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Abstract

Matching in observational studies faces complications when units enroll in treatment
on a rolling basis. While each treated unit has a specific time of entry into the study,
control units each have many possible comparison, or “pseudo-treatment,” times. Valid
inference must account for correlations between repeated measures for a single unit,
and researchers must decide how flexibly to match across time and units. We provide
three important innovations. First, we introduce a new matched design, GroupMatch
with instance replacement, allowing maximum flexibility in control selection. This new
design searches over all possible comparison times for each treated-control pairing and
is more amenable to analysis than past methods. Second, we propose a block bootstrap
approach for inference in matched designs with rolling enrollment and demonstrate that
it accounts properly for complex correlations across matched sets in our new design and
several other contexts. Third, we develop a falsification test to detect violations of the
timepoint agnosticism assumption, which is needed to permit flexible matching across
time. We demonstrate the practical value of these tools via simulations and a case study
of the impact of short-term injuries on batting performance in major league baseball.

Keywords: matching, block bootstrap, repeated measures, falsification test

1 Introduction

Matching methods attempt to estimate average causal effects by grouping each treated unit

with one or more otherwise similar controls and using paired individuals to approximate

the missing potential outcomes. Assuming that paired individuals are sufficiently similar on

observed attributes and that no important unobserved attributes confound the comparison,

the difference in outcomes approximates the impact of treatment for individuals in the pair
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[1]. Despite matching’s transparency and intuitive appeal, it faces complications in datasets

containing repeated measures for the same individuals over time. When only a single time of

treatment is present, the primary challenge is deciding how to construct matching distances

from pre-treatment repeated measures and assess outcomes using post-treatment repeated

measures [2]. The situation is more complex under rolling enrollment, or staggered adoption,

when individuals opt into treatment at different times [3]. Several authors [4; 5; 6; 7] proceed

by matching each treated unit to the version of the control unit present in the data at the

time of treatment. For example, in Imai et al. [7]’s reanalysis of data from Acemoglu et al. [8]

on the impact of democratization on economic growth, countries undergoing democratizing

political reforms are matched to similar control countries not undergoing such reforms in the

same year.

Although this method is logical whenever strong time trends are present, in other cases it

may overemphasize similarity on time at the expense of other variables. Bohl et al. [9] study

the impact of serious falls on subsequent healthcare expenditures for elderly adults using

patient data from a large healthcare system. While patients who fall could be matched to

patients who appear similar based on recent health history on the calendar date of the fall,

the degree of similarity in health histories is likely much more important than the similarity

of the exact date at which each patient is measured. Following this idea, the GroupMatch

algorithm [10] constructs matches optimally across time, prioritizing matching on important

covariates over ensuring that units are compared at the same point in time.

Another example where rolling enrollment arises is in major league baseball (MLB).

Quantifying the impact of injury on player performance in professional sports is important

for both managers and players themselves. Increasingly, players are valued and compensated

in a manner driven by quantitative metrics of past performance, but injuries have potential

to disrupt the continuity between past and future performance [11; 12; 13; 14]. One way to

quantify impact in this setting is as the difference between the value of a performance metric

the player would have achieved in the absence of injury and the value of the same metric
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achieved after a given injury. This quantity can be estimated using matching. However,

players do not all get injured at the same time, so GroupMatch is a natural fit here. It

allows us to match injured and non-injured players flexibly across time, because we likely do

not care whether a player injured on June 1 is matched to a non-injured player on exactly

the same day or a couple weeks earlier, e.g., May 15, so long as those players are sufficiently

similar on other covariates such as recent performance.

Several challenges remain outstanding for matching methods under rolling enrollment.

GroupMatch’s flexible approach relies heavily on a strong assumption that time itself is not a

confounder, and discussion of checking this assumption has been minimal so far. Even when

flexible matching is warranted, the presence of multiple copies of the same control individual

necessitates a constraint to ensure that a treated unit is not simply paired to multiple

slightly different copies of the same control; several choices of this constraint exist permitting

varying degrees of flexibility, and users must choose among them. Most importantly, for both

GroupMatch and methods that match exactly in time there is substantial ambiguity about

how to conduct valid inference. When multiple copies of a control individual are forbidden

from appearing in the matched design, randomization inference may be used [5; 10] but no

strong guarantees exist outside this special case.

In what follows, we present several innovations that greatly enhance the toolkit for match-

ing and treatment effect evaluation under rolling enrollment. First, we introduce a new

matched design called GroupMatch with instance replacement, which has computational,

analytical, and statistical advantages over existing designs in many common settings. Sec-

ond, we give a comprehensive characterization of a new block-bootstrap-based method for

inference that applies broadly across existing methods for matching under rolling enrollment,

including our new design. The block-bootstrap approach was originally suggested by Imai et

al. [7] and is based on related work in the cross-sectional case by Otsu and Rai [15], but until

now has not carried any formal guarantee. Finally, we introduce a falsification test to par-

tially check the assumption of timepoint agnosticism underpinning GroupMatch’s validity,
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empowering investigators to extract evidence from the data about this key assumption prior

to matching. We prove the validity of our bootstrap method under the most relevant set of

constraints on reuse of controls, and we demonstrate the effectiveness of both the placebo

test and the bootstrap inference approach through simulations and an analysis of injury data

in major league baseball. In particular, the bootstrap method shows improved performance

over linear-regression-based approaches to inference often applied in similar settings, while

making much weaker assumptions.

The paper is organized as follows. Section 2 presents the basic statistical framework

and reviews the GroupMatch framework, inference approaches for matching designs, and

other related literature. In Section 3 we introduce a new constraint for use of controls in

GroupMatch designs, leading to a new design called GroupMatch with instance replacement.

Section 4 presents a block bootstrap inference approach for matching under rolling enroll-

ment, and Section 5 evaluates it via simulation. In Section 6 we present a falsification test

for the assumption that time is not a confounder. In Section 7 we apply our methods to

evaluate whether minor injuries impact short-term MLB performance. Section 8 concludes.

2 Statistical framework

2.1 Setting and notation

We observe n subjects. For each subject i in the study, we observe repeated measures

(Yi,t,Xi,t) for timepoints t = 1, . . . , T , where Yi,t is an outcome of interestand Xi,t is a

vector of covariates. We also observe a time of treatment initiation Ti for each subject, with

Ti ∈ {1, . . . , T} for subjects who receive treatment at some point and Ti = ∞ for those who

remain controls at all observed timepoints. We specify a burn-in period of length L − 1

during which no individuals are treated, i.e. Ti ≥ L for all i (or allow treatment at t = 1 by

setting L = 1). We denote the collection of repeated measures for each subject i, along with

Ti, as the trajectory Oi.
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For clarity, we focus on “instantaneous” effects of treatment, with outcomes measured

immediately following treatment at the same time when treatment is first initiated. Let

Yi,t(0) be the potential outcome for unit i that would have been observed at time t if Ti > t,

and let Yi,t(1) be the potential outcome that would have been observed if Ti = t. The finite

sample average effect of treatment on the treated (ATT) is denoted by ∆:

∆ =
1

N1

N∑
i=1

T∑
t=1

1{t = Ti}[Yi,t(1)− Yi,t(0)]

=
1

N1

N∑
i=1

Di [Yi,t=Ti
(1)− Yi,t=Ti

(0)]

Here the Di variable is introduced as a convenient shorthand to indicate whether Ti < ∞.

We assume that trajectories Oi are sampled independently from some infinite population, al-

though we do not assume independence of observations within the same trajectory. Defining

expectation E(·) with respect to sampling from this population, we define the population

ATT as ∆pop = E(∆). For future convenience, we also introduce a concise notation for

conditional expectation (again, over the sampling distribution) of potential outcomes given

no treatment through time t and the covariates observed in the previous L timepoints:

µt
0(X) = E[Yi,t(0)|{Xi,t′}t

′=t
t′=t−L+1 = X, Ti > t]

Throughout, we abuse notation slightly by writing µ0(Xi,t) to indicate conditional expecta-

tion given the L lagged values of Xi directly preceding time t, inclusive.

The potential outcomes framework adopted here represents one of many possible framings

for studies with rolling enrollment. Pimentel et al. [10] define potential outcomes as functions

of the length of time since treatment initiation, while both Ben-Michael et al. [3] and Athey

& Imbens [16] define them as functions of the time of treatment initiation for the subject in

question. In principle these alternate constructions are much richer than ours, allowing for

much more general and complicated patterns of effects, but in practice all these authors use
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simplifying assumptions or focus on estimands that reduce attention to at most two potential

outcomes of interest for each individual at each timepoint. For example, both Pimentel et al.

[10] and Ben-Michael et al. [3] allow for treatment effects to be measured at some follow-up

time postdating the time of treatment rather than focusing on instantaneous effects, but

since the length of follow-up is fixed in advance only two potential outcomes ever need to be

considered for each unit. Similarly, the “no anticipation” assumption of both Ben-Michael

et al. [3] and Athey & Imbens [16] ensures that there is exactly one potential outcome

of interest associated with the control condition for each individual, and the “invariance to

history” assumption of Athey & Imbens [16] collapses distinctions among potential outcomes

under treatment. As such, the results we present below extend easily to all the potential

outcomes frameworks just described, making the appropriate substitutions for our Yi,t(1) and

Yi,t(0). While the potential outcomes framework of Imai et al. [7] is much more general than

all the previously-mentioned works in allowing subjects to revert from treatment back to

control, our framing also extends easily to it in the special case when no exit from treatment

is allowed.

2.2 Identification assumptions

Pimentel et al. [10] studied the following difference-in-means estimator in designs where each

treated unit is matched to C control observations. Mit,jt′ is an indicator for whether subject

i at time t has been matched to subject j at time t′:

∆̂ =
1

N1

n∑
i=1

Di[Yi,t=Ti
− 1

C

N∑
j=1

T∑
t′=1

MiTi,jt′Yj,t′ ]

Pimentel et al. [10] show that this estimator is unbiased for the population ATT under the

following conditions:

1. Exact matching: matched units share identical values for covariates in the L timepoints

preceding treatment.
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2. L-ignorability: conditional on the covariate history over the previous L timepoints and

the absence of treatment prior to baseline, an individual’s potential outcome at a given

time is independent of the individual’s overall treatment status. Formally,

{Ti < ∞} ⊥⊥ Yi,t(0)|Ti > t− 1, {Xi,s}ts=t−L+1, ∀i.

Intuitively, this assumption prevents unobserved confounding that makes potential

outcomes for treated subjects systematically different from those that remain controls

even after accounting for information from a baseline period.

3. Timepoint agnosticism: mean potential outcomes under control do not differ for any

instances with identical covariate histories at different timepoints. Formally, for any

set of L covariate values X,

µt
0(X) = µt′

0 (X) = µ0(X) for any 1 ≤ t, t′ ≤ T.

This assumption ensures that matching across time is reasonable by ruling out time

trends other than those captured by time-varying covariates. For clarity we drop the

t superscript when discussing the conditional expectation µ0(X) in what follows, with

the exception of Section 6 where we temporarily consider failures of this assumption.

4. Covariate L-exogeneity: future covariates do not encode information about the poten-

tial outcome at time t given covariates and absence of treatment over the previous L

timepoints. Formally,

(Xi,1, ..., Xi,T ) ⊥⊥ Yi,t(0)|Ti > t− 1, {Xi,s}ts=t−L+1), ∀i.

Like time agnosticism, covariate L-exogeneity is important to justify considering past

and future instances from a control trajectory as part of the matching procedure. If
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future instances’ covariates include or are correlated with past instances’ outcomes,

then we may indirectly match on study outcomes introducing bias into our estimation

step [17; 18]. Covariate L-exogeneity ensures that future covariates are safe to consider

during the design stage.

5. Overlap: given that a unit is not yet treated at time t − 1 ≥ L, the probability of

entering treatment at the next time point is neither 0 nor 1 for any choice of covariates

over the L timepoints at and preceding t.

0 < P (Ti = t | Ti > t− 1, X t
i , . . . , X

t−L+1
i ) < 1 ∀t > L

While not stated explicitly in Pimentel et al. [10], we note that the authors rely on an

overlap assumption of this type in the proof of their main result.

The exact matching assumption is no longer needed for asymptotic identification of the

population ATT if we modify the estimator by adding in a bias correction term. As in

Otsu and Rai [15] and Abadie and Imbens [19], we first estimate the conditional mean

function µ0(X) of the potential outcomes and use this outcome regression to adjust each

matched pair for residual differences in covariates not addressed by matching. As outlined

in Abadie and Imbens [19], bias correction leads to asymptotic consistency under regularity

conditions on the potential outcome mean estimator µ̂(·) (for further discussion of regularity

assumptions on µ̂0(·) see the proof of Theorem 1 in Section A of the supplemental appendix).

Many authors have also documented benefits from adjusting matched designs using outcome

models [20; 21]. The specific form of our bias-corrected (i.e. model-adjusted) estimator is as

follows:

∆̂adj =
1

N1

n∑
i=1

Di[(Yi,t=Ti
− µ̂0(Xi,Ti

))− 1

C

N∑
j=1

T∑
t′=1

MiTi,jt′(Yj,t′ − µ̂0(Xi,t′))]

Datasets with many variables, especially continuous variables or variables with many
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categories, ensure that exact matching is rarely possible in practice, and in light of this we

focus primarily on estimator ∆̂adj in what follows.

As discussed by Imai et al. [7] for settings without rolling enrollment, identification is

possible under weaker assumptions if a difference-in-differences estimator is used instead of

the difference-in-means. While we focus primarily on the simpler bias-corrected difference-

in-means estimator for clarity of exposition, the difference-in-differences approach also offers

advantages for our setting, and the new matching and inference strategies we propose extend

naturally to such estimators. We provide further discussion in Section 4.3.

3 GroupMatch with instance replacement

Before discussing our method for inference in general matched designs under rolling enroll-

ment, we introduce a new type of GroupMatch design. Pimentel et al. [10] described two

different designs produced by GroupMatch denoted Problems A and B, designs we refer to

as GroupMatch without replacement and GroupMatch with trajectory replacement respec-

tively.

1. GroupMatch without replacement: each control unit can be matched to at most

one treated unit. If a treated unit is matched to an instance of a control unit, no other

treated unit can match to (any instance) of that control unit.

2. GroupMatch with trajectory replacement: each control instance can be matched

to at most one treated unit. Each treated unit can match to no more than one in-

stance from the same control trajectory. However, different treated units can match

to different instances of the same control trajectory, so a single control trajectory can

contribute multiple distinct instances to the design.

As our chosen names for these designs suggest, their relative costs and benefits reflect

the choice between matching without and with replacement in cross-sectional settings. As
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discussed by Hansen [22], matching without replacement (in which each control may ap-

pear in at most one matched set), leads to less similar matches compared to matching with

replacement (in which controls can reappear in many matched sets) since in cases where

two treated units both share the same nearest control only one can use it. On the other

hand, matching without replacement frequently leads to estimators with lower variance than

those from matching with replacement, where an individual control unit may appear in

many matched sets, making the estimator more sensitive to random fluctuations in its re-

sponse. Thus, one aspect of choosing between these designs is a choice about how to strike a

bias-variance tradeoff. The other important aspect distinguishing these designs is that ran-

domization inference, which is based on permuting treatment assignments in each matched

set independently of others, generally requires matching without replacement. Specifically,

when multiple controls may be matched to each treated unit and replacement is allowed,

the resulting configuration of treated and control units no longer resembles the design of a

blocked or matched experiment.

These same dynamics play out in comparing GroupMatch without replacement and

GroupMatch with trajectory replacement. GroupMatch without replacement ensures that

responses in distinct matched sets are statistically independent (under a model in which

trajectories are sampled independently), allowing for randomization inference, and ensures

that the total weight on observations from any one control trajectory can sum only to 1/C,

ensuring that the estimator’s variance cannot be too highly inflated by a single trajectory

with large weight. The resulting data configuration also resembles what might be obtained

in a sequential experimental design employing matching-on-the-fly as discussed by Kapelner

& Krieger [23] and Pimentel et al. [10], and inference may be conducted using the associated

randomization distribution. On the other hand, GroupMatch with trajectory replacement

leads to higher-quality matches and reduced bias in matched pairs, although overlap among

the matched sets formed makes it difficult to envision a corresponding “target trial.”

We suggest a third GroupMatch design which leans even further towards expanding the
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potential control pool and reducing bias.

3. GroupMatch with instance replacement: Each treated unit can match to no more

than one instance from the same control unit, but control instances can be matched

to more than one treated unit.

GroupMatch with instance replacement is identical to GroupMatch without trajectory

replacement except that it allows repetition of individual instances within the matched design

as well as non-identical instances from the same trajectory. As such, it is guaranteed to

produce higher-quality matches than GroupMatch without trajectory replacement, but may

lead to higher-variance estimators since individual instances may receive weights larger than

1/C. Figure 1 illustrates these three GroupMatch methods with a toy example that matches

injured baseball players to non-injured players based on on-base percentage (OBP).

In practice we view GroupMatch with instance replacement as a more attractive approach

than GroupMatch with trajectory replacement almost without exception. One reason is

that while the true variance of estimators from GroupMatch with instance replacement may

often exceed that of estimators from GroupMatch with trajectory replacement by a small

amount, our recommended approach for estimating the variance and conducting inference

are not able to capture this difference. As we describe in Section 4, in the absence of

a specific parametric model for correlations within a trajectory, inference proceeds in a

conservative manner by assuming arbitrarily high correlations within a trajectory (much like

the clustered standard error adjustment in linear regression). Since the variance advantage

for GroupMatch with trajectory replacement arises only when correlations between instances

within a trajectory are lower than one, the estimation strategy is not able to take advantage

of them. This disconnect means that GroupMatch with trajectory replacement will not

generally lead to narrower empirical confidence intervals, much as variance gains associated

with paired randomized trials relative to less-finely-stratified randomized trials may not

translate into reduced variance estimates [24].
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Figure 1: Toy example illustrating the three GroupMatch matching methods. Two injured baseball players
(T1 and T2) are matched 1-1 to non-injured baseball players (C1a/b and C2a/b) based on player on-base
percentage (OBP). Each non-injured player has two pseudo-injury times or instances. Under GroupMatch
without replacement, T2 must match to an instance in Trajectory 2 because at most one instance from
Trajectory 1 can participate in the match. Under GroupMatch with trajectory replacement, T2 can match
to C1b but not to C1a, since multiple control instances can be chosen from the same trajectory as long as
they are distinct. Under GroupMatch with instance replacement, both T1 and T2 are able to match to C1a.
However, if each treated instance were matched to two control instances instead of one, GroupMatch with
instance replacement would still forbid either T1 or T2 to match to a second instance in Trajectory 1.

A second important advantage of GroupMatch with instance replacement is its compu-

tational and analytical tractability relative to the other GroupMatch designs. One way to

implement GroupMatch with instance replacement as a network flow optimization problem

is to remove a set of constraints in Pimentel et al. [10]’s Network B (specifically the upper

capacity on the directed edges connected to the sink node), and in Sections 5 and 7 we use

this implementation for its convenient leveraging of the existing groupmatch package in R.
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However, much more computationally efficient algorithms are also possible. Crucially, the

removal of the constraint forbidding instance replacement means that matches can be calcu-

lated for each treated instance without reference to the choices made for other treated units;

the C best matches for a given treated unit are simply the C nearest neighbor instances such

that no two such control instances within the matched set come from the same trajectory. In

principle, this allows for complete parallelization of the matching routine. On the analytical

side, this aspect of the design makes it possible to characterize the matching algorithm as a

generalized form of nearest neighbor matching, a strategy we adopt in the proof of Theorem

1 to leverage proof techniques used by Abadie and Imbens [25] for cross-sectional nearest

neighbor matching. In light of these considerations, we focus primarily on GroupMatch with

instance replacement in what follows, although the methods derived appear to perform well

empirically for other GroupMatch designs too.

4 Block Bootstrap Inference

4.1 Inference methods for matched designs

Broadly speaking, there are two schools of thought in conducting inference for matched

designs. One approach, spearheaded by Abadie and Imbens [25; 26; 19; 27], views the

raw data as samples from an infinite population and demonstrates that estimators based

on matched designs (which in this framework are considered to be random variables, as

functions of random data) are asymptotically normal. Inferences are based on the asymptotic

distributions of matched estimators. A second approach, described in detail in Rosenbaum

[28; 29] and Fogarty [30], adopts the perspective of randomization inference in controlled

experiments. Conditional on the structure of the match and the potential outcomes, the null

distribution of a test statistic over all possible values of the treatment vector is obtained by

permuting values of treatment within matched sets. When matches are exact and unobserved

confounding is absent, strong finite sample guarantees hold for testing sharp null hypotheses
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without further assumptions on outcome variables. Asymptotic guarantees for weak null

hypotheses may be obtained too, assuming a sequence of successively larger finite populations

[31]. Well-developed methods of sensitivity analysis are also available.

As described in Pimentel et al. [10], while standard methods of inference may be ap-

plied to GroupMatch without replacement, in which control individuals contribute at most

one unit to any part of the match, none have been adequately developed for GroupMatch

with trajectory replacement, in which distinct matched sets may contain different versions

of the same control individual. For randomization inference, the barrier appears to be quite

fundamental, because permutations of treatment within one matched set can no longer be

considered independently for different matched sets. In GroupMatch with trajectory re-

placement, a treated unit receives treatment at one time and appears in a match only once;

if treatment is permuted among members of a matched set so that a former control now

attains treatment status, what is to be done about other versions of this control unit that

are present in distinct matched sets? We note that similar issues arise when contemplating

randomization inference for general cross-sectional matching designs with replacement, and

we are aware of no solutions for randomization inference even in this simpler case.

In contrast, the primary issue in applying sampling-based inference to GroupMatch de-

signs with trajectory replacement is the unknown correlation structure for repeated measures

from a single control individual. The literature on matching with replacement provides es-

timators for pairs that are fully independent [27] and for cases in which a single observation

appears identically in multiple pairs [25], but not for the intermediate case of GroupMatch

with trajectory replacement where distinct but correlated observations appear in distinct

matched sets. These issues extend beyond the GroupMatch family to any matched design

under rolling enrollment in which control trajectories contribute to multiple matched sets,

including those of Witman et al. [6] and Imai et al. [7].

In what follows we give formal guarantees for a sampling-based inference method appro-

priate for general matching designs under rolling enrollment suggested by Imai et al. [7],
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which generalizes a recent proposal of Otsu and Rai [15] for valid sampling-based inference

of cross-sectional matched studies using the bootstrap. Although the bootstrap often works

well for matched designs without replacement [32], naïve applications of the bootstrap in

matched designs with replacement have been shown to produce incorrect inferences as a

consequence of the failure of certain regularity conditions [26]. Intuitively, if matching is

performed after bootstrapping the original data, multiple copies of a treated unit will nec-

essarily all match to the same control unit, creating a clumping effect not present in the

original data. However, Otsu and Rai [15] arrived at an asymptotically valid bootstrap in-

ference method for matching by bootstrapping weighted and bias-corrected functions of the

original observations after matching rather than repeatedly matching from scratch in new

bootstrap samples. We show that a similar bootstrap approach, applied to entire trajectories

of repeated measures in a form of the block bootstrap, provides valid inference for matched

designs under rolling enrollment. Note that in our formal results we focus on GroupMatch

with instance replacement as the most difficult case, since the designs of Witman et al. [6]

and Imai et al. [7] may be understood as restricted special cases in which matching on time

is exact.

4.2 Block Bootstrap

In order to conduct inference under GroupMatch with trajectory or instance replacement we

propose a weighted block bootstrap approach. We rearrange the GroupMatch ATT estimator

from Section 2 as follows, letting KM(i, t) be the number of times the instance at trajectory

i and time t is used as a match.

∆̂adj =
1

N1

N∑
i=1

Di[(Yi,Ti
− µ̂0(Xi,Ti

))− 1

C

N∑
j=1

T∑
t′=1

MiTi,jt′(Yj,t′ − µ̂0(Xi,t′))]

=
1

N1

N∑
i=1

[
Di (Yi,Ti

− µ̂0(Xi,Ti
))− (1−Di)

T∑
t=1

KM(i, t)

C
(Yi,t − µ̂0(Xi,t))

]
=

1

N1

N∑
i=1

∆̂i.
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Because different instances of the same control unit are correlated, we resample the trajec-

tory-level quantities ∆̂i rather than the instance-level quantities. Since the ∆̂i are functions

of the KM(i, t) weights in the original match, we do not repeat the matching process within

bootstrap samples. In particular, we proceed as follows:

1. Fit an outcome regression µ̂0(·) for outcomes based on covariates in the previous L

timepoints using only control trajectories.

2. Match treated instances to control instances using GroupMatch with instance replace-

ment. Calculate matching weights KM(i, t) equal to the number of times the instance

at time t in trajectory i appears in the matched design.

3. Calculate the model-adjusted ATT estimator ∆̂adj.

4. Repeat B times:

(a) Randomly sample N elements ∆̂i with replacement from {∆̂1, . . . , ∆̂N}.

(b) Calculate the bootstrap bias-corrected ATT estimator ∆̂∗
adj for this sample of

trajectories as follows:

∆̂∗
adj =

1

N1

N∑
i=1

∆̂∗
i

5. Construct a (1 - α) confidence interval based on the α/2 and 1− α/2 percentile of the

∆̂∗
adj- values calculated from the bootstrap samples.

This method is essentially a block bootstrap, very similar to the method proposed in Imai

et al. [7]. Note that while the recipe above uses the nonparametric bootstrap, it may easily

be generalized to other approaches such as the wild bootstrap and the Bayesian bootstrap.

In particular, consider rewriting ∆̂∗
adj in terms of a new set of random variables W ∗

1 , . . . ,W
∗
N

that we denote the bootstrap weights:

∆̂∗
adj =

1

N1

N∑
i=1

∆̂∗
i =

N∑
i=1

W ∗
i√
N1

∆̂i (1)
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To recover the nonparametric bootstrap, the bootstrap weights W ∗
i are chosen as Qi/

√
N1,

where Qi is the number of times subject i is selected when sampling with replacement; if the

W ∗
i are chosen instead by sampling from a scaled Dirichlet or scaled two-point distribution,

we obtain the Bayesian bootstrap and the wild bootstrap respectively (see Otsu & Rai [15]

for specifics). To adapt the step-by-step algorithm for these approaches, we draw W ∗
i s rather

than ∆̂∗s in step 4(a) and use (1) to calculate ∆̂∗
adj in step 4b.

Our main result below shows the asymptotic validity of this approach. Several assump-

tions, in addition to Assumptions 2-5 in Section 2.2, are needed to prove this result. We

summarize these assumptions verbally here, deferring formal mathematical statements to

Section A.1 of the supplemental appendix. First, we require the covariates Xi to be con-

tinuous with compact and convex support and a density both bounded and bounded away

from zero. Second, we require that the conditional mean functions are smooth in X, with

bounded fourth moments. In addition, we require that conditional variances of the treated

potential outcomes and conditional variances of nontrivial linear combinations of control po-

tential outcomes from the same trajectory are smooth and bounded away from zero. We also

require that conditional fourth moments of potential outcomes under treatment and linear

combinations of potential outcomes under control are uniformly bounded in the support of

the covariates. Finally, we make additional assumptions related to the conditional outcome

mean estimator µ̂0(·), specifically that the kLth derivative of the true conditional mean func-

tions µt
1(·) and µ0(·) exist and have finite suprema, and that the µ̂(·) converges to µ0(·) at a

sufficiently fast rate. Finally, we require mild regularity conditions on the bootstrap weights

W ∗
i , easily satisfied by construction in the bootstrap approaches we have mentioned. To

state the theorem, we also define

√
N1U

∗ =
1√
N1

N∑
i=1

(
∆̂∗

i −Di∆̂adj

)
=

N∑
i=1

W ∗
i (∆̂i −Di∆̂adj).

Theorem 1. Under assumptions M, W, and R presented in Section A.1 of the supplemental
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appendix,

supr|Pr{
√

N1U
∗ ≤ r|(Y,D,X)} − Pr{

√
N1(∆̂adj −∆) ≤ r}| p−→ 0

as N → ∞ with fixed control:treated ratio C.

Our regularity assumptions on the data-generating process and the regression estimator

µ̂0(·) are modeled closely on those of Abadie and Imbens [25] and later Otsu and Rai [15],

and our proof technique is very similar to arguments in Otsu and Rai [15]. Briefly, U∗

is decomposed into three terms which correspond to deviations of the potential outcome

variables around their conditional means, approximation errors for µ̂0(X) terms as estimates

of µ0(X) terms, and deviations of conditional average treatment effects µt
1(X)−µ0(X) around

the population ATT ∆. Regularity conditions on the data-generating process ensure that the

conditional average treatment effects converge quickly to the population ATT. Regularity

assumptions on the regression estimator, combined with bounds on the largest nearest-

neighbor discrepancies in X vectors due originally to Abadie and Imbens [25] and adapted

to the GroupMatch with instance replacement design, show that the deviation between µ̂0(·)

and µ0(·) disappears at a fast rate. Finally, a central limit theorem applies to the deviations

of the potential outcomes. For details, see Section A of the supplemental appendix.

4.3 Difference-in-Differences Estimator

While we have focused so far on the difference-in-means estimator, Imai et al. [7] recom-

mend a difference-in-differences estimator for matched designs with rolling enrollment in the

context of designs that match exactly on time. This estimator can be used under rolling
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enrollment as well, taking the following form under bias correction:

∆̂DiD =
1

N1

N∑
i=1

Di[((Yi,Ti
− µ̂0(Xi,Ti

))− (Yi,Ti−1 − µ̂0(Xi,Ti−1)))−

1

C

N∑
j=1

T∑
t′=1

MiTi,jt′((Yj,t′ − µ̂0(Xi,t′))− (Yj,t′−1 − µ̂0(Xi,t′−1)))]

=
1

N1

N∑
i=1

Di[((Yi,t=Ti
− µ̂0(Xi,Ti

))− (Yi,t=Ti−1 − µ̂0(Xi,Ti−1)))−

(1−Di)
T∑
t=1

KM(i, t)

C
((Yi,t − µ̂0(Xi,t))− (Yi,t−1 − µ̂0(Xi,t−1)))] =

1

N1

N∑
i=1

∆̂DiD
i

This estimator requires L lags to be measured at time Ti − 1, so a burn-in period of length

L rather than L− 1 is needed.

A key advantage of this bias-corrected differences-in-differences estimator is that it relies

on different identification assumptions than the bias-corrected difference-in-means: essen-

tially, any assumption previously made on the potential outcome Yi,t(0) must now hold

instead only for the post-pre potential outcome difference Yi,t(0) − Yi,t−1(0). The resulting

assumptions tend to be substantively weaker. In particular, Imai et al. [7] highlight how

the L-ignorability assumption can be replaced by a parallel trends assumption that requires

only that post-pre differences in potential outcomes be conditionally independent of treat-

ment, allowing for different unobserved outcome intercepts for different individuals. The

time-agnosticism assumption also becomes weaker when formulated for outcome differences,

allowing for a constant linear trend in potential outcome means rather than requiring them

to be invariant to time conditional on covariates.

We can easily adapt the results of the previous section to show that the block bootstrap

gives valid inference for the difference-in-difference estimator when these identification as-

sumptions hold. The inference procedure simply requires bootstrapping the ∆̂DiD
i terms in

place of the ∆̂is defined above. While the regularity conditions given for Theorem 1 suffice

for the new estimator, the proof (as presented in Section A of the supplemental appendix)
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requires mild modification to work for this difference-in-differences estimator. In particular,

the variance estimators include additional covariance terms. For more details, see Section A.3

of the supplemental appendix.

5 Simulations

We now explore the performance of weighted block bootstrap inference via simulation. In

particular, we investigate coverage and length of confidence intervals compared to those

obtained by conducting parametric inference for weighted least squares estimators with and

without cluster-robust error adjustment for controls from the same trajectory.

5.1 Data Generation

We generate eight covariates, four of them uniform across time for each individual i, (i.e.,

they take on the same value at every timepoint):

X3,i

X4,i

 ∼ N


0

0

 ,

 1 0.7

0.7 01




X2,i ∼ N(0, 1) for control units and X2,i ∼ N(0.25, 1) for treated units

X1 is also uniform across time, but it is correlated with a time-varying covariate, X5, so

we will introduce it below. The correlations between covariates (X3 and X4, and X1 and

X5) are calibrated to the correlations observed between covariates in the baseball example

in Section 7 (i.e., height and weight have a correlation of approximately 0.7, and lag OBP

and age have a correlation of approximately -0.4).
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For treated units: X1,i

X5,i

 ∼ N


0

0

 ,

 1 −0.4

−0.4 01




X7, X8 ∼ N(0, 1) and X6 ∼ N(0.5, 1)

Four of the covariates are time-varying for control units. For each control unit, three instances

are generated from a random walk process to correlate their values across time. Formally,

for instance t in trajectory i, covariate j is generated as follows:

 X1,i

X5,i,1

 ∼ N


0

0

 ,

 1 −0.4

−0.4 01




Xj,i,1 ∼ N(0, 1) for j = 6, 7, 8

Xj,i,t = Xj,i,(t−1) + ϵj,i,(t−1) for t = 2, 3

ϵj,i,1, ϵj,i,2 ∼ N(0, 0.52)

Fixing aL = log(1.25), aM = log(2), aH = log(4) and aV H = log(10), and drawing the ϵi,t

terms independently from a standard normal distribution, we define out outcome as:

Yi,t = aL

4∑
j=1

Xj,i,t + aV HX5,i,t + aM(X6,i,t +X8,i,t) + aH(X7,i,t) + ∆Di + ϵi,t (2)

The outcome for a unit is correlated across time as it is generated from some time-varying

covariates. Each simulation consists of 400 treated and 600 control individuals. We consider

1:2 matching. The true treatment effect, ∆, is 0.25.

We consider two alternative ways of generating the continuous outcome variable besides

model (2). First, we add correlation to the error terms within trajectories. Specifically,

the ϵi,ts for a given trajectory i are generated from a normal distribution with mean 0 and

covariance matrix with off diagonal values of 0.8. Second, in addition to the correlated
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error terms, we square the X2,i,t term in the model, so it is no longer linear. We also run

simulations with poor overlap. See Section C of the Supplemental Appendix for results and

discussion of simulation performance under poor overlap.

We compare the bias-corrected block bootstrap approach outlined in Section 4, using a

linear outcome model and a nonparametric bootstrap, to the confidence intervals obtained

from weighted least squares (WLS) regression and WLS with clustered standard errors. We

focus on the nonparametric bootstrap, as opposed to alternatives such as the wild bootstrap,

because of its more common prevalence in practice; however, for comparisons between the

wild bootstrap and the nonparametric showing almost equivalent performance in a generally

similar setting see Otsu & Rai [15]. We choose to compare to WLS because this is commonly

recommended in matching literature [33; 34]. However, Abadie and Spiess [35] pointed out

that standard errors from regression may be incorrect due to dependencies among outcomes

of matched units, and identified matching with replacement as a setting in which these

dependencies are particularly difficult to correct for. Our simulation results suggest that

these difficulties carry over into the case of repeated measures. It is worth noting that the

standard functions in R used to compute WLS with matching weights such as lm and Zelig

(which calls lm), compute biased standard error estimates in most settings. See Section B

of the supplemental appendix for details.

5.2 Results

Tables 1 and 2 show the coverage and average 95% confidence interval (CI) length, respec-

tively, of WLS regression, WLS regression with clustered standard errors, and bootstrap

inference using our model-adjusted ATT estimator, for each of our three simulation set-

tings under 10,000 simulations. As misspecification of the estimated linear outcome model

increases the bootstrap method is substantially more robust (although under substantial mis-

specification the bias-corrected method also fails to achieve nominal coverage). While the

bootstrap confidence intervals are generally slightly wider than the WLS and WLS cluster
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confidence intervals, this is to be expected as the wider confidence intervals lead to improved

coverage. In settings where strong scientific knowledge about the exact form of the outcome

model is absent, the bootstrap approach appears more reliable than its chief competitors.

Coverage WLS WLS Cluster Bootstrap Bias Corrected
Linear DGP 92.6% 94.4% 94.0%
Linear DGP, Correlated Errors 89.4% 91.7% 94.4%
Nonlinear DGP, Correlated Errors 83.3% 86.2% 89.8%

Table 1: Coverage of the WLS, WLS cluster and bootstrap bias corrected methods of inference for our three
simulation set-ups.

Average CI Length WLS WLS Cluster Bootstrap Bias Corrected
Linear DGP 0.25 0.27 0.27
Linear DGP, Correlated Errors 0.25 0.27 0.30
Nonlinear DGP, Correlated Errors 0.26 0.28 0.31

Table 2: Average 95% confidence interval length for the WLS, WLS cluster and bootstrap bias corrected
methods of inference for our three simulation set-ups.

Results in tables 1 and 2 are for GroupMatch with instance replacement, however match-

ing with trajectory replacement performed very similarly in our simulations. Computation

time was similar for GroupMatch with instance replacement and with trajectory replace-

ment. In principle, GroupMatch with instance replacement should be substantially faster,

however in its current form GroupMatch does not implement the most computationally ef-

ficient algorithm for with instance replacement. Over 100 iterations, the average matching

computation time was 4.63 seconds for matching with instance replacement and 4.71 seconds

for matching with trajectory replacement. The average block bootstrap computation time

was 2.51 seconds. Computation time was calculated on an Apple M1 Max 10-core CPU with

3.22 GHz processor and 64 GB RAM running on macOS Monterey.

6 Testing for Timepoint Agnosticism

The key advantage of GroupMatch relative to other matching techniques designed for rolling

enrollment settings is its ability to consider and optimize over matches between units at
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different timepoints, which leads to higher quality matches on lagged covariates. This ad-

vantage comes with a price in additional assumptions, notably the assumption of timepoint

agnosticism. Timepoint agnosticism means that mean potential outcomes under control for

any two individual timepoints in the data should be identical; in particular, this rules out

time trends of any kind in the outcome model that cannot be explained by covariates in the

prior L timepoints.

While in many applications scientific intuition about the data generating process suggests

this assumption may be reasonable, it is essential that we consider any information contained

in the observed data about whether it holds in a particular case. Accordingly, we present a

falsification test for timepoint agnosticism. Falsification tests are tests “for treatment effects

in places where the analyst knows they should not exist,” [36] and are useful in a variety of

settings in observational studies [37]. In particular, our test is designed to detect violations of

timepoint agnosticism, or “treatment effects of time” when they should be absent; rejections

indicate settings in which GroupMatch is not advisable and other rolling enrollment matching

techniques that do not rely on timepoint agnosticism are likely more suitable. While failure

to reject may not constitute proof positive of timepoint agnosticism’s validity, it rules out

gross violations, thereby limiting the potential for bias.

To test the timepoint agnosticism assumption we use control-control time matching :

matching control units at different timepoints and testing if the average difference in out-

comes between the two timepoint groups, conditional on relevant covariates, is significantly

different from zero using a bootstrap test. Specifically, restricting attention to trajectories i

from the control group, we select two timepoints t0 and t1 and match each instance at one

timepoint to one at the other timepoint using the GroupMatch optimization routine, based

on similarity of covariate histories over the previous L timepoints. Since this match compares

instances at two fixed time points, any optimal method of matching without replacement

may be used. One practical issue arises: GroupMatch and related matching routines expect

one group to be designated “treated,” all members of which are generally retained in the
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match, and the other “control,” some members of which will be included, but both matching

groups are controls in this case. We label whichever of the two groups has fewer instances as

treated; without loss of generality, we will assume there are fewer instances at time t1 and

use these instances as the reference group to be retained.

The test statistic for the falsification test is motivated by the ATT estimator in section

2.2. Let Nc be the total number of control units and let Nt1 be the number of control

instances at time t1. Let µ̂t0
0 be a bias correction model fit on our new control group (i.e.,

control instances at time t0). In addition, let D′
it = 1 if unit i is present at time t. We define

the test statistic as follows:

∆̂cc =
1

Nt1

Nc∑
i=1

D′
it1
((Yi,t=t1 − µ̂t0

0 (Xi,t=t1))−
Nc∑
j=1

Mit1,jt0(Yj,t=t0 − µ̂t0
0 (Xj,t=t0)))

=
1

Nt1

Nc∑
i=1

[D′
it1
(Yi,t=t1 − µ̂t0

0 (Xi,t=t1))−D′
it0
KM(i, t0)(Yi,t=t0 − µ̂t0

0 (Xi,t=t0))]

=
1

Nt1

Nc∑
i=1

∆̂cc,i

We use a bootstrap test to test the following null hypothesis, where Et1
0 {·} indicates

expectation over the distribution of the covariates in control instances at time t1.

Et1
0

{
µt0
0 (X)

}
= Et1

0

{
µt1
0 (X)

}
In words, this null hypothesis says that, accounting for differences in the covariate distribu-

tion at times 0 and 1, the difference in the average outcomes of control instances at the two

timepoints is zero.

The test constructs a bootstrap confidence interval as in Section 3 and checks whether

the interval covers 0. If the interval covers 0, the test fails to reject. In steps:

1. Label control instances from the first group of trajectories at timepoint t1 the new
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“treated” units, and control instances from the second group of trajectories at timepoint

t0 the new “control” units.

2. Fit a bias correction model on the new control units.

3. Match the new treated units to the new control units and calculate the test statistic.

4. Repeat B times:

(a) Randomly resample Nc elements ∆̂∗cc,i with replacement from {∆̂cc,1, ..., ∆̂cc,Nc}

(b) Calculate ∆̂cc on the resampled data.

5. Construct a (1−α) confidence interval based on the α/2 and 1−α/2 percentile of the

values calculated from the boostrap samples.

6. If this confidence interval covers 0, fail to reject the null hypothesis.

We choose to use a bootstrap test here in line with with our inference methods in previous

sections. However, it is worth noting that a permutation test is also feasible here.

A key consideration for the falsification test is which timepoints to choose as t0 and t1.

The choice of timepoint comparison depends largely on what a plausible time trend would be

for the problem at hand. For example, if you suspect a linear time trend, it makes sense to

look at the first and last timepoints. If the trend is linear, this test should have high power

to detect a problem in moderate to large samples. If one is uncertain about the specific

shape of the time trend that is most likely to occur and wants to test for all possible trends,

we recommend testing each sequential pair of timepoints (i.e., timepoints 1 and 2, 2 and 3,

3 and 4, and so on) and using a multiplicity adjustment.

The falsification test is subject to several common criticisms levied at falsification tests,

particularly their ineffectiveness in settings with low power. One possible approach is to

reconfigure the test to assume violation of timepoint agnosticism as a null hypothesis and

seek evidence in the data to reject it; Hartman and Hidalgo [38] recommend a similar change

for falsification tests used to assess covariate balance, called equivalence tests.
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The implementation of these modifications is fairly straightforward. First, we must define

an equivalence range for our outcome variable: a set of values for which the difference is

substantively inconsequential. Let ϵL and ϵU denote the lower and upper bounds under

which the outcome variable is deemed equivalent. Hartman and Hidalgo [38] recommend

using ϵ = ±0.36σ as a default when researchers are unsure of an appropriate equivalence

region. Next, prior to step 4 in our falsification test one simply subtracts ϵL (and in a

separate run ϵU) from all treated outcomes. If either one-sided test fails to reject the null,

then the test fails.

See Section D of the supplemental appendix for simulations illustrating this method.

7 Application: Baseball Injuries

We study the impact of short-term injury on hitting performance in observational data from

major league baseball (MLB) during 2013-2017. Quantitative studies of major league hitting

performance [39] and of injury trends and impact in athletics [12] have been performed

repeatedly, but only a few studies so far have evaluated the impact of injury on position

players’ hitting performance. These have focused on specific injury types, and have not

found strong evidence that injury is associated with a decline in performance [11; 13; 14].

We use GroupMatch to match baseball players injured at certain times to similar players

at other points in the season that were not injured. We evaluate whether players see a

decline in offensive performance immediately after their return from injury. In contrast to

other studies, we pool across injury types to see if there is a more general effect of short term

injury on hitter performance.

7.1 Data and Methodology

We use publicly-available MLB player data from Retrosheet.org and injury data scraped

from ProSportsTransactions.com for the years 2013-2017. Our dataset is composed of player
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height, weight and age, quantities that remain constant over a single season of play, as well

as on-base percentage (OBP), plate appearances (PAs) at different points in the season,

and dates of short-term injuries, in which the player’s team designated him for a 7-10 day

stay on the team’s official injured list, for each year. OBP is a common measure of hitter

performance and is approximately equal to the number of times a player reaches base divided

by their number of plate appearances.1

For each non-injured player, we generate three pseudo-injury dates evenly spaced over

their PAs. In each season, we match injured players to four non-injured players. Matches

were formed using GroupMatch with instance replacement, matching on age, weight, height,

number of times previously injured, recent performance measured by OBP over the previous

100 PAs, and performance over the entire previous year as measured by end-of-year OBP

after James-Stein shrinkage2 We choose to shrink the OBP using James-Stein to limit the

impact of sampling variability for players with a relatively small number of PAs the previous

season [40].

Table 3 shows the balance for each of the covariates before and after matching. For each

covariate, matching shrinks the standardized difference between the treated and control

means. The balance achieved is not perfect, especially for the number of previous injuries.

This underlines the importance of combining matching with bias-correction to clean up

imbalances not removed by matching.

7.2 Results

We compare the results for bias-corrected block bootstrap inference, WLS, and WLS with

clustered standard errors. The ATT estimates are positive (0.010), but the 95% confidence

intervals cover zero for all methods, indicating that there is not strong evidence that short

term injury impacts batter performance. We present the results for 2017 in Figure 2. Results
1OBP = (Hits + Walks + Hit By Pitch) / (At Bats + Walks + Hit by Pitch + Sacrifice Flies)
2See https://chris-said.io/2017/05/03/empirical-bayes-for-multiple-sample-sizes/ for dis-

cussion of James-Stein shrinkage to estimators with variable sample sizes.
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Treated Control Mean Standardized Difference
Variable Mean Before After Before After
Height 73.7 73.1 73.4 0.26 0.14
Weight 213 209 212 0.24 0.07
2016 OBP (JS Shrunk) .324 .328 .323 -0.09 0.02
Lag OBP .336 .341 .338 -0.07 -0.02
Birth Year 1988 1988 1988 -0.08 -0.06
Number Previous Injuries 2.73 1.91 2.16 0.30 0.21

Table 3: Balance table for MLB injury analysis before and after matching each injured player to four non-
injured players.

from each of 2013 - 2016 were substantively the same, as were results obtained by pooling

the matched data across years. The data pass the timepoint agnosticism test, comparing

the first and last pseudo-injury dates. We chose to compare the first and last pseudo-injury

dates, because we were most concerned about player performance degrading over the course

of the entire season due to fatigue. We also perform equivalence tests using ϵ = ±0.02, which

our data also pass.

We could have also chosen to use a difference-in-differences estimator here, using the

difference in performance right before and after the injury, or pseudo-injury, date as our

outcome. Results are substantively the same for both estimators. This similarity is due to

the close lag OBP matches GroupMatch produces for this example.

8 Discussion

The introduction of GroupMatch with instance replacement, a method for block bootstrap

inference, and a test for timepoint agnosticism provide substantial new capabilities for match-

ing in settings with rolling enrollment. We now discuss a number of limitations and oppor-

tunities for improvement.

Our proof of the block bootstrap approach assumes the use of GroupMatch with instance

replacement. The large-sample properties of matched-pair discrepancies are substantially

easier to analyze mathematically in this setting than GroupMatch with trajectory replace-
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Figure 2: Estimates and 95% confidence intervals for block bootstrap, WLS and cluster WLS inference
methods for the ATT in our 2017 baseball injury analysis.

ment or GroupMatch without replacement, designs in which different treated units may

compete for the same control units, and the technical argument must be altered to account

for this complexity. However, Abadie and Imbens [27] successfully characterized similar

large-sample properties in cross-sectional settings for matching without replacement. While

beyond the scope of our work here, we believe it is likely that this approach could provide an

avenue for extending Theorem 1 to cover the other two GroupMatch designs. Empirically,

we have found that the block bootstrap performs well when matches are calculated using

any of the three GroupMatch designs.

Setting aside the technical barriers associated with extending the theory to GroupMatch

without replacement, our new approach provides a competitor method to the existing ran-

domization inference framework described by Pimentel et al. [10] available for GroupMatch

without replacement. The randomization inference framework offers the advantage of closely-
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related methods of sensitivity analysis and freedom from making assumptions about the sam-

pling distribution of the response variables; on the other hand, the block bootstrap method

avoids the need to assume a sharp null hypothesis. In general these same considerations

arise in choosing between sampling-based inference and randomization-based inference for a

cross-sectional matched study, although such choices have received surprisingly little direct

and practical attention in the literature thus far.

As described in Section 6, the falsification test faces several criticisms, such as ineffective-

ness in lower power settings. The modifications to construct equivalence tests as in Hartman

and Hildago [38] address these concerns. However, even in the absence of such a change the

falsification test may prove useful in concert with a sensitivity analysis. Sensitivity analysis,

already widely studied in causal inference as a way to assess the role of ignorability assump-

tions, places a nonzero bound on the degree of violation of an assumption and reinterprets

the study’s results under this bound, often repeating the process for larger and larger values

of the bound to gain insight. Such a procedure, which focuses primarily on assessing the

impact of small or bounded violations of an assumption, naturally complements our falsifica-

tion test, which can successfully rule out large violations but is more equivocal about minor

violations.

Unfortunately, no sensitivity analysis appropriate for block bootstrap inference has been

developed yet, either for timepoint agnosticism or other strong assumptions such as ig-

norability. The many existing methods for sensitivity analysis (developed primarily with

ignorability assumptions in mind) are unsatisfying in our framework for a variety of reasons:

some rely on randomization inference [29], others focus on weighting methods rather than

matching [41; 42], and others are limited to specific outcome measures [43] or specific test

statistics [44]. We view the development of compelling sensitivity analysis approaches to be

an especially important methodological objective for matching under rolling enrollment.

Finally, we note that in cross-sectional settings moderate imbalances like those observed

after matching in the baseball study in Section 7 can often be removed by refining the match
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to include calipers [45; 46] or balance constraints [47; 48; 49] on important variables. For

computational reasons these constraints are difficult to implement and use in full generality

for GroupMatch designs. For example, some balance constraints rely on network flow repre-

sentations of the matching problem that are not immediately compatible with the network

flow representation underpinning GroupMatch. Further work to consider how calipers and

balance constraints can be elegantly incorporated will enhance GroupMatch’s effectiveness

in practice.
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