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Colonies of the arboreal turtle ant create networks of trails that link nests and food
sources on the graph formed by branches and vines in the canopy of the tropical
forest. Ants put down a volatile pheromone on the edges as they traverse them. At
each vertex, the next edge to traverse is chosen using a decision rule based on the
current pheromone level. There is a bidirectional flow of ants around the network. In
a previous field study, it was observed that the trail networks approximately minimize
the number of vertices, thus solving a variant of the popular shortest path problem
without any central control and with minimal computational resources. We propose
a biologically plausible model, based on a variant of the reinforced random walk on
a graph, which explains this observation and suggests surprising algorithms for the
shortest path problem and its variants. Through simulations and analysis, we show
that when the rate of flow of ants does not change, the dynamics converges to the
path with the minimum number of vertices, as observed in the field. The dynamics
converges to the shortest path when the rate of flow increases with time, so the colony
can solve the shortest path problem merely by increasing the flow rate. We also show
that to guarantee convergence to the shortest path, bidirectional flow and a decision rule
dividing the flow in proportion to the pheromone level are necessary, but convergence
to approximately short paths is possible with other decision rules.

natural algorithms | shortest path problem | ant colonies | distributed algorithms | graph algorithms

Biological systems, such as ant trail networks, are fascinating examples of distributed
algorithms in nature (1–4), often finding globally optimum solutions using simple
local interactions among individuals, devoid of central control. The study of natural
algorithms has led to synergistic exchange between biology and computer science (5, 6).
The algorithmic lens has enhanced our understanding of biological phenomena such as
how birds flock (7), how slime molds solve the shortest path problem (8–10), and how
computation takes place in the brain (11, 12). Moreover, the process of evolution itself
has been studied using an algorithmic lens (13–16). Also, inspiration from nature has led
to algorithmic ideas such as ant-inspired algorithms for distributed density estimation
(17), artificial neural networks in machine learning (18), and algorithms for similarity
search inspired by the fruit fly brain (19), among others (20–23).

Here, we investigate how the trail networks of the arboreal turtle ant (Cephalotes
goniodontus) can solve variants of the shortest path problem, a basic optimization
problem on graphs (24–26). Textbook algorithms for this problem find optimum
solutions using knowledge of the entire network (27–29). Turtle ants nest and forage
in the tree canopy of the tropical forest; their trail network is constrained to lie on a
natural graph formed by tangled branches and vines (Fig. 1), and no ant has any global
information about the network. Observations of turtle ants in the field show that a
colony’s trail network approximately minimizes the number of vertices (30). We develop
a model that gives a biologically plausible explanation for this observation and outlines
other intriguing phenomena as described in the next section.

A. Summary of Model and Results. Turtle ant colonies form trails on a graph whose
vertices correspond to junctions in the vegetation and edges correspond to branches
connecting these junctions. A colony’s network of trails connects many nests and
food sources. The trail network minimizes the number of vertices (30) (compared to
simulated random networks), approximately solving a variant of the Steiner tree problem
(31–33), which is a generalization of the shortest path problem for multiple terminal
vertices. Here, we focus on a section of this network, considering two terminal vertices,
such as a nest and a food source, and we seek to explain how a colony can find the
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Fig. 1. Tangled branches in which turtle ants forage.

path with the minimum number of vertices between the two
terminals. We model trails as a bidirectional flow of ants between
the two terminal vertices; bidirectional flow is characteristic of
the trails of this species (34). The flow in our model is similar
to models of flow in traffic networks (35–37). Ants lay trail
pheromone on edges as they traverse them, and the next edge
to traverse is chosen based on the level of the pheromone. The
pheromone decays with time. Some fraction of flow leaks as it
passes through each vertex, modeling the loss of ants due to
exploration. Chandrasekhar et al. (30) hypothesized loss of ants
at the vertices to be the reason why ants prefer paths with fewer
vertices.
Our model leads to four main results:

1. We first consider the linear decision rule, which, at each
vertex, divides the flow among the next set of edges in
proportion to their pheromone level. We show through
simulations and analysis that when the incoming rate of flow
remains unchanged, the dynamics converges to the path with
theminimum leakage. This is also the path with theminimum
number of vertices when all vertices have equal leakage. This
result describes a biologically plausible process that explains
how colonies can find paths with the minimum number of
vertices.

2. We show that when the rate of flow increases with time, in
the absence of leakage, the dynamics converges to the shortest
path. The flow rate on ant trails can change over time (38–
42), for example, in turtle ants, the flow rate can increase in
response to new food sources (39). In other ant species, it has
been shown that ant trails converge to the shortest path in
certain simple graphs (43). Our result shows a surprising link
between these two phenomena: Ant colonies can use their
ability to increase the flow rate to find the shortest path.

3. We establish the utility of bidirectional flow by showing
that it is necessary for convergence to the shortest or
the minimum leakage path. In contrast, most flow-based
problems considered in computer science and operations
research have unidirectional flow (37, 44–46).

4. We investigate the effect of increasing flow and leakage with
decision rules other than the linear rule. For a general family
of decision rules, we show that the linear rule is its unique
member with guaranteed convergence to the shortest and the
minimum leakage path. However, for various nonlinear rules,
we show that the dynamics still often converges to a path with
a smaller length and less leakage, compared to the path found

in the absence of increasing flow and leakage respectively.
Thus, the utility of increasing flow and leakage is not limited
to the linear decision rule.

Our model builds on a previous model by Chandrasekhar
et al. (47), adding components such as leakage and variation in
the flow rate. These components were not present in the model
of Chandrasekhar et al. (47) and are crucial for the phenomena
we discuss above. Chandrasekhar et al. (47) investigated how
ants find alternative paths, not necessarily the ones with the
minimum number of vertices, to route around ruptured links in
a network. Here, we ask how ants can find the path with the
minimum number of vertices and how the flow rate impacts the
path found. We demonstrate that leakage at vertices can lead to
convergence to the path with the minimum number of vertices,
and increase in the flow rate over time can lead to convergence
to the shortest path.
Our work is different from traditional ant-colony optimization

(48–50), in which the algorithms considered are not required
to be biologically plausible. Models of ant colony optimization
(ACO), inspired by ant behavior, solve combinatorial optimiza-
tion problems, such as the traveling salesman problem (51)
and the shortest path problem (52, 53). In ACO, individual
agents, simulating ants, construct candidate solutions using
heuristics and then use limited communication, simulating trail
pheromone, to lead other agents toward better solutions. The
simulated ants have significantly more computational power
than is biologically plausible for real ants. Unlike real ants, the
simulated ants have the ability to remember, retrace, and reinforce
entire paths and can use the quality of the global solution to
determine the amount of “pheromone” to be laid.
Our model resembles the reinforced random walks introduced

by Diaconis et al. (54–56), which have found applications
in biology (57–59). Here, a single agent traverses a graph
by choosing edges with probability proportional to their edge
weight, with edge weight here analogous to the level of trail
pheromone. This edge weight increases additively each time
the edge is traversed. However, there are a few key differences
between the model we study and the setup for reinforced random
walks: 1) Our model involves many agents, modeled by a flow,
and their behavior is affected by their collective action in putting
down pheromone, while the model for reinforced random walks
considers a single agent whose behavior is influenced by its past
random choices. 2) Pheromone decays geometrically over time in
ourmodel, but edgeweights do not decrease in reinforced random
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walks. 3) Our model has leakage at each vertex, which is not
present in the setup for reinforced randomwalks. Nevertheless, in
a similar spirit to random walk-like processes studied before, the
model we investigate is a Markov process of particular relevance
to biology.

1. The Model

We consider bidirectional flow on a directed graph G = (V, E)
with source vertex and destination vertex s and d , respectively.
For each vertex v, let f→

v
(t) and f←

v
(t) denote the forward and

backward flow on v present at time t, respectively. The forward
flow moves along the direction of the edges, and the backward
flow moves in the opposite direction (Fig. 2). Let puv(t) denote
the pheromone level on edge (u, v) at time t. The pheromone
level and flow together constitute the state of the system at any
time t, which is updated as follows:

1. Flow movement: At each time step, the forward flow on a
vertex moves along its outgoing edges, dividing itself based on
a decision rule that depends on the pheromone levels on these
edges. The simplest such rule divides the flow proportional
to the pheromone level on the outgoing edges. Formally, let
f→
uv

(t) denote the forward flow moving along edge (u, v) at

time t. Then, according to this rule, which we call the linear
decision rule,

f→
uv

(t) = f→
u
(t)

puv(t)∑

z:(u,z)∈E

puz(t)
. [1]

The total forward flow on vertex v is the sum of flow along its
incoming edges, multiplied by a leakage factor:

f→
v
(t + 1) = (1− lv)

∑

z:(z,v)∈E

f→
zv

(t). [2]

The leakage parameter lv ∈ [0, 1] models the loss of ants due
to exploration at each vertex.
Movement for backward flow takes place in exactly the

same manner, with the direction of the flow reversed.
Formally, let f←

uv
(t) denote the backward flow moving along

the edge (u, v) at time t. Then,

f←
uv

(t) = f←
v
(t)

puv(t)∑

z:(z,v)∈E

pzv(t)
. [3]

The total backward flow at u is the sum of backward flow
along its outgoing edges, multiplied by the leakage parameter.

f←
u
(t + 1) = (1− lu)

∑

z:(u,z)∈E

f←
uz

(t). [4]

Fig. 2. Forward and backward flow in a graph with parallel paths.

At each time t, new forward and backward flow, f→
s
(t) and

f←
d
(t), appears on the source vertex and destination vertex s

and d , respectively.
2. Pheromone update: At each time step, the pheromone level

on an edge increases by the amount of flow on it and decays
by a multiplicative factor of δ similar to (47):

puv(t + 1) = δ(puv(t) + f→
uv

(t) + f←
uv

(t)). [5]

Note that unlike flow, the pheromone level present on an
edge does not have any direction and is influenced by flow
from both the directions.

Definition 1: For any path P from source s to destination d , we
define its leakage lP as the fraction of flow that leaks out while
moving through P, that is, lP = 1−5v∈P\{s,d}(1− lv).*

A. Discussion of Modeling Assumptions.Our goal is to provide
a simple and minimal biologically plausible model that explains
how ants can find the path with theminimumnumber of vertices.
We discuss our modeling assumptions below.

While we describe our model for unweighted graphs, it is
general enough to capture the case with integral/rational edge
lengths. For instance, an edge with length k can be represented
using k unit length edges connected in series, with leakage at the
vertices connecting these edges set to zero.

Our model uses a directed graph. Previous work shows that
individual ants are unlikely to turn around on the trail, so that
when an ant leaves a terminal, such as a nest or a food source, its
distance from that terminal increases over time (39). To account
for this, Chandrasekhar et al. (30) assigned direction to each edge
relative to a terminal vertex, where the outbound direction goes
away from the terminal vertex and the inbound direction goes
toward it. Similarly, we use directed edges in our model.

In ourmodel, the backward flow at the destination vertex is not
dependent on the forward flow reaching it at the previous time
step. This is because an ant does not necessarily make a round trip
from one terminal to the other and back. The flow between the
two terminal vertices in our model represents only a section of the
larger network, which includesmany nests and food sources. Ants
reaching a terminal vertex can go on to other parts of the network
instead of turning back.

2. Results

In this section, we discuss the convergence properties for the
model defined above. We defer all the proofs and simulation
details to SI Appendix.

A. Convergence to the Minimum Leakage Path and the Short-

est Path.

A.1. Constant flow with time. Through simulations and analysis,
we show that when the incoming forward and backward
flow does not change with time, with the linear decision
rule, the dynamics converges to the path with the minimum
leakage (Fig. 3).

We run simulations for three families of directed graphs:

1. G(n, p): The G(n, p) model is a widely used random graph
model which consists of graphs on n vertices where each pair
of vertices has an edge with probability p.

*For convenience, we overload notation, and use v ∈ P and (u, v) ∈ P to denote the
vertices and edges present on path P, respectively.

PNAS 2023 Vol. 120 No. 6 e2207959120 https://doi.org/10.1073/pnas.2207959120 3 of 9

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
w

w
w

.p
n
as

.o
rg

 b
y
 7

3
.1

5
.1

6
8
.1

0
9
 o

n
 J

u
n
e 

2
1
, 
2
0
2
3
 f

ro
m

 I
P

 a
d
d
re

ss
 7

3
.1

5
.1

6
8
.1

0
9
.



Fig. 3. Flow dynamics governed by the linear decision rule converges to the path with the minimum leakage (shown by blue vertices) when the incoming flow
does not change with time. Larger dots represent vertices with smaller leakage, and thickness of the green edges corresponds to the flow level.

2. G(n, p)with a locality constraint: The standardG(n, p)model
allows edges between any two vertices (with probability p).
However, the graphs formed by branches and vines in the
natural vegetation have a local physical structure in which
the edges are more likely between nearby vertices. To capture
this, we consider theG(n, p)model with an additional locality
constraint that an edge exists between vertex i and j only if
|i− j| ≤ k for some parameter k. Here, the vertices are labeled
from 1 to n with the source and the destination vertex labeled
1 and n, respectively.

3. n× n grid graph.

We generate a large number of instances with different values
for n, p, k, and other parameters and observe convergence to the
minimum leakage path in all the simulated instances.More details
about the simulations can be found in SI Appendix, Appendix C.

We complement our simulations on general graph models
with a provable convergence result for graphs with two parallel
paths, a case that has been experimentally investigated in the past
(43, 60).

Theorem 1. Consider a graph G consisting of two parallel paths
P1 and P2 from s to d. Let the flow and the pheromone levels be
updated according to the model in Section 1, and let P1 be the path
with the minimum leakage. If i) the incoming flow values f→

s
(t) and

f←
d
(t) are nonzero and unchanging with time, and ii) the initial

pheromone level puv(0) is positive for all edges (u, v) ∈ P1, then
the flow dynamics governed by the linear decision rule converges to a
state where all the flow goes through P1.

At a high level, the proof involves showing that relatively
more pheromone accumulates on the path with less leakage
as time progresses. Although the update rules governing our
model are simple, mathematically understanding its dynamics

is surprisingly nontrivial. Even for the seemingly simple case of
two parallel paths, the progression of pheromone levels can be
highly nonmonotone, and the proof needs a careful construction
of an appropriate potential function. We give a sketch of the
proof in Section 3.
To connect this result to the observation by Chandrasekhar

et al. (30) that ants form trails with approximately the minimum
number of vertices, we need to connect leakage to the number
of vertices. Note that the path with minimum leakage is also
the path with the minimum number of vertices when all the
vertices have equal leakage. Moreover, we can show that this
connection between leakage and the number of vertices degrades
gracefully, and as long as the variation in leakage between
different vertices is not too large, the path with the minimum
leakage has approximately theminimumnumber of vertices. One
way to formalize this is to assume that for any pair of vertices u
and v, log(1− lu) and log(1− lv) are within a (1+ ε) factor of
each other. Then, we can show that the path with the minimum
leakage has number of vertices at most (1 + ε) times the path
with the minimum number of vertices (SI Appendix, Appendix
A.3 for the proof). Thus, our result on convergence to the
minimum leakage path suggests a plausible way in which ants can
converge to the path with approximately the minimum number
of vertices. In the case when there is a large variation in leakage
between different vertices, the path with the minimum leakage
may not have approximately the minimum number of vertices.
However, even in this case, convergence to the minimum leakage
path is consistent with the hypothesis of Chandrasekhar et al.
(30) that turtle ants prefer paths that minimize their chances of
getting lost.
A.2. Increasing flow with time. For the previous result, we as-
sumed that the incoming flow does not change with time. Now,
we consider the effect of change in flow. We show that if the
incoming forward and backward flow increases with time, in the
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absence of leakage, the dynamics governed by the linear decision
rule converges to the shortest path.

We run the simulations for the same families of graphs
considered for the last result. The differences in these sets of
simulations are the absence of leakage, and the incoming flow
increases by a fixed factor in each step. We generate a large
number of graph instances with different values of the parameters
and observe convergence to the shortest path in all the simulated
instances.

We also show provable convergence to the shortest path for
graphs consisting of two parallel paths.

Theorem 2. Consider a graph G consisting of two parallel paths
P1 and P2 from s to d. Let the flow and the pheromone levels be
updated according to the model in Section 1 and let P1 be the shorter
path. If i) the initial pheromone level puv(0) is positive for all edges
(u, v) ∈ P1, ii) leakage lP1 = lP2 = 0, and iii) the incoming flow
increases as follows:

1. Multiplicative increase: f→
s
(t) = αt f→

s
(0) and f→

d
(t) =

αt f→
d
(0), for any α > 1, or

2. Additive increase: f→
s
(t) = f→

s
(0)+αt and f→

d
(t) = f→

d
(0)+αt,

for any α > 0,

then the flow dynamics governed by the linear decision rule converges
to a state where all the flow goes through P1.

For ease of analysis, we consider only the cases when the flow
increases by a fixed additive or multiplicative factor. Our analysis
suggests that the outcomemay be similar when the rate of increase
is not fixed; further work is needed to demonstrate this.

For an intuitive explanation of this result, consider a graph
with two parallel paths as shown in Fig. 2 such that path P1 is
shorter than P2, and there is no leakage. Consider the forward
flow on edges (d1, d) and (d2, d). Since P1 is shorter, the forward
flow on (d1, d) corresponds to the more recent forward flow that
entered from s compared to the forward flow on (d2, d). Since the
flow is increasing with time, more recent flow is larger, ensuring
that relatively more pheromone accumulates on (d1, d) than
(d2, d) as time progresses. Similarly, relatively more pheromone
accumulates on (s, s1) than (s, s2) as time progresses due to the
increasing backward flow. Thus, as time progresses, relatively
more pheromone accumulates on P1. However, as in the case
with leakage, an increase in relative pheromone levels on P1 is
not monotone, and we require a more careful proof. We give a
sketch of the proof in Section 3.

Previous studies have shown that ants are capable of finding
the shortest path in certain simple graphs (43) and that factors
such as detection of new food sources can positively reinforce
the rate of flow of ants (38, 39). Our result shows a surprising
connection between these two phenomena.

The main goal of our work is to demonstrate the intriguing
connection between leakage and flow rate and the shortest
path problem. We do this using simulations on general graph
models and analysis on graphs with parallel paths. Based on
our simulations, we conjecture that the above results showing
provable convergence hold for general graphs.

Conjecture 1. The provable convergence results in Theorems 1 and
2 hold for general graphs.

We can view leakage and increasing flow as two possibly
conflicting forces, leading to paths with minimum leakage and
length, respectively. An interesting direction for future work
would be to investigate the dynamics when both these forces
are active simultaneously.

B. General Rules and Fundamental Limits. In the previous
subsection, we show that bidirectional flow with the linear
decision rule converges to the path with the minimum leakage
when the flow is fixed and to the shortest path when the flow is
increasing and there is no leakage.How crucial is the bidirectional
nature of the flow? How does the dynamics behave when the
decision rule is nonlinear? Next, we study these questions.
B.1. Necessity of bidirectional flow.We show that bidirectional
flow is necessary to find the shortest or the minimum leakage
path. This result holds independent of the decision rule, leakage
levels, and the change in the flow rate; we formally state this
result next. Let G be the set of all decision rules that distribute
the forward (backward) flow at any vertex, onto the outgoing
(incoming) edges only based on their pheromone levels.

Theorem 3. Consider any graphG with two parallel paths between
s and d. Let there be unidirectional flow from s to d. For any decision
rule in G, any setting of leakage parameters and with arbitrary
incoming flow levels, there exists a setting of initial pheromone
levels such that the dynamics does not converge to the shortest or
the minimum leakage path.

Thus, bidirectional flow is necessary for all pheromone-based
rules to guarantee convergence to the shortest or the minimum
leakage path. The main idea behind this result is that with only
unidirectional flow from s to d , pheromone on edges incident on
s can not encode information about the rest of the graph.
B.2. The conflict between leakage, change in flow, and

nonlinearity. To understand the dynamics for other decision rules
beyond the linear rule, we consider a family of decision rules F
satisfying certain assumptions. This family is a subset of the
family G discussed above. These rules distribute the forward
flow among the outgoing edges of any vertex and backward flow
among the incoming edges based on the normalized pheromone
levels at these edges (as defined below). That is, allocation of
flow does not depend on the absolute pheromone levels. We also
assume that these rules are monotone in the sense that increasing
the normalized pheromone level at any edge does not decrease
the proportion of flow entering that edge. Most decision rules
considered in the past (47) satisfy these conditions.
Here, the normalized pheromone level is defined as follows:

p→
uv

(t) =
puv(t)∑

z:(u,z)∈E

puz(t)
, p←

uv
(t) =

puv(t)∑

z:(z,v)∈E

pzv(t)
. [6]

Note that while the pheromone level on an edge has no
associated direction, there is a forward and backward normalized
pheromone level for each edge depending on whether the
normalization is done with respect to the incoming edges or
the outgoing edges.
More formally, we consider the family of rules given by

functions g : [0, 1/2] → [0, 1] ∈ F . For any vertex with out-
degree (in-degree) 2, a rule in this family uses a function g, which
takes as input the minimum of the normalized pheromone levels
on the two outgoing (incoming) edges and returns the fraction of
the forward (backward) flow on this edge. In other words, g(x) is
the fraction of flow sent on edgewith normalized pheromone level
x, for x < 0.5. We assume that g is monotonically increasing,
that is, g(x) ≤ g(x′) for all x ≤ x′. Furthermore, g satisfies
g(0) = 0 and g(1/2) = 1/2. This condition says that if one of
the edges has 0 normalized pheromone, there is no flow on it,
and if both the edges have equal pheromone levels, there is equal
flow on them. For any vertex with out-degree (in-degree) 1, the
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forward (backward) flow goes to the next (previous) vertex, just
as in the case of the linear rule. For our results below, we need to
define these rules for only degree 1 and 2 vertices.

Note that the linear decision rule studied in the previous
subsection belongs to F and corresponds to g(x) = x.

We study the dynamics when the decision rule belongs to the
family of decision rules defined above and is nonlinear. We show
that for every nonlinear rule g ∈ F , there exists a setting of
leakage parameters in which the dynamics fails to converge to the
path with the minimum leakage.

Theorem 4. Consider any graph G consisting of two parallel paths
from s to d. When the incoming flow is fixed, for every nonlinear
decision rule g ∈ F , there exists a setting of leakage parameters
and initial pheromone and flow levels dependent on g, such that the
dynamics does not converge to the path with the minimum leakage.

We show an analogous result for the increasing flow case with no
leakage.

Theorem 5. Consider any graph G consisting of two parallel paths
from s to d with a unique shortest path. When the leakage is zero
for all the vertices, for every nonlinear decision rule g ∈ F , there
exists a setting of initial pheromone and flow levels, with incoming
flow increasing by a fixed multiplicative factor at each time step,
such that the dynamics does not converge to the shortest path. The
multiplicative factor and initial pheromone and flow levels are chosen
as a function of g.

For an intuitive explanation for these results, consider the
quadratic decision rule that distributes the flow in proportion
to the square of the pheromone levels. Due to the square in the
quadratic decision rule, given two edges incident on a vertex, this
rule sends more than linearly proportional flow on the edge with
the higher pheromone. Thus, if a path—that is not necessarily
the shortest or the minimum leakage path—has relatively high
pheromone initially, even more pheromone accumulates on it
as time progresses, and the dynamics may not converge to
the shortest or the minimum leakage path. Theorems 4 and 5
formalize this intuition for any nonlinear decision rule belonging
to the family F .

From the last subsection, we can view increasing flow and
leakage as two conflicting forces, preferring the shortest and the
minimum leakage path, respectively. The above results suggest
that nonlinearity in the decision rule can be viewed as another
force, in conflict with the forces of leakage and increasing flow,

preferring certain states that may not correspond to the shortest
or the minimum leakage path.
B.3. Usefulness of increasing flow and leakage not limited to the

linear decision rule.Note that the above results only suggest that
the linear decision rule is necessary for guaranteed convergence
to the shortest or the minimum leakage path. Can it be the
case that even with some nonlinear decision rules, the forces of
increasing flow and leakage still help in finding shorter or smaller
leakage paths, respectively, compared to the paths found in the
absence of these forces? To understand this question, we ran
simulations for various nonlinear decision rules, some of which
have been previously used to model ant behavior (47, 61). We
observe that within each graph family, for a large fraction of the
graph instances, the path found in the presence of these forces has
length (respectively leakage) smaller than or equal to the length
(respectively leakage) of the path found in their absence.
Fig. 4 demonstrates this for the quadratic decision rule for

G(n, p) graphs with the locality constraint. This rule divides the
flow in proportion to the square of the pheromone levels.
In Fig. 4A, we show the path length obtained by the quadratic

decision rule with and without an increase in flow and by
the linear rule with an increase in flow, for 30 random graph
instances. As discussed before, the linear rule finds the shortest
path. But even with the quadratic rule, the path length obtained
in the presence of increasing flow is smaller than or equal to the
length obtained in its absence.
Similarly, Fig. 4B shows the path leakage obtained by the

quadratic decision rule with and without leakage present at the
vertices and by the linear decision rule with leakage present. There
is a subtle distinction here between path leakage as an objective
function and leakage as a process affecting the dynamics. For each
graph instance, we assign leakage values to vertices (SI Appendix,
Appendix C for details). This gives us a path leakage objective
function which we measure in all the three cases. However, in the
case of the quadratic rule without leakage, the leakage process is
not applied at vertices during the dynamics. This gives a baseline
to which we compare the path leakage objective when the leakage
process is applied.We observe that the quadratic rule with leakage
applied leads to path leakage objective smaller than or equal to
the baseline, while the linear rule with leakage applied minimizes
the objective as discussed in Section 2.A.
We observe similar results for other graph families and

nonlinear decision rules. However, the extent to which the
forces of increasing flow and leakage are effective varies with
the nonlinear decision rule and graph family. For instance, we

Fig. 4. Effect of leakage and increasing flow with the quadratic decision rule which is nonlinear. (A) Path length obtained with the quadratic decision rule
with and without increasing flow and the linear decision rule with increasing flow. (B) Path leakage obtained with the quadratic decision rule with and without
leakage present at vertices, and the linear decision rule with leakage present.
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observe that compared to the quadratic rule, these forces are more
effective for a nonlinear rule closer to the linear rule, dividing
the flow in proportion to the 1.1th power of the pheromone
levels. Also, for most graph families and nonlinear decision rules
considered, there is a small fraction of instances where these forces
end up increasing the path length (respectively path leakage).
Nonetheless, for all the graph families and nonlinear decision
rules considered, for most (>80%) graph instances, the path
found in the presence of these forces has length (respectively
leakage) smaller than or equal to the length (respectively leakage)
of the path found in their absence. Thus, the usefulness of the
forces of leakage and increasing flow is not limited to the linear
decision rule. We include more details and discussion of these
simulations in SI Appendix, Appendix C.

3. Proof Ideas

A. Linear Decision Rule with Increasing Flow. For a graph
consisting of parallel paths P1 and P2, with lenP1 < lenP2 (Fig.
2), Theorem 2 says that the dynamics converges to P1 when the
incoming flow increases multiplicatively or additively with time.
To prove this, we show that as time progresses, relatively more
pheromone is accumulated on P1 than P2.

Let s1 and s2 be the neighboring vertices of s, and d1 and
d2 be the neighboring vertices of d , on path P1 and P2,
respectively. Note that only the pheromone level on edges
(s, s1), (s, s2), (d1, d), (d2, d) affects the dynamics for this graph.
Consider the ratio of pheromone levels on (s, s1) and (s, s2) at
time (t + 1):

pss1 (t + 1)

pss2 (t + 1)
=

δ(pss1 (t) + f→
ss1

(t) + f←
ss1

(t))

δ(pss2 (t) + f→
ss2

(t) + f←
ss2

(t))
. [7]

=

pss1 (t) + f→
ss1

(t) + (1− lP1 )f ←
d1d

(t − lenP1 + 1)

pss2 (t) + f→
ss2

(t) + (1− lP2 )f ←
d2d

(t − lenP2 + 1)
. [8]

=

pss1 (t) + f→
ss1

(t) + f←
d

(t − lenP1 + 1)p ←
d1d

(t − lenP1 + 1)

pss2 (t) + f→
ss2

(t) + f←
d

(t − lenP2 + 1)p ←
d2d

(t − lenP2 + 1)
,

[9]

where in the last equation, we set leakage lP1 = lP2 = 0, and
write the backward flow in terms of the normalized pheromone
level. For simplicity, let us assume f←

d
(t) = αt , for some α > 1.

This gives

pss1 (t + 1)

pss2 (t + 1)
=

pss1 (t) + f→
ss1

(t) + α
(t−lenP1+1)p ←

d1d
(t − lenP1 + 1)

pss2 (t) + f→
ss2

(t) + α
(t−lenP2+1)p ←

d2d
(t − lenP2 + 1)

. [10]

As lenP1 < lenP2 , we know that α(t−lenP1+1) > α(t−lenP2+1).

These backward flow terms, α(t−lenP1+1) and α(t−lenP2+1), are
the main reason why relatively more pheromone accumulates
on ss1 compared to ss2 as time progresses. However, the ratio
pss1 (t)

pss2 (t)
may not increase monotonically at each time step. To

circumvent this issue, we carefully construct a potential function
which increases monotonically with time. Our potential function
is given by the minimum of the ratio of the pheromone levels
pss1 (t)

pss2 (t)
and

pd1d (t)

pd2d (t)
across the lastmax(lenP1 , lenP2) time steps. Let

rss1(t)
def
=

pss1 (t)

pss2 (t)
, rd1d (t)

def
=

pd1d (t)

pd2d (t)
, and L

def
= max(lenP1 , lenP2).

Our potential function is given by

rmin(t)
def
= min{rss1(t), rss1(t − 1), · · · , rss1(t − L + 1),

rd1d (t), rd1d (t − 1), · · · , rd1d (t − L + 1)}.

Using the definition of the linear decision rule, we know that
f→
ss1

(t)

f→
ss2

(t)
=

pss1 (t)

pss2 (t)
= rss1(t) ≥ rmin(t). Furthermore, it can be

shown that p ←
d1d

(t− lenP1 +1) ≥
rmin(t)

1+rmin(t)
, and p ←

d2d
(t− lenP2 +

1) ≤ 1
1+rmin(t)

, which implies that
p←
d1d

(t−lenP1+1)

p←
d2d

(t−lenP2+1)
≥ rmin(t).

These inequalities give us

pss1(t + 1)

pss2(t + 1)

≥ rmin(t)
pss2(t) + f→

ss2
(t) + α(t−lenP1+1)p ←

d2d
(t − lenP2 + 1)

pss2(t) + f→
ss2

(t) + α(t−lenP2+1)p ←
d2d

(t − lenP2 + 1)

> rmin(t), [11]

where we used α(t−lenP1+1) > α(t−lenP2+1) for the last inequal-

ity. This gives us
pss1 (t+1)

pss2 (t+1)
= rss1(t + 1) > rmin(t). Thus, the

backward flow terms α(t−lenP1+1) and α(t−lenP2+1) ensure that
the pheromone ratio at the edges incident on s at time t + 1 is
greater than rmin(t), the minimum of the pheromone ratios at
the edges incident on s and d across last L time steps. Similarly,
the forward flow ensures rd1d (t+1) > rmin(t). This implies that
rmin(t) never decreases and strictly increases every L time steps.
We use this to show convergence to the shortest path.
The proof for the case involving leakage with fixed flow

(Theorem 1) is similar and uses the same potential function.
The only difference is that in this case, the potential function
goes up due to the leakage terms 1 − lP1 and 1 − lP2 (Eq. 8),

instead of the α(t−lenP1+1) and α(t−lenP2+1) terms.

B. General Rules and Fundamental Limits. In Theorem 3, we
claim that for any pheromone-based rule, bidirectional flow
is necessary for convergence to the shortest or the minimum
leakage path. When there is unidirectional flow from s to d , the
pheromone levels on the edges incident on s are only a function
of their initial pheromone levels and forward flow at s. It does not
depend on the flow and pheromone levels on the rest of the graph.
Therefore, in the case of two parallel paths, for a given decision
rule and initial setting of the pheromone levels, if the dynamics
converges to a particular path, then they will converge to the other
path if we swap the initial pheromone levels on the two edges
incident on s. Hence, we can always set the initial pheromone
levels on the edges incident on s, such that the dynamics does not
converge to the shortest or the minimum leakage path.
Next, we provide a proof sketch for Theorem 4. The proof

sketch for Theorem 5 is similar. Let s1 and s2 be the neighboring
vertices of s, and d1 and d2 be the neighboring vertices of
d , on path P1 and P2, respectively (Fig. 2). Let P1 be the
minimum leakage path.We would show that the dynamics is not
guaranteed to converge to path P1 for nonlinear g ∈ F . For any
nonlinear g ∈ F , consider some r ∈ (0, 1/2) such that g(r) 6= r.
Such an r exists because g is nonlinear. Consider the two cases:
1) g(r) < r, 2) g(r) > r.
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Suppose g is such that g(r) < r. Consider an instance where
initial normalized pheromone levels p→

ss1
(0) and p ←

d1d
(0) are at

most r; the initial flow values on the edges of path P1 and P2 are
at most r and at least 1−r, respectively. Let the incoming forward
and backward flow be equal to 1 at all times. The decision rule
g sends at most r − cg,r amount of forward and backward flow
on path P1 (because g(r) < r and g is monotone) and at least
1−r+cg,r on path P2, where cg,r is a positive constant dependent
on g and r. The positive constant cg,r ensures that we can set the
leakage levels to be small enough, satisfying lP1 < lP2 , such that
even after leakage, the flow levels on P1 and P2 remain at most
r and at least 1 − r, respectively, throughout the future. And
normalized pheromone levels p→

ss1
and p ←

d1d
remain at most r.

Using a similar idea, in the case when g(r) > r, we can set the
initial flow and pheromone levels and the leakage parameters,
such that the normalized pheromone levels p→

ss2
, p ←

d2d
and the

flow levels on P2 never fall below r and the flow levels on P1
remain at most 1− r. Thus, the dynamics never converges to the
minimum leakage path P1.

4. Discussion

Like ant colonies, engineered systems such as molecular robots
and swarm computing (62–66) involve a large population of
individuals lacking central control and equipped with minimal
computational resources. Searching for a target (67, 68), and in
particular, finding the shortest path (69), is a basic task for such
systems. Our algorithms based on leakage and increasing flow
can also be applied to such swarms of robots equipped with the
ability to release and detect pheromone (70–74), to solve the
shortest path problem and its variants.

Our result on convergence to the shortest path suggests that
an ant colony has the ability to discover the shortest path merely
by increasing its flow rate. An interesting direction for future
research would be to empirically investigate the relationship

between the flow rate of ants and path length and understand
whether ant colonies increase flow rates to find short paths.
Our results also open up avenues for further theoretical

investigation.While the algorithms designed by humans are often
set up so as to be amenable to analysis, nature is not constrained in
this way. For seemingly simplemodels of biological systems, it has
thus been notoriously difficult to devise mathematical guarantees
on the quality of the solutions produced (6, 9, 75–81). In our
model, analyzing the dynamics is challenging as it involves un-
derstanding the progression of pheromone level with time, which
is affected by the actions of a large number of agents (modeled by
flow), and can be highly nonmonotone even for the simple case of
graphs with parallel paths. The behavior of thismodel in extensive
simulations suggests that it should be possible to significantly
generalize the results we prove here. In particular, we conjecture
that provable convergence to the shortest or the minimum
leakage path holds for general graphs (Conjecture 1). Another
direction for future research is to extend our analysis to the case
when multiple terminal vertices are present in the graph, as trail
networks in nature usually include many nests and food sources.
In summary, our model for how ant trails change over

time contributes to the synergistic exchange between biology
and computer science, providing a plausible explanation for
how turtle ant colonies can find paths that minimize the
number of vertices, and suggesting a surprising algorithm for the
shortest path discovery, by increasing the flow rate, applicable to
distributed engineering systems.

Data, Materials, and Software Availability. The code is available in Github
(https://github.com/shivamg13/Arboreal-Ants).
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