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SEQUENTIAL CHANGE-POINT DETECTION BASED ON
NEAREST NEIGHBORS

BY HAO CHEN!
University of California, Davis

We propose a new framework for the detection of change-points in on-
line, sequential data analysis. The approach utilizes nearest neighbor infor-
mation and can be applied to sequences of multivariate observations or non-
Euclidean data objects, such as network data. Different stopping rules are
explored, and one specific rule is recommended due to its desirable proper-
ties. An accurate analytic approximation of the average run length is derived
for the recommended rule, making it an easy off-the-shelf approach for real
multivariate/object sequential data monitoring applications. Simulations re-
veal that the new approach has better performance than likelihood-based ap-
proaches for high dimensional data. The new approach is illustrated through
a real dataset in detecting global structural changes in social networks.

1. Introduction. Sequential change-point models are widely used in many
fields to detect events of interest as data are generated. One of its early applications
is in quality control where a summary statistic reflecting a manufacture process is
monitored over time. When the statistic begins to exhibit values that are unlikely
to be achieved by random fluctuations, there is a high probability that something
went wrong and an investigation is needed. Therefore, it is important to detect the
change-point, the time when the event of interest happens, as soon as possible if
it occurs, while keeping the false discovery rate low; refer to monographs Wald
(1973), Siegmund (1985) and Tartakovsky, Nikiforov and Basseville (2015) for
more background information.

Sequential change-point detection has been extensively studied for univariate
data, that is, for data where the observations are scalar at each time point. However,
many recent applications involve the detection of change-points over a sequence of
multivariate, or even non-Euclidean, observations. Following are some motivating
examples.

Multiple sensor framework: In a sensor network, hundreds or thousands of sen-
sors are deployed to detect events of interest. For example, hundreds of monitors
are placed worldwide to detect solar flares, which are large energy releases by the
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sun that can affect Earth’s ionosphere and disrupt long-range radio communication
[Kappenman (2012), Qu et al. (2005)]. Often, the structure of the sensor network
can be used to boost the power of the detection. Then each observation can be
viewed as a vector with some structures among its elements that reflect the spacial
information of the sensors.

Social network evolution: Technological advances provide us with rich re-
sources of social network data, such as networks constructed by Facebook friend-
ship relations, email communications, phone calls or online chat records. The de-
tection of abrupt events, such as shifts in network connectivity, dissociation of
communities, or formation of new communities, can be formulated as a change-
point problem. Here, the observation at each time point is a graphical encoding of
the network.

Epidemic disease outbreak: It is important to detect the emergence of new in-
fectious diseases as early as possible to prevent their spreadings. In the United
States, the current practice is that the Centers for Disease Control gathers data from
hospitals and then integrates information together to tell if there is an outbreak.
This process usually takes weeks to draw conclusions. Researchers have tried to
incorporate other information, such as online searches on disease related topics
and climate information, which had success in shortening the prediction lag time
for flu outbreaks [Yang, Lipsitch and Shaman (2015), Yang, Santillana and Kou
(2015)]. It can be foreseen that, in the future, information from multiple sources
will be used to predict disease outbreaks. Then each observation can be quite com-
plicated and may include hospital admission rates, online search frequencies on
related topics, personal posts on related symptoms and whether information.

Image analysis: Image data are collected over time in many areas. It is
of tremendous interest to automatically detect abrupt events, such as security
breaches from surveillance videos or extreme weather conditions, for example,
storms, from climatology. In these applications, the data at each time point is the
digital encoding of an image.

In all of these examples, the problem can be formulated in the following way:
We denote the data sequence by {Y;},i =1,2,...,n,...,indexed by time or some
other meaningful orderings. Here, Y;’s can be vectors, networks or images. The
sequence is identically distributed as Fy until a time 7 the distribution changes
abruptly to Fi:

Y; ~ Fp, i=1,...,t—1,
Y; ~ Fi, i=t,7+1,...,

where Fy and F) are two different probability measures.

There is a burst of works recently on the change-point detection in multiple
sequences where the sequences are assumed to be independent, such as in multi-
ple sensor framework where the sensors are assumed to be indenpendent. These
works also in general assume the observations over time are independent. Some



SEQUENTIAL DETECTION BY NEAREST NEIGHBORS 1383

nice algorithms and theorems have been developed under these assumptions. For
example, Tartakovsky and Veeravalli (2008) and Mei (2010) studied statistics that
sum signals over all streams with further assumptions that the density functions
before and after the change are known and the change happens to all streams at
the same time. Siegmund (2013) and Chan and Walther (2015) allow the change
only happen to a subset of the data streams under the assumption that Fyp and
F1 are multivariate normal distributions with identity covariance. The latter paper
also studied the optimality of several statistics. These statistics are useful if the
assumptions under which the statistic was developed hold for the data. However,
in many applications, it would be too stringent to assume that all data streams are
independent.

To another end, the change-point detection problem for dynamic network data
is gaining more and more attention. A number of works have been done if the
networks are generated in some specific ways. For example, Heard et al. (2010)
developed Bayesian methods by modeling each pair of nodes independently and
they modeled the communications between nodes over time as a counting pro-
cess with the increments of the process following a Bayesian probability model.
A multinomial extension that relaxed the independence assumption among pairs
of nodes was also studied by the authors. Wang et al. (2014) considered the setting
that the series of networks are generated by a stochastic block model with the block
membership of the vertices fixed across time. They use locality-based scan statistic
to find change-point where the connectivity probability matrix varies. Again, these
methods are useful if the data do satisfy the assumptions, while these assumptions
could be too specific for many applications.

In this paper, we describe a nonparametric framework to approach the problem.
This framework can be applied to data in arbitrary dimension and to non-Euclidean
data, with a general, analytic formula for false discovery control. The proposed
method adopts the idea of making use of similarity graphs, such as nearest neigh-
bors, among the observations in Chen and Zhang (2015).

In the following, we do not impose specific assumptions on Fy or F;. How-
ever, we assume the observations over time are independent. When there is weak
dependence over time, the graph-based approach could still provide meaningful
results for change-point analysis as shown in Chen and Zhang (2015). Also, the
independence assumption is a natural starting point for more sophisticated models
that consider dependency over time.

Chen and Zhang (2015) studied the problem of offline change-point detection,
where all observations are completely observed at the time when data analysis is
conducted. However, in many applications, it is desirable to detect change-points
on the fly. There are both theoretical and computational challenges to extend the
method in Chen and Zhang (2015) to the online framework. In particular, adding
new observations usually changes the similarity structure among existing obser-
vations, when the most similar observation for an existing observation may be
changed to the newest observation. This makes the theoretical analysis on false
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discovery control much harder as it requires an analysis of the dynamics of simi-
larity structural change when new observations are added.

In this paper, we consider the similarity structure represented by nearest neigh-
bors (NN). We studied the dynamics in NN updates as new observations are added.
It turns out that the characterization of a small number of events, in particular, the
updates of mutual NNs and shared NNs, and all three-way interactions among the
NN relations, could capture the majority of the dynamics (see Section 5 for de-
tails). This makes the task tractable. We can also easily implement the method for
real data applications.

The rest of the paper is organized as follows: In Section 2, we briefly review
a two-sample test based on NNs, which is a building block for the change-point
analysis. In Section 3, we discuss details of the proposed detection method and
three stopping rules. We recommend the use of the stopping rule that relies on
recent observations for its desirable properties. In Section 4, we study the updating
dynamics of NNs and derive an analytic formula for false discovery control that
is accurate for finite samples. In Section 5, we compare the proposed method to
parametric methods for multivariate data. We illustrate the proposed method on a
real dataset in Section 6. In Section 7, we briefly discuss the choice of the number
of nearest neighbors, the performance of the proposed method on gradual changes,
and possible extensions of the method to other similarity graphs.

2. A brief review of the two-sample test on k-NN. In this section, we re-
view the two-sample test on k-NN proposed by Schilling (1986) and Henze (1988).
Here, k is a fixed integer. Let k-NN be the directed graph with the pooled obser-
vations as the nodes and each node points to its first Xk NNs. It is assumed that
the observations are distinct with uniquely defined neighbors. (This happens with
probability 1 if Y;’s follow continuous multivariate distributions and the Euclidean
distance is used.)

Let {Yy,..., Y, }and {Y,,+1,..., Yy, 4n,} be random samples from two pop-
ulations, and let n = n| 4 ny be the total sample size. For any event x, let I(x) be
the indicator function that takes value 1 if x is true or 0 if otherwise. Let

b,‘j :I((i §n1,j >n1) or (i >n1,j§n1)),

then b;; is the indicator function that Y; and Y; belong to different samples. We
want to test whether these two population distributions are the same or not. Let

k
Al(Jr.) =I(Y; is the rth nearest neighbor of Y;), Al?; = Z AE;).
r=1
Then A;} is the indicator function that Y ; is among the first K NNs of Y;. We have
A €(0, 1} and Y5_ Af; =k, 1 <i <n.Then
n n n n
DD Agbi =200 Ajibi
i=1j=1 i=1j=1
is the number of edges in the k-NN that connect between the two samples.
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Expressing in a more symmetric way, we have

2.1 ZZ (Af;+AT)b

i=1j=1

being twice the number of edges in the k-NN that connect between the two sam-
ples. Given the observations Y; =y;, 1 <i <n, the test statistic is

Zza +a U’

i=1j=1

where a; i =2>s Jr with ai(;) = I(y; is the rth nearest neighbor of y;). In
Schilling (1986) and Henze (1988), the authors proposed to reject the null hypoth-
esis of no difference if the test statistic is significantly smaller than its expectation
under the permutation null distribution. The rationale is that, if the two samples are
from the same distribution, they are well mixed and are likely to find their nearest
neighbors from the other sample. So if the observations tend to not find nearest
neighbors from the other sample, they are from different distributions.

We denote the random variable under the permutation distribution as follows:
Let B;j = bp(;)p(j) be the indicator function that Y; and Y; belong to different
samples under random permutation. Here, P(i) is the index of Y; under permuta-
tion. Let

(2.2) X = ZZa —i—a

i=1j=1

Then its expectation and variance are

4k
E(X) = 122,
—1
n 2k2
Var(X) = —- z(h(nl,nz)( Z aja ;+k—n_1)
i,j=1

+(1—h(n1,n2)< Z aja; — ))

i,j,l=1

where h(ny, ny) = % It has been shown that

X —E(X)
v/ Var(X)

converges to the standard normal distribution under the null hypothesis as long as
ny/ny — A € (0, co) for multivariate data [Schilling (1986), Henze (1988)].
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3. Sequential change-point detection based on £k-NN. We use
Y,Y2,...,Y,, ...

to denote the data sequence, where Y,, is the observation at time n. In the fol-
lowing, we assume that we have a well defined norm | - || on the sample space
such that the distance between two observations y; and y; can be calculated as
d(y;,y;) = llyi —y;jll. We also assume that the observations are distinct points in
the sample space and have uniquely defined nearest neighbors. In the following, £
is fixed. The choice of k is briefly discussed in Section 8.

We assume that there are Ny historical observations with no change-point. That
is, Y1,Y2,..., Yy, follow the same distribution. This can be determined from
prior information or we can use offline change-point detection methods to test
whether there is any change-point among the first Ny observations, such as the
method in Chen and Zhang (2015). We begin our test from observation Ng 4+ 1.

Foranyn, 1 <i,j<n,let

A(’)

n,ij

=I(Y; is the rth NN of Y; among the first n observations).

Then A;: ij= Yk, A,(fz ; 1s the indicator function that Y ; is one of the first k NNs
of Y; among the first n observations.

We can perform a two-sample test for each # € {1,...,n — 1} with one sam-
ple being the observations before ¢ and the other sample being the observations

between ¢ and n. Define
bijt,n)=X(i <t,t<j<m)or(t<i<n,j<1),

and B;j(t,n) = bp,p,(j)(t, n), where P, (-) is a random permutation among the
first n indices. Let

n n
R@t,n) =Y (Ar;; +Ar ;) Bij(t,n).
i=1j=1
We use y;’s to denote the realizations of Y;’s, and let
R(t,n) — E(R(t,n))
/Var(R(t,n)ly)

Z|y(l, n)=-—

Note that E(R(¢, n)|y) = E(R(t, n)).

If a change-point T > Ny occurs in the sequence, we would expect Zy(, n) to
be large (notice the negative sign in the standardization) when n > 7 and ¢ close
to t. In the following, we consider three stopping rules:

() Ty =infln—No: ( max  Zy(,m) > bi,n = Nol,

no<t<n—ny

(3.2) Tz(b2)=inf{n—No:( max Z|y(t,n))>b2,nzNo},

n—n|<t<n—ng
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(33)  Ts(by)=inf{n—No:( max  Zpy(1,m)>bs,n = Nol.
n—n1<t<n—ngp

Here, by, by and b3 are chosen so that the false discovery rate for each of the

stopping rule is controlled at a prespecified level.

In the above stopping rules, ng, n; and L are prespecified values. Usually, ng is
set to be small so as to detect the change as soon as possible, while not too small,
such as 1, to avoid the high fluctuations at the very ends. So 77 is a straightforward
stopping rule. Sometimes, when t is large, we may not want to put too much
emphasizes on the early observations. This leads to 77 and 73. It is easy to see that
T, is a more relaxed version of 7. In T3, if we set n; to be n — ng, then it is the
same as 77, while we could set n; tactically to achieve performance similar to (or
even better than) 7 and at the same reduce computation time.

For both 77 and T3, at time n, we find k¥ NNs among the first n observations.
One modification we can make is that we use the most recent observations to com-
pute the test statistic. In 73, Zyy(¢,n) is defined the same as Zy(z,n) but only

based on the L most recent observations: Y, —r+1, ..., Y,. Thatis, fori, j eng e
{n—L+1,...,n}, welet

AgL),ij =I(Y; is the rth NN of Y; among observations Y, 41, ..., Y,),
Af = YR AV and RL(tn) = X e, (AS L+ A DBij(tng) with

Bij(t,ny) = ban (i), () (t), where P, (-) is arandom permutation among indices
fn—L+1,...,n}. Then

Ri(t,n) —E(RL(7,n))
vVar(Rp(z,n)ly)

3.1. Comparisons of the three stopping rules. Two key objectives of sequen-
tial detection are (i) to detect the change-point as soon as possible when it occurs;
and (ii) to keep the false discovery rate low. These can be characterized by two
quantities: The expected detection delay, E;«(T — t*|T > t*), where t* =t — Ny
is the time index of the change-point if we set the time we begin the test to be 1; and
the average run length, E(T), the expectation of 7 when there is no change-point
or the change-point is at infinity.

In the following, we use Monte Carlo simulations to better understand the three
stopping rules. To make a fair comparison, the critical values b;,i = 1,2,3 are
chosen (through simulation runs) so that E(7;) = 2000 for each stopping rule.
We then compare their detection delays. The detailed simulation setup is as fol-
lows: There are Ng = 200 historical observations from the same distribution. We
begin our test from ¢ = 201. In the simulation, the change-point is at 7. Before
the change-point 7, the distribution is a d-dimensional Gaussian distribution with
mean p; and covariance matrix Iz, Ny(u1, 1;); after the change, the distribution
is NVy(ua, 1y). Let || — pmill2 = 2 where || - ||2 is the L, norm. We consider

ZL|y(ta ”l) =
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FI1G. 1. Boxplots of detection delays of the three stopping rules based on 1000 simulation runs for
each t*. Top panel: k = 1; bottom panel: k = 3. Other parameters are set as: ny = 3,n1 = 197 and
L =200. The horizontal line is the median of the detection delays for T3 across all 5000 simulation
runs.

T = 201 (the change occurs right at the time when we begin to perform the test,
that is, t* = 1) till 7 = 2201 (the change occurs 2000 observations after we begin
to perform the test, i.e., t* = 2001) for an increment of 500. We consider 1-NN
and 3-NN graphs.

Figure 1 shows boxplots of the detection delays (T — 7*) of the three stopping
rules under different t*’s. Here, we aim for shorter detection delays. We can see
that 7, is in general slightly better than 77 as the boxes are shifted downward a
little bit overall. When t* is small, 73 has a longer detection delay than 77 or 7.
As T* increases, the detection delay for 73 is almost the same, while that for T}
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or T; increases substantially. When 7* = 1501, the detection delay for T or 73 is
clearly larger than 73. One reason for the increasing detection delay for 77 or 73 is
that Zy (¢, n) is left skewed when the ratio 7/n is small and this problem becomes
severer as n increases.

On the other hand, since 73 is based on the same number of observations for
all n, its detection delay is not affected by where t* locates. Its detection delay is
longer than 77 and 7> when the change occurs at a very early stage, but it is on par
with 77 or 7> when the change occurs later, and shorter than 77 and 7 when the
change occurs in a late stage. As the first work on sequential detection based on
k-NN graphs, we recommend to use 73. For 71 and 73, one way to overcome the
problem of increasing detection delay is to make the thresholds in 77 and 73 to be
functions of n; for example, we could consider 7 (b1 (n)) and T2 (b>(n)) with by (n)
and b, (n) monotone increasing functions in n. This is, however, a large topic, and
we reserve it for future studies.

In the following, if not further noted, 7" and b refer to T3 and b3, respectively.

4. Average run length E (T (b)). Given the stopping rule 7 (b), the remain-
ing question is how to determine the detection threshold b, in particular, how to
choose b so that the average run length Eo, (7' (b)) is a prespecified value, such as
10,000.

First of all, we usually do not know the underlying distribution of the observa-
tions, so we could not directly simulate observations to obtain b as done in Sec-
tion 3.1. Second, resampling based methods, such as permutation and bootstrap,
are not appropriate here as new observations keep arriving and the limited exist-
ing observations are usually not representative enough, especially for complicated
data. Even if one could come up with some approaches through resampling meth-
ods, they would be very time consuming and not practical for online applications.
Therefore, we seek to obtain an analytic formula for E. (T (b)).

Given the nonparametric nature of the proposed method, we would not be able
to get an exact analytic formula for E (7 (b)) for finite L, the number of ob-
servations used at each time, so we approach the problem asymptotically, that is,
L — oo. We then make further modifications so that the analytic formula is a good
approximation for finite L.

4.1. Asymptotic results. We first consider the asymptotic scenario, L — oo.
In this context, {Zy(¢, n)}; ,, with ¢ and n rescaled by L, can be shown to con-
verge to a two-dimensional Gaussian random field under very mild conditions. The
properties of the supremum of a two-dimensional Gaussian random field was well
studied [Siegmund and Venkatraman (1995)], and the remaining task is to quantify
the covariance function of the Gaussian random field, as well as its partial deriva-
tives. They can be obtained by studying the dynamics of the NN relations. The
main results are given in Lemma 4.1 and Theorems 4.2 and 4.4.

We assume the following condition.
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CONDITION 1. There is a positive constant C, 1 < C < oo, depending only
on k, such that

sup (ZAn U> neN.

1<j<n

In k-NN, each observation points to its first & NNs, so the out-degree of each
observation (the number of arrows pointing from the observation) is k, while the
in-degree of each observation (the number of arrows pointing to the observation)
can vary. This condition says that the in-degree of each observation is bounded. It
is satisfied almost surely for multivariate data [Bickel and Breiman (1983), Henze
(1988)]. For non-Euclidean data, if the distance is chosen properly, this condition
is also easy to hold as many non-Euclidean data can be embedded into a Euclidean
space.

Before stating the main results, we define some useful quantities. According to
Propositions 3.1 and 3.2 in Henze (1988), under Condition 1, the quantities

A 4@ 1 ) 40
T Z np,ij nL,ji’ z Z AnL ]lAnL,li’
lenL i,j,leny,j#l

converge in probability to constants as L — oo and the limits can be calculated
through complicated integrals [Henze (1988)]. We denote the limits as

4.1) Poo(r,s) = llm - Z ASL),/ ngL),ji’
l jenyg,
. 1
(4.2) Goo(r,s) = lim — S AL LAY
T jleny,j#l
Let
kok
4.3) Phoo =) Poo(rs),
r=1s=1
ko k
(4.4) Gk,00 = Z ZQOO(”» 5).

r=1s=1

Then py « is the limiting expected number of mutual NNs a node has in k-NN and
gk.co the limiting expected number of nodes that share a NN with a node in k-NN.
We also define their finite sample versions by taking expectations

1 ") 40
4.5) PL(”,S)=ZE< Z Aan z]AnsL ]l)
i,jeny,
1
(4.6) qr(r,s) = ZE< Z A,(fL) ,,Ar(zsz,zi)’

i,jleng,j#l
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1
+
4.7) Pl = ZE( Y AL AL ],>,
i,jeny
1
+ +
(4.8) ar=7E( X Al Al h)
i,jleny,j#l
Then
lim pp(r,s) = poo(r,s), lim g7 (r,s) = qoo (1, 5),
L—o0 L—o0
lim pi,1 = p,cos lim gx,1 = qk,00-
L—o0 L—o0

We next state the main results.

LEMMA 4.1. Under Condition 1, whent —(n—L),(n—t)=O(L),as L —
00, Zpy(t,n) — Z(t,n) almost surely, where
Rp(t,n) —E(RL(t,n))
Var(Rz(t,n))

ZL(t,n) = —

This lemma follows immediately from Propositions 3.1 and 3.2 in Henze
(1988).

THEOREM 4.2. Under Condition 1, as L — oo, the finite dimensional dis-
tributions of {Zp([vL],[wL]) : 0 <w — 1 < v < w < oo} weakly converges to
the finite dimensional distributions of a two-dimensional Gaussian random field,
which we denote as {Z*(v,w) : 0 <w — 1 < v < w < o0}. (Here, [x] denotes the
largest integer smaller than or equal to x for any real number x.)

A main challenge to prove this theorem is how to deal with the holistic depen-

dencies among An i ’s. Even for different i, j, [, r, AnL ij and A: 1, are depen-
dent. This is because of the constraints Z A nij = =k forall i € ny, [see details in

ij
the Supplementary Material, Chen (2019), Section A.1]. _
We consider a similar set of Bernoulli random variables {A:{L,i j }i, jen, but with
relaxed dependencies. We keep the following probabilities unchanged:

P(A, ;= 1) =P(Af ;= 1),

np,ij n,ij

P(AT . =1,AF . =1)=P(A] ..=1,A" .=1),

np,ij np,ji np,ij np,ji
A+ A+ + +
(AnL Jji 1 AnL li — 1) (AnL Jji 1 AnL li — 1)'

That is, two-way NN relations are retained. However we relax the other dependen-

cies. We let A,’: ij be independent of {AnL i nL ll}]?g] We also let Ajl' ij and
AT

n, i D€ independent when i, j, [, r are all different.
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Then A ..’s are only locally dependent. But Z j

nr,ij
essarily k. However {An U}, jen;, becomes (AT

n Lij ’S are no longer nec-

ny U}, jen, 1f we condition on the

events {) ; A j nL ij =k}ien, . Thus, Z; (¢, n) can be studied through the joint distri-
bution of summations of locally dependent terms. We then use Stein’s method to
deal with local dependencies. The complete proof is in the Supplementary Material
[Chen (2019), Section A.1].

REMARK 4.3. The tightness of the two-dimensional field can be shown for
{(ZL([vL], [wL]):0<w—14+6 <v<w—§ < oo} forany § € (0, 1). For v too
close to w — 1 or w, the fluctuation in the random field could be too wild to have
the field being uniformly tight.

Based on Theorem 4.2, we approximate Eo, (7' (b)) by that of the corresponding
quantity defined for the limiting random field:
49  T*b) = inf{n — Np: ( max  Z*(t/L, n/L)) >bn> No].

n—n1<t<n—ngp

According to Siegmund and Venkatraman (1995), when b, L, ng, n1 — oo in such
a way that b = c+/L for some fixed 0 < ¢ < 00, no =ugL and n1 = u L for some
fixed 0 < ug < u; < 1, and when there is no change-point, 7*(b) is asymptotically
exponentially distributed with mean

V27 exp(b?)2)

(4.10) Eoo(T*(b)) ~ b [y g1() g2 (u)v(cy/2g1))v(cy/2g2(w)) du’

where
gl (u) _ a—pz(u’w)(sls 0) _ 8+10Z(M’w)(617 0)
38, 5,=0 38 51=0
B . T A
38, 5= 38> 5=0

v(x)=2x_2exp{ ZZm ld>< 1/2)} x> 0.

Here, ,o(*u’w)(él, 8) = Cov(Z*(w — u, w), Z*(w — u + 81, w + 87)) and v(-) is
closely related to the Laplace transform of the overshoot over the boundary of
a random walk. A simple approximation given in Siegmund and Yakir (2007) is
sufficient for numerical purpose:

(2/x)(®(x/2) —0.5)
(x/2)®(x/2) + Pp(x/2)’
where @(-) is the cumulate distribution function of the standard normal distribu-
tion and ¢ (-) the density function of the standard normal distribution.

4.11) v(x) ~
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Thus, the remaining task is to derive the directional partial derivatives of the
covariance function of the Gaussian random field. Their analytic expressions are
given in the following theorem.

THEOREM 4.4. For the two-dimensional field {Z*(v,w) :0<w — 1 <v <
w < oo}, the directional partial derivatives are

0Pl 31, 0) 0Pl (61,0)

1(u) = =
& 061 8§1=0 001 51=0
(4.12)
_16u(1 —u)(k + pr.oo) +2(1 — 2u)2(qi.co — k2 + k)
B o2(u) ’
L. AR R Y, SR )
L)) 8$,=0 GLY) 8,=0
wis 16621 — 1) (Proo + Ghco + K2+ 290 — 290)
' B o2(u)
4u(l —u)2q") . = 3qr.00 + k2 4 k) + 2(r.co — K2 + k)
+ : 5 :
o-(u)
where

o % (u) = 4u(l — u)(4u(l — u)(k + pr.oo) + (1 = 2u)*(gk.c0 — k> + k),
k £ k a
P = poclk,r), g% =" qoolk. ).
r=1 r=1

The complete proof of this theorem is in the Supplementary Material [Chen
(2019), Section A.2]. We studied the dynamics of the k-NN series as new obser-
vations are added through combinatorial analysis and it turned out that a few key
quantities are enough to characterize the dynamics in the asymptotic domain.

4.2. Finite L. 'We now consider the practical scenario where L is finite. Based
on Theorems 4.2 and 4.4, Eo (7T (b)) can be approximated by

2
£ (T() ~ . L/27 exp(b?/2)
D [1§ 810)8200)v(y/ 2021 )/ L)v(y 202 g2(u)/ L)

with the analytic expressions for g1(u) and g>(u) given in (4.12) and (4.13), re-
spectively, and v(-) given in (4.11).

When deriving the limiting expressions for gi(u#) and gy(u), we evaluate
Y E(AY) A Y and > E(A" . A% ) under L — oo and the two quan-

: nr,ij‘inr,ji nr,ji nL,li.
tities become poo (7, s) and g0 (7, s), respectively. In practice, when L is finite,
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Poo(r, s) and goo(r, s) are not the best estimates for these two expectations, yet the
expectations could be better estimated through historical data. Therefore, we use
the following formula to approximate Eo (7 (b)) in practice:

2
(4.14) Eco(T (D)) X — L2 exp(b*/2) |
b’ fé gL,l(M)gL,z(u)V(\/%sz,l(u)/L)v(\/ZngL’z(u)/L)du

where g7, 1(#) and g7, »(u) are the same as gq(u) and g>(u), respectively, except

k k k k
that pk.co» Gk.c0s p,gc))o and qlggo are replaced by px.r, gk.L, p,(()L and qlg,}‘, respec-

tively, with px 1 given in (4.7), g, given in (4.8), and

k k
4.15) P =3 prtkr) @) =Yk, r).
r=1 r=1

For pk.r, gk.L, p,((k)L and q,ﬁkz, they usually do not have analytical expressions.

However, they can be easily estimated from historical data. These estimates can
further be updated by new observations as long as no change-point is detected.

We next check how this analytic approximation works. We compare the thresh-
old b such that Eo (T (b)) = 10,000 based on this analytic approximation and that
based on 10,000 Monte Carlo simulations. The threshold obtained through 10,000
Monte Carlo simulations can be regarded as the true threshold. Results under dif-
ferent choices of ng, k and d for multivariate Gaussian data are shown in Table 1.
We checked two values of L, namely L =200 and L = 50, and let n| = L — ny.

Unfortunately, the thresholds obtained through the analytic approximation
(4.14) are not that close to the Monte Carlo results except for a few occasions.
The analytic approximation (4.14) gives similar thresholds for different dimen-
sions when all other parameters are fixed. However, the thresholds from Monte
Carlo simulations are quite different for different dimensions with those under a
higher dimension much smaller. Thus, (4.14) is still missing some major compo-
nents for finite L due to the fact that Zj (¢, n) can be quite left skewed for finite
L and small (n — ¢). In the following, we incorporate skewness of Zy (¢,n) to
improve the analytic approximation.

REMARK 4.5. The reason of the discrepancy between the asymptotic results
and finite samples was discussed in details in the offline counterpart of the work
[Chen and Zhang (2015)]. Briefly, the convergence rate of Zy (¢, n) to the Gaussian
distribution is slow if (n —¢)/L is close to O or 1. In this online detection setting,
the problem is even severer as we would like to set ng very small (such as 3) so
as to detect the change as soon as it happens. For finite L, Zy (¢, n) is quiet left
skewed when (n — ¢) is close to 0 or L, and the tail probability is overestimated,
making the threshold b obtained based on the asymptotic results too conservative.
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TABLE 1
The threshold b, such that Exo (T (b)) = 10,000, through 10,000 Monte Carlo simulations, through
analytic formula (4.14) based on asymptotic results, and through analytic formula (4.17)
with additional skewness correction. Each observation in the data sequence
follows a d-dimensional normal distribution

nyg=3 ng=10
Skewness Skewness
Monte  Asymp. corrected Monte  Asymp. corrected
Carlo 4.14) 4.17) Carlo (4.14) (4.17)
L =200

d=10 k=1 4.04 4.40 4.07 4.04 4.31 4.07
k=3 4.14 4.34 4.14 4.14 4.23 4.14

k=S5 4.16 431 4.18 4.16 4.17 4.18

d =100 k=1 3.76 4.37 3.79 3.76 4.26 3.79
k=3 3.78 433 3.79 3.78 4.20 3.79

k=5 3.79 431 3.81 3.79 4.18 3.81

d =1000 k=1 3.73 4.38 3.73 3.73 4.28 3.73
k=3 3.71 433 3.71 3.71 4.21 3.71

k=5 3.75 4.32 3.72 3.75 4.18 3.72

d=10,000 k=1 3.71 4.38 3.70 3.71 4.27 3.70
k=3 3.65 433 3.69 3.65 421 3.69

k=5 3.68 4.32 3.69 3.68 4.18 3.69

L =50

d=10 k=1 4.00 4.38 4.10 3.99 4.24 4.10
k=3 4.36 4.32 4.37 4.36 4.19 4.37

k=S5 4.57 4.28 4.50 4.57 4.15 4.50

d =100 k=1 3.86 4.36 3.94 3.83 4.23 3.94
k=3 3.92 431 4.02 3.92 4.18 4.02

k=5 3.95 4.29 4.09 3.95 4.15 4.09

d = 1000 k=1 3.83 4.36 391 3.83 4.23 391
k=3 3.92 432 3.93 3.92 4.18 3.93

k=5 3.95 4.29 3.97 3.95 4.15 3.97

d=10,000 k=1 3.79 4.36 3.90 3.79 423 3.90
k=3 3.86 432 3.90 3.86 4.18 3.90

k=5 391 4.29 3.92 391 4.15 3.92

4.2.1. Skewness correction. We adapt the skewness correction approach in
Chen and Zhang (2015). In particular, when we derive the average run length for
the limiting two-dimensional Gaussian random field (4.10), the term in the inte-
gral related to the marginal distribution of Z*(w — u, w) is P(Z*(w — u, w) €
b + du). (Here, du is the differential of the variable u, and similar definition for
dt in the following.) To make the analytic approximation more accurate for fi-
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nite L and small ng, we replace P(Z*(w — u, w) = b + du) by an estimate of
P(Zr(In(w — u)], [nw]) € b 4+ du). Following the method based on cumulant-
generating functions and change of measure [details refer to Chen and Zhang
(2015)], we have

P(Zy(t,n) € b+dt/b)
P(Z*(n/L —t/L,n/L) € b+ dt/b)
. &xp((b — 0p)/2 + 02 yL(t, n)Gb/6)
1+ yL(t, n)oy
Here, 6 = (—1 + /1 +2y.(t,n)b)/yr(t,n) and y(t,n) = E(Zi(t, n)). The de-

notation for Sz ((n — ¢)/L) holds because yr (¢, n) relates to ¢t and n only as a
function of n — ¢ (see Lemma 4.6 below). Then, the analytic approximation for
Eoo(T) incorporating skewness becomes

L/27 exp(b?/2)
b3 [ SLW) L1 ()gL2 (v (/262811 () /L)v(, /26281 2(u)/L) du

When L - oo and (n —t), (L — (n —t)) = O(L), yr(¢t,n) goes to 0 and Sz (1)
goes to 1 for 0 < u < 1, so this formula converges to (4.10) in the limit.
The exact analytic expression for yy (¢, n) is given in the following lemma.

(4.16)
Sp((n—1)/L).

4.17)

LEMMA 4.6. We have

(E(RL(t,n)))? + 3E(RL (1, m)Var(R(t,n)) — E(R} (1, m)
(Var(RL (1, n)))3/?

where E(Ry(t,n)) and Var(Rp(t,n)) are given in (A.3) and (A.4), respectively,

and

yL(t,n) =

E(R; (t,n)) = 8k>L3rg + 12> L?(r2 + 3k(ra — 2r4))
+4kL(3ry — r1 4 2r3 — 4rq + 3k(3r1 — 2rp — 4r3 — 4ry)
+ 8k (r3 — 32 + 5r4))
+ 24 py 1 (kL?rg + kL (ry +ra — 2r3 — 4ry)
+2L(2r3 —r1 +2ry))
+ 1211 (kL?(ry — 2r4) + kL (2r3 — 515 + 8r4)
+ L(r1 +r2 — 2r3 — 4ra))

+4(2I’3 —3r +4r4)E< Z AnL ]zAnL llA}JirL Ul)
i,j,0v

+24(r1 +rp — 2r3 — 41’4)E(Z AnL ij4n,, le’_:L ll)
i,],0
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+24(2r4 - I’Z)E( Z Ajz_L IJA;’:—L llA;L vj)
i,j,lv

_16r4< <ZAI1L ij I’le nL ll)

i,j,l

+3E(Z Ay A A j,)>
i,j.l
with
rlzw, x=L—(n-—1),
L(L—1)
dx(x—1D(L —-—x)(L—x-=1)
T L —D(L-2(L-3)
X(L=x)((x—-—1Dx—-2)+L —-—x—-—1D(L —-—x—-2))
3= L(L—1)(L —2)(L —3) ’
8x(x — 1)(x —2)(L —x)(L —x — I)(L — x —2)
T L — 1)L —2)(L—3)(L—4)(L—5)

To prove this lemma, we have
E(R; (z,n)) = E(E(R; (1,n)]Y))

= 2 B+ AL )AL+ AL ) (At Ar )

i,j,l,r,u,v

x E(Bjj(t,np)Bir(t,np) By (t,nr)).

Adapting similar arguments in calculating the covariance in the proof of Theo-
rem 4.4 but with more careful treatment of the summation indices, we could get
the result in the lemma.

From Lemma 4.6, we see that E(Rz (t,n)) depends on the probability of having
certain structures in the nearest neighbor graph. The relevant structures in k-NN
are shown in Figure 2. The first two structures represent mutual NNs and shared
NNs. The other five structures are three-way interactions among the NN relations.
The probability of having each of them can be estimated through historical data,
and can also be updated by new observations when no change-point is detected.

FI1G. 2. The configurations in k-NN that relate to the third moment of Ry (t,n).
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We now check how skewness correction performs. Table 1 also lists the thresh-
olds obtained through the analytic approximation with skewness correction. We
see that, after skewness correction, the analytic formula gives much better esti-
mates to the thresholds. When L = 200, all thresholds estimated by (4.17) are
very accurate. Even for small L (L = 50), the analytic approximated with skew-
ness correction is doing a reasonable job. When the dimension becomes larger, the
threshold estimated by the analytic formula with skewness correction is smaller,
exhibiting the same trend as the Monte Carlo results.

These results show that the formula with skewness correction could capture the
major factors and gives quite reliable estimates. It would be reasonable to use the
analytic formula with skewness correction to get the threshold b in real applica-
tions.

5. Power analysis. Given the procedure and the fast analytic way of deter-
mining the detection threshold, the proposed method can be easily applied to real
problems. Now, the question is how powerful this method is. To get some idea, we
compare it to the test based on Hotelling’s T2 test for multivariate Gaussian data as
Hotelling 72 test is asymptotically the most powerful for testing two multivariate
Gaussian distributions with the same covariance matrix.

The simulation setup is as follows: There are Ny = 200 historical observations
and a change occurs at ¢t = 400 (200 new observations after the start of the test).
The observations are independent and follow d-dimensional Gaussian distribu-
tion with a mean shift (A) at the change-point. (The L, distance between the two
means is A.) The amount of change, A, is chosen so that the tests have moderate
power. Results are given in Table 2. “Successful detection” is defined the same as
in Section 3.1 that the test detects the change-point within 100 observations after
the change occurred. We compare all tests on the same ground by controlling the
early stop probability to be 0.01.

Table 2 shows the results under different scenarios with 1000 simulation runs
for each scenario. The fraction of the runs that the change-point is successfully

TABLE 2
Fraction of trials (out of 1000) that the change-point is successfully detected for the proposed test
and for the test based on the Hotelling’s T2 test

Normal data Log-normal data
d=10 d=100 d=1000 d=10,000 d=10 d =100
A=07 A=138 A=2.7 A=5 A=1.5 A=2
Proposed test: 1-NN 0.02 0.21 0.12 0.16 0.48 0.08
Proposed test: 3-NN 0.07 0.55 0.41 0.52 0.87 0.48
Proposed test: 5-NN 0.15 0.81 0.57 0.70 0.95 0.77

Hotelling’s T2 0.69 0.63 - - 0.34 0.02
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detected is reported. When the data is multivariate Gaussian, we see that the
test based on the Hotelling 72 test is doing very well in low dimension. When
the dimension becomes higher, the power of the proposed test catches up. When
d = 100, the proposed test based on 5-NN is outperforming the test based on the
Hotelling 72 test. When d is even higher, the dimension is larger than the number
of observations that the method based on the Hotelling’s 72 cannot be applied.
For the proposed tests, we see that the we do need to increase the strength of the
signal to achieve a similar detection power. However, the number of fold we need
for the increase of the signal is much smaller than that for the dimension. When
the dimension increase from 100 to 10,000 (by a fold of 100), we only need to
increase the signal by a fold about 3 to achieve the same detection power. Hence,
the proposed method is relatively mildly affected by the dimensionality.

We also did the comparison for log-normal data and the change is in the mean
parameter. Now, the assumptions for the Hotelling 7% test do not hold and we see
that the proposed test is outperforming the test based on the Hotelling 72 test even
when the dimension is low.

The results show that the proposed test has satisfying power and works for var-
ious distributions.

6. An illustration example from real data. Here, we apply the proposed
method to a real dataset on network analysis. The dataset has been completely
collected at the time of analysis. We treat it as if the data were being observed to
illustrate how the proposed method works. It is conceivable to apply the proposed
method in a sequential manner if the data keep arriving.

The MIT Media Laboratory conducted a study following 106 subjects, students
and stuff in an institute, who used mobile phones with preinstalled software that
can record all activities on their phones from July 2004 to June 2005 [Eagle, Pent-
land and Lazer (2009)]. A natural question of interest is whether there is any
change in the phone-call pattern among these people over time. This is one way to
assess their friendship along time.

We bin the phone calls by day, and for each day, construct a phone-call network
with the subjects as nodes and a directed edge pointing from subject i to subject j
if subject i called subject j on that day. We encode the directed network of each
day by an adjacency matrix, with 1 for element [i, j] if there is a directed edge
pointing from subject i to subject j, and O otherwise. Let M; be the 106 x 106
adjacency matrix on day i. We consider two distance measures defined as:

(1) the number of different entries: ||M; — M ; |2, where || - |  means the Frobe-
nius norm of a matrix,
(2) the number of different entries, normalized by the geometric mean of the

. M;—M; |3
total edges in each day: m
i J

For this dataset, since there is no further information to tell whether there is any
change-point for the first few observations, we applied the offline change-point
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FI1G. 3. Zmax for the network data based on two distances. The horizontal line in each plot is the
threshold b such that Exo (T (b)) = 10,000. The vertical lines are the valid stopping times.

detection method in Chen and Zhang (2015) on the first 50 days/observations.
No change-point was found for either distance measure. So we treat the first 50
observations as historical observations. We let L = 50, ng = 3 and determine the
threshold based on (4.17).

Figure 3 plots Zmax(n) = max,_ {no<t<n—no ZL|y(t, n) against n, the index
of days, based on the two distances. The detection thresholds for the two dis-
tances are b = 3.92 and b = 3.98, respectively. Since multiple stopping times
might be called for one change-point, we disregard time » if max(Zmax(n — 5),
Zmax(n —4),...,Zmax(n — 1)) > b, that is, we consider them to be caused by the
same event. We call the remaining stopping times the “candidate stopping times.”
Then three candidate stopping times for distance 1 and six candidate stopping
times for distance 2 are found. They are summarized in Table 3, together with
their nearby academic events.

From Table 3, we see that the proposed method based on either distance finds
change-points at around the beginning of the Fall term, the end of the Fall term,
and the beginning of the Spring term. The proposed method using distance 2 finds
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Valid stopping times and their nearby academic events

Distance 1

Distance 2

Nearby academic event™®

n = 66: 2004/9/23
n =167:2005/1/2
n = 198: 2005/2/2

n = 60: 2004/9/17
n = 140: 2004/12/6
n = 194: 2005/1/29
n = 229: 2005/3/5
n = 252:2005/3/28
n = 275:2005/4/20

9/9: First day of class for Fall term

12/18: Last day of class for Fall term

2/2: First day of class for Spring term
3/5: Registration deadline for Spring term
3/21: Spring vacation

4/21: Drop deadline for Spring term

*The dates of the academic events are from the 2015-2016 academic calendar of MIT as the 2004—
2005 academic calendar of MIT cannot be found online.

additional change-points in the middle of the Spring term. These are all reasonable
times to have some significant call pattern changes.

One may wonder if these change-points could be found by a 1-dimensional sum-
mary statistic. We plot in Figure 4 the number of edges in each network over time.
We could see clearly the change-points at around the beginning of the Fall term and
the end of the Fall term, reflected by the change of the call volume. Starting from
the winter break (n = 160), the call volume stabilizes. There is a slight call volume
decrease starting from the spring vacation (at around n = 250). However, the call
volumes from n = 160 toward n = 250 are quite similar, and there is no significant
change within this period. For example, we apply the function cpt.meanvar() in
R package changepoint, a I-dimensional change-point detection approach for
detecting either mean or variance change, to this segment of data and no change-
point is found. Hence, there is no significant change in the call volume transiting
from the winter break to the Spring term.

On the other hand, the proposed method on either distance finds the change-
point at the beginning of Spring term (around n = 198), indicating that there are
some structural changes in the phone-call network which would not be captured
by only examining the call volume. Also, since distance 2 is normalized by the

Number of edges
10 20 30
L

0

FI1G. 4. Number of edges in the phone-call network for each day.
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total number of edges in each network, there are probably structural changes in
the phone-call network besides call volume change in the other five change-points
detected based on distance 2.

For further details on what the changes are, one could pick some networks be-
fore and after the change-point and conduct more detailed comparisons. Moreover,
if one is interested in some specific characteristics of the network, a distance re-
flecting such characteristics can be used for the proposed method.

REMARK 6.1. This phone-call network example is for illustration. The pro-
posed method will be more useful in real data applications where data are indeed
being collected (not completely collected at the time of the analysis) and the ob-
servations cannot be characterized through a simple model, such as a long vector
with unknown structures among the elements, a combination of quantitative and
qualitative components, a networks, or an image, with the type of change not spec-
ified.

7. Discussion. In the section, we briefly discuss the choice of k, the number
of NNs to be included in the test, how the test works for gradual changes, and
possible extensions of the tests to other graphs.

7.1. Choice of k. Heuristically, if we choose a very small value of k, some
useful similarity information among the observations is not used by the test. We
see from Table 2 that the power of the test increases from 1-NN to 5-NN. On the
other hand, if we set k to be too large, it may include some irrelevant information,
which would also harm the power.

Figure 5 plots the power of the test as k varies. The different symbols cor-
responds to different dimensions of the observations. For each dimension, the
amount of the change is fixed and only k varies. The amount of the change for each
dimension is chosen so that the highest power is around 0.8. We can see clearly
from the plot the relation between the power and k: The power first increases as
k increases and becomes steady for a wide range of k’s and then decreases as k
increases. Therefore, the optimal k£ should be chosen before the test reaches the
plateau to achieve a high power and low computation time at the same time. An-
other nice thing exhibited by the plot is that the dimension of the observations does
not play a significant role in the choice of k. The profiles for different dimensions,
from d = 10 to d = 10,000, are almost the same. If we increase the strength of the
signal (Figure 6), the whole curve shifts upward, while the profiles for different
dimensions still remain the same.

When we set L to be larger (Figure 7, L = 200, versus Figure 5, L = 50),
a similar shape is observed. It is worthwhile to note that the power of the test
increases dramatically as L increase: For d = 1000, the power achieved by A =
4.5 for L = 50 is achieved at A = 2.2 for L = 200. If we set A =4 for L = 200,
the power is almost 100% for 3-NN and 5-NN (shown as circles in Figure 7).
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FIG. 5. Power of the test based on k-NN for detecting change-points in sequences of multivariate
normal data over a range of dimensions: d = 10 (black circle), d = 100 (blue square), d = 1000
(purple triangle) and d = 10,000 (red star). The change is a shift in mean with the Ly distance
between the means before and after the change A: A =1.7 (d =10), A =2.7 (d =100), A =4.5
(d = 1000) and A =8 (d = 10,000). The parameter L is set to be 50, and the power is estimated
through 1000 simulation runs.
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FIG. 6. The same set up as in Figure 5 while the strength of the signal is increased for each
dimension: A =2 (d =10), A =3 (d =100), A =5 (d = 1000) and A =10 (d = 10,000).
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FI1G. 7. The same set up as in Figure 5 while L is set to be 200. The dimension of the observations
in the sequence is 1000.

In practice, for high-dimensional data or non-Euclidean data, sometimes, only
large changes may be of interest, then a relative small k£ would be preferred as large
k may detect small changes. On the other hand, if all small changes are of interest,
then a relatively large k would be recommended. Also, since the statistics are easy
and fast to compute, it might be helpful to run the detection for a number of k’s
simultaneously.

7.2. Gradual change. In some applications, the change may happen gradually
rather than abruptly. Even though the proposed method is designed for detecting
abrupt changes, it also works for gradual change as long as the change per unit
time is relatively strong.

Figure 8 plots the power of the test based on 5-NN for a change of mean. In
all scenarios, the L, distance between the mean before the change and the mean
after the change is 3. However, the change could take more than one unit of time
to finish. For example, if the “gradual change length” is 10, then ||[E(Y;49) —
E(Y.—1)|lo =3 where t is the time the change starts to happen. For simplicity, we
let the change speed to be the same over the gradual change period. We see that
the power decreases as the change takes longer for the same amount of change.
However, the decrease in power is not too bad if the length of the change does not
take too long to finalize. For example, when the “gradual change length” is 20,
the power is 0.64, about 80% of the power if the same amount of change happens
abruptly.

7.3. Possible extensions to other graphs. In this work, the focus is on the tests
based on k-NNs. However, similar tests could be defined for other types of similar-
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FI1G. 8. The power of the test based on 5-NN for the same amount of change in the mean with
the change speed differs. The “gradual change length” is the amount of time the change takes to
finalize. The longer the gradual change length, the slower the change happens. The dimension of
the observations in the sequence is 1000 and L is set to be 200. The power is estimated from 1000
simulation runs and we call the detection successful if it detects the change within 100 observations
Jfrom the change starts to happen.

ity graphs. For example, we could constructed the minimum spanning tree (MST)
constructed on the most recent L observations for each n, which is a graph that
connects to the most recent L observations with the sum of the distances on the
edges minimized, and denote the graph to be M,,. Then R (¢,n) could be de-
fined as the number of edges in M,,, connecting observations before ¢ and after
t, and the standardization could be done correspondingly. Most of the theoretical
treatments in this work could be adopted while we need to figure out the dynam-
ics of the MSTs along time. In particular, for M,,, and M,,, we would need to
figure out the expected number of edges that are shared by the two graphs, and
the expected number of pairs of edges with one from M,,, and the other from
M,,, that share a node. These expectations are not as straightforwardly obtain-
able as the counterparts in k-NN, but they are tractable. Also, if other ways of the
constructing the similarity graph are used rather than the MST, similar arguments
follows. Hence, this current work sets up the basics for graph-based methods for
online change-point detection and the special treatments for different similarity
graphs are more or less graph-specific. These specific treatments for other classic
similarity graphs will be carried out in future works.

8. Conclusion. We propose a new framework for detecting change-points se-
quentially as data are generated. Motivated by the complexity of observations in
many real applications, we propose to use nearest neighbor information among the
observations for sequential detection. These information can usually be provided
by domain experts, and thus the proposed method has a wide range of applications.
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We explored several stopping rules and the one based on the most recent obser-
vations is recommended as it has the desirable property that the detection power is
the same across the time. The asymptotic properties of this stopping rule is stud-
ied and the analytic approximation for calculating the average run length works
well for finite samples after skewness correction. The proposed test exhibits higher
power than the parametric method based on normal theory when the dimension of
the data is high and/or distributional assumptions for the parametric method are
violated. The proposed method is illustrated on the analysis of friendship network
data over time and some interesting insights are obtained.
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SUPPLEMENTARY MATERIAL

Proofs for theorems (DOI: 10.1214/18-A0S1718SUPP; .pdf). This supple-
ment contains proofs for Theorem 4.2 and Theorem 4.4.
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