method and controlling the familywise error rate.

5.5. Other Related Work

Graph-based change-point detection methods have gained attention from a variety of fields due
to their fast applicability and mild requirements on the data. For example, Dai et al. (2016) used
the graph-based method to study brain functional connectivity, Pallotta et al. (2017) applied it to
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analyze community evolution in network data, Shi et al. (2018) utilized the shortest Hamiltonian
path graph to study the landing and departure times of bees’ flower visit using video data, and Dong
et al. (2020) used the graph-based change-point detection method to study gene coexpression
dynamics. More recently, Nie & Nicolae (2021) and Zhou & Chen (2022) sought to add weights
to the similarity graph, which could boost power when the weights reflect additional similarity
information.

1. The graph-based change-point detection framework adapts graph-based two-sample
tests to the scan statistic setting.

2. Analytical type I error control is provided for both the offline and online settings. These
are shown to work well for finite sample sizes, making the methods practical to apply for
complex datasets.

3. Recent advancements have extended the framework to be useful for a broader class of
settings, such as data with repeated observations or locally dependent data.

4. Graph-based change-point detection can detect a variety of types of changes, offering
power and flexibility for a wide range of applications.

1. Uncertainty quantification for the accuracy of the estimated change-points remains an
issue. Specifically, the construction of confidence intervals with coverage guarantees in a
nonparametric setting needs to be worked out. Chen & Zhang (2015) proposed a mod-
ified version of the Cox-Spjetvoll-type confidence region (Cox & Spjetvoll 1982), but
this region is quite conservative and we aim to develop more accurate procedures.

2. The choice of the optimal graph construction and its density can affect the power and
accuracy of the graph-based framework. Moreover, the choice of similarity measure is
not always obvious and could be estimated in a data-driven fashion. Further exploration
and studies will need to be done to better incorporate these decisions into the framework.
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