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Likelihood Scores for Sparse Signal and
Change-Point Detection

Shouri Hu™, Jingyan Huang™, Hao Chen", and Hock Peng Chan

Abstract— We consider here the identification of change-points
on large-scale data streams. The objective is to find the most
efficient way of combining information across data stream so that
detection is possible under the smallest detectable change mag-
nitude. The challenge comes from the sparsity of change-points
when only a small fraction of data streams undergo change at
any point in time. The most successful approach to the sparsity
issue so far has been the application of hard thresholding such
that only local scores from data streams exhibiting significant
changes are considered and added. However the identification of
an optimal threshold is a difficult one. In particular it is unlikely
that the same threshold is optimal for different levels of sparsity.
We propose here a sparse likelihood score for identifying a sparse
signal. The score is a likelihood ratio for testing between the
null hypothesis of no change against an alternative hypothesis in
which the change-points or signals are barely detectable. By the
Neyman-Pearson Lemma this score has maximum detection
power at the given alternative. The outcome is that we have
a scoring of data streams that is successful in detecting at the
boundary of the detectable region of signals and change-points.
The likelihood score can be seen as a soft thresholding approach
to sparse signal and change-point detection in which local scores
that indicate small changes are down-weighted much more than
local scores indicating large changes. We are able to show sharp
optimality of the sparsity likelihood score in the sense of achieving
successful detection at the minimum detectable order of change
magnitude as well as the best constant with respect this order of
change.

Index Terms— Asymptotic optimality, change-point, sequence
segmentation, signal detection.

I. INTRODUCTION

ONSIDER a large number N of data streams containing
change-points. We consider the situation in which all data
up to a given time is available for analysis, so each data stream
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is an observed sequence of length 7. At each change-point
one or more of the sequences undergo distribution change.
The objective is to identify these change-points and the
sequences undergoing distribution change. Of interest here is
the identification of these change-points when there is sparsity,
that is when the number of sequences undergoing change is
small compared to N. More specifically we want to know
the minimum magnitude of change for which the distribution
change can be detected under sparsity. And secondly we
want to be have an algorithm that is able to detect, with
high probability, change-points under the minimum detectable
change. See Niu et al. [28] and Wang and Samworth [37] for
applications to engineering, genomics and finance.

A typical strategy to deal with sparsity is to subject
local scores to thresholding or penalization before summing
them up across sequence. Algorithms employing this strategy
include the Sparsified Binary Segmentation (SBS) [10], the
double CUSUM (DC) [9], the Informative Sparse Projec-
tion (INSPECT) [37] and the scan algorithm of Enikeeva
and Harachaoui [15]. The strategy was also employed by
Mei [26], Xie and Siegmund [40] and Wang and Mei [38]
in sequential change-point detection on multiple sequences,
and Zhang et al. [43] to detect distribution deviations from
known baselines on multiple sequences. Thresholding and
penalization suppress noise by removing small and moderate
scores, mostly from the majority of sequences without change,
thus enhancing the signals from the sparse sequences with
changes. It is however unlikely that we are able to specify a
threshold or penalization parameter that is optimal at all levels
of sparsity.

The higher-criticism (HC) test statistic, proposed by
Tukey [35] to check for significantly large number of small
p-values, uses multiple thresholds for sparse mixture detection.
The number of p-values below a threshold is transformed to
a higher-criticism score and this score is maximized over all
thresholds. The Berk and Jones [4] test statistic uses multiple
thresholds as well but it applies a different scoring function.
The HC test statistic was shown by Donoho and Jin [11]
to be optimal in the detection of a sparse normal mixture.
Cai and Wu [6] extended the optimality of the HC test statistic
to sparse non-normal mixtures and Moscovich et al. [27]
extended the optimality of the Berk-Jones test statistic.
Cai et al. [5] applied the HC test statistic to detect intervals in
multiple sequences where the means of a sparse fraction of the
sequences deviate from a known baseline and showed that the
HC test statistic is optimal. Chan and Walther [7] considered
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sequence length much larger than number of sequences with
detection boundaries that are more complex. They showed that
the HC test statistic achieves detection at these boundaries and
is optimal in more general settings. They also showed that the
Berk-Jones test statistic achieves the same optimality.

Our approach here is to convert the p-values into likelihood
scores for testing sparse sequences. The scoring applies on
each p-value instead of on the number of p-values below a
threshold. It can be considered to be a soft form of threshold-
ing in which p-values that are close to zero are penalized less
than p-values that are barely significant.

Since the likelihood scores are transformations of p-values,
the proposed method can be applied to any type of distribu-
tion changes and it can handle data types that vary across
sequences. Our theory however requires a specific distribution
family for neat asymptotics and we consider here in particular
either normal or Poisson data. We show optimality up to the
correct asymptotic constants. For sparse normal change-points
these constants are two-dimensional extensions of those in
Ingster [20] and Donoho and Jin [11] for sparse normal
mixture detection. These constants have been discussed in
the context of sparse normal change-point detection assuming
a known baseline in Chan and Walther [7] and Chan [8].
For sparse Poisson change-points the constants are new and
different from sparse normal constants.

The optimality of multiple sequence identification of
change-points up to the correct constant is new. Previous
works on optimality for normal data are up to the correct
order of magnitude though they go beyond the i.i.d. model,
for example Pilliat et al. [31] considered sparse change-point
detection in time-series with normal errors. Liu et al. [25]
showed optimality up to the best order for normal errors, under
the constraint of not more than one change-point.

As far as we are aware, there are currently no optimal-
ity theory in the literature on sparse change-point detection
on Poisson data. For sparse Poisson mixtures of size N,
Arias-Castro and Wang [3] showed that the HC test statistic
is optimal when the Poisson means grow faster than log N,
and that a Bonferroni correction is optimal when the means
grow slower than log N. Donoho and Kipnis [12] characterized
the asymptotic behavior of the HC test statistic on frequency
tables with Poisson counts. Stoepker et al. [34] applied the
HC test statistic to test against sparse alternatives in multiple
data streams, with p-values obtained via permutation tests,
and showed optimality for exponential families, covering both
normal and Poisson data. They showed that optimality does
not require the null distribution to be known, however their
problem is different in that the observations are identically
distributed and there are no change-points.

The algorithm we propose here has two steps in the iden-
tification of two change-points. The first detection screen-
ing step applies the Screening and Ranking (SaRa) idea of
Niu and Zhang [29]. The second estimation step for more pre-
cise location of change-points uses the CUSUM-like procedure
of Wild Binary Segmentation (WBS), cf. Fryzlewicz [17]. This
two-step approach saves computation time because the fast
screening step evaluates a large number of segments whereas
the computationally intensive estimation step is only applied
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when a change-point has been detected during screening.
In contrast for WBS the estimation step is applied on a large
number of randomly generated segments. Unlike in Niu and
Zhang [29] we do not apply the BIC criterion of Zhang and
Siegmund [42] to determine the number of change-points.
Instead critical values are specified in advance and binary
segmentation, cf. Olshen et al. [30], is applied to detect the
change-points sequentially.

An alternative to binary segmentation is estimating the
full set of change-points at one go by applying global
optimization and making use of dynamic programming to
manage the computational complexity. This was employed by
the HMM algorithms of Yao [41] and Lai and Xing [24],
the multi-scale SMUCE algorithm of Frick et al. [16] and the
Bayesian Likelihood algorithm of Du et al. [13]. These meth-
ods are however designed for single sequence segmentation.
Niu et al. [28] provides an excellent background of the
historical developments.

The outline of this paper is as follows. In Section II we
introduce the sparse likelihood (SL) scores and show that
they are optimal in the detection of sparse normal mixtures.
In Section III we extend SL scores to detect change-points
in multiple sequences. In Section IV we show that SL scores
are optimal for change-point detection when the observations
are normal or Poisson. In Section V we discuss the assump-
tions, implications and contributions of the optimality results.
In Section VI we perform simulation studies on the SL scores.
In the appendices we prove the optimality of SL scores.

A. Notations

We write a,, ~ by, to denote lim,,_, o (a, /b,) = 1. We write
an, = o(by,) to denote lim,, .~ (a, /b,) = 0. We write a,, < b,
to denote a,, < Cb,, for all n for some C > 0 and a,, < b,
to denote a, < b, and b, < a,. We write X,, = Op(a,) to
denote P(X, < Ca,) — 1 for some C > 0. Let
[-]([-]) denote the greatest (least) integer function. Let ¢ and
® denote the density and distribution function respectively of
the standard normal. Let 1 denote the indicator function. Let
() denote the empty set and let #A denote the number of
elements in a set A. Let || - || denote the Lo-norm of a vector

and || - ||o the number of non-zero entries of a vector.

II. SPARSE MIXTURE DETECTION

We start with the simpler problem of detecting a sparse
mixture, with the objective of motivating the sparse likelihood
score.

Let p = (p',...,p") be independent p-values of N null
hypotheses and let p(") < ... < p(N) be the sorted p-values.
Tukey proposed the higher-criticism test statistic

anp(")
n:]\IfI;(a"“)ggn vV Np(™) (1—p(m) ’ (1)
with HC(p) = 0 if Np(™ > n for all n, for the overall test
that all null hypotheses are true.
Donoho and Jin [11] showed that the HC test statistic is
optimal for detecting a sparse fraction of false null hypotheses.

HC(p) =
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Consider test scores Z™ ~ N(0, 1) when the nth null hypoth-
esis is true and Z™ ~ N(un, 1) for some gy > 0 when the
nth null hypothesis is false. Define
-1 if L <3< 3,
pz(B) = ’ e RN )
1-vI=p)?2 if3<p<l.
Donoho and Jin [11] showed that on the sparse mixture
(1 —¢)N(0,1) + eN(un,1) no algorithm is able to achieve,
as N — oo,

Py(Type I error) + P, (Type II error) — 0, 3)

for testing Ho: ¢ = 0 versus Hi: ¢ = NP, if uy =
V2vlog N for v < pz(f3). They also showed that the HC test
statistic achieves (3) when v > pz(f) and is thus optimal.
Type I error refers to the conclusion of H; when Hj is true
whereas Type II error refers to the conclusion of Hy when
H, is true. Ingster (1997, 1998) established the detection lower
bound showing that (3) cannot be achieved when v < pz ().

Like the HC test statistic, the Berk and Jones [4] test statistic

[n log (ﬁ) +(N —n)log (ﬁ)}

“4)

BJ(p)= max

n:Np(n)<n

achieves (3) when v > pz(f).

We introduce the sparse likelihood scores in Section II-A
and show that they achieve (3) in the detection of sparse
mixtures, when v > pz((), in Section II-B.

A. Sparse Likelihood
Let fi(p) = m - % and fo(p) = ﬁ — 2. For

both ¢ = 1 and 2, fol fi(p)dp = 0 and f;(p) increases as
p decreases.
Define the sparse likelihood score

N
> v, (5)

n=1

In(p)

log (1+ 2N £1(p) + S o) ).
with A1 > 0 and Ay > 0.

When \; = 0, the sparse likelihood score is the log-
likelihood ratio of the null hypothesis p™~; ;.4. Uniform(0, 1)
versus the alternative hypothesis

where {n(p) =

P ~iia F(p) = p+ e (VP —p).

Let the empirical distribution function F(p) = W

Under the null hypothesis,

Fo)-p=0,(/%).

Since F(p)—p ~ 2Aq, /ﬁ;]\, as p — 0, we are able to

detect with small error probabilities if \/Qﬁ is large. As

v/log N increases slowly with N, we can view the density
f(p) = 1 +. ﬁ fa (p) as lying near the bc.>u.n.dar.y wher.e
detection with asymptotically zero error probabilities is possi-
ble. That is, the sparse likelihood score is the most powerful
test for some of the alternatives lying near this boundary.
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Fig. 1. Graphs of £n(p(z)) (black, —) and (z — 2)2 /2 (red,——), with
g p P 2

p(z) = 2®(—|z|), for 0 < z < 5 (top) and 0 < z < 2 (bottom). The
parameters of £ are N = 500, A\; = 1 and Ao = 1.84( = log T

loglog T
for T = 500). These parameters were applied in the simulation exercises

in Section VI-A and correspond to those in (15) used to show optimality in
sparse change-point detection.

When p is of order smaller than N1, % f1(p) dominates
ﬁ f2(p) and the selection of A; > 0 is advantageous.

This is relevant in the extension of sparse likelihood scores to
detect change-points on long sequences where large number
of likelihood comparisons is involved.

The sparse likelihood score can be viewed as a form of soft
thresholding. To visualize this we compare in Figure 1 the
plot of {n(p(2)) for p(z) = 2®(—|z|), N =500, \; = 1 and
A2 = 1.84, against that of (z — 2)3_/2. For 0 < z < 5, the
two functions are close to each other however within 0 < z <
2, n(p(z)) is not constant but has a gentle upward curve.
The sparsity likelihood score is negative for z < 1.18 and
Un(p(Z)) for Z standard normal has a mean of —0.004. This
negative mean helps in controlling the sum of scores when [NV

is large and p” o Uniform(0, 1).

B. Optimal Detection

We show here that the sparse likelihood score is optimal in
the detection of change-points for a broad range of sparsity.
Let Ey and Fy denote expectation and probability respectively

with respect to p" 'A< Uniform(0, 1). Since

EJ\QGXP(KN(P))
= H Eo[1 + 28N £ (p™) + ﬁfﬂpn)] =1,
n=1
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it follows from Markov’s inequality that
Po(Un(p) > cn) < e M. (6)

This exponential bound makes the sparsity likelihood score
easy to work with when there are large number of likelihood
comparisons, as critical values satisfying a required level
of Type I error control can have a simple expression not
depending on N. We show in Theorem 1 that by selecting

en — oo with ey = o(N?) for all § > 0, (7

the Type I and II error probabilities both go to zero at the
detection boundary.

Theorem 1: Assume (7). Consider the test of Ho: Z" -
N(0,1) versus Hy: Z™ Lig- (1 —¢)N(0,1) + eN(un, 1), for
1< n < N, with e = N7 for some % < (B < 1. Consider the
likelihood score ¢y (p) with parameters A; > 0 and Ay > 0
not depending on N, and p-values p™ = &(—2"). If uny =
V2vlog N for v > pz(f3), then

Po({n(p) > en) + Py (Un(P) < en) — 0.

III. CHANGE-POINT DETECTION

Let X" denote the tth observation of the nth sequence for
1<t<Tand 1 <n < N. Consider first the model

X{fn ~indep. N(Mt 1) (8)

We are interested in the detection and estimation of
7= {t: puy # py,, for some n}.

For s < t,let X = (t —s)~' >0 X7 To check for
a change of mean on the nth sequence at location ¢, select
s <t < wu and let p-value

— X = XT
st Su—t) T (=)L
In the sparse likelihood algorithm we combine these p-values
using £ x (Pstw)> Where Paty = (pLiys - - - > PN, ). When the data
follow some other distributions, the corresponding likelihood
ratio statistic and p-value can be computed accordingly.

Sparse likelihood scores detects well when only a small
fraction of the sequences undergo change of mean. For
T large computing the sparse likelihood score for all (s, ¢, u)
is expensive. Instead we combine the approximating set idea
of Arias-Castro et al. [1] and Walther [36] to first space out
the (s,t,u) that are evaluated, and to apply the CUSUM-type
scores used in WBS to estimate the change-point location
accurately only when the first step indicates a change-point.

In addition to computational savings, through this two-step
approach we are able to incorporate multi-scale penalization
terms similar to those used in Diimbgen and Spokoiny [14] and
the SMUCE algorithm of Frick et al. [16], to ensure optimality
not only at all levels of sparse change-points, but also at all
orders of change magnitudes.

Let 1 < hy < hg < --- and1 < dy < dy < --- be
integer-valued sequences with h; > d; for all i. Our grid
approach uses segments of length 2h, spaced d; apart, with
segments near the two ends shortened due to edge effect. For

Doty = 29(—|Z3,,]), where Z;

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

a dataset of length g there are K;(g) = Lg
length 2h; and we consider all ¢ from 1 to

ig =max{i: h; +d; < g}. 9)

L] segments of

More specifically define

Ailg) = {(s(ik), t(ik), u(ik)) : 1 < k < Ki(g)},
s(ik) = max(0,kd; — h;),

Hik) = kd;,

u(ik) = min(kd; + hs, g).

The elements of A;(g) are the indices where sparse likelihood
scores for segments of length 2h; are computed. Initially we
have the full dataset X7 = (X' : 1 <t <T,1 <n < N)
and after one or more change-points have been estimated, it is
split into sub-datasets X;.. = (X' :b<t<e,1 <n<N),
with length ¢ = e —b+ 1. We check for change-points in Xj.,
using segments specified by A4;(g).
Let the penalized sparse likelihood scores

O (Pstw) = €n (Pstu) — log(§ (2 L))- (10)

The detection of change-points within X,.., with segment

lengths of at least 2h;,, is as follows.

Algorithm 1 SL-Estimate

INPUT(c, ig, b, €)

X‘_Xb:e
g—e—b+1
FOR i = ig, . .., i,

IF MaX; <<k, () I (ps(zk) (k) u(ik k)) = ¢ THEN
J T argmaxy. ) <p< g, (g)eN (ps(zk) t(ik),u(ik)

T « [argmax,, 5(7,])<t<u(7,j)£N (Ps (i) touif)] +0—1

OUTPUT (7, 1)
STOP
END IF
END FOR
ouTPUT (0,0)

There are two steps in SL-estimate in the estimation of a
change-point, when the largest penalized score exceeds the
critical value c. The first is the identification of an interval
(s(ig),u(ig)), associated with the largest penalized score,
within which a change-point lies. The second is the estimation
of the change-point within this interval. In the approximating
set A;(g), neighboring windows are located d; apart, hence
we are unable to estimate the change-points accurately in
the first step. Accurate estimation is carried out, with more
intensive computations within (s(ij),u(ij)), in the second
step. Since the second step is performed only after an interval
has been identified as containing a change-point, performing
this two-step procedure saves computations in regions where
scores are generally small and the likelihood of change-points
is low.

After a change-point has been identified, we split the dataset
into two and execute the same algorithm on each split dataset.
To avoid repetitive computations, we start from segment length
2h;, used in the evaluation of the change-point spltting the
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Fig. 2. Graphs of Type I error probability against critical value for the
sparse likelihood detection algorithm, for independent unit variance normal
observations. We consider parameters d;, h;, A1 and A2 as applied in the
numerical studies in Section VI, with 7" = 2000 (top), 7' =20,000 (bottom).
and N = 50 (black), N = 100 (red), N = 200 (green), N = 500 (blue),
N = 1000 (orange).

dataset, instead of starting from the smallestsegment length
2h1, on the split datasets. The use of a set of representative set
of segment lengths for computational savings in change-point
detection have been proposed in Willsky and Jones [39]. The
recursive segmentation algorithm for the computation of the
estimated change-point set T is given below, with initialization
at (¢,1,1,T,0).

Algorithm 2 SL-Detect

INPUT(c, 19, b, €, T)
(7,4) < SL-estimate(c, ig, b, €)
IF 7 > 0 THEN
T—TU{T}
T « SL-detect(c,i,b,7,T)
T « SL-detect(c,?,7,¢,T)
END IF
OUTPUT T

In Figure 2 we show that the critical values of the sparse
likelihood algorithm, for a specified Type I error probability,
is stable over V. Contributing factors include ¢y (p) having a
mean that is close to zero and ¢y (p) having exponential tail
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probabilities not depending on IV, see (6), when p and p" are
uniformly distributed.

IV. OPTIMAL DETECTION

Let p = (up : 1 <t <T,1 <n <N), p =
(up 1 <nm < N) and let J = (#7) be the number of
change-points. We show that the sparse likelihood algorithm
is optimal for normal observations in Section IV-A and for
Poisson observations in Section IV-B. Consider T' growing
exponentially with N in the sense that

logT ~ N°¢ for some 0 < ¢ < 1. arn

The asymptotics in (11) are meant to highlight how the opti-
mality constants are affected by the growth rate. We discuss the
corresponding optimality theory for sub-exponential growth
log T = o(N°¢) for all ¢ > 0, in Section V-A.

In Theorems 2 and 4 we specify the detection boundary
for asymptotically zero Type I and II error probabilities.
Analogous detection boundaries for a single sequence is given
in Arias-Castro et al. [1], [2].

In Theorems 3 and 5 we show that Type I and II error
probabilities of the sparse likelihood algorithm go to zero at
the detection boundary.

Recall from (9) that i = max{i : h; + d; < T}. Consider
the sparse likelihood algorithm with d; and h; satisfying

hi+

i+ — landd; = o(h;) as i — oo,

12)

o (304) -

=1

o(logT) as T — oo, (13)
and critical values cr satisfying
iT
cr = o(logT) and ¢y — log (Z Z—) —ooas T — oo.
i=1
(14

For the sparse likelihood algorithm select parameters A; >

0 and
_ log T
)\2 — V loglogT"

We satisfy (12) when h; ~ exp(loigl.

i — 00. Moreover (13) holds because

5)

) and d; ~ % as

iT
log (Z Z—l) ~ 2logip ~ 2loglogT.
i=1
Condition (12) ensures that the set of (h;,d;) is sufficiently
dense to detect change-points optimally. Condition (13) is
required for (14) to hold. The first half of condition (14)
ensures Type II error probability goes to 0. The second half
ensures Type I error probability goes to 0.

A. Normal Model
Let
mia = #{n:|u7 0 — w7 = A}

be the number of sequences with change of mean of at least
A at the jth change-point. Let

Qo = {[,LZJZO},
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Q1 (A, V,h) = {p: there exists j such that
HliIl(’/"j — Tj—laTj-&-l — Tj) Z h

and m;a > V'},

with the convention 79 = 0 and 7741 = 7. We consider here
the test of Hy: p € Qo versus Hy: p € Q1(A, h, V). Define

p-5

1f1 <ﬁ<3( )
(V1 C3(1\Q—C B
if % <g<1-¢

pz(B,¢) = (16)

These constants are extensions of pz () in (2) to capture the
effect of multiple testing in change-point detection.

Theorem 2: Assume (11) and let 0 < ¢ < 1. Let A =
CT~" for constants C' > 0 and 0 < n < % For normal
observations, no algorithm is able to achieve, as N — oo,

sup P, (Type I error) +
Hne

sup
HEQ1(A,V,h)

P, (Type II error) — 0,

A7)

under either of the following conditions.

(2) When V' = o({25) and hA? = 4(1—21)(1—€) (5.

(b) When V' ~ N'=# for some 1;2< < f <1-¢( and
hAZ = 4(1 — )pz (B, () log N.

Theorem 3: Assume (11) and let € > 0. Let A = CT~" for
constants C' >0 and 0 < n < % For normal observations the
sparse likelihood algorithm, with parameters satisfying (12)—
(15) achieves (17) under either of the following conditions.

(a) When V = o(llggfz) and hA?% = 4(1—27})(14—6)(10%).

(b) When V' ~ N'=7 for some 3¢ < 8 < 1 — ¢ and
hAZ = 4(1+ €)pz(8,() log N.

B. Poisson Model

Rivera and Walther [33] provided the asymptotics for opti-
mal change-point detection on a single Poisson sequence.
We show here the optimality of the sparse likelihood detection
algorithm for detecting sparse change-points in multi-stream
data, with

X' ~indep. Poisson(uy').

Let Y = S°._ ., X! Consider s < t < u. Under the
null hypothesis of no change points in the interval (s,u),
conditioned on Y}, = y;‘u, Y i 1s b1n0m1a1 distributed with y7,
be the two-sided
p-value of this conditional binomial test, with randomization
of p-values so that they are distributed as Uniform(0,1) under
the null hypothesis. More specifically when Y.} = y7; and
Y =y, simulate

Y ~ Uniform(P(Y < yg,), P(Y < yg)),

(18)

19)

where P is

Binomial(y7,, :=2
Let

probability with respect to Y ~
), and define p?,,, = 2min(y?

stu? 1- gtu)
mja = #{n: |log(uy, 11 /pn7)l = A},
and for a given gy > 0, let

A = {p:ul > o for all n and t},
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Ay =
Al(Aa ‘/a h) =

{peA:J=0},

{p € A : there exists j such that
mill(Tj+1 — T, Tj — ijl) 2 h
and mja >V}

We consider here the test of Hyo: o € Ag vs Hyi: p €
Al(AaVvah)
For a given r > 1, let
I, = rlog(;35) + log(37)- (20)

Let g,(w) = (2£7)% and let
—w (1= _
pr(B,Q) = max_ (G ) for 58 < <1,
B SW>
21

In Theorem 4 we show that (21) is the asymptotic constant
in the detection boundary of Poisson random variables. In The-
orem 5 we show that the sparse likelihood algorithm achieves
detection at this boundary for a broad range of sparsity.

Theorem 4: Assume (11). Let r = e® for some A > 0 and
0 < € < 1. For Poisson observations no algorithm is able to
achieve, as N — oo,

sup P, (Type I error) +
nENo

sup
HEAL(A,V,h)

P, (Type II error) — 0

(22)

under either of the following conditions.
(a) When V = 0(113517\;) and hpo = (1 — e)[;l(lo{ng).
(b) When V ~ N'=# for some 3¢ < 8 < 1 —( and

hpo = (1 — €)pr(B3,() log N.

Theorem 5: Assume (11). Let ¢ > 0, A > 0 and 1 <
r < e®. For Poisson observations the sparse likelihood
algorithm, with parameters satisfying (12)—(15), achieves (22)
under either of the following conditions.

(a) When V = o(llggf,) and huo = (L +¢e)I,- (lo{g,T).

(b) When V' ~ N'=7 for some 3¢ < 8 < 1 — ¢ and

hpo = (1 +€)pr(B,¢) log N.

V. DISCUSSIONS
A. On the Exponential Growth of T With Respect to N

The exponential growth of 7" with respect to N in (11) is
chosen to highlight how the asymptotic constants pz (3, ¢) and
pr(B,C) varies with this growth rate. If instead

log T = o(N°®) for all ¢ > 0, (23)

then the asymptotics in Theorems 2(b)-5(b) apply with

p2(8,Q) replaced by p(5,0) and pu(5,C) replaced by
pr(B,0), provided = lOgN — o00. Note that pz(5,0) = pz(5),
the constant for sparse normal mixture detection. For example
Jeng et al. [22] showed in their Theorem 2 that the HC test
statistic achieves (17) with asymptotic constant pz () in the
detection boundary of sparse change-points in multi-stream
normal data, when 7 satisfies (23).

Under the very sparse setting V' = of

require, under (23), that TAg TV

Theorems 2(a)-5(a) to hold.

log T
log N

— oo for the asymptotics of

), we only
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B. Our Theoretical Contributions for the Normal Model

The minimax detection boundary of Pilliat et al. [31] for
the normal model, in their equation (8), is expressed in terms
of ||I‘l‘7j+1 - HT]' || and ||ll"rj+1 - I"I’Tj HO Rephrased USing the
notations of this paper, their results imply that there exists
co large enough such that if

hA?% > ¢ {log (1 + V1 Nlog(%)) + vt log(%)},

then with probability at least 1—646, their dyadic grid algorithm
is able to detect all change-points, each with location error not
more than 2 5, and with no spurious change-points. Moreover
no algonthm is able to improve upon their algorithm beyond
a smaller cg.

Under the sparse setting

logT ~ NS,V ~ N*# for 0<(<1land 154 <f<1-¢,
(24)

and A = CT7" for some C > 0 and 0 < 1 < %, their
grid algorithm has Type I and II error probabilities tending to
0 when

hA? > ¢ log N

for ¢f, large enough. Under the very sparse setting V'

(llgé’f,) the error probabilities tend to 0 when hA? >

cO(logT) for ¢, large enough Our contribution is in showing
how the best constant ¢}, depends on the sparsity of V" and the
exponential growth rate of 7.

Liu et al. [25] tackled the problem of deciding between
the null hypothesis of no change-point and the alternative
hypothesis of a single change-point at an unknown location 7.
As in [31], their minimax detection boundary is expressed in
terms of ||pe, | — || and |[ge,; — . ||o. Rephrased using the
notations of this paper, under (24), their results imply Type I
and II error probabilities both bounded by € when

, log N if 3> %
TR > ¢, x { loglog N if =3,
—1/Nlog N if 3 < 3,

for C. > 0 large enough. Moreover no algorithm is able
to achieve this error probability bound beyond a smaller C..
Theorems 2 and 3 indicate that when the restriction of a single
change-point is relaxed, the log N growth of the boundary for
% < B < 1—¢ is not affected provided there are sufficient
spacings between change-points.

C. Our Contributions for the Poisson Model

Theorems 2-5 highlight the similarities and differences in
the asymptotics for the normal and Poisson model for fixed
A > 0 (n = 0 in Theorems 2 and 3). For the very sparse
setting V = o(llgglj\;) IOgT growth rate for the signal
strength hA? (for the normal model) and hpg (for the Poisson
model) is required for detection with asymptotically zero
error probabilities. For the sparse scenario given in (24), a
log N growth rate is required. The asymptotic constants differ
however, with pz (3, () for the normal model and p, (53, ¢) for
the Poisson model. While the constant pz (3, () has appeared

4071

in earlier works [7] and [8], the constant p,.(3,() is new in
the literature.

Unlike in Theorems 2 and 3, the asymptotics in Theorems 4
and 5 do not involve A — 0. If (= e®) — 1 as T — oo,
the Gaussian approximation of the Poisson distribution kicks
in and the asymptotics for the Poisson model correspond to
that of the normal model. In particular as

pr(B,¢) ~4A ?pz(8,¢) and I, ~ A* as r — 1,

the proofs of Theorems 2-5 indicate that if A = CT~" for
some 0 < 1 < %, then the boundary of asymptotically zero
Type I and 1II error probabilities is at

4(1 - 2n)(%FF)
4pz(B,¢)log N

if V= o(llsglj\;)

Ay =
hA7Ho { if Vo~ N6

VI. SIMULATION STUDIES
A. Change-Point Detection

We follow here the simulation set-up in Sections V-A
and V-C of Wang and Samworth [37]. Assume that the
random variables are normal with variances that are unknown
but equal within sequence. These variances are estimated
using median absolute differences of adjacent observations and
after normalization, the random variables are treated like unit
variance normal.

In the first study there is exactly one change-point .
Consider pf =0 for ¢ < 7 and all n. For ¢ > 71, let

ut, {08/\/712771 ym~tifn <V,

if n>V.
The objective is to estimate 7; assuming we know there is
exactly one change-point. We estimate 7; here by

71 = arg max 3" (poir)
o<t<T N ’
where (5" is the penalized sparse score with A\; = 1 and
_ log T
Ay = loglog T "

We simulate the probabilities that |73 — 7| < k for
k = 3 and 10, and compare against the INSPECT algorithm
and the scan algorithm of Enikeeva and Harchaoui [15]. These
two algorithms have the best numerical performances in Wang
and Samworth [37]. The comparisons in Table I show that the
sparse likelihood algorithm performs well.

In the second study there are three change-points within
N = 200 sequences of length 7' = 2000, at 7; = 500,
7o = 1000 and 73 = 1500. At each change-point exactly
40 sequences undergo mean changes. Six scenarios are con-
sidered, corresponding to

MEJ(J e 77’/ nzm lm

1 <j < 3and1 < n < 40, for r = 0.4,0.6 and
k = 0,20,40. For k£ = 0, the mean changes are within the
same 40 sequences at all three change-points, whereas for
k = 40 the mean changes at all three change-points are on
distinct sequences. For k = 20, there is partial overlap of
the sequences having mean changes at adjacent change-points.

k(j—1)+n
:u'r7+1
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TABLE I

THE FRACTION OF SIMULATION RUNS (OUT OF 1000) FOR WHICH 71
Is WITHIN DISTANCE k FROM 71 FOR k = 3 AND 10. THE SAME
DATASETS ARE USED TO COMPARE SPARSE LIKELIHOOD (SL),

INSPECT AND THE SCAN TEST, WITH 71 = 200 FOR
T = 500 AND 71 = 800 FOR T" = 2000

k 3 10 3 10 3 10

14 SL INSPECT scan
T = 500 3 | 0511 0.801 | 0478 0.785 | 0.520 0.804
N = 500 51 0466 0.740 | 0427 0.718 | 0.463 0.722
10 | 0.393 0.645 | 0370 0.637 | 0.362 0.599
22 | 0.319 0.553 | 0.282 0.547 | 0.256 0.465
50 | 0.244 0462 | 0.211 0453 | 0.197 0.378
500 | 0.177 0.339 | 0.148 0335 | 0.112 0.240
T = 500 31 0481 0748 | 0410 0.667 | 0.480 0.730
N = 2000 5| 0423 0.673 | 0344 0.584 | 0.394 0.633
10 | 0.320 0.546 | 0.246 0.480 | 0.261 0.456
20 | 0.237 0431 | 0.198 0.403 | 0.188 0.332
45 | 0.186 0.344 | 0.136 0311 | 0.130 0.242
200 | 0.114 0.227 | 0.095 0235 | 0.074 0.153
2000 | 0.068 0.160 | 0.078 0.189 | 0.042 0.096
T = 2000 31 0603 0859 | 0587 0.855 | 0.589 0.854
N = 500 5| 0604 0865 | 0.595 0.855 | 0.558 0.832
10 | 0.565 0.827 | 0.569 0.833 | 0.487 0.764
22 | 0.522 0789 | 0.522 0.795 | 0438 0.714
50 | 0472 0.748 | 0468 0.745 | 0.384  0.652
500 | 0.378 0.643 | 0.336  0.609 | 0.273 0.524
T = 2000 31 0.607 0866 | 0.608 0.861 | 0.599 0.858
N = 2000 5| 0594 0864 | 0.586 0.857 | 0.557 0.829
10 | 0553 0.847 | 0.558 0.847 | 0476  0.780
20 | 0494 0.807 | 0498 0.789 | 0.435 0.726
45 | 0.447 0.747 | 0.451 0.746 | 0.377 0.657
200 | 0.362 0.649 | 0.342  0.604 | 0.297 0.554
2000 | 0.274 0.532 | 0.241 0471 | 0225 0.457

TABLE 11

NUMBER OF CHANGE-POINTS ESTIMATED BY THE SPARSE
LIKELIHOOD ALGORITHM AND THE AVERAGE ARI
OVER 100 SIMULATED DATASETS

r k # change-points ARI
2 3 4 5

0.6 0| 11 80 8 1] 091
0.4 0| 61 35 4 0| 074
06 20 | 12 80 8 0| 091
04 20 | 66 31 2 1| 074
06 40| 10 78 12 0 | 091
04 40 | 68 26 6 0] 075

The number of estimated change-points over 100 simulated
datasets on each sequence is recorded, as well as the adjusted
Rand index (ARI), see Rand [32] and Hubert and Arabie [19],
to measure the quality of the change-point estimation.

In the application of the sparse likelihood algorithm, we
select hy = 1 and h;11 = [1.1 h;] fori > 1, and d; = | h;/i],
for a total of i = 61 window lengths. We select critical value

logT -
ToglogT — 1.94.

Wang and Samworth [37] showed that INSPECT achieves
average ARI of 0.90 when r = 0.6 and either 0.73 (for k = 20)
or 0.74 (for k£ = 0 and 40) when r = 0.4, comparable to sparse
likelihood, see Table II.

In addition to INSPECT, Wang and Samworth [37] consid-
ered DC, SBS and scan, as well as the CUSUM aggregration
algorithms of Jirak [23] and Horvath and Huskova [18], with
average ARI in the range 0.77-0.87 when r = 0.6 and
0.68-0.72 when r = 0.4.

cr = 5 and parameters A\; = 1, Ay =
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Fig. 3. Power of the likelihood score, HC and Berk-Jones test statistics for
Gaussian mixtures, with means p! = 2 (or 3), p* =1 for 2 < n <V and
pu™ =0 for V< n < 100.

B. Normal Mixtures
We compare here the performance of the likelihood score,
HC and Berk-Jones test statistics when testing a normal
mixture 27 "8 N(u™, 1), with g™ = 0 for all n under
the null hypothesis and
2 ifn=1,
ut=< 1 if2<n<V,
0 ifV<n<N,

(25)

under the alternative hypothesis. Two-sided p-values
p" = 2®(—|Z™|) are applied. This exercise is repeated with
u' = 3 in place of u! = 2.

We see from (1) and (4) that the HC and Berk-Jones test
statistics consider only the most significant deviation of p(™)
from %. They do not take into account significant deviations
occurring over a broad range of n, which can happen when
signals are of unequal strengths, as in (25). The likelihood
score, which sums transformed scores of all p-values, may
have an advantage here.

The simulations are performed with N = 100 and V rang-
ing from 1 to 100, with critical values chosen to satisfy
Type I error probability o = 0.01. For the likelihood score
we consider (5) with parameters A\; = 0 and Ay = 1.
Figure 3 shows that whereas the HC test statistic does better
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for smaller V', both the Berk-Jones test statistic and likelihood
score have more power for larger V. The likelihood score
is moderately better compared to the Berk-Jones test statistic
over a broad range of V.

APPENDIX A
PROOF OF THEOREM 1

Since ¢y — o0, by Markov’s inequality Py(¢n(p) >
en) < e — 0. The proof of P, (¢{n(p) < cy) — O
applies Lemmas 1 and 2 below. Lemma 1 says that the sum
of sparse likelihood scores under ¢™ ~ Uniform(0,1) is
bounded below by a value close to zero, with large probability.
Lemma 2 provides a lower bound to the increase in score when
the p-value is divided by at least 2. Their proofs are at the end
of Appendix A.

Lemma 1: Let q = (¢%,...,¢N), with ¢"
form(0,1). For fixed \; > 0 and § > 0,

sup

P(fn(q) < —A3y/log N) — 0.
§<X<VN

Lemma 2: For A\ > 0 fixed, § < \y < VN for some
d > 0and {x = o(IN~") for some 1 > 0 such that { >

~iid. Uni-

Ao
2N
inf
(p,q):p<&n,
q>\3/N,p<q/2

[n(p) —En(q)] > Mﬁ

for large N.
Proof of Theorem 1: Let %
0 be fixed. Let v be such that

5 <B <1, A >0and \y >

1-y1-p)P2<v<i if%§ﬁ<1,
B-i<v<4(B-13) if 3 <B<3,
and let
un = +/2vlogN,
Q" ~ Bernoulli( N—7?),
ZMQ" ~ N(un@",1),

pn = (I)(_Zn)v
R )

The add1t10nal assumptlons of v < 1 for 3 < B < 1 and
v <4(B—1) for 3 <3< 32 is not restrictive because £ (p)
increases stochastically with .

Case 1: % < B <1 Let

Fr={n:Q"=12"

> y/2log N,q" > %3

For N large, p™ < % for n € T. Moreover {n(p™) > {n(q™)
for all n. Hence by Lemma 1 and Lemma 2 with {5y = N1,
with probability tending to 1,

(n(p) = +Z€N ) —In(q")]
nel’
> —\2 1ogN+(#r)Wf;W.

Since #I" is binomial with mean

By (#T)
N=B[®(—/2log N + \/21/10g]\7)—%]
N1-8-(1-v)?

ViogN

(26)

2
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with1—8—(1—+/v)2>0for (1-y/1-03)2<v<1,and
since ¢y is subpolynomial in N, we conclude P, ({n(p) >
CN) — 1.

Case 2: % <p< %. Let

26— 1)log N, q" > 22}.

for n € T'. Hence by Lemma 1 and
_ N —48 with probability tending to 1,

Ir={n:Q"=1,2">2

For N large, p" < q
Lemma 2 with £y =

In(p) > )+ ) v () = tn(g™)]
nel’ N
)2 .Y
> —)A5\/log N + (#F)4N%—2ﬁ —
Since #I' is binomial with mean
By (#1) (27)

= N'P[B(-2y/ (28— 1) log N + \/2vlog N) — 2]
> N1-B—(VAF—2-vv)?
~ Viog N ’

and

~(VAB =20 > 3 for f—L <v < 4(5-1),

we conclude P, ({n(p) > cny) — 1.0
Proof of Lemma 1: Let

ey (p) = M RENS1(0) + T f2(0),
where f1(p) = ;omiegpr — 30 f2(P) = 5 — 2 A1 2 0 and
§ < Ay < N7 for some § > 0. Let ry = NllgN Since

xN(rN) >0 and zx(1) > —1 for N large and log(1 + z) >

z — 2% for x > —3,

N Zlog1+xN

n=1

N
n=1

(28)

where hn(q) = N8 (q)1{g>rn}-
By Chebyshev’s inequality and the bounds in (29)-(31)

below.

P(KNN(q) < —A3Vlog N)

2 O,
< P(ZhN(qn) < _Miv;gN)
n=1 N .
n V1og N
JFP(Zh?V(q ) > %)
n=1
< NVar(hn(¢™) | NVar(hy(q")) 0.
(NEhy (qn)+ 225N )2 (/\%v;OngNEh?\](q“)ﬂ_)
Since Exzn(¢™) =0,
Ehn(¢") = —Elzn(q")1gn<ryy] (29)
- _Mﬂ( 1 — Ix)
N 2—logrn 2
NlogN(QV —2ry)
A A
= N?ogQN'
Let sy = %.
Var(hn(g")) (30)
< Eh(¢")
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5 1
+ 2X5 dg
q>(2— log q)* N log N q
N

IN

1
222 (log N)?
N2
TN

1
I Ty
— N2 q (2—logsn)* q
SN TN
272 log(TN)
N log N
< AN
~ N :
2
Var(hy (¢")) G
4
< Ehy(q")
1
< 8A(og N)* dg | 1 N g
—= N4 q (2—logsn)® q*
SN TN
4 1
Lo [
(N log N)* - q?
< AN
~ N °
O

Proof of Lemma 2: For 5% <r <26y, |logr| < log N
and therefore
ST

- 1
™ Xov/Nrlog N — 0.

A
\/ngw f2 (’I“)
Moreover,

A2
vV Nrlog N — 0.

Nl)c\)2ng2(r) ~
Hence by log(1 + z) ~ 2 as x — 0,

On(r) ~ -2

vV/NrlogN"* (32)

Case I: 53 < p < &n. By (32) and q > 2p,

In(p) —In(q) > En(p)— KN(QP)

~ (1 - )\%)\/Nplogl\f
2
> 4v/N&énlog N”*
Case 2: 1 < 23 ¥ %
ase 2: p < 53%. By (32), ¢ > 3 and {y > 5%,
)\2 )\2
In(p) —In(q) = In(5%) —fN(/{T?)
~ Q-
2 A2
N(5%)log N
> A2
4y/N€nlog N~
APPENDIX B

PROOF OF THEOREM 2

Proof of Theorem 2(a): Consider first n = 0, that is A >
0 not varying with T". Let h = L%j for some 0 < € <
1. Let Py denote probability with respect to p* = 0 for all n
and t. Let tj, = (2k — 1)h and let P, 1 <k < K := |1,

denote probability under which, for n <V,

Moo = =g =—%, (33)
A
Piyp1 = " =Hpan =3
uy = O0fort<ty—handt>ty+h,
and pf' = --- = pp = 0forn > V. Let E}, denote expectation

with respect to P.
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Let P, = %Zkf(zl P, and let L =+ Zf 1 L, where

Ly = 42:(X) with X = (X : 1 <n < N,1 <t <T)
Hence
V —
log Ly = 58 Y *(Xjlo), — Xi,) — B2 (34)
n=1
Let A; = {L < 3} N {conclude H;}. Since P(A4;) =

Eo(L1a,) <3 By(Ar),

sup P, (Type I error) (35)

HEN

+ sup  Pu(Type II error)
BEQL(A,V,R)

> Py(conclude H;) + Py (conclude Hy)
> Py(A1) + P(Ag) = AP.(L < 3) = LA(L < 3),

with the last equality due to L having the same distribution
under all P, and P..

Since EyLj, = 1 for k > 2, it follows that P (% s,
Ly < 2) > % Hence by (35), to show that
supeq, Pu(Type lerror)  +  sup,cq,(a,v,n) Pu(Type 11
error) — 0 is not possible, it suffices to show that

P (L <K)—1lasT — occ. (36)
By (34), log L; ~ N(BVAZ AVA%) "4nd indeed
_ log K—2hVA?
Pl < K)= @(7\/ﬁ ) 1 37)

For A =CT " with C >0and 0 < n <
above with h = L% log T'|. Here

log(|35]) ~

and (37) still holds. O
Proof of Theorem 2(b): Consider first n = 0, that is

A > 0 not varying with 7. Proceed as in the proof of
Theorem 2(a), but with h = LWMJ, and P,
probability under which, independently for 1 < n < N,
Q™ = 1 with probability 2N~ and Q™ = 0 otherwise. When
Q" =1, (33) holds. When Q" =0, pf =--- = pp =0.

By the law of large numbers, Pi(u € Qi(h,A,V)) =
Pl(Zle Q" > V) — 1. Hence by (35) it suffices to
show (36) with

1
5 proceed as

log K = (1 —-2n)logT,

L,

D, @38

N
H [+ 2N F? AVE-"4"

@ (KFan — Xgy) ~

4 33-¢9) . Recall that pz (5,() =

7 = (Q"A g,1). (39)

_1=<

1€
Case 1: <ﬁ< >

By (38) and 39),

EiLy = (1+4N Plexp(h8%) 1))V
< Xp(4N1 26+2(1— fgﬁz(ﬁ <)
— exp(4NC 26pz(6<)).
Since log K = log(|4-]) ~ N¢, it follows that P(L; <

K)>1—- K 'EjL; — 1 and (36) holds.
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Case 2: 3(1 9 <p<1 — (. Recall that pz(5,¢) =
(V1-¢—1 —C B3)%. Express log L1 = Zi:o R;, where
R, = Zlog (1+2N_5[exp (Z"A\/g—é‘:h) —1}),

nel’;
FO = {nQ”ZO},
I'h = {n:Q"=1,Z"<+/2(1 —¢)log N},
Iy = {n:Q"=1,v/2(1 -()logN < Z" < 24/2log N},
I's = {n:Q"=1,Z">24/2log N}.

We show (36) by showing that
Pi(R; > +log K) — 0 for 0 <i < 3.
i =3: Since A\/% < V2Tog N,
Pi(R3 > 0) < 2N'P®(—+/2log N) — 0.

1 = 2: Since

(40)

< V21 =) logN —/2(1—-¢ —B)log N — \/20log N

for some § > 0, it follows that

(A\/g V(1= ()log V) = o(NS*A-1-9).

Hence
Ei Ry 41)
< Ei(#T5)log(1 + 2N17)
< (N Plog N)® ( b 21=¢ logN>

o(N*°log N),

and (40) follows from log K ~ N¢.
i =1: Since log(1 + z) < z,

ElRl S 4N1—2ﬁe—hA2/4
/\/2(1C)logN
X

— 00

(42)
—(z=AVE)? 242005

Vor
= AN (/2T () log N - zA\/g) (hA?/2
< AN1-2-(VT=C=2/(1=6)pz(8.0))*+2(1=€)pz (5.C)
= 4N~ for some § > 0.
The last step above is shown below. Since
Ry > (#T)log(1 —2N—#) X —aN1=20 = o(N?),

and log K ~ N¢, (40) follows from (42) and Markov’s
inequality.
i = 0: Since Ejeffo =1,

Pi(Ry > Llog K) < K1 — 0.
For A=CT~" with C >0and 0 <7 < 3,
log([551) ~

and the same arguments above can be applied to show (36).
O

log K = (1—2n)NS,
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Proof of (42): Tt suffices to show that

1-28— (/1= ¢=2y/(1=€)pz(B,{)) +2(1—e)pz(B, ) <C.
43)
Let m(p) = —(v/I = ¢ —2,/p)? + 2p. Inequality (43) follows
from
m(pz(B8,¢))
= —(vV1=C—2Vpz(8.Q) + 2pz(B.¢)
= Nl—c B-y1-Q)
+2(V1-C-V1-¢-p)°
= 1-¢(-21-¢(-B)=¢—-1+28,
and
dsmlp) = 2072(/1-C—2yp) +2
= 2 2/1-C—2>0forp<1—C(.
0

APPENDIX C
PROOF OF THEOREM 3

For (s,t,u) € A;(T), the penalty of the SL scores is
log (7 (725 + 757)) = log(57)-

Moreover #A;(T) < . Hence by (6) and cp —
log(3iZ, ) — oo, for € Qo

P, (Type I error) (44)
S Z Z P/J,(gN(pstu) Z cr + log(g,f;))

i=1 (s,t,u)€A;(T)

[z
> & exp(—er —log(zr-))

=1
iT
= 2T E %—>O
=1

Consider p € Q1(A,h,V) and let 7; be the change-point
satisfying the conditions in the definition of Q1 (A, h, V). Let
Q" = 1if [p7 1 — p| = A and Q" = 0 otherwise.
We assume without loss of generality that 0 < € < 1.

To aid in the checking of the proof of Theorem 3, we
provide here the key ideas. Let 5 be such that

IN

min(7; — 7j_1,Tj+1 — 7j) > h and mja > V.

Consider A > 0 fixed and V ~ N'=# for some 3¢ < 3 <
1 — (. Since h — o0, it follows from (12) that for N large
we are able to find (s,t,u) = (s(ik),t(ik),u(ik)) close to
(rj — h,7j,7; + h) such that

E,Z%, > 11 —1—0(1)]’1%2 for n satistying |u7,  —p7 | > A
(45)
Recall that p?,,, = 2®(—|Z7,,|) and let ¢7,,, = ®(—|Z%, |+
E Z?tu) ( |Z‘ztu - F Z;Ltu) Let
- {n |Z tu| > \% QO.)IOgN qstu NC_l, (46)
|ILL7']‘+1 - lj"r]| A}
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with w = 1—¢ when 2229 < 3 < 1—( and w = 4(3—155)

when lg—c < pg < 3(1T7<)' It follows from Lemmas 1 and 2
that with probability tending to 1,

In(Psta) 2 In(Qsra) + (D) fomdims
> —X3Vlog N + (#1) i
for &y = N7v.

Since the penalty log(£ (1 + 1)) <logT ~ N¢, ¢p =
N
o(logT') and Ay ~ W’ to show P, ({2 (p) > er) — 1,

stu
it suffices to show that there exists § > 0 such that

E(#F)>{ if M <p<1-¢,
n ~

e 1-¢ 3(1=0)
Proof of Theorem 3(a): Consider first n > 0, that is

Sy
Ni-28-5+6

47
O

A > 0 not varying with T, and V = o(llggjq\;). Since
h = 4(1+ 6)(12.%5) — 00, h;xl — 1 and d; = o(h;), for

large T there exists

hi > 4(1+¢)2 (2%3)

such that for all g € Q4 (h, A, V), there exists k satisfying
Tj—1 < s(ik) < u(ik) < 7j41 and [t(ik) — ;| < . (48)

Hence when Q™ =

|EnZ; z‘iz',.,)\@z J?(He)%V*llogT, (49)
where (s,t,u) = (s(ik), t(ik), u(ik)).
LetI'={n: Q" = 1,|23,| > 2(1+6) (IOgT)} Let

Un1f0rm(0,1) and

p?tu = 2¢< |Zstu) and qstu :
(_| 5tu| E Z;Ltu) Slnceq

Pu(tn(ql,) = 21og N) < N2 Epfexp(Cn (qf,))]) = N 72,
by Lemma 1, with probability tending to 1, 0
In (Pstu) 51)
> IN(Qstu)
+(#1) [EN (2‘1)< - 2(1 + e)i lo‘g/T)> —2log N]

w-t

’ﬂ
\
[N}
<)
o
=

> —A3\/logN +V[(1+e€)5
> (1+e)610gT.

Since the penalty log(L (A + -L)) < lo
o(logT), it follows that P (épen(pstu) > cr)

Consider next A = CT7 7 for 0 < n < 5 and V =
O(fggT) Let h; > (1 —2n)(1 + 6)%(225) be such that for

all p € Qi(h,A,V), (48) holds for some k. Let

={n:Q"=1,|2",] > \/2(1 —2m)(1+e)7i8Ty

and define p7,, and ¢, as above.
By the arguments in (51), with probability tending to 1,

In(Pstu) > (1= 20)(1 + €)% log T.
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Since A = CT ", it follows that h; > T?7log N and the
penalty log(% (15 ++1)) < (1—2n) log T for T large. Hence
by ¢ = o(log T) we conclude P, (45" (pstu) > cr) — 1. O
Proof of Theorem 3(b): Case 1: V. ~ NP for
@ < B < 1—¢. Since hA? = 4(1 + e)(vV1—-C —
1—C—PB)?log N and d; = o(h;), for large N there exists

¢ satisfying h; > (1 + e)_%h such that whenever Q" = 1,

thf‘ \/E> 21/10gN
S(VI-¢-V1-

u(ik)) for k satisfying (48).

|ELZ"| > (52)

v

(1+ e
with (s,t,u) = (s(ik), t(ik),
For I' defined in (46),

B (#T) > —V2(1 =) log N + \/2v1og N)
_NC—l]
> Nl—ﬁ—(\/l—c—ﬁ)z(log N)_%,

and (47) follows from

YR N e

Case 2: V ~ N5 for % <pB< w. Since hA? =
4(1+€)(B - %)log N, for large N there exists h; > (1 +
e)*%h such that whenever Q" = 1,

>\/§ > /2 log N, (53)

|E Zefu Z A( 2%;
1 _
(1+€)3(8-13%),

with (s,t,u) = (s(ik), t(ik), u(ik)) for k satisfying (48).
For I' defined in (46),

B, (#T) > V[<I>< — 228 -1+ () log N + /2w log N)
7chl}
> Nl—ﬁ—(QM—ﬁ)Q(logN)—%’

and (47) follows from

20/B -5 > Vo> /g - 5L

) Z—

APPENDIX D
PROOF OF THEOREM 4

Proof of Theorem 4(a): Let h = L%J for some
0 < e < 1. Let Py denote probability with respect to uy =
(4o for all n and ¢. Let ¢t = (2k —1)h. Let P, 1 < k <
K := ||, denote probability under which for n <V,

o for tp, — h <t <tg,
u? = T Lo for tp, <t <tr+h, 54)
(o for t <t —hand t > tj, + h,
and pf = -+ = pl = (H)po for n > V. Let By, and Vary

denote expectation and variance respectively with respect to
Py Let

U™ = Sgi, log(35) + St o log (), (55)
\%

Ly = 95(X) = H exp(U™). (56)
n=1
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By (35)-(36), it suffices to show that

P(L; <K)—1lasT — oo. (57)

Since El(log Li) = hpoV I, and Vari(log L1) = huoVC,,
where C, = r[log(;25)]?> + [log(;25)]%, by Chebyshev’s
inequality,

hV/J.QC 1
)

P (L S K) 21— qzgmiviatyz —

and (57) holds. O
We preface the proof of Theorem 4(b) with Lemma 3, which
provides an alternative representation of pT(ﬁ7 (). Let

D(w) = 1+r“’ log( 1—4—27"“’ ) + 1+r‘*’ log( 1+4+re ) (58)
glw) = (HF)E
Let £(w) = 5-2570=5 Recall from (21) that
pr(B.¢) = max gw)for 5t <f<1—C  (59)

- <<w<2

2g(2)—1—r

Lemma 3: For 1 < % < i1+ ], € achieves its

i 9(2)D(2)
maximum at w = 2 and
Ll
pr(B,Q) = S (60)
2g(2)—1—r

For 31 + Sap@ ) < % < 1, £ achieves its maximum at

some w < 2 and
Pr(8,0) = 050 (61)

Proof: Since

d _ w"" 1-¢ 24 g(w)
loglw) = oy - zg<w)g1—w
Lgw) = £ elxp[1 log ()]
= [Zsh — 2 log(H)]g(w)
Dlwlgle)

it follows that & log {(w) = 0 when

“2(1=glw) ~1-r] = 28— (1-0) 24, (62)

that is when

_ wil + 2g(w)—1—r

29(@)D@) - (63)

B
1-¢

For 1 < 1%1. <in+ %}, the solution of w to (63)

is at least 2 and the maximum in (59) is attained at w = 2.

We conclude (60). For 1[1 + %] < % < 1, the

solution of w to (63) lies in the interval (—C, 2). We conclude
(61) from (59) and a rearrangement of (62). O

Proof of Theorem 4(b): For % <pB<1—=¢, letw be
the maximizer in

pr(8.0) = ).

2g(w)—1—r (64)

max
1;—3(<w§2

Let h = LWLMJ for some € > 0. Let P, denote
probability with respect to pf? = g(w)uoe for all n and ¢.
Let t, = (2k — 1)h. Let P, 1 < k < K := | -], denote
probability under which, independently for 1 < n < N,

4077

Q™ = 1 with probability 2N 7, and Q™ = 0 otherwise. When
Q" =1,

Mo for tp, — h <t <tg,
Uy =< Tlo for tp, <t <ty +h, (65)
glw)pg fort <ty —h and t >ty + h.

When Q™ = 0, pf = -+ = plh = g(w)po. Let Ey denote
expectation with respect to P;. Let P = Pi(-|Q' = 1) and
let Eg denote expectation with respect to Pg.

By (35)-(36), it suffices to show (57) for
N
[T +2NPlexp(U™) - 1)), (66)

n=1

Ly = %(X) =

U" = S log(ss) + St log(55)
—hpo[L + 7 — 2g(w).

For notational simplicity, let Sop, = S, and Sy 2, = S ,172 b
For X ~Poisson(\) and constant C' > 0,

o
O%) = e ML
=0

This identity is applied in (68), (71) and (72).

Case I: § < 5 ﬁ [1—1—%] w = 2. By Lemma 2,

(65)—~(67) and[ ( )} = L2
Eqexp(U*)

S r \Sh2nl,— r—
— Bol(gy 5 (Sl el r-2a2)

ME-D), (67)

(68)

= explhpuolylyy — 1+ o — ] — huoll + 7 — 29(2))

= exp(2hpo[29(2) — 1 —r])

hpo(28—14¢) ) < N(lfe)(2[371+g).

= exp(Z om0

where § = €(26 — 1 + (), and (57) holds.
29(2)—T~

Case 2: [1 + oD@ ) < 12¢ < 1. Express
logly = Ro+ Ry, where (69)
R, = Z log(1 + 2N ~Pexp(U™) — 1)),
nel;
Iy = {n:Q"=0}U{n:Q"=1,exp(U") < N},
Iy = {n:Q"=1exp(U") > N°L

We conclude (57) from
Pl(RigélogK)—Jforizoand 1. (70)
i = 0: Let a = w — 1 with w the maximizer in (64). Since
g(w) = 12?(“) , by (64), (66) and (67),
Eqlexp(U")1{1eryy]

< NPU=9 B exp(alt)

(71)

NP exphppo| A — 1+ s = 7]
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—ahpo[l + 17— 2g(w)])
NPO=9) exp(whpuo[2g(w) — 1 — 1))

NB(1-a) exp(%) < N2B-14¢=6

where 0 = e(fw — 1 + (). Since Egexp(U™) = 1, it follows
from (71) that

E; exp(Ry) (L+4N"2PEq [eXP(Ul)l{leFO}])N

<
< exp(4N©T7),

and (70) holds.

i = 1: Express U' = v1So, + v2Shon — 2, where v; =

1og($), = log({77) and z = hpo[1 + 7 — 2g(w)]. Since
g(w) = 1;9‘7"(“)) , by Markov’s inequality and (67),
Er(#I') (72)
= 2N'PP, (e > N)
< 2leﬂfaﬁe*a2EQ(evlas()heUZUfSh,2h)

= 2N'"“Pexp(—az + huo[e”*® — 1 + re®2® — 7))
2N exp(whig 2g(w)—1—=1))
R =TI

)

where § = €(fw — 1 + (). Since
B < (#F1)m€afx Up and P(maxU" > N%) —
nely .

we conclude (70) from (72) and Markov’s inequality. O

APPENDIX E
PROOF OF THEOREM 5

It follows from (44) that sup,,c,, Pu(Type I error) — 0.
Consider i € A;(h,A,V) and let 7; be a change-point
such that

min(Tj_,_l — T, Tj —Tj_l) > h and miA > ‘/,

where ;s = #(n - [los(% 1 /u2)| > A).
Let Q" = 1if |log(u? 11/p7)] = A and Q" = 0 other-
wise.

Proof of Theorem 5(a): Consider V' = o llggﬁ) and recall
from (20) that I. = Tlog(r_,_l) + log(ril). Let 1 and up be
such that e® > 7, > r and po/(14€)3 < py < po. Since
hWiIpo = (1+¢€)logT, J:I — 1 and d; = o(h;), for T
large there exists

hi > (1+e) 3171 (e D),

such that for all g € A;(h, A, V), there exists &k such that

[t(ik) — ;| < %

(73)

Ti—1 < s(ik) < u(ik) < Tj41,
Moreover when Q" = 1,
[log(ELYy/EpYi)| = logry,
(s(ik), t(ik), u(ik)). Let
P={n:Q" =1, Y3, =(1+7r)hip, [log(Yy,/Yt)| =logr}.
By (73), for n € T,
— i) < 2exp(—(1 + )7 8Ty,

(74)

where (s,t,u) =

Pt < 2exp( (75)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

log T

Since Vieg N

— o0, for N large,

(ph) 2 (14 )3 (1),
Hence as P, ({n(q%,) > 2log N) < N~2, see (50), by
Lemma 1, with probability tending to 1,

IN(Pstu) > In(Ga) + (FHD)[(1+ )5 (2%L) — 21og N]
> —\2 10gN+(1+6)410gT

Since the penalty log(% (- +-15)) <log T, A3y/log N =
o(logT) and ¢y = o(logT), we can conclude that
PH(E?\?n(pstu) > CT) — 1 a

Proof of Theorem 5(b): Consider V ~ N1~ for 1;—< <
B < 1—(. For N large, there exists

log N 2 hy = (1+€)2p (8, ¢)(*25)
such that for all p € Aj(h, A, V), there exists k such that

(76)
Tj—1 < S(Zk) < U(Zk) < Tj+1, |t(Zk) — Tj‘ < %,
and conditioned on Q™ = 1, either

E.Y), >rE,)Y{or E,Y] >rE,Y., a7

where (s, t,u) = (s(ik), t(ik), u(ik)).
By Stirling’s approximation z! ~
X ~Poisson(n), as  — oo,

V2rx(2)*, for

PX=x)=e "Z, ~ \/Q%Eexp[—n+x—mlog(%)]. (78)

By apply this in (80) and (85).

Case 1: & < % < s+ 7255335127] and p-(8,¢) =
B—3(1-0)
9y —1—r- Let

I = (n:Q"=1, Y" > /2(1 + r)hipo — 1, (79)

|log(Y /Y| > 2logr, gl > N}

Consider Y7 ~ Poisson(h;ug) and Yy ~ Poisson(rh;ug).
By (78) and h; <log N,

P(Y1 = (&%) hino]) (80)

< exp(hipio[—1 + (5= )2

1

gﬂnl%mﬁaﬁx
P(Yy = [(1£2)*r%hipto])
T exp(hapo[—r + 1 (12)?
—r?(122) 7 log(r(122) 7))

Recall that g(2) = (Hz’” )2 and D(2) =

Vv

1
log N

1412

vV

1+r2 IOg( 1+2r2 ) +

HTQ log( ) [see (58)]. By (80),
Eu(#1) 1)
> VIP(Y1 = [(1Z2)? hipo ) P(Ya = [(22)2r*hapto])
_NC—l]

-8
> Mg exp(hipo29(2) — 1 -7 — g(2)D(2)).
By (79), for n € T,

Poa < 2exp(=YD(2)) < &n (82)
where £y = Chexp(—2hipog(2)D(2)) for Cy = 2¢P2).
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Let ¢%, = F,(p%,) where F,, is the distribution function
of p7,,,. It follows from Lemmas 1 and 2 that with probability
tending to 1,

éN(pstu) (83)
> In(dsra) + (D) fordiw
1_
> —23Iog N + 28 oxp(Ripg[2g(2) — 1 11).
(log N)2
C
Since Ao =< \/W and by (76)
¢
hatto > (14 )2, (8, log N = (1+ )} <ﬁ)1

it follows from (83) that {n(pPsty) 2 (ng for § = [(

1
)z —1][6— £(1=¢)]. Since the penalty log(% (1= ++1))
logT ~ N¢ and cp = o(N°¢), we conclude P, (05" (Pstu)
cr) — 1.

Case 2: 1[1 +

N,
_|_
<
>

29(2)—1—r 3 .
W] < 17 < 1and p,(8,Q) =

2g((}1;<(w) = 52;“(1:)7(1:5‘) with w achieving the maximum
in (59). Let
I = {(n:Q"=1, Y >2 g(w)hipo — 1, (84)

“Og( / )|>wlog7‘ qetuzNC 1}

Consider Y; ~ Poisson(h; o) and Yy ~ Poisson(rh; o).

By (78) and h; <log N,
P(Yy = [ 2 hipo ) (85)
2 ﬁ exp(hipio[—1 + 3‘3(;“1)
— 200 Jog( 22 ),
P(Yy = f2:wz§f) hipo])
2 i exp(hipo - + 24
e e )]
Recall that g(w) = (%)% and D(w) =
o log(25) + 1 log(£225) [see (58)]. By (85),
Eu(#1) (86)
> V[P(Y; = [ 2% hipuo | P(Ya > 28 hipug])
_NC—l]

2 {%5 exp(hipto[2g(w) — 1 — 1 — 2(22)g(w) D (w)]).
By (84), for n € T,

Pt < 2exp(=Y i wem P W) < &n (87)
where £ = C., exp(—2hiuog(w)D(w)) for C,, = 2eP),
Let ¢" = F,(p") where F, is the distribution function

of p”. It follows from Lemmas 1 and 2 that with probability

tending to 1,
EN(pstu) (88)
> In(dstu) + (#F)Mﬁ
> A2 1ogN+’\2N2 :
(log N)

x exp(hipin[29(w) — 1~ — (252)g(w) D(w)]).

4079
<
Since Ay =< log2 and by (76),
hipo > (1+6) pr(ﬂ C)logN
(1+ 0% (4= 10g N,
it follows from (88) that {x(Pstw) = % for § =

(1462 —1)[8— (1 —)]. Since the penalty log(% (X +
ﬁ)) < logT ~ NS¢ and ¢ = o(logT), we conclude

PH(&)\?H(pstu) > CT) — 1.0
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