Sun XH, Lu X. The memory-bounded speedup model and its impacts in computing. JOURNAL OF COMPUTER SCI-
ENCE AND TECHNOLOGY 38(1): 64-79 Jan. 2023. DOI: 10.1007/s11390-022-2911-1

The Memory-Bounded Speedup Model and Its Impacts in Computing

Xian-He Sun (#h% A1), Fellow, IEEE, and Xiaoyang Lu (&3#FH), Member, IEEE
Department of Computer Science, Illinois Institute of Technology, Chicago 60616, U.S.A.
E-mail: sun@iit.edu; xlu4d0@hawk.iit.edu

Received October 17, 2022; accepted December 1, 2022.

Abstract
instead of the computing unit, becomes the commonly recognized major concern of computing. However, this “memory-
centric” common understanding has a humble beginning. More than three decades ago, the memory-bounded speedup
model is the first model recognizing memory as the bound of computing and provided a general bound of speedup and a

With the surge of big data applications and the worsening of the memory-wall problem, the memory system,

computing-memory trade-off formulation. The memory-bounded model was well received even by then. It was immediate-
ly introduced in several advanced computer architecture and parallel computing textbooks in the 1990’s as a must-know
for scalable computing. These include Prof. Kai Hwang’s book “Scalable Parallel Computing” in which he introduced the
memory-bounded speedup model as the Sun-Ni’s Law, parallel with the Amdahl’s Law and the Gustafson’s Law. Through
the years, the impacts of this model have grown far beyond parallel processing and into the fundamental of computing. In
this article, we revisit the memory-bounded speedup model and discuss its progress and impacts in depth to make a unique
contribution to this special issue, to stimulate new solutions for big data applications, and to promote data-centric think-

ing and rethinking.

Keywords
ta-centric design

1 Introduction

The rapid advancement in computing technology
has changed the lifestyle of human society. The wide
adaptation of mobile devices, wireless communica-
tions, and Internet of Things (IoT) has not only im-
proved the quality of life but also changed the land-
scape of computing. Traditionally, computers are de-
signed for computing, meaning crunching numbers. A
scientific simulation can run a program loop many
times before it converges, where computing power
means the power of number crunching. Internet appli-
cations, such as social networks, online search, and
other big data applications, are very different. They
require massive data movement, collection, and man-
agement but little number crunching. Based on the
infamous memory-wall problemlll, the memory sys-
tem is a weak point of computing systems. Big data
applications have put even more pressure on the al-

memory-bounded speedup, scalable computing, memory-wall, performance modeling and optimization, da-

ready lagging memory system, making it the most
concerned performance bottleneck of computing at
the current time. Improving data access time is a gen-
erally agreed research issue facing the computing
community today. Intensive research has been done
through the years, from developing fast hardware
memory devices to optimizing existing memory sys-
tems, and from embedding processing in memory to
building totally different data-centric computer archi-
tecture. But the memory-wall problem remains un-
solved and is getting worse.

In [1], Wulf and McKee observed that the perfor-
mance gap between CPU and memory becomes larg-
er and larger, which is referred to as the memory-wall
problem. Before the memory-wall problem, in 1990
the memory-bounded model stated that memory is
the bound of computing when the problem size is
largel2 3. The memory-bounded model compounded
with the memory-wall problem, and then compound-

Review

Special Issue in Honor of Professor Kai Hwang’s 80th Birthday

This work is supported in part by the U.S. National Science Foundation under Grant Nos. CCF-2029014 and CCF-2008907.
©Institute of Computing Technology, Chinese Academy of Sciences 2023

https://github.com/HDFGroup/hermes
https://doi.org/10.1007/s11390-022-2911-1

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 65

ed with the surging of big data applications, it easily
makes the memory system the most concerned perfor-
mance bottleneck of a computing system. To make it
worse, the conventional computing system design
principles were developed in the 1960s and 1970s.
They are computing-centric and optimized for CPU
utilization and performance. To lift memory systems
as a primary performance concern may require a to-
tal rethinking of computer system designs, including
the rethinking of computer architecture and operat-
ing system designs. That is an uneasy task. In this
paper, we will review the concept of the memory-
bounded speedup model, study its relationship with
the memory-wall problem, investigate how it has been
used in practice to reduce memory access delays, un-
derstand its impacts, and explore new opportunities.
We hope this study can lead to a better understand-
ing of memory system performance and stimulate new
ideas and methodologies to address the memory-wall
problem.

The memory-bounded model is first introduced for
parallel computing, where more than one computing
element works together to solve one common prob-
lem. Today, parallel computing is prevalent. Even cell
phones have been equipped with multi-core proces-
sors for better performance. Parallel processing is a
must-know for anyone interested in computer sys-
tems. In this paper, we first review the three laws for
parallel processing, i.e., the Amdahl’s Lawl4, the Gus-
tafson’s Lawl’, and the Sun-Ni’s Lawl? 3], and then
discuss and investigate the impacts of the Sun-Ni’s
Law®. The Amdahl’s Law presents a limitation of
parallel processing. The Gustafson’s Law introduces
the concept of scalable computing. The Sun-Ni’s Law
states that memory is a constraint of parallel comput-
ing. Revisiting the memory-bounded speedup model
and understanding its full potential will benefit com-
puting in general in the big data era.

The rest of this paper is organized as follows. In
Section 2, we introduce the background knowledge of
parallel computing, the Amdahl’s Law, and the scala-
ble computing concept. Section 3 introduces the mem-
ory-bounded speedup model and its relationship with
the fixed-size and fixed-time speedup model. The
study on memory system performance, optimization,
and redesign and rethinking are given in Sections 4, 5,
and 6, respectively. Finally, we conclude the paper in
Section 7.

2 The Amdahl’s Law and Scalable
Computing

Parallel processing is for performance gain. Perfor-
mance evaluation is essential for parallel processing.
Speedup is the most used performance metric for par-
allel processing, which is defined as sequential execu-
tion time over the parallel execution time of the pro-
gram. Let T, be the time required to complete the
workload in parallel on ¢ processors, where T) is the
execution time on one processor. The speedup of a
parallel program with p identical processors is de-
fined as:

=5

P

S (1)

Parallel processing has overhead, or degradations,
in a more formal term. There are four main degrada-
tions of parallel processing. They are uneven work-
load distribution (load imbalance), communication de-
lays, synchronization costs, and extra computation.
These degradations are applications dependent. They
could vary largely from application to application and
from computer system to computer system. It is very
important to understand and optimize parallel pro-
cessing for better performance.

2.1 The Amdahl’s Law

Gene Amdahl is one of the most famous comput-
er architects in computing historyl4l. He was the ar-
chitect of the IBM mainframe, the dominant comput-
er in the 1960s and 1970s. His architectural design
principle, also known as the Amdahl’s Law, which can
be summarized as follows: “The execution time of
any code always has two portions; portion 1 is not af-
fected by architecture enhancement, and portion 2 is
affected by the enhancement. Then, based on this as-
sumption, after the architecture enhancement, por-
tion 1 will be unchanged, and portion 2 will be im-
proved”’. Therefore,

FExecution time,,, = Execution timep,_,q +
FExecution timeps e -

Since the execution time of portion 1 will not be re-
duced, after the enhancement, it may become the per-
formance bottleneck, and enhancing portion 2 further
may not help the overall performance. The Amdahl’s
Law of the architectural design is a law that calls for
a balanced architectural design.

@In this paper we will use the Sun-Ni’s Law and memory-bounded speedup interchangeably.

66

Applying the above Amdahl’s Law to parallel pro-
cessing, and assuming that portion 1 is the sequential
processing portion that cannot be parallelized, and
portion 2 is the parallel processing portion that can
be perfectly parallelized, we get the Amdahl’s Law for
parallel processing:

FEzxecution time

new

FExecution time,
= a x Ezecution timey, + (1 — a) x ———————2
p

where a is the percent of sequential execution work-
load which cannot be parallelized and p is the num-
ber of processors for parallel processing. Recall that
the new is parallel processing time and the old is se-
quential processing time, we get:

1

T,
T,=axTi+(1—a)x—.
p

Substituting it into (1), we get:

T, 1
S=F=—F". 2
T, a+1_a (2)
p

(2) is known as the Amdahl’s Law (for parallel pro-
cessing)[4. The Amdahl’s Law shows that the speedup
of (2) has an upper bound of 1/a. Assuming that the
sequential fraction is 10%, a very reasonable number,
no matter how many processors are used, the upper
bound of speedup is 10. The speedup of 10 is under
the assumption that there is no other parallel process-
ing overhead except the sequential execution part. In
practice, with the consideration of parallel processing
overhead, the actual speedup will be even less. The
Amdahl’s Law gives a pessimistic upper bound of par-
allel processing. Due to the influence of the Amdahl’s
Law, for a long time, all the supercomputers only
have no more than eight computing nodes®.

2.2 Scalable Computing and the Fixed-Time
Speedup

The pessimistic view toward parallel computing
was changed when John Gustafson and his colleagues
published their bombshell results in 1988 in the SIAM
Journal on Scientific and Statistical Computing, in
which they achieved more than one thousand speed-
ups on three different scientific applicationsl’. These
results are real but in conflict with the Amdahl’ s
Law. Their experiments are conduced under a differ-
ent assumption of the Amdahl’s Law, which leads to
the concept of scalable computing. The argument of
Gustafson is that when we have more computing

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

power, it may not be necessary for us to solve a giv-
en problem faster; instead, we may like to solve a
larger problem which otherwise cannot be solved in a
given time. For instance, for weather forecasts, if we
have a more powerful machine, we may not want to
give the forecast early at 5 p.m. but like to add more
parameters and more computations into the weather
simulation for a more accurate solution within the
same time. This argument applies to any real-time
applications, such as missile control or tsunami warn-
ing systems. The argument that the problem size
should increase with computing power for many ap-
plications leads to the concept of scalable computing.
Since Gustafson used fixed execution time to con-
strain the problem size scalingl’l, he introduced the
fixed-time speedup model.

The fixed-time speedup model argues that the size
of the problem should scale up with the increase in
computing power within a given timel5. Let W be the
amount of original work, and W' be the total amount
of scaled work. The fixed-time speedup Sp(W’) is de-
fined as:

W)

SFT(W,) = T (W’) (3)

Assume that the time used for sequential process-
ing of original workload W is the same as the time re-
quired for parallel processing of scaled workload W’
with p processors. The condition T,(W) = T,(W’)
must be satisfied. Hence, (3) becomes:

_ (W)

St (V) = 7

Following the Amdahl’s Law, we assume the origi-
nal workload W only consists of two parts, a sequen-
tial part W, and a perfectly parallel part W,. Recall
that a is the sequential portion of the original work-
load and (1 — a) is the parallel portion of the original
workload. Let us also assume that the scale of the
workload is on the parallel processing part only, i.e.,
W/, =W, =a x W. If there are p processors available
then they can do p times more work than a single
processor could do. Therefore, the parallel work of
scaled workload is: W =pxW,=(1—-a)xpxW.
Without considering any overhead, the fixed-time
speedup Sy (W’) becomes:

axW+1—a)xpxW

Ser(W') = W (4)

=a+(1—-a)xp.

(4) is known as Gustafson’s scaled speedupl®. Ba-
sed on (4), the fixed-time speedup will increase with

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 67

the number of processors without any inherent theo-
retical upper bound. This simple formula is very pow-
erful. It shows the potential of parallel computing. It
got the attention of Wall Street. Wall Street Journal
reported Gustafson’s work and recognized that the fu-
ture of parallel computing is bright. All stocks in the
parallel computing industry were boosted. The scal-
able computing concept has changed the history of
parallel computing and computing in general.

In the Amdahl’s Law, an execution workload does
not change with the improvement of computing pow-
er. Therefore, after the fixed-time speedup is intro-
duced, it is also known as fixed-size speedup. Many
people call fixed-size speedup Strong Scaling since it
only scales up the number of processors but not the
problem size, and call any scalable computing Weak
Scaling. In fact, the Amdahl’s Law shows Strong Scal-
ing does not scale if it has a sequential processing por-
tion, and the Gustafson’s Law shows Weak Scaling
can scale up with no limitation under the speedup
measurement.

3 Memory-Bounded Speedup: The Sun-Ni’s
Law

While (4) successfully puts the end of the Am-
dahl’s Law for scalable computing applications, as the
Amdahl’s Law, it does not consider the parallel pro-
cessing overheads. Therefore, how to achieve a good
speedup in engineering practice is still a dilemma fac-
ing the high-performance computing (HPC) communi-
ties. However, this time we call for the development
of engineering solutions to address these overheads in-
stead of hopelessly facing an inherent unsolvable per-
formance upper bound. In addition to these over-
heads, researchers quickly noticed another constraint
for scalable computing, the memory capacityl® 3 7.
When the problem size is larger than the memory sys-
tem can support, the performance will become ex-
tremely low, and there will be no parallel processing
gain.

In practice, memory is a costly resource and often
limits the increase of problem size. The memory-
bounded speedup model, also known as the Sun-Ni’s
Lawl2 3], is introduced, which considers memory as
the constraint of scalable computing rather than exe-
cution time. Like the fixed-time speedup, the memo-
ry-bounded speedup scales up the problem size. The
difference is that in memory-bounded speedup, memo-
ry capacity, rather than execution time, is the con-

straint of the problem size scaling. In memory-bound-
ed speedup, the scaled problem size (workload) that
can be solved within a parallel computing system is
limited by the amount of memory available on the
system.

3.1 The Memory-Bounded Speedup

Let W* be the total amount of scaled workload
under a memory capacity constraint. The memory-
bounded speedup Sy;;(W*) is defined as:

(W)
T,(W)

S\IB(W*) -

Let ¢g be a function to denote the relationship be-
tween memory requirement and workload. We have:

and
M =g (W),

where W and M are the workload and the memory
capacity of a single processor, respectively.

Assuming that the number of processors and their
associated memory are increased in pair, with p pro-
cessors, the total available memory capacity becomes
pM. Therefore,
straint, the scaled workload W* is determined by:

W = g(pM) = g(pg~"(W)).

Following the same assumption as the Amdahl’s
Law and the Gustafson’s Law, we assume W* only
contains two parts, a sequential part W, and a per-
fectly parallel part . Recall that a is the sequen-
tial portion of the workload and (1 —a) is the paral-
lel portion of the workload. We assume the scale of
the workload is in the parallel part only, i.e.,
W, =Wy = ax W. With a similar reduction as the
fixed-time speedup, we get the memory-bounded

speedup:

under the memory-bounded con-

N ax W+ (1—a)xg(pM)
SMR(W)_MW+M. (5)

Now, the question is how we find the memory-
scaling function g. In general, finding the function g is
application-dependent and is a state-of-the-art. Inter-
ested readers can read Section 5 for memory-bound
analysis methods and tools. However, since in prac-
tice most algorithms are with polynomial time com-
plexities, the memory-scaling function g between M
and W* often is a polynomial function or approximat-

68

ed as a polynomial function. For scale-up analysis, we
only need to consider the most significant term of the
polynomial expression. That is, we can consider g as a
power function g(z) = ¢ x 2®, where c is a real con-
stant and b is a ration number. And g is a pair func-
tion of g with coefficient of 1, g(z) = 2*. We have
g(pM) = cx (pM)" = p"xex M* = p*' xg(M) =
g(p) x g(M). Therefore, (5) can be simplified as:

axW+(1—-a)xglp) xW

(W) = S L) X)X W
p
e+ (-a) x g0 ©)
REDEYIN)
p

We use matrix multiplication as an example to il-
lustrate how to calculate the memory-bounded
speedup. In dense matrix multiplication, the multipli-
cation needs 2k* computation and 3k*> memory, where
k is the dimension of the two k X k source matrices.
Therefore,

and

_ 3

9(p) = p2.
Following (6), the memory-bounded speedup for ma-
trix multiplication is:

3
a+(1—a)xp2

Sup = T
a+(1—a)Xxp2

For a = 0.1 and p = 16, the memory-bounded spee-
dup is:

3
0.14+0.9 x 162
Mp = —————— ~ 15.595.

0.14+0.9 x 162

Recall that the perfect speedup is 16 with 16 proces-
sors. Dense matrix-matrix multiply can achieve a very
high speedup based on memory-bounded speedup.

The memory-bounded speedup has linked the
fixed-time and fixed-size speedup together. When
g(pM) = W, the memory-bounded speedup model re-
solves to the Amdahl’s Law with a fixed problem size.
If g(pM)=pW, then the memory-bounded speedup
model is identical to the Gustafson’s Law with a fixed
execution time. In general, computational workload

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

grows faster than the memory requirement; thus g(pM)
> pW, and the memory-bounded speedup model of-
fers a higher speedup than fixed-size and fixed-time
speedup. Since g(pM) > pW in general, the impact of
the sequential portion may decrease under the memo-
ry-bounded speedup, indicating that a higher speedup
would be possible with a larger system.

The memory-bounded speedup has become more
and more popular due to two reasons. First, the mem-
ory-bounded model sparked the memory-wall prob-
lem, and the memory-wall problem fused the impor-
tance of the memory-bound (see Subsection 4.1). Sec-
ond, the memory scale-up is easy to use and easier to
get better performance, and memory performance is
an important performance concern in engineering
practice.

3.2 Memory and Computing Trade-Off

The memory-bounded speedup model is the first
model to reveal that memory is a performance con-
straint of computing. Function W = g(M) provides a
quantifiable mathematical formulation for the trade-
off between memory and computing requirement. In
fact, the memory-scaling function g(M) reflects not
only the memory requirement but also the data reuse
rate of the underlying algorithm®.

From the algorithm design perspective, due to the
memory-wall problem, we need to reduce the memo-
ry requirement and increase the data reuse rate.
These two goals often conflict with each other and
need to be balanced. The function ¢ unifies these two
concerns together and provides a unified way for bal-
anced design optimization.

From the architectural perspective, M is the mem-
ory requirement, and W is the corresponding compu-
tation requirement. Faster computation requires
faster memory; otherwise, its computing power will be
wasted while waiting for data. This is transferred in-
to how much architecture effort/resource should be
used for computing and how much should be for
memory. For computer micro-architecture, an imme-
diate design decision is how much the die area should
be used for computing and how much should be used
for cachel8l. Cache technology is widely used to miti-
gate the speed gap between the processor and the

main memory. Before 1989 there was no Intel proces-

®Loosely speaking, g(pM) = pW means each data is used exactly once, and g(pM) > pW means some data are used more than

once (reused).

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 69

Routers Random

3% 8%

Processors

3%

Memory
86%

Fig.1. Silicon area distribution of modern chips.

sor with on-chip cache®. By 2010, as shown in Fig.1,
more than 80% of the die area of a chip is used for
caching and data, based on [9].

4 Performance Fundamental

The memory-bounded speedup model was intro-
duced in 19902 3l. Over the years, it has made im-
pacts in different aspects of computing, far beyond
scalable computing. In this section, we highlight some
of its impacts on the performance evaluation of mem-
ory systems and scalable computing. In the next two
sections, we will discuss its impacts on memory sys-
tem optimization and data-centric rethinking, respec-
tively.

4.1 The Relation Between Memory-Bound
and Memory-Wall

Since sequential computing is a special case of
parallel computing with p = 1, the concept of memo-
ry bound can be extended to sequential computing as
well. Four years after the memory-bounded concept
was introduced, and the memory-wall problem was
formally introduced in 1994[1. Tt notices that the per-
formance gap between CPU and memory becomes
larger and larger and, therefore, CPU performance is
bounded by memory performance and the bound is
worsening every year. It calls for effort and solutions
to improve memory system performance@.

In order to bridge the performance gap between

processor and memory, memory hierarchy with cache
is introduced to hide the long delay of off-chip main
memory accesses. The smaller, faster, and more ex-
pensive cache is closer to the processor. This design
aims to provide a memory system that, in ideal, costs
almost as the memory devices and the performance is
almost as the cache. Memory hierarchy mitigates the
memory-wall effect. But, could a memory hierarchy
solve the memory-wall problem and memory-bound
constraint, not just mitigates it? To answer this ques-
tion, let us first ask: can we build a large memory sys-
tem to solve the memory-bound constraint? The an-
swer is no. Based on the memory-wall problem, the
gap between computing and memory becomes larger
and larger, and we cannot be bounded by the memo-
ry performance. Otherwise, can we build a large cache
to remove the memory-bound constraint? The an-
swer is also no. Cache has to be fast enough to match
the performance of CPU. It needs to find the data
quickly, hopefully in the first shot, and has no time to
calculate the location of the data. In practice, that
means it must be small in size. Since L1 must be
small, we need multiple levels of cache to match the
difference when the gap between CPU and memory is
large. Memory-bound says computing performance is
bounded by the memory performance and capacity.
The memory-wall problem says the performance gap
between CPU and memory becomes larger and larger.
Memory hierarchy mitigates the memory-wall prob-
lem but makes performance optimization more com-
plex. During the years, theoretical results have been
proposed for layered performance matchingl!ll, and
software tools has been developed to measure memo-
ry-bound automatically[l2.

Fig.2[13] shows the memory latency of the Intel
Xeon E5-2670 (Sandy Bridge) and Intel Xeon X5670
(Westmere). With the introduction of the memory hi-
erarchy, the memory latency function shows a four-
step ladder pattern. Each step corresponds to the L1
cache, L2 cache, L3 cache, and main memory, respec-
tively. The larger level is further away from the pro-
cess and has greater access latency. It shows that the
memory-bound constraint and memory-wall problem
is a global memory system performance issue, which is
more complicated to be understood and optimized in
a hierarchical memory system.

Ohttps:/ /www.wikiwand.com/en /1486, Oct. 2022.

@Currently, on average, the DRAM memory performance is still about 400 times slower than that of a processing unit1%.

70

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

10?
«¢= Sandy Bridge
=@ Westmere Main Memory
32 GB DDR3-1600
)
g
2 Main Memory
2 24 GB DDR3-1333
g
£ 10 L3 Cache 20 MB
>
: L2 Cache 256 KB
2 ache L3 Cache 12 MB
-
L1 Cache (D) 32 KB
10°
10° 10° 10* 10° 10° 107 10%

10°

Memory Size (byte)

Fig.2. Memory latency variation of Westmere and Sandy Bridge!!3.

4.2 The Generalized Speedup

Based on the memory-bounded model, large paral-
lel computers have larger memories, and single-proces-
sor computers have smaller memories. How to run a
scaled workload W* on a single processor is a prob-
lem in practice. This leads us to rethink the defini-
tion of speedup.

The traditional definition of speedup is the ratio
of sequential execution time to parallel execution
timel2-3. However, speedup should be the speed up of
parallel processing. That is parallel speed over sequen-
tial speedup. The traditional definition is correct un-
der the traditional assumption that the problem size
is fixed. With a fixed problem size, time reduction is

parallel workload

Sizeup =

sequential work‘load

Fixed Tl\

Fixed Operation
Cost and Fixed Time

parallel execution speed

the same as speed up. With this understanding, Sun
and Gustafson'¥ introduced a new definition of
speedup, the generalized speedup:

parallel execution speed

Generalized Speedup = - - ,
sequential execution speed

where speed is defined as the amount of work divided
by the execution time. The key point of generalized
speedup is that the parallel speed is the speed of solv-
ing a scaled-up problem size under the time con-
straint or memory constraint, and the sequential sin-
gle node speed is the speed of solving the original
work size. Therefore, the memory constraint will not
influence the sequential computing performance@.
When the execution time is fixed, the generalized
speedup becomes work increases, as shown in Fig.3.

Memory-Bounded Speedup

Fixed Operation Cost
and Memory-Bounded

Generalized Speedup =

Fixed Operation
Cost

Memory-Bounded

sequential execution speed

Fixed Size

sequential execution time

Speedup =

parallel execution time

Fig.3. Generalized speedup and its relations with speedup models.

®In this paper, we have used the term processor and node loosely and interchangeably. In the parallel computer architecture, a
node commonly refers to a processor/memory pair. The memory-bounded speedup model is a perfect match for node-based parallel

computers.

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 71

Therefore, the fixed-time speedup is also called sizeup.
When the operation cost is fixed for all kinds of work
or when the problem size is fixed, the generalized
speedup is the same as the traditional speedup. Fig.3
summarizes the relationship between the generalized
speedup, sizeup, traditional speedup, and memory-
bounded speedupl!4l.

4.3 Scalability

Scalability is the ability to maintain parallel pro-
cessing gain when both the problem size and the sys-
tem size increase. Parallel efficiency is defined as par-
allel speedup divided by p, where p is the number of
parallel processors used for parallel processing!!5l. The
definition of parallel efficiency is straightforward since
p is the ideal and perfect parallel performance gain
with p processors. A natural way to measure scalabili-
ty is to measure the ability to maintain parallel effi-
ciency. Kumar et al.l'% 16 introduced the concept of
isoefficiency. Isoefficiency measures how much work
must be increased on a larger machine in order for the
efficiency to remain constant.

Isoefficiency is a correct approach. However, its
underlying speedup is still the traditional speedup and
may have the memory-bounded issue. In practice,
measuring the sequential execution time of large ap-
plications on a single node is either impossible due to
memory limitation or very slow if virtual memory is
supported. For the speedup
should use the generalized speedup, and the isoeffi-
ciency should be the isoefficiency of the generalized
speedupll?l. Maintaining the efficiency of the general-
ized speedup, in the meantime, is equal to maintain-

scalable computing,

ing the average speed per computing node. With the
above observation of the generalized speedup, Sun
and Rover(!8! proposed isospeed as a measurement of
scalability. Based on [18], an algorithm-machine com-
bination is scalable if its achieved average unit speed
can remain constant with the increasing number of
processors, provided the problem size is increased pro-
portionally. The average unit speed is the achieved
speed divided by the number of processors. By defini-
tion, the scalability function from system size p to
system size p’ can be defined as:

N W/p pxW
w(p,m—w,/p,—pxw,,

where W is the initial workload executed when p pro-
cessors are employed, and W’ is the scaled workload
executed when p’ (p’ > p) processors are employed to

maintain the average unit speed. The workload W' is
determined by the isospeed constraint. In the ideal
situation, W’ = ”/%W and (p,p’) =1. In general,
% > % and ¢(p,p’) < 1. An isospeed function closer
to 1 implies that the parallel system is highly scal-
able.

Scalability has many applications. One applica-
tion is to find the best range of an algorithm and to
find the performance crossing point of two different
algorithms[19 20, Range comparison compares the per-
formance of programs over a range of ensembles and
problem sizes based on scalability and crossing-point
analysis. It plays a crucial role in scalable computing.
Fig.4 demonstrates a performance range comparison
of the PDD (Paralled Diagonal Dominant) and paral-
lelized Thomas algorithm when the communication
speed varies?). From Fig.4, we can see that crossing
points exist and vary with data access/communica-
tion bandwidth.

§ 0 —
(’0“
g 2 =
2L =
~ —
15 QS =
10
Time
(s) 5\8
o " . ; .
0.00 0.25 0.50 0.75 1.00

Communication Speed (s/Mb)

Fig.4. Performance crossing due to scalability!2%.

4.4 Scalable Computing for Multi-Core
Architecture

Parallel processing can be carried out at different
levels. In order to overcome the limitations, including
the power consumption limitations, of uni-core archi-
tectures, multi-core architectures have been devel-
oped. Multi-core architectures integrate multiple pro-
cessing units (cores) onto one chip, thereby increas-
ing the computing capacity via parallel processing
while consuming less power. As microprocessor archi-
tectures enter the multi-core era, the scalability issue
is also carried into the multi-core architecture design.

At the 40 years of the Amdahl’s Law, Hill and
Marty?! analyzed multi-core scalability under the
Amdahl’s Law and pessimistically argued that the fu-
ture of scalable multi-core processors is dim. Sun et
all” 22 analyzed multi-core scalability under fixed-

72

time and memory-bounded conditions. Assuming the
multi-core systems under study are symmetric, and
task W has two portions: data processing work, W,
and data access (movement) work, W,. Based on the
Gustafson’s Law, the fixed-time speedup for multi-
core architectures is:

Ser(W) = (1= f)+px [,
where W/ = p x W, and [is defined as:

, W,

F =Wy, ")

(7) shows if W, remains unchanged when the core
number and workload increase, then the multi-core
fixed-time speedup can increase linearly. The memo-
ry-bounded speedup model for multi-core architec-
tures is also introduced in [7, 22], which has a better
speedup than that of fixed-time speedup. Multi-core is
scalable for scalable computing.

Please notice that here the claim of multi-core is
scalable is under the assumption that data access de-
lay is unchanged when the core number and the prob-
lem size increase. This assumption is not a theoreti-
cal bound but is hard to achieve in engineering prac-
tice. In other words, multi-core is memory-con-
strained. Multi-core architectures have put more pres-
sure on the already lag-behind memory systems.

5 Performance Optimization

In this section, we discuss the impacts of the
memory bound principle from the angles of algorithm
design, performance tool development, memory data
access optimization, and I/O data access optimiza-
tion, respectively, in each subsection.

5.1 Memory-Bounded Algorithms and
Analysis

Over the years, more and more researchers in the
computing community have accepted the memory-
bounded concept and applied it in their study. A new
branch of algorithm analysis, called memory-bound
functions, was developed in the 2000s23 24, In formal
(sequential) algorithm analysis, the challenge of the
memory-bounded analysis is no longer the scalability,
but the applications with unpredictable data require-
ments. The argument is that if we know the memory
need, we can provide an appropriate memory (in the-
ory). The difficulty is that we do not know the need.
Therefore, the theoretical arithmetic memory analy-

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

sis is focused on a memory-bound function whose exe-
cution time could be dominated by memory accesses
since they have unpredictable data requirements. The
(general) memory-bound functions have been proven
to be very effective in preventing the proliferation of
junk email by introducing an artificial cost in the
form of expensive memory accesses?® 24, By using
memory-bound functions, the email sender is asked to
pay the cost of the memory access latency imposed by
the memory-bound functions before the email is sent.

In addition to the new branch of theoretical “com-
plexity” analysis of unpredictable memory require-
ments, the memory-bounded and memory-constraint
analysis have been widely used in algorithm designs
for predictable memory requirements as well, in areas
such as graph search, dynamic programming, and dis-
tributed optimization, to list a few.

The A* algorithm(® is a commonly-used path
search and graph traversal algorithm. One major
practical drawback is that it requires an explosion of
memory usage and a long execution time, as it stores
all generated nodes in memory. Several algorith-
ms(26-29] are proposed to improve the A* algorithm for
this purpose. Among them, the IDA* algorithm[26: 27]
combines the ideas of the A* algorithm and the itera-
tive deepening depth-first search algorithm. The key
feature of the IDA* algorithm is that it does not keep
track of every visited node, which saves significantly
on memory consumption. At each iteration, IDA*
performs a depth-first search, cutting off a branch if
its total cost exceeds a given threshold. A threshold is
set as the estimate of the cost of the initial state. If
no solution is found, the threshold is increased, and
the search is repeated until a solution is found. At
each iteration, the threshold used for the next itera-
tion is the minimum cost of all values exceeded the
current threshold. IDA* has a better memory usage
than A*. More specifically, IDA* has a polynomial
space complexity, O(bd), where b is the maximum
branching factor and d is the maximum depth of the
tree. Whereas the space complexity of A* is exponen-
tial and is O(b?).

Researchers in artificial intelligence and opera-
tions research have been studying decision making un-
der uncertainty. Seuken and Zilberstein introduced
the Memory-Bounded Dynamic Programming (MB-
DP) algorithmB% to identify a small set of policies
that are actually useful for optimal or near-optimal
behavior and to avoid keeping too many policies in
memory. Furthermore, an improved version of MB-

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 73

DPBI is proposed to improve the scalability of MB-
DP further by reducing the complexity with respect
to the number of observations.

With the development of big data and artificial
intelligence, distributed optimization has become es-
sential for solving large-scale problems. In order to re-
duce the memory requirements, a number of dis-
tributed optimization algorithms[B2-36 have been pro-
posed that seek a trade-off between the quality of the
solutions and the memory consumption. Among them,
MB-DPOPBS iteratively performs memory-bounded
utility propagation to use a customizable amount of
memory and to guarantee performance.

Memory-bounded analysis and memory-bounded
principle have been widely embedded into algorithm
design today. We have just discussed a few represent-
ing examples here.

5.2 Performance Analysis Tools

Memory-bounded analysis tools are important for
practitioners, especially for software developers who
do not have the knowledge or expertise to analyze the
underlying algorithms of a given software system. In
many situations, software performance tools play an
important role in optimization.

The Roofline modelB” 38] is a performance analy-
sis model to calculate the performance bound for a
given computation on a specific target architecture.
The standard Roofline model (as illustrated in Fig.5)
considers machine peak performance 7, machine peak
bandwidth 3, and arithmetic intensity I of the appli-
cation to analyze the performance bound in GFLOPS.

Performance (GFLOPS)

Memory-Bound | Compute-Bound

v

T
Arithmetic Intensity (FLOPS/byte)

Fig.5. An example of the standard Roofline model®”> 38,
However, estimating the machine characteristics
required by Roofline analysis is time-consuming and
difficult. Even if machine characteristics can be esti-
mated, these are theoretical maximums that do not

necessarily reflect the actual software system perfor-
mance. In order to solve this problem, the Empirical
Roofline Tool (ERT)[Z is developed to determine ar-
chitecture characteristics and application kernels to
populate the Roofline model automatically. With the
help of ERT, software developers can measure perfor-
mance bound in practice, which provides them with
guidance on optimizing their code for maximum per-
formance, such as what types of parallelism are re-
quired and what compiler(s) to use.

5.3 Modeling and Optimization of Memory
Systems

As pointed out in Subsection 4.1, the memory hi-
erarchy is adopted in modern computer systems to
mitigate the memory wall problem. In addition to
memory hierarchy, techniques that utilize data con-
currency and memory parallelism are also widely used
in modern processors and memory systems to reduce
memory access latency®%4l. A large amount of data
concurrency exists in each layer of the memory hierar-
chyl2-45], For better using this concurrency, data ac-
cess concurrency needs to be considered in memory
system modeling and optimization to utilize the exist-
ing memory concurrency.

C-AMAT (Concurrent-AMAT)*Y is a memory ac-
cess performance model that extends AMAT (aver-
age memory access time)ll0) to quantitatively mea-
sure the combined impact of memory access locality
and concurrency with the consideration of all data ac-
cess overlapping. C-AMAT is defined as the average
memory access time with the consideration of concur-
rent hit and miss accesses. It can be calculated as the
number of memory active cycles divided by the num-
ber of memory accesses:

C-AMAT = ©,
«Q

where w represents the total number of cycles execut-
ed in which there is at least one outstanding memory
reference, and « represents the total number of mem-
ory accesses.

Similar to AMAT, the C-AMAT model can be
calculated at each level of the memory hierarchy and
is recursivel4ll. The C-AMAT model provides a new
perspective for cache optimization: data access con-
currency is as important as data locality. The princi-
ple of optimizing a memory system is not locality, lo-
cality, and locality, as some articles promoted. It is a
balanced design of data locality and concurrency. C-

74

AMAT has already found its applications in tradition-
al system optimizations, such as data replacement4;
46] and prefetching schemes3?, and in new architec-
ture designs, such as PIM47 and GPUMS,

Memory hierarchy systems call for global perfor-
mance analysis and global performance optimization
of the overall performance of a memory hierarchy sys-
tem. Based on C-AMAT, an optimization method
named LPM (layered performance matching) is pre-
sented in [11]. The rationale of LPM is to reduce the
overall data access latency through the matching of
the data request rate and the data supply rate at
each layer of a memory hierarchy, with a balanced
consideration of data locality, data concurrency, and
overlapping of data accesses. Let LPMR(I) be the lay-
ered performance matching ratio at memory level I
Let A(l) be the request rate from the upper layer I;_,,
and let p(l) be the supply rate at level . The layered
performance matching ratio is the ratio of the re-
quest rate and the supply rate between any two mem-
ory layers:

LPMR(l) = MY
v(l)
Fig.6 shows a memory hierarchy with a three-level
cache and main memory. Each level receives access
requests from the upper level and responds with its
own data or the data grabbed from the lower level.

Based on the data access delay tolerance of the

user, LPM can calculate the required matching ratio

Multi-Issue
Multi-Threading

Multi-Core

Processor
Registers

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

| CPU
A(1): Request Rate from Computing Components
v(1): Supply Rate of L1

L1 Cache _l
A(2): Request Rate from L1 C D
v(2): Supply Rate of L2
L2 Cache
A(3): Request Rate from L2 c
v(3): Supply Rate of LLC
Last-Level Cache (LLC)
A(4): Request Rate from LLC C
v(4): Supply Rate of Main Memory
Main Memory —l

Fig.6. The layered performance matching.

at each layer of the underlying memory hierarchylll.
LPM transfers the global performance optimization
problem of a memory hierarchy to several relatively
simple local optimizations at different layers of the
memory hierarchy. It has real potential to reduce da-
ta access delay, as shown in the next subsection.

5.4 Deep Memory and Storage Hierarchy

To address the memory-wall problem, the memo-
ry system has been undergoing extensive changes,
adopting new technologies and adding more layers to
the memory hierarchy, as shown in Fig.7. With the
adoption of new technologies, such as NVRAM (non-
volatile random access memory) and SSD, and adding
new layers between memory and storage, the bound-
ary of memory and storage becomes blurry. Storage
becomes a part of the memory system to handle the

Out-of-Order Execution
Speculative Execution

Runahead Execution

Multi-Level Cache

L1 Cache Pipelined Cache
Multi-Banked Cache / L2 Cache Non-Blocking Ca.iche
Data Prefetching

/ L3 Cache

Write Buffer

Multi-Channel /
Multi-Rank

Main Memory (DRAM)

Pipeline
Non-Blocking

Multi-Banl/

Persistent Memory (NVRAM)

Prefetching
Write Buffer

Parallel File /

Flash-Based SSD \

Systems /

HDD \

/ Archival Storage (Tapes, ...) \

Fig.7. Deep memory and storage hierarchy.

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 75

ever enlarged applications. This leads to the term:
Deep Memory and Storage Hierarchy (DMSH)[49: 501,
Storage devices are hundreds and thousands of
times slower than memory devices, making them the
weakest point of DMSHP! 53, The good news is that
the LPM methodology has bundled it into the global
DMSH performance. On the other hand, because stor-
age devices are so slow, we can develop software solu-
improve their performance. The LPM
methodology has linked the storage performance with
the global DMSH performancel!ll. Based on the LPM
principle, a new, heterogeneous-aware, multi-tiered,
dynamic, and distributed I/O buffering system,
named Hermes(5: 54, is developed. We use the term
multi-tiers here, because under Hermes different mem-
ory/storage devices can be accessed concurrently in
hierarchical or horizontal fashion. Hermes enables,
manages, supervises, and, in some sense, extends I/0
buffering to integrate into the DMSH fully. Hermes
provides novel data placement policies to utilize all
memory and storage technologies efficiently. Addi-
tionally, Hermes adopts several novel techniques to
perform memory, metadata, and communication man-

tions to

agement in multi-tiered buffering systems. Perfor-
mance evaluations show Hermes dramatically speeds
up I/0, exceeding the performance of state-of-the-art
buffering platforms by more than 2x. The first ver-
sion of Hermes has been released under the HDF5 li-
brary by the HDF group as an open source®©.

6 Data-Centric Thinking and Data-Centric
Design

Big data applications have increased data velocity,
veracity, volume, and variety(53. These four V charac-
teristics have put unprecedented pressure on memory
and storage systems. Even worse, from a computing
point of view, the pressure of big data applications is
not only from the four Vs but also from that they
have totally changed the way of computing. For ex-
ample, let us find the best travel path from city A to
city B. From the traditional computational thinking,
we first find all the roads from A to B, make a graph
based on the road-map, and then run the shortest-
path algorithm on the road-map to find the shortest
path from A to B. From the data-centric thinking,
however, the problem will be solved total differently.
To find the best path from A to B from a data-cen-
tric approach, we first record which path people used

most and then use it as the best one. If we use the
GoogleMap App, GoogleMap even can provide the es-
timated travel time of each path based on the recent
travels of other GoogleMap users. We can see that in
the data-centric solution, there is almost no comput-
ing but data gathering and processing. While compu-
tational thinking focuses on formulating a problem to
make it computationally solvable, data-centric think-
ing is for gathering and exploiting data to provide in-
sightsl®0l. This paradigm changing requires a rethink-
ing of computer architecture and computer systems.
Currently, there are no clear solutions for this
paradigm challenge, but improving data access and
processing ability certainly is part of the major con-
cern.

Intensive research has been conducted to address
the four V issues, and many point solutions exist. GPU
is a successful solution for graphic applicationsl57l. The
MapReduce data structure and MapReduce file sys-
tems are successful solutions for information retri-
evalls8l. AT chips are designed to address the data pro-
cessing needs of deep learningl®”, and ASIC and FP-
GA methodologies are used to address different data
processing needs of different applica-tions(60: 61, PIM
(Processing in Memory), NDP (Near-memory Data
Processing), and ISP (In-Storage Processing) architec-
tures are proposed to process data in memory, near
memory, and in storage, respectively, to reduce data
access timel02-64, From a system point of view, the
LPM methodology and the Sluice Gate theory are
proposed to reduce the data access delay as small as
possiblel!l, 65 The list is long and more can be listed,
but the above are good enough to conclude our obser-
vations. These solutions are useful, but they are de-
signed for given applications and only work under cer-
tain conditions and environments. They can mitigate
the memory-wall problem but cannot solve it. Memo-
ry-bound remains. There is a call to rethink the fun-
damental computer system design to address the com-
puting paradigm changel56l. However, after 60 years of
rapid development, computer systems have become so
complex that any fundamental change in computer
architecture or operating system will be a hard task.
With a deep memory-storage hierarchy, the I/O sys-
tem is part of the enlarged memory system. In the fol-
lowing, we introduce a data-centric system design for
I/O systems.

Following the data-centric thinking, a new, dis-

Onhttps:/ /github.com/HDFGroup/hermes, Dec. 2022.

76

tributed, scalable, and adaptive I/O system, LABI-
0OSI66], is developed to address the divergence in stor-
age architectures and reduce conflicting requirements.
In compute-centric systems, a program conducts com-
puting and fetches data when computing needs them.
In data-centric systems, computing is with the data
and can be carried out where the data is. LABIOS
follows the data-centric thinking, where each section
of data is labeled, and a label is a tuple of an opera-
tion and a pointer to the data. Therefore, the com-
puting is paired with the data and can be carried out
where the data is. The idea behind LABIOS is very

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

similar to that behind Amazon warehouses. I/O re-
quests are collected and optimized based on their la-
bels, and the operations are carried out by worker
pools at data warehouses. The workflow of LABIOS is
shown in Fig.8. LABIOS provides storage flexibility,
versatility, and agility due to labels and its decou-
pled data-centric architecture. With all its merits,
putting LABIOS in use requires the update of operat-
ing systems and file systems. This will be a long and
challenging process. The first operating system study
to support the LABIOS system appeared in Nov. 2022
at the SC2022 conferencel67).

Warehouse

api::labio_read()

api::labio_wirte()

Label Queue

— Instruction
— Data

‘Worker Pool

Fig.8. A logical overview of data operation under label.

7 Conclusions

Professor Kai Hwang is a prominent scholar whose
textbooks have influenced several generations of com-
puter scientists and practitioners. In more than one of
his books(®: 69 he has introduced the memory-bound-
ed speedup model and named it the Sun-Ni’s Law. In
this study, we reviewed the memory-bounded princi-
ple, its history, and its impacts, and discussed its role
and potential in the big data era. Prof. Hwang’s text-
books have made a lasting influence, and the memo-
ry-bounded model has made its impacts on comput-
ing. We think this is the best way to honor Prof.
Hwang’s life long achievement and is the best way to
make our addition to this special issue.

The memory-bounded speedup model takes into
account the effect of memory on performance by re-
lating memory requirement to computational require-
ment. It reveals the memory constraint in perfor-
mance, and it sparks the memory-wall problem. The
memory-bounded concept has changed how algo-

rithms and software are designed. Moreover, more
memory optimization designs and performance mod-
els have been developed to mitigate the performance
gap between computing and memory systems.

We hope this study will provide a better under-
standing of the memory-bounded model and its impli-
cations, which will help us better understand and gain
new insights into memory system performance to pro-
mote data-centric thinking and to pave the way for
developing next-generation memory systems and opti-
mization tools.

References

[1] Wulf W A, McKee S A. Hitting the memory wall: Impli-
cations of the obvious. ACM SIGARCH Computer Archi-
tecture News, 1995, 23(1): 20-24. DOI: 10.1145/216585.
216588.

[2] Sun X H, Ni L M. Scalable problems and memory-bound-
ed speedup. Journal of Parallel and Distributed Comput-
ing, 1993, 19(1): 27-37. DOI: 10.1006/jpdc.1993.1087.

https://doi.org/10.1145/216585.216588
https://doi.org/10.1145/216585.216588
https://doi.org/10.1006/jpdc.1993.1087

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 77

8]

(7]

(8]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

Sun X H, Ni L M. Another view on parallel speedup. In
Proc. the 1990 ACM/IEEE Conference on Supercomput-
ing, Nov. 1990, pp.324-333. DOI: 10.1109/SUPERC.1990.
130037.

Amdahl G M. Validity of the single processor approach to
achieving large scale computing capabilities. In Proc. the
Spring Joint Computer Conference, Apr. 1967,
pp-483-485. DOI: 10.1145/1465482.1465560.

Gustafson J L. Reevaluating Amdahl’s law. Communica-
tions of the ACM, 1988, 31(5): 532-533. DOI: 10.1145/
42411.42415.

Bashe C J, Johnson L R, Palmer J H, Pugh E W. IBM’s
Early Computers. MIT Press, 1986.

Sun X H, Chen Y. Reevaluating Amdahl’s law in the mul-
ticore era. Journal of Parallel and Distributed Computing,
2010, 70(2): 183-188. DOI: 10.1016/j.jpdc.2009.05.002.
Pan C Y, Naeemi A. System-level optimization and
benchmarking of graphene PN junction logic system based
on empirical CPI model. In Proc. the IEEE International
Conference on IC Design & Technology, Jun. 2012. DOLI:
10.1109/ICICDT.2012.6232850.

Kogge P M. Hardware Evolution Trends of Extreme Scale
Computing. Technical Reprt, University of Notre Dame,
South Bend, 2011.

Hennessy J L, Patterson D A. Computer Architecture: A
Quantitative Approach (6th edition). Elsevier, 2017.

Liu Y H, Sun X H. LPM: A systematic methodology for
concurrent data access pattern optimization from a
matching perspective. IEEE Trans. Parallel and Dis-
tributed Systems, 2019, 30(11): 2478-2493. DOI: 10.1109/
TPDS.2019.2912573.

Lo Y J, Williams S, Straalen B V, Ligocki T J, Cordery
M J, Wright N J, Hall M W, Oliker L. Roofline model
toolkit: A practical tool for architectural and program
analysis. In Proc. the 5th International Workshop on Per-
formance Modeling, Benchmarking and Simulation of
High Performance Computer Systems, Nov. 2014,
pp-129-148. DOI: 10.1007/978-3-319-17248-4 7.

Saini S, Chang J, Jin H Q. Performance evaluation of the
Intel sandy bridge based NASA Pleiades using scientific
and engineering applications. In Proc. the 4th Interna-
tional Workshop on Performance Modeling, Benchmark-
ing and Simulation of High Performance Computer Sys-
tems, Nov. 2013, pp.25-51. DOI: 10.1007/978-3-319-
10214-6 2.

Sun X H, Gustafson J L. Toward a better parallel perfor-
mance metric. Paralle] Computing, 1991, 17(10/11): 1093-
1109. DOI: 10.1016,/S0167-8191(05)80028-6.

Kumar V, Singh V. Scalability of parallel algorithms for
the all-pairs shortest-path problem. Journal of Parallel
and Distributed Computing, 1991, 13(2): 124-138. DOL:
10.1016,/0743-7315(91)90083-L.

Kumar V, Grama A, Gupta A, Karypis G. Introduction
to Parallel Computing: Design and Analysis of Algo-
rithms. Benjamin-Cummings, 1994.

[17]

(18]

(19]

20]

21]

[22]

23]

24]

[25]

(26]

27]

28]

[29]

[30]

31]

[32]

Sun X H, Chen Y, Wu M. Scalability of heterogeneous
computing. In Proc. the International Conference on Par-
allel Processing (ICPP’05), Jun. 2005, pp.557-564. DOI:
10.1109/ICPP.2005.69.

Sun X H, Rover D T. Scalability of parallel algorithm-ma-
chine combinations. IEEE Trans. Parallel and Distribut-
ed Systems, 1994, 5(6): 599-613. DOI: 10.1109/71.285606.
Sun X H, Pantano M, Fahringer T. Integrated range com-
parison for data-parallel compilation systems. IEEE
Trans. Parallel and Distributed Systems, 1999, 10(5): 448-
458. DOI: 10.1109/71.770134.

Sun X H. Scalability versus execution time in scalable
systems. Journal of Parallel and Distributed Computing,
2002, 62(2): 173-192. DOI: 10.1006/jpdc.2001.1773.

Hill M D, Marty M R. Amdahl’s law in the multicore era.
Computer, 2008, 41(7): 33-38. DOI: 10.1109/MC.2008.209.
Sun X H, Chen Y, Byna S. Scalable computing in the
multicore era. In Proc. the 2008 International Sympo-
sium on Parallel Architectures, Algorithms and Program-
ming, Sept. 2008.

Dwork C, Goldberg A, Naor M. On memory-bound func-
tions for fighting spam. In Proc. the 23rd Annual Interna-
tional Cryptology Conference, Aug. 2003, pp.426-444.
DOI: 10.1007/978-3-540-45146-4 25.

Abadi M, Burrows M, Manasse M, Wobber T. Moderate-
ly hard, memory-bound functions. ACM Trans. Internet
Technology, 2005, 5(2): 299-327. DOI: 10.1145/1064340.
1064341.

Hart P E, Nilsson N J, Raphael B. A formal basis for the
heuristic determination of minimum cost paths. IEEE
Trans. Systems Science and Cybernetics, 1968, 4(2): 100-
107. DOI: 10.1109/TSSC.1968.300136.

Korf R E. Depth-first iterative-deepening: An optimal ad-
missible tree search. Artificial Intelligence, 1985, 27(1):
97-109. DOI: 10.1016,/0004-3702(85)90084-0.

Korf R E, Reid M, Edelkamp S. Time complexity of itera-
tive-deepening-A*. Artificial Intelligence, 2001, 129(1/2):
199-218. DOI: 10.1016/S0004-3702(01)00094-7.

Russell S. Efficient memory-bounded search methods. In
Proc. the 10th European Conference on Artificial intelli-
gence, Aug. 1992.

Lovinger J, Zhang X Q. Enhanced simplified memory-
bounded a star (SMA*+). In Proc. the 3rd Global Confer-
ence on Artificial Intelligence, Oct. 2017, pp.202-212.
DOI: 10.29007 /vTzc.

Seuken S, Zilberstein S. Memory-bounded dynamic pro-
gramming for DEC-POMDPs. In Proc. the 20th Interna-
tional Joint Conference on Artifical Intelligence, Jan.
2007, pp.2009-2015.

Seuken S, Zilberstein S. Improved memory-bounded dy-
namic programming for decentralized pomdps. arXiv:
1206.5295, 2012. https://arxiv.org/abs/1206.5295, Dec.
2022.

Chen Z Y, Zhang W X, Deng Y C, Chen D D, Li Q.
RMB-DPOP: Refining MB-DPOP by reducing redun-

https://doi.org/10.1109/SUPERC.1990.130037
https://doi.org/10.1109/SUPERC.1990.130037
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/42411.42415
https://doi.org/10.1145/42411.42415
https://doi.org/10.1016/j.jpdc.2009.05.002
https://doi.org/1109/ICICDT.2012.6232850
https://doi.org/10.1109/TPDS.2019.2912573
https://doi.org/10.1109/TPDS.2019.2912573
https://doi.org/10.1007/978-3-319-17248-4_7
https://doi.org/10.1007/978-3-319-17248-4_7
https://doi.org/10.1007/978-3-319-10214-6_2
https://doi.org/10.1007/978-3-319-10214-6_2
https://doi.org/10.1007/978-3-319-10214-6_2
https://doi.org/10.1016/S0167-8191(05)80028-6
https://doi.org/10.1016/0743-7315(91)90083-L
https://doi.org/10.1109/ICPP.2005.69
https://doi.org/10.1109/ICPP.2005.69
https://doi.org/10.1109/ICPP.2005.69
https://doi.org/10.1109/71.285606
https://doi.org/10.1109/71.770134
https://doi.org/10.1006/jpdc.2001.1773
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1007/978-3-540-45146-4_25
https://doi.org/10.1007/978-3-540-45146-4_25
https://doi.org/10.1145/1064340.1064341
https://doi.org/10.1145/1064340.1064341
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1016/0004-3702(85)90084-0
https://doi.org/10.1016/S0004-3702(01)00094-7
https://doi.org/10.29007/v7zc
https://arxiv.org/abs/1206.5295, Dec. 2022
https://arxiv.org/abs/1206.5295, Dec. 2022

78

33]

(34]

35]

(36]

37]

(38]

39]

(40]

[41]

42]

(43]

44]

(45]

(46]

dant inferences. arXiv: 2002.10641, 2020. https://doi.org/
10.48550/arXiv.2002.10641, Dec. 2022.

Brito I, Meseguer P. Improving DPOP with function fil-
tering. In Proc. the 9th International Conference on Au-
tonomous Agents and Multiagent Systems: Volume 1,
May 2010, pp.141-148.

Petcu A, Faltings B. ODPOP: An algorithm for open/dis-
tributed constraint optimization. In Proc. the 21st Na-
tional Conference on Artificial Intelligence, Jul. 2006,
pp.703-708.

Petcu A, Faltings B. A hybrid of inference and local
search for distributed combinatorial optimization. In
Proc. the IEEE/WIC/ACM International Conference on
Intelligent Agent Technology (IAT’07), Nov. 2007,
pp.342-348. DOI: 10.1109/IAT.2007.12.

Petcu A, Faltings B. MB-DPOP: A new memory-bound-
ed algorithm for distributed optimization. In Proc. the
20th International Joint Conference on Artifical Intelli-
gence, Jan. 2007, pp.1452-1457.

Williams S W. Auto-tuning performance on multicore
computers [Ph.D. Thesis]. University of California, Berke-
ley, 2008.

Williams S, Waterman A, Patterson D. Roofline: An in-
sightful visual performance model for multicore architec-
tures. Communications of the ACM, 2009, 52(4): 65-76.
DOI: 10.1145/1498765.1498785.

Lu X Y, Wang R J, Sun X H. APAC: An accurate and
adaptive prefetch framework with concurrent memory ac-
38th IEEE International Con-
ference on Design (ICCD), Oct. 2020,
pp.222-229. DOI: 10.1109/ICCD50377.2020.00048.

Lu X Y, Wang R J, Sun X H. Premier: A concurrency-
aware pseudo-partitioning framework for shared last-level
cache. In Proc. the 39th IEEE International Conference
on Computer Design (ICCD), Oct. 2021, pp.391-394.
DOI: 10.1109/ICCD53106.2021.00068.

Liu J, Espina P, Sun X H. A study on modeling and opti-

cess analysis. In Proc. the

Computer

mization of memory systems. Journal of Computer Sci-
ence and Technology, 2021, 36(1): 71-89. DOI: 10.1007/
$11390-021-0771-8.

Glew A. MLP yes! ILP no. In Proc. ASPLOS Wild and
Crazy Idea Session, Oct. 1998.

Qureshi M K, Lynch D N, Mutlu O, Patt Y N. A case for
MLP-aware cache replacement. In Proc. the 33rd Interna-
tional Symposium on Computer Architecture (ISCA’06),
Jun. 2006, pp.167-178. DOI: 10.1109/ISCA.2006.5.

Sun X H, Wang D W. Concurrent average memory ac-
cess time. Computer, 2014, 47(5): 74-80. DOI: 10.1109/
MC.2013.227.

Najafi H, Lu X, Liu J, Sun X H. A generalized model for
modern hierarchical memory system. In Proc. Winter
Simulation Conference (WSC), Dec. 2022.

Lu X, Wang R, Sun X H. CARE: A concurrency-aware
enhanced lightweight cache management framework. In
Proc. the 29th IEEE International Symposium on High-

(47]

(48]

[49]

[50]

[51]

52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

J. Comput. Sci. & Technol., Jan. 2023, Vo0l.38, No.1

Performance Computer Architecture (HPCA), Feb.
25-Mar. 1, 2023.

Yan L, Zhang M Z, Wang R J, Chen X M, Zou X Q, Lu
X Y, Han Y H, Sun X H. CoPIM: A concurrency-aware
PIM workload offloading architecture for graph applica-
tions. In Proc. IEEE/ACM International Symposium on
Low Power Electronics and Design (ISLPED), Jul. 2021.
DOI: 10.1109/ISLPED52811.2021.9502483.

Zhang N, Jiang C T, Sun X H, Song S L. Evaluating
C-AMAT
model. In Proc. the Workshop on Memory Centric Pro-
gramming for HPC, Nov. 2017, pp.35-39. DOIL: 10.1145/
3145617.3158214.

Kannan S, Gavrilovska A, Schwan K, Milojicic D, Tal-
war V. Using active NVRAM for I/O staging. In Proc.

the 2nd International Workshop on Petascal Data Analyt-

GPGPU memory performance through the

ics: Challenges and Opportunities, Nov. 2011, pp.15-22.
DOI: 10.1145/2110205.2110209.

Caulfield A M, Grupp L M, Swanson S. Gordon: Using
flash memory to build fast, power-efficient clusters for da-
ta-intensive applications. ACM SIGPLAN Notices, 2009,
44(3): 217-228. DOI: 10.1145/1508284.1508270.

Reed D A, Dongarra J. Exascale computing and big data.
Communications of the ACM, 2015, 58(7): 56-68. DOI:
10.1145/2699414.

Shalf J, Dosanjh S, Morrison J. Exascale computing tech-
nology challenges. In Proc. the 9th International Confer-
ence on High Performance Computing for Computational
Science, Jun. 2010. DOI: 10.1007/978-3-642-19328-6_1.
Kougkas A, Devarajan H, Sun X H. Hermes: A heteroge-
neous-aware multi-tiered distributed I/O buffering sys-
tem. In Proc. the 27th International Symposium on High-
Performance Parallel and Distributed Computing, Jun.
2018, pp.219-230. DOI: 10.1145/3208040.3208059.
Kougkas A, Devarajan H, Sun X H. I/O acceleration via
multi-tiered data buffering and prefetching. Journal of
Computer Science and Technology, 2020, 35(1): 92-120.
DOI: 10.1007/s11390-020-9781-1.

Tissenbaum M, Sheldon J, Abelson H. From computa-
tional thinking to computational action. Communications
of the ACM, 2019, 62(3): 34-36. DOI: 10.1145/3265747.
Liu Y H, Sun X H, Wang Y, Bao Y G. HCDA: From
computational thinking to a thinking
paradigm. Communications of the ACM, 2021, 64(5): 66-
75. DOI: 10.1145/3418291.

Owens J D, Houston M, Luebke D, Green S, Stone J E,
Phillips J C. GPU computing. Proceedings of the IEEE,
2008, 96(5): 879-899. DOI: 10.1109/JPROC.2008.917757.
Dean J, Ghemawat S. MapReduce: Simplified data pro-

generalized

cessing on large clusters. Communications of the ACM,
2008, 51(1): 107-113. DOI: 10.1145/1327452.1327492.
Momose H, Kaneko T, Asai T. Systems and circuits for
AT chips and their trends. Japanese Journal of Applied
Physics, 2020, 59(5): 050502. DOI: 10.35848/1347-4065/
ab839f.

https://doi.org/10.48550/arXiv.2002
https://doi.org/10.48550/arXiv.2002
https://doi.org/10.1109/IAT.2007.12
https://doi.org/1145/1498765.1498785
https://doi.org/10.1109/ICCD50377.2020.00048
https://doi.org/10.1109/ICCD53106.2021.00068
https://doi.org/10.1007/s11390-021-0771-8
https://doi.org/10.1007/s11390-021-0771-8
https://doi.org/10.1109/ISCA.2006.5
https://doi.org/10.1109/MC.2013.227
https://doi.org/10.1109/MC.2013.227
https://doi.org/10.1109/ISLPED52811.2021.9502483
https://doi.org/10.1145/3145617.3158214
https://doi.org/10.1145/3145617.3158214
https://doi.org/10.1145/2110205.2110209
https://doi.org/10.1145/1508284.1508270
https://doi.org/10.1145/2699414
https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1145/3208040.3208059
https://doi.org/10.1007/s11390-020-9781-1
https://doi.org/10.1145/3265747
https://doi.org/10.1145/3418291
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.35848/1347-4065/ab839f
https://doi.org/10.35848/1347-4065/ab839f

Xian-He Sun et al.: The Memory-Bounded Speedup Model and Its Impacts in Computing 79

[60] Singh G, Alser M, Cali D S, Diamantopoulos D, Gémez-
Luna J, Corporaal H, Mutlu O. FPGA-based near-memo-
ry acceleration of modern data-intensive applications.
IEEE Micro, 2021, 41(4): 39-48. DOI: 10.1109/MM.2021.
3088396.

[61] Choi Y K, Santillana C, Shen Y J, Darwiche A, Cong J.
FPGA acceleration of probabilistic sentential decision dia-
grams with high-level synthesis. ACM Trans. Reconfig-
urable Technology and Systems, 2022. DOIL: 10.1145/
3561514.

[62] Ghose S, Boroumand A, Kim J S, Gémez-Luna J, Mutlu
O. Processing-in-memory: A workload-driven perspective.
IBM Journal of Research and Development, 2019, 63(6):
Article No. 3. DOI: 10.1147/JRD.2019.2934048.

[63] Ghiasi N M, Park J, Mustafa H, Kim J, Olgun A, Goll-
witzer A, Cali D S, Firtina C, Mao H Y, Alserr N A,
Ausavarungnirun R, Vijaykumar N, Alser M, Mutlu O.
GenStore: A high-performance in-storage processing sys-
tem for genome sequence analysis. In Proc. the 27th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Feb.
2022, pp.635-654. DOIL: 10.1145/3503222.3507702.

[64] Mutlu O. Intelligent architectures for intelligent comput-
ing systems. In Proc. the 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), Feb.
2021, pp.318-323. DOIL: 10.23919/DATE51398.2021.9474
073.

[65] Sun X H, Liu Y H. Utilizing concurrency: A new theory
for memory wall. In Proc. the 29th International Work-
shop on Languages and Compilers for Parallel Comput-
ing, Sept. 2016, pp.18-23. DOI: 10.1007/978-3-319-52709-
3 2.

[66] Kougkas A, Devarajan H, Lofstead J, Sun X H. LABIOS:
A distributed label-based I/O system. In Proc. the 28th
International Symposium on High-Performance Parallel
and Distributed Computing, Jun. 2019, pp.13-24. DOI:
10.1145/3307681.3325405.

[67] Logan L, Garcia J C, Lofstead J, Sun X H, Kougkas A.
LabStor: A modular and extensible platform for develop-
ing high-performance, customized I/O stacks in userspace.
In Proc. the ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and
Analysis (SC’22), Nov. 2022, pp.309-323.

[68] Hwang K, Xu Z W. Scalable Parallel Computing: Tech-
nology, Architecture, Programming. McGraw-Hill, 1998.

[69] Hwang K. Advanced Computer Architecture: Parallelism,
Scalability, Programmability. McGraw-Hill, 1993.

Xian-He Sun is a University Distin-
guished Professor and the Ron
Hochsprung Endowed Chair of the De-
partment of Computer Science at the
Ilinois Institute of Technology (Illi-
nois Tech), Chicago. Before joining

@ Illinois Tech, he worked at DoE Ames
National Laboratory, at ICASE, NASA Langley Re-
search Center, at Louisiana State University, Baton
Rouge, and was an ASEE Fellow at Navy Research Lab-
oratories. Dr. Sun is an IEEE Fellow and is known for
his memory-bounded speedup model, also called Sun-
Ni’s Law, for scalable computing. His research interests
include high-performance computing, memory and I/O
systems, and performance evaluation and optimization.
He has over 300 publications, six patents in these areas,
and is currently leading multiple federal-funded large
software development projects in HPC I/O systems. Dr.
Sun is the Editor-in-Chief of IEEE Transactions on Par-
allel and Distributed Systems, and a former chair of the
Computer Science Department at Illinois Tech, Chicago.
He received the Golden Core Award from IEEE CS So-
ciety in 2017, the Overseas Outstanding Contributions
Award from CCF in 2018, the ACM Karsten Schwan
Best Paper Award from ACM HPDC in 2019, the Ron
Hocksprung Endowed Chairship from Illinois Tech in
2020, the First Prize Best Award from
ACM/IEEE CCGrid in 2021, and the CSE Distin-
guished Alumni Award from the Michigan State Univer-

Paper

sity in 2022. More information about Dr. Sun can be

found at his website: www.cs.iit.edu/~sunl.

Xijaoyang Lu is a Ph.D. candidate
at Illinois Institute of Technology (Illi-
nois Tech), Chicago, in the Depart-

ment of Computer Science, advised by

lae

e Dr. Xian-He Sun. He holds his B.E.

d

Hangzhou, in 2015, and his M.S. degree in computer en-

degree in electronic science and tech-
nology from Zhejiang University,
gineering from New York University, New York, in
2017. His research focuses on computer architecture,
memory performance modeling, memory performance
optimizations, and ML-assisted computer architectures.
He is currently a member of the Scalable Computing
Software (SCS) Laboratory at Illinois Tech.

https://doi.org/10.1109/MM.2021.3088396
https://doi.org/10.1109/MM.2021.3088396
https://doi.org/10.1145/<linebreak/>3561514
https://doi.org/10.1145/<linebreak/>3561514
https://doi.org/10.1147/JRD.2019.2934048
https://doi.org/10.1145/3503222.3507702
https://doi.org/10.23919/DATE51398.2021.9474073
https://doi.org/10.23919/DATE51398.2021.9474073
https://doi.org/10.1007/978-3-319-52709-3_2
https://doi.org/10.1007/978-3-319-52709-3_2
https://doi.org/10.1007/978-3-319-52709-3_2
https://doi.org/10.1145/3307681.3325405

	1 Introduction
	2 The Amdahl’s Law and ScalableComputing
	2.1 The Amdahl’s Law
	2.2 Scalable Computing and the Fixed-Time Speedup

	3 Memory-Bounded Speedup: The Sun-Ni’s Law
	3.1 The Memory-Bounded Speedup
	3.2 Memory and Computing Trade-Off

	4 Performance Fundamental
	4.1 The Relation Between Memory-Bound and Memory-Wall
	4.2 The Generalized Speedup
	4.3 Scalability
	4.4 Scalable Computing for Multi-Core Architecture

	5 Performance Optimization
	5.1 Memory-Bounded Algorithms and Analysis
	5.2 Performance Analysis Tools
	5.3 Modeling and Optimization of Memory Systems
	5.4 Deep Memory and Storage Hierarchy

	6 Data-Centric Thinking and Data-Centric Design
	7 Conclusions
	References

