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Abstract The theory of Mean Field Game of Controls considers a class of mean field
games where the interaction is through the joint distribution of the state and control. It
is well known that, for standard mean field games, certain monotonicity conditions are
crucial to guarantee the uniqueness of mean field equilibria and then the global
wellposedness for master equations. In the literature the monotonicity condition could be
the Lasry—Lions monotonicity, the displacement monotonicity, or the anti-monotonicity
conditions. In this paper, we investigate these three types of monotonicity conditions for
Mean Field Games of Controls and show their propagation along the solutions to the
master equations with common noises. In particular, we extend the displacement
monotonicity to semi-monotonicity, whose propagation result is new even for standard
mean field games. This is the first step towards the global wellposedness theory for
master equations of Mean Field Games of Controls.
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1. Introduction

The theory of Mean Field Games (MFGs) was introduced independently by Huang—Caines—
Malhamé [9] and Lasry—Lions [32]. Since then, its literature has witnessed an increase in many
directions and the theory is extremely rich in applications, including economics [1, 33],
engineering [10, 11], finance [30, 31], social science [4, 22], and many others. We refer to Lions [34],
Cardaliaguet [12] and Bensoussan—Frehse-Yam [5] for the an introduction to the subject in its
early stages and Camona—Delarue [16, 17] and Cardaliaguet—Porretta [14] for more recent
developments. Such problems consider the limit behavior of large systems where the agents
interact with each other in some symmetric way, with systemic risk as a notable application.
The master equation, introduced by Lions [34], characterizes the value of the MFG provided
there is a unique mean field equilibrium. This plays the role of the PDE in the standard
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literature of controls/games, and is a powerful tool in the mean field framework. The main
feature of the master equation is that its state variables include a probability measure pu,
representing the distribution of the population, so it can be viewed as a PDE on the Wasserstein
space of probability measures.

In a standard MFG, the interaction is only through the law of the state. In many applications,
however, the interaction could be through the joint law of the state and the control. Such a
game is called a Mean Field Game of Controls (MFGCs), which was also called extended MFGs
in the early stages. To be precise, let B and B° stand for the idiosyncratic and common noises,
respectively. Given an FB’-adapted stochastic measure flow {v.} = {vitiep ) C P2(R?), we
denote its first marginal by s := 741, € Po(R?), where 7(z,a) =z for any (z,a) € R? x R?
is a projection. Given the above {r.}, we minimize the following cost functional over all
admissible controls « : [0,T] x R? x C([0,T];R?) — R% for any ¢ € L?(Fo, RY),

T
J(E v} a) = ]E[G(X%’{V'}’Q7MT) +/ f(Xf’{”'}’a,a(tXf’{”'}’“,Bﬁ)’t]),ut)dt}, (1.1)
0
where, for a constant 3 > 0,
t
X0 < [ (s, XUV B s + B BB (12

Here the running drift and cost b, f depend on the joint law of the state and control, while the
terminal cost G depends on the law of the state only. We call (a*,{v*}) a Nash equilibrium if

* . *. * .
a* € arng}nJ(Q{u, }ba), and vy —E(Xf,{,,_},a )| FEO

Introduce the Hamiltonian H as

H(z,p,v): [p-b(z,a,v) + f(z,a,v)], with an optimal argument a* = ¢(z,p,v).  (1.3)

= inf
a€R?
The above problem leads to the following MFGC system of forward-backward stochastic
partial differential equations (FBSPDEs) with a solution ({u.},{v.}, u,v):

dpe(x) = [itr(am,ut(x)) — div(pi(2)0p H (x, Opult, ), 1)) | At — B, pue () - ABY;
du(t,z) = v(t,z) -dB) — {ﬂ;tr(amu(t, z)) + ftr(9.v " (t,x)) + H(z, dpu(t,z),v,)|dt;  (1.4)

Vg = (ida¢('aazu(tv ')th))#Nt; B2 =1 +62;
po =Le, u(T,z)=G(z,pr).

The wellposedness of the above MFGC system has been investigated by many authors in recent
years, essentially in the case 8 =0 and b(x,a,v) = a. For example, Gomes—Patrizi—Voskanyan
[24], Kobeissi [29], and Graber-Mayorga [27] investigated the system under some smallness
conditions. The global wellposedness (especially the uniqueness) was studied by Gomes—
Voskanyan [25, 26], Carmona—Lacker [18], Carmona—Delarue [16], Cardaliaguet—Lehalle [13], and
Kobeissi [28], under the crucial Lasry-Lions monotonicity condition. We also refer to Djete [20]
for some convergence analysis from N-player games to MFGCs and Achdou-Kobeissi [2] for
some numerical studies of MFGCs, without requiring the uniqueness of the equilibria. However,
to the best of our knowledge, the wellposedness of master equations for MFGCs remains
completely open. We recall that the master equation is the PDE to characterize the value
function V of the MFGC, provided the equilibrium is unique, and it also serves as the
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decoupling function V' of the MFGC system (1.4):
U(t, x) = V(ta €, ,U't)

The monotonicity condition is used to guarantee the uniqueness of the mean field equilibria,
and then the global wellposedness of MFG master equations. There are three types of
monotonicity conditions in the literature for master equations of standard MFGs: the
Lasry—Lions monotonicity, the displacement monotonicity, and the anti-monotonicity. The
Lasry—Lions monotonicity, introduced by Lions [34] and used extensively in the literature, can
be formulated as follows: for any &, € L?(F+;RY) and their independent copies é,ﬁ in the
probability space (Q,F,P) (see their definitions in section 2),

E[(0anG(€, Le,Eiym)] = 0. (1.5)

The displacement monotonicity, originating in Ahuja [3], is
E[(0auG(&, Le, €)1 1) + (02 G (& Len )| 20, (L6)
which can be further weakened to the displacement semi-monotonicity: for some constant A > 0,
E[(0:uG (&, Le, )it m) + (0raG(E: LIn ) + Anl?] = 0. (L7)

See, e.g., Bensoussan—Graber—Yam [6] and Gangbo-Meszaros-Mou-Zhang [21]. Note that if G
is Lasry—Lions monotone and 0,,G is bounded, then G is displacement semi-monotone. The anti-
monotonicity, recently introduced by the authors [35], takes the following form:

E[ Mo (DerG(&, L), m) + A1 (@un GE, Le, €7l m)

for some appropriate constants Ag > 0, A\; € R, Ay > 0, and A3 > 0.

In [21, 35] we made a simple but crucial observation: the propagation of a monotonicity is
crucial for the global wellposedness of the (standard) MFG master equations. That is, provided
the terminal condition G satisfies one of the above three types of monotonicity conditions, if
one can show a priori that any classical solution V' of the master equation satisfies the same
type of monotonicity for all time ¢, then one can establish the global wellposedness of the
master equation, which in turn will imply the uniqueness of mean field equilibria and the
convergence from the N-player game to the MFG. Our goal is to extend all of these results to
MFGCs, however, in this paper we focus only on the propagation of these three types of
monotonicities. That is, we follow the approach in [21, 35] to find sufficient conditions on the
Hamiltonian H (or alternatively on b and f) so that the monotonicity of G can be propagated
along V(t,-,-), provided the master equation has a classical solution V. We leave the global
wellposedness of the master equations and the convergence of the N-player games to an
accompanying paper.

The Lasry—Lions monotonicity condition has been used to study the MFGC system (1.4), as
mentioned earlier. It is observed in [21] that, for standard MFGs with non-separable f, the
Lasry—Lions monotonicity can hardly be propagated. The extra dependence on the law of the
control actually helps for propagating the Lasry—Lions monotonicity, in particular, the
separability of f is not required anymore.

The displacement semi-monotonicity condition was introduced in [21], however, only the
propagation of displacement monotonicity is established there. In this paper, we manage to
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propagate the displacement semi-monotonicity for MFGCs, so it improves the result of [21] even
for standard MFGs. In particular, by combining with the arguments in [21], we easily obtain the
global wellposedness result of standard MFG master equations under displacement semi-
monotonicity conditions. We remark again that the displacement semi-monotonicity is weaker
than both displacement monotonicity and Lasry—Lions monotonicity (provided 0,,V is bounded,
which is typically the case), so in this sense our result provides a unified framework for the
wellposedness theory of master equations under Lasry-Lions monotonicity and displacement
monotonicity conditions.

Another feature of our results is that we allow for a general form of the drift b. In the literature,
one typically sets b(-,a, ) = a (or slightly more general forms), and then focuses on appropriate
monotonicity conditions of f to ensure the uniqueness of the mean field equilibria and/or the
wellposedness of the master equations. However, for a general b, especially when b depends on
the law (of the state and/or the control), it does not make sense to propose monotonicity
condition on f alone. A conceivable notion of monotonicity on the general b has never been studied,
to our best knowledge. Our approach works on the Hamiltonian H directly, which has the
mixed impacts of b and f together. Again, our results are new in this aspect even for standard
MFGs.

The rest of the paper is organized as follows. In section 2, we introduce MFGCs. In section 3,
we introduce the master equation and the notions of monotonicities. In sections 4, 5, and 6, we
propagate each of the three types of monotonicities in each section, respectively. In particular, in
subsection 5.1, we also establish the global wellposedness of standard MFG master equations
under displacement semi-monotonicity conditions. Finally, some technical proofs are included in
the appendix.

2. Mean field games of controls

We consider the setting in [21]. Let d be a dimension and [0,7] a fixed finite-time horizon.
Let (Q0,F% Py) and (Q;,F!,P;) be two filtered probability spaces, on which are defined d-
dimensional Brownian motions B° and B, respectively. For F!= {F/}o<;<r, i=0,1, we
assume JP = }'fo, Fl=F v FB, and P; has no atom in F} so it can support any measure

on R? with finite second-order moment. Consider the product spaces
0= QO X Ql, F= {]:t}OgtST = {]:to ® ]:tl}ogth, P:= ]P)O (39 Pl, E:= EP. (2.1)

In particular, F;:=o0(Ag x Ay :Ag € FP, A1 € Fi} and P(Ag x A1) = Po(Ag)P1(4;1). We
automatically extend B, B, FO, F' to the product space in the obvious sense, but use the same
notation. Note that B° and B! are independent P-Brownian motions and are independent of JF,.

For convenience, we introduce another filtered probability space (Ql,Iﬁ‘l,B,I@l) in the same

manner as (€21, F!, B,P;), and consider the larger filtered probability space given by
Q =0 x Ql, ]I} == {]:-t}Ogth = {.7:15 &® ]}tl}’OStST7 ﬁ) =P & I@l, INE = EP. (2.2)

Given an Fj-measurable random variable & = £(w® w), we say € = £(w?,&') is a conditionally
independent copy of ¢ if, for each w, the Pj-distribution of &(wP,-) is equal to the P;-
distribution of & (w,+). That is, conditional on F?, by extending to Q) the random variables &
and € are conditionally independent and have the same conditional distribution under P. Note

that, for any appropriate deterministic function ¢,
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B [0(6, ) (09) = E7P [p(6, ). 6%,)], P, u
fE]—} [tﬂ(& é)] (w07w1) — Eﬂ}l [(P(f(wo’ w1)7 g(wo,j))} , P-ae. (OJO’wl).

Here, EP: is the expectation on &', and EP1 %P1 i5 on (w!,@%). Throughout this paper, we use

(2.3)

the probability space (2, F,P). However, when conditionally independent copies of random
variables or processes are needed, we implicitly use the extension to the larger space (Q, IF‘, ]f”)

When we need two conditionally independent copies, we further introduce (€;,F!, B,P;) and
the product space (Q,F,P,E) as in (2.2), and set the joint product space

é = Q X Ql X Ql, ]ﬁ‘ = {j:t}ogth = {ft [ ﬁtl X ﬁt1}0§t§T7 ]}ib =P [ ﬁ]}l X Ph I:E = ]EIF) (24)

For any dimension k and any constant p > 1, let P(RF) denote the set of probability
measures on R¥, and P,(R¥) the subset of u € P(RF) with finite p-th moment, equipped with
the p-Wasserstein distance W,,. Moreover, for any sub-o-algebra G C Fpr, LP(G) denotes the
set of R¥-valued, G-measurable, and p-integrable random variables; and for any u € P,(R"),
LP(G; 1) denotes the set of & € LP(G) with law L¢ = . Similarly, for any sub-filtration G C F,
L(G;R¥) denotes the set of G-progressively measurable R¥-valued processes.

For a continuous function U :Py(RF) — R, we recall its linear functional derivative %{:
P2(RF) x R¥ -+ R and Lions derivative 0,U : Po(RF) x R¥ — R*. We say U € CY(Py(RF)) if
9, U exists and is continuous on Pa(R¥) x R¥, and we note that 9,U (u, ) = 85%(;17 Z). Similarly,
we define the second-order derivative 9,,U(u,#, ), and we say U € C3(Py(R¥)) if 9,U, 0;,U
and 0,,U exist and are continuous. We refer to [16, Chapter 5] or [23] for further details.

Our mean field game of controls (MFGC) depend on the following data:

b:R? x Py(R¥) - RY f:R*M x Po(R?D) - R; G :RY x Po(RY) — R; and B € [0, 00).

We always assume appropriate technical conditions so that all of the equations in this section
are well posed and all of the involved random variables are integrable. Given ty € [0, 7], denote
Bj° .= B, — By, B)":=B)-B) te€][t,T] Let A; denote the set of admissible controls
a: [to, T] x R? x O([to, T);R?) — R? which are progressively measurable and adapted in the
path variable and square integrable; and LQ(FBO'tO;PQ(RQd)) the set of FBO'tO—progressively
measurable stochastic measure flows {v.} = {vi}rept,, 1) C P2(R??). Here, for notational simplicity,
we assume that the controls also take values in R%, and b and f do not depend on time, but
one can remove these constraints without any difficulty.

Given to € [0,7T], v € R a€ A, and {v.} € LQ(FBO’tO;PQ(de)), the state of the agent
satisfies the following controlled SDE on [to, T

t
Xt{u.}acé =I+/ b(XiV'}’a,Oés,Vs)d5+B§0 +ﬂB?,to;

to (25)
where X{vhe = xtodvhza o .= a(s,X;{V'}’O‘,Bﬁ’;OS]).
Consider the expected cost for the MEGC: denoting by 741 the first component of v,
T
J(to,zi{v-},0) = inf E[GOX M myvr) + | FGPanm)at]. (2.6)
@ to to

Definition 2.1 For any (t, ) € [0,T] x P2(RY), we say (a*, {v*}) € Ay x L2(FB”™; Py(R2))
is a mean field equilibrium (MFE) at (t,p) if
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J(t,x; {v} o) = aienffl, J(t,z;{v*},a), for p-a.e. x € RY

Tpvf = p, Vii= ,C(X:,a*(s X Ot(:” ))|Fo where (2.7)

X; = §+/b "5, X5, Bl vi)ds + B + BB, € € L2(F ).

When there is a unique MFE for each (¢, ) € [0,T] x Po(R?), denoted as (a* (¢, p;-), {v*(t, 1) }),
then the game problem leads to the following value function for the agent:

V(t,a,pu) = J(t,x; {v*(t, w)}, a*(t,p;-)) for any z € RY. (2.8)

We note that, by (2.7), the above V is well defined only for p-a.e. z. However, for each ¢, its
continuous extension to R? x Py(R?) is unique, and we always consider this continuous extension.
Our goal is to study the master equation for the value function V' (¢,x, p).

For this purpose, we introduce the Hamiltonian: for (z,p,v) € R? x R? x Py(R2?),

H(J},p,l/) = iandh('rap7V7a)a h(x,p,u,a) ::p-b(x,a,l/)—l—f(x,a,u). (29)
ac

Note that H depends on v, while V depends only on p=m4v. We also remark that the
Hamiltonian in [21, 35] is —H. To introduce the master equation, which we do in the next section,
we need the following fixed point.

Assumption 2.2 (i) The Hamiltonian H has a unique minimizer a* = ¢(z,p,v), namely,

H(z,p,v) = h(z,p,v, d(z,p,v)). (2.10)
(ii) For any ¢ € L2(F) and n € L%(0(€)), the following mapping on Pa(R?4):
Ifﬂ?(y) = E(E,qﬁ(f,’q,u)) (211)

has a unique fized point v*: I (v*) = v*, denoted as (L ).

We refer to [16, Lemma 4.60] for some sufficient conditions on the existence of ®. By (2.10),
one can easily check that

b(x, ¢(z,p,v),v) = OpH (x,p,v), [f(x,d(x,p,v),v) = H(z,p,v) —p-OpH(z,p,v).  (2.12)

As in the standard MFG theory, provided V is smooth, p corresponds to 0,V (t,z,p).
Consequently, later on the above fixed point is applied as follows: given (¢, 1) and & € L2(F}, u),
)

n= axv(t7€7 [L), vt = (I)(Lﬁ,aw\/(t,&,u))a Ol = ¢(€7 696V(t7 Ea ,LL), (‘CE,&,;V(L&M)))' (2 13

Pluging these into (2.7), we obtain the following McKean—Vlasov SDE (Stochastic Differential
Equation): recalling (2.12),
=&+ [} O, H (X2, 0.V (s, X2, pt), vi)ds + BJ° + BB}, 2,10
where iy = Loy v3 = Q(Lixzo.v(s x100)172):
That is, if V is smooth, then under Assumption 2.2 we may obtain the unique MFE «*
through (2.13) and (2.14) (by abusing the notation o*): given (to,n) and & € L?(F}, u),

o (s, 2, BP0 ) = ¢(x, 0,V (s, @, 1), vF). (2.15)

[to,s]

Here we used the fact that u*, v are actually adapted to the shifted filtration generated by B0,
Assumption 2.2 (i) is generally standard in the literature, for example, when h in (2.9) is
convex in a. In particular, when b(z,a,v) = a, which is often the case, we have ¢ = J,H. We
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now provide two examples for Assumption 2.2 (ii).

Example 2.3 Assume b, f are separable in the following sense:
b(z,a,v) =bo(z,a,m14v) +bi(z,v), f(z,a,v)= fo(z,a,myuv)+ fi(z,v). (2.16)
In this case, (2.9) becomes
H(z,p,v) = Ho(z, p, m4v) + Hi(z, p,v),

where Ho(xapuu) = [p'bo(xaaaﬂ)+f0($,a7ﬂ)]7 Hl(ﬂj,p,l/) I:p'bl(l‘,y)+f1($,y).

inf
a€R?
Assume Assumption 2.2 (i) holds, and clearly in this case we have a* = ¢(x,p,p), with the
dependence on v only through its first component p = miuv. Then I8 (v) = Lg,¢(¢,n,m150))-
Further note that the fived point requires m yv* = Le. Now, Assumption 2.2 (i) holds with
(Liem) = Licotence)

We note that the above f satisfies the conditions in [16, Lemma 4.60], while the drift b is
more general. The next example, however, is out of the scope of [16, Lemma 4.60].

Example 2.4 Assume d =1 and, by writing E,[a] to indicate expectation under law Lo = woyuv,
_ laf

b(z,a,v) = —=bo(x,mi4v)a+bi(x,v), f(r,a,v)= i afo(x, muv,Ela]) + fi(z,v). (2.17)

One sees that ¢(x,p,v) = fo(x,m14v,Ey[a]) + pbo(x, m14v) and thus
TEMV) = Lig, folem pwEola)+bo(Empin)-
Then, I&" has a fived point if and only if the following mapping has a fized point:
m € R = Y&7(m) i= B[ fo(€, Le,m) + bo(&, Le)n). (2.18)

Assume O, fo < 1 —¢ for some e > 0, in particular, if fo is decreasing in m, then 0,Y&" <1 —¢
and thus ¢¥&" has a unique fived point m* = ©(Len))- Therefore, 8" has a unique fized point:

D(Lien) = L€, fol€,Le0(L£em ) +bo(E,Le)n)- (2.19)

2.1 Derivatives of measure valued functions

Note that @ is a mapping from Py(R2?) to Py(R??). Consider an arbitrary dimension k. In
this subsection we introduce the linear functional derivative of functions mapping from Py (R¥)
to Po(R¥), which is interesting in its own right. We refer to [16, equation (5.52)] for the linear
functional derivative of functions mapping from P2(R¥) to R. Let S(R¥) denote the Schwartz
space, namely, the set of smooth functions u € C*°(R¥;R) such that u and all its derivatives
decrease rapidly when |z| — oo; and let S’(RF) denote its dual space, namely, the space of
tempered distributions.

Definition 2.5 Consider a mapping ® : Po(R¥) — Py(R¥). We say ‘;% i P2(RF) x RF — S'(R¥)
is the linear functional derivative of ® if, for any v € S(R¥),
ow 0P
= (p2) = (S (p.2), ), where W(p)i= [ (x)®(pida). (2.20)
op dp RE
We note that ‘;%(p, x) is well defined for p-a.e. x.
For later applications we require ‘%’ to have stronger properties. For this purpose, let

SM;(R¥) denote the set of the square integrable signed measures of bounded variation on R*.



254 Chenchen Mou, Jianfeng Zhang

That is, m has the unique decomposition m =my —msy and [, (1 + |y[*)|m|(dy) < oo, where
m1,my are mutually singular non-negative measures on R*, and |m|(dy) := m1(dy) + ma(dy), see,
e.g., [7] for details. Moreover, for any n > 0, let DSM5(R¥) C S'(R*) denote the linear span of
generalized derivatives of signed measures in SMy(R¥) up to order n, namely, the span of
terms taking the form 9J--- dJkm, where m € SMs(RF) and Zle Ji < n. Alternatively, let
C3(RF) denote the set of functions 1 : R¥ — R such that 1 has continuous derivatives up to
order n and

OIt... §ik
]l = sup > 9 o vwll _ (2.21)

2
yERE Jidtie<n 1+ |y|

Then, clearly DSMY4(RF) is in the dual space of C5(RF) in the sense that
(022 0fm, ) = (~1) =i / DIt B (y)m(dy). (2.22)

Now, if %(p,x) € DSME(RF), then we extend (2.20) to all 1 € C}(R¥), and we write
5P 0P
— . = (= n Rk
W) (o aidy) = (520, ), W € CERY),

where the right side is in the sense of (2.22).
We now show two examples.

Example 2.6 Let ®(p) = p for any p € P2(RF). Then ‘f;%(p,x; dy) = d.(dy), namely, ‘;%(p, x) €
SMy(RF) = DSMY(R*) for all p € Po(RY) and z € RF.

Proof For any ¢ € S(RF), by (2.20) we have W(p) = [p. ¥(z)p(dz). Then 5% 5 (@) =1(x) =
Jgr ¥(y)02(dy), and thus %(p, T) =0, € SMQ(Rk). O

Example 2.7 Set ®(Lc,)) := Lieyicrp)s V< n € L2(F;RY), for some constant ¢ € R. Then

%(p,x,p) € DSM(R?*?). More precisely, letting E, denote expectation under law p = L ),

5 (020,305, d5) = B850 (0F) — () (A5,0P) - (2.23)
Proof For any ¢ € S(R?*?), we have W(p) = E,[¢(&,n+ cE,[n])]. Then
S (py,p) = 6l + B ) + B, [0,0(6. 0 + B )] -
= v+ Elal) + - [ )T 0D

Compare this with (2.20), we obtain (2.23) immediately. O
Our main result of this part is the following chain rule. We use the notation v = ®(p).

Proposition 2.8 Let ® : Po(RF) — Po(RF), U : Po(RF) — R. Assume

(i) @ has a linear functional derivative %(p,x) € DSME(RF) for all (p,z) € P2(R¥) x R¥;
%(p, x) is continuous in (p,x) under the weak topology, that is, for any v € CH(RF), the
mapping (p,z) — <‘§%(p, x),v) is continuous (under W, for p); and, for any compact set
K C P2(RF), there exists a constant Cx > 0 such that
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0P
sup [(5= (p,2), ¥)| < Cicllllall + 2], ¥ € CH(RY). (2:24)
peEK P

(i) U has a linear functional derivative 52 ; for each v € PQ(IRk), U (v,) € C3(RF); and, by
equipping C3(R¥) with the norm ||-||, in (2.21), the mapping v — 5V Y(v,-) is continuous.
Then the composite function U=Uod: Po(R¥) — R has a linear functional derivative:

sU 5U 3P

g(p» T) = o 00 (@(p), y)%(p, z;dy). (2.25)

Proof Fix p,p’ € Po(R¥). For 0 < e < 1, denote p. :=p+e(p’ — p). By the definition of %—Lyf
we have

~

0(pe) — U(p) = U(@(p.)) — U(®(p)) = / [Wo(p2) — o) a6,

whete (o) i= 5 (60(00) + (1= 002(0) ), 0(7) = [ wula)(7ide), 5 € Pa(")
Then, by (2.20), we have
") = [ ) ) = [ (00000) + (1= 0)8(0).) T (5 as ).

Note that p+9( —p) = pj., then

2 [0 - / / [ pge.2) (o p)(da)adag

/ / / / (62(0.) (1—0>¢<p>,y)‘§3<p96,x;dy><ﬂ—p)(dx)déde

Rk JRF p
=Ti(e) + I(e

where

N /ol/w /Rk %(@(p)’ f;i) (pge» w1 dy) (0" — p)(da)db;

0<I> (pe) + (1 — 0)<I>(p),y) - 5—U(<I>(p),y)}
- Rk v

5 5 (pes’ﬂ«“ dy)(p' — p)(dx)dodo.

Clearly, lim._,o Wa(pjs.,p) = 0. By the continuity of %7 we have
oU 0D oU 0P ~
lim (‘I’(p)vy)afp(pge,x,dy) =/R *(fb(p),y)@(p,x,dy), v, .

c=0 Jr Ov K OV

Moreover, note that K := {pe :0 < e <1} C P2(RF) is compact. Then, by (2.24), we have
5<I> oU
[ 50 (@0000) 5 ()| < U (@) ) ol + JaP.
R v
Now it follows from the dominated convergence theorem that

5(1)
lim 1, ¢ / k / k y) 5 (o) (0’ = p) (o). (2.26)

Moreover, by (2.24), we again have
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‘/Rk 9<I> (pe) + (1 - 9)¢(p)’y) - %@(p),y)} ?i (Pge> 5 dy)
< O 0 (00(p) + (1 = 0 (p). ) ~ O (@), ) lal1 + o).
Then
e <0 [ [ 15 (0000 + (1= 000).) = O (00, Yol + I+ )1
<0 [ 150 (00(02) + (1= 0)2(0),2) = S (0() ) 120 > 0. as= 0,

thanks to the continuity of é—g in v under ||-||,. This, together with (2.26), leads to

lim 2[00 = 0] = [ [ 5 (2000.0) (i) = p)(ao)

which implies (2.25) immediately. O

Remark 2.9 By considering generalized derivatives in appropriate dual space, we can define
higher-order derivatives of ®, including the Lions derivative 0,®(p, ) := 6$‘§%(p, x). Alternatively,

because we later always consider the composite function ﬁ, we can define higher-order derivatives
through the left side of (2.25).

3. The master equation and the monotonicities
Throughout the paper, Assumption 2.2 is always in force. Denote
H(z,p,p) = H(z,p,®(p)), (x,p.p) € R x R x Py(R??). (3.1)

The derivatives of H with respect to p are understood as in Proposition 2.8 and Remark 2.9.
Then (2.14) becomes

t
=&+ [ 0, (X00,V (s, X ). p3)ds + B 4 BB, 52)
to .
where pf = Lxxzo,  py = Lxr0,V(s,X5,u%))|FO-

On the other hand, it follows from the standard stochastic control theory that, for given to, p,
the optimization (2.7) is associated with the following backward SDE: recalling (2.12),

T T
Y: = G(Xppi) - [ Ziab. - [ 200!
t t
T ~ ~
[ B0 = 0 (s, X220, B0 (0,0V (5, X5 ) ), (3.3)
t

which, together with (3.2), form the MFGC system. We note that this is the SDE counterpart of
the MFGC system (1.4). In particular, we have

Yy =V (X)) (3.4)

Then, by applying Ito’s formula (see [17, Theorem 4.17], [8, 19]), we obtain
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-~ 1+ 52

OV (X[, 107 dBy + B(0.V (4, X] i) + By, [0,V (8, X7 i, X)) |-dBY
+ tr (IE]:t [aMV(t7 Xt*7 /J/ra X:)(apﬁ(tv X;7 8zv(t7 Xty ,u;fk)a p:))—r])dt

o * * vk 1+ 2
+ tr<52E-7:t [azaﬂv(tht y M 5 Xt ) + TB

ﬂ2: * VK Vok
+ SR [0,V (& X7, X7 X)) )t (3.5)

ai’a}tv(tv X:7 M:v Xt*)}

Here, as usual, X*, X* are conditionally independent copies of X*, conditional on F°. Comparing
this with (3.3), we derive the master equation: for independent copies &, 5 L€ with law g,
~ ~
LV (t,z,pu) =0V + %tr(&mV) + H(2,0.V,L¢o,vten)) + MV =0,
V(T,x,u) = G(x, ), where

-~

- 2

MV (1) 2= tr (B 5050,V (1, 1, €) + B20,0,V (b 1, €) + -0V (1,11, €)

+auv(t7 Ty by é)(apﬁ)—r(é7 axv(t7 ga /U‘)v ‘C(f,@wV(t,E,u)))} ) P and BQ =1+ 62~
(3.6)

In addition to Assumption 2.2, we assume the following.
Assumption 3.1 He C%(R?? x Py(R?%)) with bounded azpﬁ,amﬁ,ap,ﬁ, (’9wﬁ,8p#£f.

Since we work on the master equation, here we impose our conditions directly on " , rather
than on b, f. It is straightforward to find some sufficient conditions on b and f to ensure these.

3.1 The monotonicities

In this subsection, we introduce three types of monotonicity conditions: Lasry—Lions
monotonicity, displacement semi-monotonicity, and anti-monotonicity.

Definition 3.2 Assume U € C}(R? x Po(RY)) and 8,U(-, 1, %) € CH(RY) forall (u,3) € Pa(R¥)x
R?. We say U is Lasry-Lions monotone if

MONYLU(, ) i= B[(0,U(¢, Le, §)iim)] 20, e, € L(F}). (3.7)

We note that, since (€,7) is Fi-measurable, here (£,7) is an independent copy (instead of a
conditionally independent copy).

Definition 3.3 Assume U, 0,U € C1(R? x P(R%)). For any A\ >0, we say U is displacement
A-monotone if, for all & n € L2(F}),

In particular, we say U 1is displacement monotone when X\ =0, and displacement semi-
monotone if it is displacement A-monotone for some A > 0.

Moreover, denote

Dy = {X= (0, A1, 02, 0) 20 > 0, €R, A > 0,05 > 0} (3.9)
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Definition 3.4 Let U € C2(R? x Py(R%)) and X € Dy. We say U is X-anti-monotone if

MONZ™U (&) :=E Po@mU(&, Le)n,m) + M (DanU (&, Le, )71, m) + 002U (€, Le)n|”
+ Ao Br[02,U (€, Le, )7]|” — Asnﬂ <0, V& el(Fp). (3.10)

Remark 3.5 (i) By [21, Remark 2.4], Lasry—Lions monotonicity and displacement monotonicity
are, respectively, equivalent to the following forms which are commonly seen in the literature:

E[U(éhﬁgl) +U(&, Le,) —U(&r, Ley) — U(fz,ﬁgl)] >0, V&,& eL?(FL);
E|:<8$U(€17£§1) - 6$U(£27[:§2)5 61 - €2>:| > Ov v£17£2 € ]L2(‘7:’11")

(ii) Consider the case that 0,U(z,p) = 9,U(u,x) for some U € C*(Po(R?)). Then the Lasry-
Lions monotonicity of U is equivalent to the convexity of the mapping u € Pa(R?) — U(p), and
the displacement monotonicity of U is equivalent to the convezity of the mapping & € L2(F3) —
U(Le) (see, e.g., [15, 16]).

(iii) Both the Lasry-Lions monotonicity (provided 0.,U is bounded) and the displacement
monotonicity tmply displacement semi-monotonicity. However, Lasry—Lions monotonicity and
displacement monotonicity do not imply each other, see [21, Remark 2.5].

(iv) By setting Ao = A1 = Ay =1 and A3 =0, (3.10) implies
B| 00,V (€, Lo + 0206 L. )| <0

which is in the opposite direction of (3.8) with X\ = 0. Moreover, if 0,,U is non-negative definite,
we then further have

E| (02,06, .8 | <o

which is in the opposite direction of (3.7). That is why we call (3.10) anti-monotonicity.

(v) If U satisfies (3.8) for some A >0, then 0,,U + A is non-negative definite, see [21,
Lemma 2.6].

3.2 A road map towards the global wellposedness
Our ultimate goal is to establish the global wellposedness of the master equation (3.6). We

adopt the strategy in [21, 35], which consists of three steps:

Step 1 Introduce an appropriate monotonicity condition on the data which ensures the
propagation of a monotonicity of one of the three types introduced in the previous subsection,
along any classical solution to the master equation.

Step 2 Show that the monotonicity of V(¢,-,-) implies an (a priori) uniform Lipschitz
continuity of V' in the measure variable u.

Step 3 Combine the local wellposedness of classical solutions and the above uniform Lipschitz
continuity to obtain the global wellposedness of classical solutions.

Moreover, following [15], we continue to investigate the convergence problem:

Step 4 Use the classical solution V' to prove the convergence of the related N-player game.
In this paper, we focus on Step 1 only, and we leave the remaining three steps to future research.
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We emphasize that Step 1 (and Step 2) considers prior estimates, and thus also we assume the
following.

Assumption 3.6 V € C122([0,T] x R? x P(R)) is a classical solution of the master equation
(3.6) such that 0,V (t,-,-) € C3(RY x Po(RY)), 9,,V (t,-,,-) € C}(R? x P2(R?) x R?), and all of
the second- and higher-order derivatives of V involved above are wuniformly bounded and

continuous i t.

Note that we do not require V' or its first-order derivatives to be bounded. Moreover, since
G=V(T,-,-), the above assumption also ensures the regularity of G. We also remark that
Assumption 3.6 considers the existence of classical solutions of the master equation (3.6), which
implies the uniqueness of the mean field equilibrium (see [21, Remark 2.10 (ii)]). The uniqueness
of classical solutions satisfying the desired Lipschitz continuity is standard, see, e.g., the
arguments in [21, Theorem 6.3].

4. Propagation of Lasry—Lions monotonicity

To propagate the Lasry—Lions monotonicity of V', we impose the following assumption on H.

Assumption 4.1 For any &,1m,7,¢( € L2(FL) and ¢ : R? — R Lipschitz continuous,
B (G A1) — (1 Fa (6. €00+ Fapa (6.0 +1)
= (1 (6014 e (0 K +1)] <0 (@)
where  Hpp(z) == 8ppH(x,<p(x)7£(§,¢(§))), Hyp(z, &) = 8sz<x,<p(x),£(§,¢(5))7i7cp(a~c)), and
similarly for H,,(x,%).
The main result of this section follows.

Theorem 4.2 Let Assumptions 2.2, 3.1, 3.6, and 4.1 hold. If G satisfies the Lasry—Lions
monotonicity (3.7), then V(t,-,-) satisfies (3.7) for oll t € [0,T].

Proof Without loss of generality, we prove the theorem only for ¢ = 0.
For any &,n € L2(F), inspired by (3.2), we consider the following system of McKean—Vlasov
SDEs, which clearly has a unique solution (X,0X) under Assumptions 3.1 and 3.6:

t
X, =+ / Ly (Xo, 05V (s, Xo. 1), ps)ds + By + BBY;
0

t
X, =n+ / {HPI(XS)(SXS + Hpp (X)[Ts + Ts] + NS] ds; where
0

pe = Lx, 705 Pt = L(X, 0,V (t,X000)) | FO

Ty = 00 V(X)0Xy, Yyi=Er [00,V (Xs, X0)6X);

-~

N, :=E, [Hp,,l (X1, X0)0X, + Hypy (X1, X0) [T + Tt]] .

Here, (X,(SX,f‘,T) is a conditionally independent copy of (X,dX,T',Y), conditional on Y.
Moreover, here and in what follows, for simplicity of notation, we omit the variables (¢, ;)
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~

inside V' and its derivatives, and omit p; and 9,V inside H and its derivatives, for example,

OV (X1, Xi) = 0upV (t, Xy jua, X)), Hy(Xy) := 0, H (X, 0,V (8, Xy, e, pt),

I B P . N - B (4.3)
pr(Xt7 Xt) = (prl ) HPPZ)(Xt7 Xt) = appH(Xta 6$V<t7 Xt7 ut)a Pt Xta 833V(t7 Xta :Ut))
Introduce,
I(t) :=E[(Y:,6X;)] = MONEEV (t,-, ) ( Xy, 0X7). (4.4)
By applying Ito’s formula (3.5) and since V' satisfies the master equation (3.6), we get
d 5 N N - -
1) =E KL, Hyp(X0) X0 ) = (6K, Hapy (X0, X0)OKo + Hapa (X0, )Ty + 1)
_ <rt — Y4, Hypp, (X4, X0)8X; + Hpp, (X4, Xo) [T + Tt]ﬂ . (4.5)

The calculation is lengthy but quite straightforward, we postpone the details to the appendix.
Taking the conditional expectation on F? and then by the desired conditional independence, we
apply (4.1) to obtain:

d
—I(t) <0. 4.6
S < (1.6)
Note that, by the Lasry-Lions monotonicity of G =V (T,-,-), we have I(T) > 0. Then (4.6)
clearly implies I(0) > 0, and hence V(0,-,-) satisfies the Lasry—Lions monotonicity (3.7). O

Remark 4.3 In (4.2), X is the agent’s state process along the (unique) mean field equilibrium,
and 6X 1is the gradient of X when its initial condition £ is perturbed along the direction n.

Remark 4.4 Note that (4.5) is an equality, so our condition (4.1) is essentially sharp for the
propagation of Lasry—Lions monotonicity, in particular, for (4.6). In [13, 16, 28] the uniqueness
of the mean field game system is obtained when b(-,a,-) =a (or a slightly more general form),
and f satisfies the Lasry-Lions monotonicity in the following sense: for any &, o; € L2(F),
i=1,2,

E[f(fl,al,ﬁ(@,al)) + f(f2, a27£(§27a2)) — f(gl, al, 6(527(12)) — f({z,a2,£(§1,a1))] Z 0 (47)

We claim that in this case (4.6) holds true, and hence the Lasry—Lions monotonicity propagates.
We postpone its proof to the appendiz.

Remark 4.5 For the standard MFG with b(z,a,v) =a (and f = f(x,a,pn)), it is observed in
[21] that it is hard to propagate Lasry—Lions monotonicity unless f is separable: f(x,a,pn) =
fo(z,a) + f1(z, p). Dependence on the law of a in MFGC actually helps for the propagation of
the Lasry—Lions monotonicity. In particular, in this case we do not require f to be separable.

We now provide an example with a more general b, which does not seem to be covered by the
analysis of mean field game systems (or master equations) in the literature.

Example 4.6 We consider a special case of (2.17) with d = 1:
b(z,a,Lga)) = —a+ bi(E[E],E[a]) + ba(z),

F(2,a, Lig.y) = 195 — craEla] + coaE[€] + eyaEla] + f1 (),

where 0 < c¢1 <1 and co,c3 > 0 are constants. Assume the matriz
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. 1.,
1-— [518m2b1 - Cl] 0 5[63 - amlbl]
. 1.
0 [618m2b1 — Cl] 5[03 + amlbl] >0, (49)
1. 1.,
5 [é3 — O, b1] 5[03 + O, b1] C2
A C1 _ 1 R C3
where ¢ 1= , C1:= , ¢3:=———, and my,mq stand for E[],E[a]. Then (4.1)
1—0¢ 1—¢c 1—0¢
holds true.

Proof By Example 2.4, we see that
(Liem) = Lie, extlmn)»
1
H(w,p, Lie o)) = —g|crEla] + o[ + p[ba (ElE] Elo]) + ba(w)] + c2aBlE] + csafa] + fa(a).

Note that Ela] = [1 + é]E[n] = & E[n]. Then

H(z,p, Li¢.)) = —%|61E[n] +p|” + p[bi(BIE], GE ) + ba(2)] + c22E[€] + é3aEn] + fi(z).

One may compute that

~ ~ ~ ~ ~

Hp,=—-1, Hyp =co, Hyp, =¢3, Hpp =0m b1, Hpp, =C10m,b1 — ¢1. (4.10)
Then, noting that dy,,b; and Oy, by are deterministic,
B[ Bpp(©)IC[2 + 1[Hep, (6,67 + Hep, (€, + ]
by = Q[ (6,67 + Hpy (X, Xl + 1]
= B[I¢[ + conii + snl + {I] + [y = C1[Oma b177 + [10mabr — &1][5 + ]
— E[IC[)+ ezl El|” + 5] [El) + EIC)] + O, b1l [EDy] — ELC]
+ [e10maby — 1] [ 2 — [ELC] ]

> [1 = [@10m,b1 — 1] [BIC)]” + [€10mb1 — &]|E[Y]” + o El]
+ [¢3 4 Om, b1]E[]E[Y] + [és — O, b1 E[n]E[C].

| 2

This, together with (4.9), clearly implies (4.1).

5. Propagation of displacement )\-monotonicity
In this section we fix a constant A > 0.

Assumption 5.1 For any &,1,7v,¢( € L2(FL) and ¢ : R? — R Lipschitz continuous,
B{ (14 G B Ol +€1) = (1 [aa(€) — 27 Epul)ln)
(7€ [Hppn (6:8) + Hpa(€,) + 2\ (€))7 + 27, (E))

+ (74 € Hypa (€1 + 1] ) = (n0 [Hup, (6,6 — 27y, (s,@m}} <0, (5.1)
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where pr,Hmp,H pp ore as in Assumption 4.1.

Theorem 5.2 Let Assumptions 2.2, 3.1, 8.6, and 5.1 hold. If G satisfies the displacement \-
monotonicity (3.8), then V (t,-,-) satisfies (3.8) for all t € [0,T).

Proof Without loss of generality, we prove the theorem only for ¢ =0. We continue to use
the notation in the proof of Theorem 4.2.
Introduce

I(t) := E[(Ty,6X;)], and thus [I(t)+ I(t)+ AE[|0X,|*] = MONfiSpV(t, L)X 60Xy, (5.2)
Slmllarly to (4.5), we show that (see the appendix for more details),
{ oo (X0)T0, T ) + 20y (X0)T0, T | )
+2(Ts, Hyp, (X0, X0)0K0 + Hyp (X1, KO0 + T]) = (Haa (X0)0X0, 6Xt>]. (5.3)

Moreover, by (4.2), we have

g [l6x,7] = 2E [<f1pl(xt)5xt + Hop(X)[Ys + T + N, 5Xt>] . (5.4)

Combining (4.5), (5.3), and (5.4) and recalling the N in (4.2), we deduce that
d disp _ d T 2
- [MONA V(t,-, .)(Xt,axt)} = = [I(t) 4 I(t) + AE[|6X,] ]}
) [<Tt + T4, Hyp (X)X +Ti] + Hypy (X4, X)) [Ty + Tt]>
(T4 + Ty [y (X0, X0) + Hpo (K1, X0) + 20 (0, X105, + 20 (X1)0X, )

<6Xt, [Hop (Xe, Xo) — 20, (Xy, XO)6X: + [Haw (X2) — mﬁsz(xt)](sxtﬂ . (5.5)

Then, by the desired conditional independence of the involved processes above, conditional on
FP, we have

d ,
a[zwozv;“spvof,-,-)(Xt,(sxt) <o0. (5.6)
Note that V(T,-,-) = G satisfies (3.8), then clearly V(0,-,-) also satisfies (3.8). O

We next provide a sufficient condition for Assumption 5.1. Denote, for any A € R?*¢,

|A| := sup (Az,y), &(A):= |1‘nf (Az,z) = the smallest eigenvalue of 1[4+ AT],
lz|=]y|=1 =
F(A) = sup (Az,7) = —r(—A). (5.7)
|z|=1

Proposition 5.3 Assume there exists a constant co > 0 such that |8pp2ﬁ| < cp, and PAIM, <

—colg, where Iy denotes the d x d identity matriz. Then the following condition implies (5.1):
B[ (1 1ae(€) — 200 (1) + (1 [ (6.6) — 2B 6, 0) — 4625 20
where  A(&,m) = (—Hpp(€) — cOIdr% (5.8)
<[ By [(Hpp, (68) + Hpna (€ €) + 20H 0 (€, 1] + 2\H,p ()]
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for all £,m € L2(FL). In particular, when X = 0, the above reduces to

]E[<?7,I§m(§)77> + <17, Hayp, (§7£)ﬁ> - IA(T)IZ} >0,

- S I (5.9)
where  A(€n) = (~Hyp(€) = cole) ¥ By [[Hppy (€,€) + Hp (€, ).
Proof Denote = := [H,, (€,€) + H,yo(€,€) + 2MH,,, (€, €)] 7. Note that
E((7+ ¢ Hpp©y + <) + (7 + G E+ 20y (€)n) + (7 + ¢ Hyp (6,7 + 5]}}
<B|(r+ B (© + 1) + (3 + €.+ (@) + Sl + G+ 5 + P
—E|(7+ ¢ [Hpp(&) + coldlly +T) + {7+ ¢ B[] + 2Aﬁpp(§)n>]
[ ~ 1 1 21 2
— 5| = [~ Fl®) - i+ 0 - Jaen] + fiaE P
< FEIMEDP].
Then, clearly (5.8) implies (5.1). O

Remark 5.4 For standard MFGs where b,f do not depend on the law of «, we have
ﬁ(x,p, p) = H(x,p, ) where p=m14p, and thus 8p1ﬁ =0,H, 8p2fl =0, cg =0. Note that H

is concave in p. We assume it is strictly concave and thus Hp, < 0. Then, (5.8) reduces to

EKmuaAazM%A0m>+@%uuAao 2AHy, (€, E)]7)

- A (B e 0+ 201000 | 2 0 (5.10)

Moreover, when A =0, (5.10) (and (5.9)) further reduces to

B| (1. Heol) + (. Haul6607) — 5|~ (@) F B 116, 0 | 20 1)

This is exactly the condition in [21, Definition 3.4], except that [21] uses —H instead of H.
We now present an example which satisfies (5.9), and hence (5.1) with A = 0.

Example 5.5 We consider a special case of (2.17) with d = 1: for some constant 0 < ¢ < 1,
2
a
b(@,a,Lig,a)) = —a+bi1(Le,Ela]),  flz,a,Liga)) = |7 — caBla] + fi(z, Liey)-  (512)

Assume there exist constants 0 < cg <1 and xk > 0 such that

. 1 K 2
Bty €l < co, Ouchr 2 52 100 Al + gy (10 bl + 1+ fil]) . (513)

41

1
L e= ——, my,me stand for E[¢] and E[a], respectively, and ||-|| denotes the
—c

where ¢ :=
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supremum norm of the function over all variables. Then (5.9) holds true.
Proof By Example 2.4, we see that
®(Ligm) = Lig, erpm+n)»
H(z,p, £ig.0)) = —|cEla +p‘ + pb(Le, Ela]) + f1(2, Lie.y),
H(w,p, Lie.ny) = —%‘C]E [n +p‘ + pbi(Le, Eln)) + fi(z, Lig, etm)+n))-
By applying Proposition 2.8 and Example 2.7, we have, for fl(x, p) := fi(x,®(p)) where
P= Ly ~
Op, [1(x, p, %, D) = 0y, f1(z,P(p), Z,p + ¢E,[n]),
Op. Fi(a,0,7,5) = O (0, 8(0). 7,5+ CB, [0]) + B, [0 o, @), €, + B, )]
Then, one may compute that
Hyp=—1, Hyp=0uafi, ﬁa}pl = 0w J1, ﬁppl = O, b1,
Hapy = vy f1 + B[00y f1),  Hpp, = GO,y — €.

pp
Then |H, pps| < co, and (5.9) becomes

pr |:8x$f1|’l7|2 + 0wy J111] — 4|(1]X_(—£)l0):| =0
shore A() B, {ﬁ [ Omy b1 (Le, &, CEp[M]) + Ouwa f1 (§, ®(p), , 0(x) + B, [0(€)]) (5.14)

00,16 00). 6 6) + E, )] |
Clearly, (5.13) implies (5.14), and hence (5.9). O

5.1 Global wellposedness for master equations of standard MFGs

For standard MFGs, by combining Proposition 5.3 and the strategy in [21], see also subsection
3.2, one establishes the following global wellposedness result for the master equation under
displacement semi-monotonicity, which generalizes [21, Theorem 6.3]. We remark again that, for
MFGC master equations, we shall investigate their global wellposedness in future research.

Theorem 5.6 Assume A\ >0, b(z,a,v) =a and f(z,a,v) = f(z,a,pn). Further assume:
(i) H and G have the regularity:
H,0u0H,0upH, OppH, Oup H, Oupp H, Oppp H € C2H(R?* x Py(RY)),
OrpH, 0py H, Oypy H, Opp H € C*(R? x Po(R?) x RY),
G,0:2G € C3(R? x P2(RY)),0,,G € C?R? x Py(R?) x RY,

and all of the second- and higher-order derivatives of H and G involved above are uniformly
bounded.

(ii) H is uniformly concave in p: OppyH < —coly for some constant co > 0.
(iii) (5.10) holds for H and (3.8) holds for G.

Then the master equation (3.6) on [0,T] admits a unique classical solution V with bounded
02V and 05,V .
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Proof We follow the road map given in section 3.2 to show the global wellposedness. Since
the arguments are very similar to those in [21, 35], we only outline a proof below.

Step 1 We apply Theorem 5.2 to show that, if V' is a classical solutions of the master
equation (3.6) and V satisfies Assumptions 3.6, then V propagates the displacement -
monotonicity, i.e., V(t,-,-) satisfies (3.8) for all ¢ € [0,T].

Step 2 We follow the same proof as in [21, Theorem 5.1] to show an a priori uniform W,-
Lipschitz continuity of 8,V in u, uniformly in (¢,z) € [0,T] x R%. We note that V might not
be uniformly Whs-Lipschitz continuous in g under our (weaker) assumptions. The key assumption
used from [21, Theorem 5.1] is the boundedness of 9,,V, which was proved using the first-order
derivatives of H and G in [21, Proposition 6.1]. This is no longer the case here. To show this,
we first apply Theorem 5.2 to prove that V(¢,-,-) satisfies (3.8) for all ¢ € [0,7]. By Remark
3.5(iv), Oz V is uniformly semi-convex in x, uniformly in (, ) € [0,T] x P2(R%). It is standard
to obtain the uniform semi-concavity of V in z from the boundedness of the second-order
derivatives of H and G by the classical control theory. Thus, we obtain the a priori
boundedness of 0.,V . Then we obtain the uniform W,-Lipschitz continuity of V in pu.

By [21, Proposition 6.2], we further strengthen the above a priori Wh-Lipschitz continuity to
an a priori Wj-Lipschitz continuity for 9,V in pu.

Step 3 We follow the same proof as the one in [35, Theorem 7.1] to show the global
wellposedness of the master equation (3.6). The desired regularity of solution V is a byproduct
of Step 2. However, we cannot directly show the wellposedness of the master equation due to the
lack of the a priori Lipschitz continuity of V in = and p, we thus use the approach in [35, section
7). That is, we first use the a priori Lipschitz estimate of 9,V constructed in Step 2 to show the
wellposedness of the vectorial master equation for U :=8,V. We then utilize the solution to the
vectorial master equation to establish the wellposedness of the master equation (3.6). O

Remark 5.7 If G satisfies the Lasry—Lions monotonicity and 0., G is bounded by X, then G
is displacement semi-monotone. Therefore, we obtain that, if H and G satisfy the assumptions
(i) and (ii) in Theorem 5.6, H satisfies (5.10) and G is Lasry—Lions monotone, then the
master equation is well posed on [0,T). In this sense, Theorem 5.6 unifies the wellposedness
results under the Lasry—Lions monotonicity and the displacement monotonicity.

We remark though, even when G is Lasry—Lions monotone, V' propagates the displacement semi-
monotonicity, not necessarily the Lasry—Lions monotonicity (when f is non-separable).

6. Propagation of anti-monotonicity
In this section we fix X € Dy. Recall (5.7).

Assumption 6.1 (i) H € C2(R? x RY x Py(R24)) and there exist constants L,Lo >0 and
¥ >~ >0 such that

|OepH| < FLo,  [OacH| < Lo,  [OppH |, [0up, HI, |0up, H], |0pp, HI, |0pp, H| < L (6.1)
E(_a:cpﬁ) > Ly, ﬁ(_aarxﬁ) > lLO- (62)

(ii) There exists a constant L% >0 such that
VLA L]
4(y Ao + 2A3)

0y := <1, and Lr(A]'Ay) < Lo, (6.3)

where
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41-61] 0 0
A1 = 0 2)\2 0 )
0 0 [1—61][Aoy +2A3]
2 24+ X 1
AQ = BlL:z + BQ = 24+ )\2 4)\2 )‘2 ng
1 Ao 0
1 1 1 1
Ao+ 2|ho — A1 Ao+ Ao — 5)\1| + §|)\1| + Ao |)\0 — 5)\1‘ + 5‘)\1| + 2)3
1 1
+ A0+|A075A1|+§\A1|+A2 2| ]+ 2X2 [A1] + A2 + 273
1 1
Mo = 5l + 5 Al + 2 Ail+ A2 + 223 A1l + 223

(6.4)

Theorem 6.2 Let Assumptions 2.2, 3.1, 3.6, and 6.1 hold. Assume further that, for the
constant LY. in Assumption 6.1(ii),
|02V | < LY, (6.5)

If G satisfies the X-anti-monotonicity (3.10), then V(t,-,-) satisfies (3.10) for all t € [0,T).

We remark that the bound LY, of 0.,V can be estimated a priori by using the
Hamilton—Jacobi-Bellman equation or the backward SDE in the mean field game system, see [35,
section 6] for more details.

Proof Without loss of generality, we prove the theorem only for ¢ =0. We continue to use
the notation as in the proofs of Theorem 4.2 and 5.2. Introduce

B = Aol (t) + A I(t) + E[|T* + A|To|* — As|0 X, [] = MONE™V (t,-,)( Xy, 6Xy).

Then it is sufficient to show that
d
—Z=; > 0. 6.6
gz > (6:)
Following the calculation in [35, Theorem 4.1], we have

AUy = [ = 2H,p(X)Ts + 000V (Xe) Hyp (X0)Tr — K1 (8)]dt + (dBy) T Ko (t) + B(dBY) T K3 (1), (6.7)
where
K1 (t) := Hyup(Xy) + 000 V(X)) Hpp (Xy),
Ks(t) = Ex, [[ﬁm (X1, X1)6X; + Hopy (Xo, X4)[Tr + T4]]
+ 0V (X)) [Hypy (X4, X0)0X + Hppy (X4, X4)[Tr + Tt}]} :
K3(t) == Eg, [0ranV(Xe, Xi)0 X, ],
Ka(t) = Ks(t) + B, [ [0V ) (X0 K, Ko) + gV (X0, K]0 (6:8)

K1 (t) = [Hpo (X1) — 000V (Xy) Hpo (X1)]6 Xy
- awwV(Xt)]E]:t [prl (X%, Xt)5)~(t + Hpp, (X, Xt)[ft + TtH,
Rg(t) = E)me(Xt)(SXh

K3(t) = Ko(t) + E, [(aWV)(Xt, X)6X,|.
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In particular, this implies that

gE[|Tt|2] > 2E [(Tt, —Ki ()Y — KQ(t)ﬂ;

IR 2]E[<I‘t, —2Hy (X0)Ts + 0uaV (X)) Hyp(Xe)Ye — Xl(t»]

Thus, combining (4.5), (5.3), and (5.4) and recalling N in (4.2), we have

d_

TE > /\OE[< Hopp (X)T4, T) + 20 Hpp (X,)T, 1)

2Ty, Hypy (X, X0)6X, + Hppy (X1, X) [0y + 1)) — (Hoa(X1)5X, 6Xt>}
+ Allﬁ[(ﬁpp(xt)rt, Y) = (Hapy (X1, X0)0X; + Hapy (X0, Xo) [Ty + T4, 0X,)
= (B (X1, X)X + Hypo (X0, )P+ Tl Ty = )|

+2E [<Ft7 [ = 2H,p (X0)T¢ + 000V (Xe) Hpp(Xe) Ty — K1(1)]) + Ao( Lo, [ — K1(t) T — Ka(t)] >}

—onE [< Hpo(X1)0X, + H,yp, (X4, X)6X, + Hypy (X0, X0)[To + To] + Hyp(X,)[Y0 + T, 6Xt>}
) [< [NoHp(X1) — AH,p(X)]Ty, rt> n <[A1?1pp(xt) KL ()]s, Tt>

n Hoo(X)) — 223 Hy0 (X)]6X,, JXt> n <[2A0 — N+ 200,V (X)] By, (Xt7)~(t)1~“t,l“t>
+ — 20000 V(X)) Hypy (X, X1) — 200 Hopy (X, X)] T, n>

2[A

+

[
[\ Hopy (X, X0) + 22 ppl(Xt,Xt)]a)?t,5Xt>

p(X0) + BV (X0) Hyp (X T+ [200 = Ar + 2000V (X0) iy, (Xi, X) T, 1)
o

([
(
-(1
(2o
n < = 22002V (X Hppy (X0, X2) — 200 Hoppy (X, X0)] T, Tt>
+ < (1220 — A1 + 2050V (X0) Hppy (X1, Xi) = A H o (Xy, Xo) — 223,000 (X, X1)]0X,
+2[ = Hya(X0) + 000V (X0) Hp (X1) — As Hpp (X1)] 65X, rt>

([ = 220000V (X0) By, (X1, K0) = M (K, X0)

— 2\ Hop, (Xi, Xe) — 203 H (X4, X0)|6X; — 223 Hypp(X1)5 X, Tt>] .

Recall (3.9), (5.7), and (6.8), by (6.1) and (6.2) we have
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d — _ _
&Et > [4Lo — ML]E[|T¢[*] 4 [2A2Lo — |A1|L — 2X2 LY, L] E[|T¢|?]
+ [XovLo + 2A3 Lo | E[|0X ] — [|2A0 — M1| + 2L%, | L(E [|rt|])
— [IAa] + 200 LY, + 2X] T(E[TA)° = [[Ai] + 2Xs] T(E[6X4]])?
— [2[Ao + L] + 200 — A1| + 2L, + |A1] + 2A2 LY, + 2Xo| LE[|T[|E[| Y]
— [[1220 = A1] + 2L%, + |A1] + 23] L + 2[¥Lo + L%, Lo + AsL]|E[|6 X, [JE[|T",[]
— [[A0] + 220 L2, + M| + 220 + 203 + 2X3]LE[|0X, [JE[| T[]
> [4Lo = [Mo + 200 — M| + 2L, )] (BIIL.))°
+ [2)\21;0 — [2/Aa] + AN LY, + QAQ]Z} (E[Te)))?

[[on +2X3]Lo — [JA1] + 2Xs] } (E[6x:]))°

A —
2o+ o= 21+ Bl 4 o nsj TRIC BT

A _
Pal o, + 2o ] g, BT )

- 2{7[1 + L% Lo+ Ao — —| + 24
— 2[Ida] + Az + AL, + 2 TR X IE] 4]
>[4l — 611Lo — [ho + |20 — Mi] + 22, ] ] (B[]
+ [2%eLo = 2]+ 47 L, + 20] L] (B T4[])

+ [(1= 0200y + 24 Lo — [Ia] +2%a] I (BI641))°
\MI

—2)\0+|)\0— |+

+ Az + [2+ Mol L, | LE[|TH [ T4

72_[|>\07 Ly 1l o+ 2% + L, L B[O X[ [E[T. |

= 2[[Aa] + Az + Ao LY, + 22| TEOX[E]I T ],
where in the last step we use the fact that: recalling the 6; in (6.3),
2
231+ Ly, JE0X BT ) < 46: (BT + 01 Aoy + 2] (E[6 X)),

Then, recalling (6.4) and denoting e := (E[|[T;|], E[|T¢|], E[|6X,]]), we have

d_

dt._.t > 6[A1L0 — Agje > 0
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thanks to (6.3) and the fact that A; > 0. O

Example 6.3 Again, we consider a special case of (2.17) with d = 1:
b(;L', a, E(f,a)) = —a-—- LOI + b1(££7 ]E[O[D,
al? vL
f(xa a, ‘C(E,(x)) = % - CGE[OZ] - TOxQ + fl(xv‘c({,a))a
for some constants 0 <c <1, v>0, and Ly > 0. For any LY, >0, when Lo s large enough,
there exist appropriate L >0, 7 > 7 >0, and X\ € Dy such that Assumption 6.1 holds true.

Proof By Example 2.4 and recalling the notations ¢, ¢ in Example 5.5, we find that

D(Liem) = Lig, evpn)+n)»

1 2 L
H(x,p,L¢.a)) = —5 cEla] er‘ — Lozp + pb1(Le, Ela]) — %12 + f1(®, Lig,ay),
~ 1. 2 B L
H(z,p, Lie.n) = =5 |En] +p‘ — Loxp + pbi(Le, cE[n]) — %wg + f1(x, Lig, ampn)4m)-

Following the same calculation as in Example 5.5,

ﬁPP = 71’ ﬁfp = 7L0’ ﬁmib = *PYLO + aszl» ﬁmpl = a:culfl;

ﬁ:ch = xUQfl + éE[amVQfl]v pr1 = aml b17 ﬁpr = Eamel —C.
For given functions f1,b1, clearly there exists a fixed constant L > 0 such that
|OppH |, |0p, HI, |0up, HI, [Opp, H], [9pp. H| < L.

Set v:=3, ¥:=v+1, for Ly sufficiently large, we have
ﬁ(—ﬁxp) = Ly, \ﬁa:pﬂ = Lo < ELy;
|0puH| —FLo < ¥Lo + L — Lo =L — Ly < 0;
k(8. H) — yLo > yLo— L — Lo =%Lo— L > 0.
That is, (6.1) and (6.2) hold true.
We now fix arbitrary Ag,A2 >0 and A; € R. Choosing A3 > 0 sufficiently large, we have

that 6; < 3. Finally, set Lo sufficiently large such that Lo > L&(A] " As), we verify (6.3) as well.
O

We point out though, by (6.5), LY, may in turn depend on Lg, so extra effort is needed to
ensure full compatibility of our conditions. This, however, requires the a priori estimate for
0zzV which is not carried out in this paper. We thus leave it to our accompanying paper on
global wellposedness of MFGC master equations. We remark that we have a complete result in
[35] for standard MFG master equations.

7. Appendix

Proof of (4.5) We first apply the [t6’s formula (3.5) on 0.,V (¢, X¢, Lx, |50, X;) to obtain

d
El(t):,ll—f—lg-i-fg, (71)



270 Chenchen Mou, Jianfeng Zhang

where, by using X to denote another conditionally independent copy,
= ~ A2 ~ o~ ~
= ]E K{@th(Xt, Xt) + %((tr@zz)ﬁwuV)(Xt, Xt) + Hp(Xt)T(?mHV(Xt, Xf)
+ BQ (tr(awu)azuv) (Xta Xtv Xt) + 62 (tr(aiu)awuv) (Xta Xta Xt)
+ B2(61(0z2) 0y V) (X, Xi) +
52
2
ﬂQ

+7(tr(8m)8wV)(Xt7Xt)+H (X)) am#V(Xt,X’t)}aXt, 5Xt> :

2 ~
%(tr(aﬂu)az,uv)(Xta X, X, Xi)

E (t0(0a) s V) (X X X))+ Hy(X0) T 0V (Xo, X, Xo)

I = Ka/LxV(Xn Xt){ [ﬁpx(Xt) + ﬁpp(Xt)amV(Xt)] 0Xy

~

_E
o [Hppy (X1 K0) - By (X, X000V (X0) 4 g (X002 V (X, X1) |05,
1,

(Xt, Xt)asz(Xta Xt)(SXt} 5Xt>:| 5

~

I = — & RawV(Xt, Xt){ [Hope (X2) + Hop(X0) 02V (X1)] 0K,
n [ff (X, X))+ Hypy (X, X000 V(X)) + Hyp(X0) 0,V (X, Xt)]éXt

+ 1, (Xt,Xt)&WV(Xt,Xt)dXt} 6Xt>].

On the other hand, applying 0., to (3.6) we obtain
0= ((%;MXV)@,,T,M,@) =J1+ Jo+ J3, (72)

where

-~

2 ~
Ji = 042,V (2,2) + %(tr(am)awV)(x Z)+ Hyp, (2, )

+Hzp2(x 2)0zaV(Z) + [ zpz(x f)am#V(f, )]
+8xxv(m)[ pp1 (x 'r) +prz($ m)ﬁxxv( )+]E[ pp2 (1‘ E)aﬂcuv(fv )]

| Hapl) + 020V (@) Hyp(2) | 02,V (2,8) + Hy(2) 010V (2,2);

—

+ 8IMV(:L‘ 5) [ pp1 (57 ) Hpﬁz (gv .i‘)asz(CE) + ﬁpfh (gv é)aﬂwv(év 'i') + ﬁpp(g)awuv(& 'i')}

+ B2 (tr(Oan) 0, V) (2, 2,€) + 5 (68(002) 02 V) (, 76,9

Then, evaluate (7.2) along (X, ps, X;) and plug into (7.1). As in [21, Theorem 4.1], we obtain
(4.5). O
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Proof of Remark 4.4 Given ¢; € L?(F), i = 1,2, let X solve the McKean—Vlasov SDE:
t
X§:§i+/ 8H(X1 0.V (s, X%, ub), pt)ds + By + BBY, (7.3)
0 .
where  pj := ‘CXZ\]-'Ea Py = E(X BV (£, X}, ui)) | FQ+

It is standard that the optimal control is o := 9 H(X Ox V(s X ul), pt), and thus
E[V(t,X;,ui)] :]E|:V(t5ﬂX257Mi5) + f(X;ai,pi)ds}, (7'4>
¢

where t; :=t+ 5. Let o be any admissible control in A;,. Consider

) 8pﬁ(x,8xV(s,x,u§),pé), s € [t ts);
8,x) =
0(5(87Z'), S € [t&,T]

X0 = X! +/ (s, X0 ds + Bt + BB, s [t,T).
t
Since b(-,a,-) = a, we have X»% = X! and ol = a*9(s, X??) for any s € [t,ts5]. Moreover,

S
X=X +/ a®(s, X)ds + Bl + gBYs s € [t5,T).
ts

Thus, for 4,7 =1,2 with i # j,
BIV (6,7 ) < B[GOG i)+ [ F00,00 (5, X2%), ) ds]
¢
=[G i) + [ X007 (5, X0, pi)ds [ FOX . p)ds].
ts t
Taking infimum over all admissible controls o’ in A;, above, we have
BV (X7 )] B[Vt Xi,) + [ 000l ph)ds]. (7.5)
t
Therefore, by (7.4), (7.5), and (4.7),
BV (ts, Xioml,) + Vits, X, 118) = V(ts, Xy 1) = Vits, X2, 11|
t+5
< B[ [ [fOxhakd) + (X202 2) - FOXabg?) - FOX2 a2, ph)]ds] <0
t

Dividing both sides by § and then sending § — 0, we obtain

d
dt |:V(t th7/’[’t) + V(t XtQ’Mt) V(t,th, /.L?) - V(t7Xt27u'%):| S 07
which implies that, denoting AX; := X? — X/,
d ! - - -
dt]E[ / (00 V(t, X} + OAXs, Lox ppaxoror X+ 0AK)AK,, AXt>]d9 <0. (7.6)
0

Now fix &7 € L%(Fp) and set & :=¢&, & =& +en. Then X! identifies the X in (4.2), and by
denoting X° = X2, one can verify that lim._ %[Xf — X;] = 0X;, where the limit is in the L2
sense and §X is defined in (4.2). Then, by dividing (7.6) with 2 and sending ¢ — 0, it follows
from the regularity of V that
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%E{<axuv(t7XtaEXA]-‘?aXt)SXtv 5Xt>} <0.

This is exactly (4.6). O
Proof of (5.3) We first apply the Ito formula (3.5) to obtain
d - L
—I(t) =L+ L+ I, (7.7)
dt
where
L =B | ({0u.V(x B (00 ) 00 V) (X0) + (50T DV (X
1= trx ( t) + 2 (tI‘( IZE) mwv)( t) + p( t) wxmv( t)
+ B2(tr(Dr) 000 V) (X, Ko) JO X, 5Xt>} ,
— = 52
T, :JEK{ 5 (t2(0,) 02 V) (X2, X1 Xo)
» o ~
+ 5 (0(0) 0 V) (X, K) + Hp(X0)T OV (X1, Xo) O, axt>] :
Ty =2 [<8MV(Xt){ [Hpe(X0) + Hyp(X0)02V (X1)] X,
[Hypy (Xo, X))+ Hppy (Xe, X)000V(Xe) + Hpp(X4)80V (Xo, X1)] 6 X,
- Hyp (X, X0) 0V (X1, K3 K |, 0K }
On the other hand, applying 9., to (3.6), we obtain
where
i N N
Ji = Otz V + —( 1(0g1)0uz V) + Hyp () + 2H (1) 00V ()
+ amvu)ﬁf (2)850V (2) + Hy(2) T OV (),
— = A2 ~.
s o= B[ (10(05,000V) (.6) + By(@) eV (2.6)
2
§ BA(0(00)00V) (2, 6) + T (10(01) 020V ) (2.6, 6)].
Evaluating (7.8) along (X, u¢) and then plugging into (7.7), we obtain (5.3). O
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