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ARTICLE INFO ABSTRACT

Keywords: Cancer is in general not a result of an abnormality of a single gene but a consequence of changes in many genes,
Edge-count test it is therefore of great importance to understand the roles of different oncogenic and tumor suppressor pathways
Tumorigenesis in tumorigenesis. In recent years, there have been many computational models developed to study the genetic

Serous ovarian cancer
Pathway analysis
The Cancer Genome Atlas

alterations of different pathways in the evolutionary process of cancer. However, most of the methods are
knowledge-based enrichment analyses and inflexible to analyze user-defined pathways or gene sets. In this
paper, we develop a nonparametric and data-driven approach to testing for the dynamic changes of pathways
over the cancer progression. Our method is based on an expansion and refinement of the pathway being studied,
followed by a graph-based multivariate test, which is very easy to implement in practice. The new test is applied
to the rich Cancer Genome Atlas data to study the (epi)genetic alterations of 186 KEGG pathways in the de-
velopment of serous ovarian cancer. To make use of the comprehensive data, we incorporate three data types in
the analysis representing gene expression level, copy number and DNA methylation level. Our analysis suggests a
list of nine pathways that are closely associated with serous ovarian cancer progression, including cell cycle,
ERBB, JAK-STAT signaling and p53 signaling pathways. By pairwise tests, we found that most of the identified
pathways contribute only to a particular transition step. For instance, the cell cycle and ERBB pathways play key
roles in the early-stage transition, while the ECM receptor and apoptosis pathways contribute to the progression
from stage III to stage IV. The proposed computational pipeline is powerful in detecting important pathways and
gene sets that drive cancers at certain stage(s). It offers new insights into the understanding of molecular me-
chanism of cancer initiation and progression.

1. Background

Cancer is a heterogeneous disease driven by abnormality of multiple
genetic or epigenetic factors, such as gene expression level, DNA me-
thylation level, somatic mutation and copy number variation. Over the
past decades, many individual genes have been discovered to govern
important functions in different cancer types, for instance, genes
BRCA1, BRCA2, PIK3C and GATA3 for breast cancer (The Cancer
Genome Atlas Research and Network, 2008), genes MYC, RIT1, ECFR
and ERBB2 for prostate cancer (The Cancer Genome Atlas Research and
Network, 2014). These individual genes were usually identified through
univariate two-sample comparison between normal and tumor groups.
Although the single-gene analyses are powerful in detecting important

oncogenes and suppressors as potential treatment targets, they pro-
vided limited insights into the molecular mechanisms of tumorigenesis,
as it omitted all regulatory relations between genes (Ivshina et al.,
2006; Ma et al., 2003; Hoek et al., 2006; Talantov et al., 2005; Smith
et al., 2005; Tomlins et al., 2007; Pancione et al., 2012; Subramanian
et al., 2005). From the view of systems biology, a simultaneous analysis
of a gene set or a genetic pathway might provide more clear functional
insight into cause of the phenotypic changes. There have been many
recently developed tools for gene set analysis, including EnrichNet
(Glaab et al., 2012), GAGE (Luo et al., 2009), CSEA (Al-Shahrour et al.,
2007), PAGE (Kim and Volsky, 2005), MEGO (Tu et al., 2005), Catmap
(Breslin et al., 2004), ErmineJ (Lee et al., 2005), and GeneTrail (Backes
et al., 2007). Most of these approaches, however, are knowledge-based
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and inflexible to user-defined pathways. One exception is Edelman et al.
(2008), which introduced a data-driven approach to modeling cancer
progression via pathway dependencies and flexible to any user-defined
pathways.

Unlike the knowledge-based enrichment analysis, Edelman et al.'s
method is essentially a hierarchical analysis that targets pathways re-
levant to particular transition between cancer stages, for instance, from
normal to primary tumor, and from primary tumor to metastasis.
However, Edelman's approach relied on several computationally in-
tensive steps, such as regularized multi-task learning, inverse regres-
sion, learning gradients as well as leave-one-out cross validation, which
greatly limited its application to large-scale data. To this end, we pro-
posed an efficient and powerful test based on inter-point distance to
identify cancer-driving pathways. Similar as Edelman's method, our
method is purely data-driven and capable of dealing with new path-
ways adapted to certain tissue/disease. In the meanwhile, the test is
model-free and very easy to implement as it only requires few simple
calculations, such as minimum spanning tree and chi-square test.

The rest of the paper is structured as follows: In Section 2, we in-
troduce the new test and establish its asymptotic distribution. The finite
sample performance is evaluated via simulations. In Section 3, we apply
the new test to the rich Cancer Genome Atlas data to identify important
pathways that drive serous ovarian cancer. We discuss the strengths and
shortcomings of our approach in Section 4 and conclude this paper in
Section 5. Technical proof about the asymptotic distribution of the
edge-count test is provided in the Appendix.

2. Methods
2.1. Problem formulation

Detecting cancer-driving pathways is essentially detecting differ-
entially acted pathways between cancer stages. Here, we formulate it as
a statistical problem of testing the equality of two or multiple joint
distributions, where each random variable represents the expression
level of one gene. To be precise, we leti € {1, 2, ...,p} be the index for
cancer stages, and (X{”, ..,X{?) be the expression levels of d genes in
the pathway being studied, with a joint distribution F®. Given n; i.i.d.
observations in stage i, (xgi), x(zi), ...,xﬁi)), where xg) = (x,g), x,giz), ...,xéfj)),
we concern the following hypothesis testing:

Hy: FO = FO=...=F®),
Hy: FO % FY, forsome j,j',1<j,j <p.

For a particular transition step, from stage i to stage i+ 1
@i=1, ..,p — 1), we could conduct the following pairwise test, which is
a special case when p = 2:

Hy: FO = F(H'l),
H,: FO 3 Fl+D,

2.2. Graph-based multivariate test

The two-sample multivariate tests in the statistics literature can be
roughly classified into two categories, namely the parametric and
nonparametric multivariate tests. Hotelling's T2 test is a simple and
widely used test for comparing the mean vectors of two multivariate
Gaussian distributed populations, which generally works well for low-
dimension case. There are also numerous tests recently developed for
high dimensions (Srivastava et al., 2013; Cai et al., 2014; Gregory et al.,
2015), which have mostly focused on the equality of mean vectors.
Unlike the parametric tests, the nonparametric tests directly test the
equality of two multivariate distributions, for instance, Kolmogorov-
Smirnov (KS) test (Lopes et al., 2008) and edge-count test (Friedman
and Rafsky, 1979; Rosenbaum, 2005), which are two popular families
of such test, but both have practical limitations in real world
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applications. The KS test for two-sample comparison quantifies a dis-
tance between the empirical distribution functions of two samples. The
null distribution of this statistic is calculated under the null hypothesis
that the samples are drawn from the same distribution. KS test is known
to be very conservative, i.e., the null hypothesis is too often not re-
jected. Moreover, by the brute force algorithm, the implementation of
multi-dimensional KS test can be prohibitively computationally in-
tensive. Edge-count tests are easy to implement but they could be
problematic under certain location and scale alternatives, as pointed
out by Chen and Friedman (2017). The rationale of the edge count test
is that if two groups have different distributions, samples would be
preferentially closer to others from the same group than those from the
other group in a similarity graph, therefore the edges in the graph
would be more likely to connect samples from the same group. The test
rejects the null if the number of between-group edges is significantly
less than expected. Chen and Friedman (2017) developed a modified
edge-count test and established its asymptotic distribution under two
samples. This test works properly under different alternatives and ex-
hibits substantial power gains over existing edge-count tests. Similar as
other edge-count tests, their test is based upon a similarity graph con-
structed over the pooled samples from different groups. For instance,
one could use a minimum spanning tree (MST, Cheriton and Tarjan,
2006) based on euclidean distance as the similarity graph.

In order to test the hypotheses in Section 2.1, we extended Chen and
Friedman's test to a multi-sample case and derived the asymptotic result
for p-value approximation. We began with pooling samples from all p
groups and indexing them by 1, 2, ..,N = Y}? | n;. A similarity graph,
denoted by G, was then constructed on the pooled observations. Let R;
be the number of edges in the graph that connect observations within
sample i. We worked under the permutation null distribution, which

places U(an N, .. np) probability on each of the (rIX My .. np) choices

of n; out of the total N observations for group i, i = 1, ...,p, with each
observation being chosen once. When there is no further specification,
we denote by Pp, Ep, Varp, Covp probability, expectation, variance, and
covariance, respectively, under the permutation null distribution.

It is not hard to show that:

ni(n—1) a

E ) = :
p(R) = IGI = = o o

ni(n — D — 2)
NN - 1)(N-2)
ni(n — D — 2)(n; — 3) A 2

Vab(R) = u;(1 — u;) + 2C + (IGI(IGI = 1)

-20% o,
(N = 1N —=2)(N-3) ()]
Cove(R., R) = (IGI(IGI — 1) — 2C) ;i(ﬁ("ilg(ll\?(n"zg(i )
- - 3
- wpy,  fori #j, 3)

where |Gl is the number of edges in graph G, and C = % ZkN:1 IGxI? — |Gl
with Gy being the subgraph in G that includes all edge(s) that connect to
node k, so C is the number of edge pairs that share a common node in G.
We consider the following test statistic

R -
| R —
S:=(Ri — py, Ry — pyy s Ry — 1, )T7" o 2
Ry — {4, @

Theorem 1. For an edge e € G, let

A, = {e} U {¢’ € G: ¢’and e share anode},
B,=A,uU{e" € G:3 ¢ € A,, suchthate”and e’share anode}.

A, = {e} U {¢’ € G: ¢’and e share anode},
B.,=A,u{e" € G:3 ¢ € A,, suchthate”and e’share a node}.
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If 1G]

O(N), X, IGL? — 4IGR/N = O(N), 3
o(N'9), lim n;/N = 2; € (0, 1)
under the permutatigon null.

v |AclIBel, then S _’sz

2.3. Simulation study I: Accuracy of p-value approximation

We conducted a simulation study under p = 4 to evaluate the finite
performance of the p-value approximation under moderate sample
sizes. In particular, we compared the approximate p-value with a per-
mutation p-value from 10,000 permutations, under different dimen-
sions (d = 10, 100) and sample sizes (N =80, n; = n, = n3 = ny = 20,
N = 140, n; = n, = 20, n3 = ny = 50 and N =200,n =n, =
n3 = ny = 50). The data were generated from p-dimension Gaussian
distribution with zero mean vector and identical covariance matrix. A
k-MST (k = 1, 3, 5) was then constructed over the pooled observations,
based on which the test statistics S could be calculated. The k-MST is
defined as the union of the first k disjoint minimum spanning trees and
it can be obtained by several fast algorithms such as Chazelle's algo-
rithm (Chazelle, 2000). The approximate p-value can be obtained as
follows:

p—value = Pr(y%_, > S),

which is to be compared with permutation p-value from 10,000 per-
mutations.

Figs. 1 and 2 summarized the accuracy of the approximate p-values
(approximate p-value minus permutation p-value) under different di-
mensions, sample sizes, and similarity graphs. It can be seen that under
all conditions, the approximate p-values tend to be slightly conservative
and increasing dimension leads to a slightly decreasing accuracy. In
addition, using a denser similarity graph, e.g., 3-MST or 5-MST can
slightly improve the p-value approximation. A sample size such that
min; n; > 20 seems to be enough in practice, in order to approximate
p-value with chi-square distribution.

2.4. Simulation study II: Power comparison with other tests

Our second simulation study compared the empirical statistical
power of the proposed multi-sample edge-count test with three similar
tests studied in Chen and Friedman (2017):

*Thi= Z?:l IR; —
4
o= IR — /=y
e = Z?ﬂ (Ri — )%,
where R; and y; represent the number of edges connecting samples
within group i and its expectation. We consider four phenotypes and a

simulated pathway with 100 nodes. Assuming independent nodes, we
generated the data from a multivariate Gaussian distribution of

n1=n2=n3=n4=20

n1=n2=50,n3=n4=20
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dimension 100 for each group, where the mean vector of group i is ¢;
and the covariance matrix is an identity matrix. We set
¢;=0,c,=01,¢c;=0.2, ¢, =—0.3, and varied the sample size from
100 to 500. Fig. 3 showed the comparison of the four tests in terms of
the empirical statistical power, where it can be seen that our proposed
test outperforms the other three test statistics.

3. Results

In this section, we applied the multi-sample edge-count test to the
rich TCGA data (The Cancer Genome Atlas Research and Network,
2008, 2014) and studied the roles of 186 KEGG pathways (http://www.
genome.jp/keg) in the progression of serous ovarian cancer. In TCGA,
each subject is represented by multiple molecular data types including
gene expression, exon expression, genotype (SNP), MicroRNA expres-
sion, copy number variation (CNV), somatic mutation, DNA methyla-
tion, as well as a complete clinical record including tumor stage, sur-
vival, age, race, outcomes of debulking surgery and chemotherapy. To
take advantage of this comprehensive data, we considered three im-
portant data types in our analysis including gene expression level, CNV
and DNA methylation. Other data types could also be incorporated,
without causing too much calculation.

3.1. Data preprocessing

The TCGA ovarian cancer data contains information of 17,813 genes
on 565 subjects. Based on the clinical classification, four groups (stages
I, II, III, IV) contain 16, 27, 438 and 84 subjects, respectively. The
transcriptome profiling data, CNV data as well as the methylation data
were downloaded through Genomic Data Commons (GDC) portal in
January 2017. Out of 17,813 genes, 12,831 had methylation level
measured for each CpG island located in their promoter regions. For
genes containing more than one CpG islands, we took the average as the
methylation level as suggested by The Cancer Genome Atlas Research
and Network (2008). The copy number was measured on each chro-
mosome segment by circular binary segmentation (CBS). A gene was
assigned the “seg.mean” value of the segment that it falls in. If a gene
spans two chromosomal segments, we took the average of the “seg.-
mean” value as its overall copy number. We normalized each data type
for each gene by subtracting the median and dividing by the standard
deviation to avoid possible dominance by any of these three data types.

The expression level of each gene was quantified by the count of
reads mapped to the gene. The quantifications were done by software
HTSeq of version 0.9.1 (Anders et al., 2015) and the count data were
log-transformed for further processing. In addition, we removed the
effects due to different age groups and batches using a median-
matching and variance-matching strategy (Hsu et al., 2012; Zhang
et al., 2014). For example, the batch effect can be removed in the fol-
lowing way:

n1=n2=n3=n4=50

0.04
!
0.04
!

0.02
!
0.02
!

— N

0.04
!

0.02
!

0.00
|

|
T

Diff between perm p and asymp p

-0.02
-0.02

0.04
L

0.04
L

Diff between perm p and asymp p
0.00
1
T
[}
I
]
Diff between perm p and asymp p
0.00
1
T
[}
1
]

-0.02

!

0.04
L

T T T ' T
1-MST 3-MST 5-MST 1-MST

T T ' T T T
3-MST 5-MST 1-MST 3-MST 5-MST

Fig. 1. Boxplots of the difference between approximate p-value and permutation p-value (approximate p minus permutation p), under different sample sizes and

similarity graph construction (1-MST, 3-MST and 5-MST). Dimension d is 10.
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* 6gi
gijk =M + (gijk - Mj)A_s
Gy
ij

where g, refers to the expression value for gene i from sample k in
batch j (j=1,2, ..,J;k=1,2, ..,n), My represents the median of
8 = (&> - &jn)> M refers to the median of g; = (g, -...), & and 6'831'
stand for the standard deviations of g and g; respectively. Same
strategy was used for DNA methylation data and CNV data.

3.2. Pathway expansion and refinement

Each of the 186 pathways was expanded by integrating all the three
data types. For instance, if gene i was in the pathway being studied,
then its methylation level and CNV level were added to the pathways as
two new nodes. As it is well known that the expression level of a gene
could be greatly affected by genetic or epigenetic changes such as copy
number variation and DNA methylation, the inclusion of these two
factors may provide insights about the upstream cause of abnormal
expression.

To adapt the KEGG pathways to our context, we further refined the
pathways by removing genes that are irrelevant to phenotypic changes.
Similar as in Edelman's et al. (2008), an F-test was used to calculate the
p-value of each single gene. A gene was excluded if its p-value exceeds

some predefined threshold. In this analysis, we set the threshold to be
0.1, and the same procedure was applied to the methylation and CNV
data. By the refinement, the sizes of 186 KEGG pathways were greatly
reduced, for instance, the ERBB pathway was reduced from 87 genes to
29 genes, and 165 out of 174 methylation/CNV nodes were excluded.

3.3. Cancer-driving pathways

For each of the 186 pathways, we first conducted the multi-sample
test to obtain the p-value for the whole process of development. By a
Benjamini-Hochberg (BH) procedure with level 0.05, a set of nine
pathways were identified, including some well-studied cancer-related
pathways such as cell cycle, ERBB, p53 signaling, and JAK-STAT sig-
naling pathways. For each of the identified pathways, a two-sample test
was further conducted in order to investigate the roles of these path-
ways in each particular transition step (I-1II, II=III, III-IV). Table 1
lists the nine cancer-driving pathways with p-values for the entire
process and each particular transition. Interestingly, we found that most
of these pathways contributed only to a particular step (the ERBB
pathway is an exception, which has significant p-values in both tran-
sition I=II and transition II-III). For instance, five pathways were
found to contribute only to the early-stage transition, three pathways
contribute only to the high-grade transition. Six pathways, including
ERBB, cell cycle, prostate cancer, TGF 8 signaling, pancreatic cancer
and p53 signaling pathways, were found to significantly contribute to
the transition I=II, which confirmed some existing studies. For in-
stance, the ERBB pathway contains important proto-oncogenes and
tumor suppressors such as PIK3C, KRAS and STATS5. It is known that the
ERBB pathway is closely related to the development of a wide variety of
cancers. Especially, the excessive signaling of growth factor receptors
ERBBI1 and ERBB?2 are critical factors in the malignancy of solid tumor,
and several studies have reported the critical role of ERBB in the early

Table 1

Pathways that drive ovarian cancer progression.
Pathway p (overall) p (I=1D) p (II~111) p (II=1V)
1. ERBB 4.4x1077 7.2x107°  3.8x107%  2.0x107!
2. Cell cycle 9.6x1077 4.0x10°° 5.3x10°° 9.4x10°2
3. Prostate cancer 41x107¢ 25x107* 1.1x107'  3.0x107?
4. ECM receptor 1.0x10°° 1.7x107! 7.7x1071 6.2x107°
5. TGF g signaling 3.9x107* 27x107°%  6.1x107! 7.9x107*
6. Apoptosis 6.2x104 1.8x107! 8.5x107! 1.9x10°3
7. Pancreatic cancer 6.9x107* 33x107% 7.2x107%  6.0x107!
8. P53 signaling 7.5x107%  91x107* 4.0x107' 55x107*
9. JAK-STAT signaling ~ 1.4x107%  49x107!  82x10"' 16x10°?

Presented in the table is the list of pathways identified by the new test. The
columns represent pathway name, overall p-value and p-value for each parti-
cular transition step, i.e., [=1I, I[I=1II, III—=IV.
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Fig. 4. Multidimensional scaling (MDS) plot for subjects at stage I and stage II,
based on the refined gene set of ERBB pathway.

progression of ovarian cancer and breast cancer (The Cancer Genome
Atlas Research and Network, 2008; Appert-Collin et al., 2015; Eccles,
2001; Stern, 2000). The cell cycle pathway contains many genes that
co-regulate cell proliferation, including ATM, RB1, CCNE1 and MYC.
Abnormal regulation among these genes may cause the over prolifera-
tion of cells and an accumulation of tumor cell numbers (The Cancer
Genome Atlas Research and Network, 2008). One novel finding from
our analysis is the critical roles of ECM receptor pathway in the late-
stage transition (III=IV). The extracellular matrix (ECM) is a major
component of the local microenvironment in a cancer cell, which play
important roles in cancer development (Lu et al., 2012).

Figs. 4 and 5 show the multidimensional scaling (MDS) plots (with
Manhattan distance) using stage I and stage II samples, based on the

Cell cycle pathway, I->lI
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Fig. 5. Multidimensional scaling (MDS) plot for subjects at stage I and stage II,
based on the refined gene set of cell cycle pathway.
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refined gene sets of ERBB pathway (p-value = 7.2 X 10~>) and cell cycle
pathway (p-value = 4.0 x 107%), respectively. It can be seen that both
pathways well differentiate the two groups, indicating their substantial
involvement in this particular step of transition. Figs. 6 and 7 display
the MDS plots for stage III and stage IV samples, based on the refined
gene sets of ECM receptor pathway (p-value = 6.2 X 10~°) and apop-
tosis pathway (p-value =1.9 x 1073), respectively. As compared to
-1V transition, the transition from stage I to stage II is more sub-
stantial, which partially confirm some existing studies and clinical
statistics (The Cancer Genome Atlas Research and Network, 2011;
Lheureux et al., 2019; Chien and Poole, 2017). For instance, the 5-year
survival rate for stage-I ovarian cancer patients is above 90%, while the
rate for stage-II cancer patients drop below 30% (The Cancer Genome
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Fig. 9. Multidimensional scaling (MDS) plot for subjects at stage III and stage
IV, based on the refined gene set of pancreatic cancer pathway.

Atlas Research and Network, 2011), suggesting an intrinsic genetic/
epigenetic difference between these two groups. As a contrast, we also
presented two MDS plots with insignificant p-values in Fig. 8
(p-value = 0.3, prostate cancer pathway) and Fig. 9 (p-value = 0.6,
pancreatic cancer pathway).

After identifying these pathways, we further adopted a logistic
Bayesian network model (Zhang et al., 2014) to predict the regulatory
relations of the genes. A coordinate descent algorithm was employed to
solve the penalized likelihood function and the penalizing constant A
was tuned by a likelihood method suggested by Zhang et al. (2014).
Figs. 10 and 11 show the predicted Bayesian networks for the cell cycle
pathway and ERBB pathway. It is noteworthy that in this analysis, each
gene may have up to three measures including expression level,
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methylation level and CNV, and we treated them as three separate
variables indicating by different colors. For instance, in Fig. 9, there is
an edge from SFN (green) to SFN (yellow), which indicates that the
methylation level of gene SFN directly affects its expression level. These
directed networks may provide more clues about how the cancer-
driving genes regulate each other, and together change the phenotype.
For instance, in the cell cycle pathway (Fig. 9), we found gene CDC20 is
a driver gene (high outdegree and high centrality), regulating eight
other cancer-driving genes in the network. Intervention on this gene
may result in a global change of this network.

4. Discussion

Gene set analyses hold great promise in elucidating the molecular
basis of complex diseases such as cancers. Nevertheless, most of the
existing gene set analyses are knowledge-based and relied on the en-
richment analysis of the pathways defined in existing databases. The
main advantage of the proposed method over most existing analyses is
the feasibility to user-defined gene sets, because the existing methods
are mostly enrichment based, where the enrichment score assigned to a
pathway depends on existing knowledge database, e.g., the biological
function of each gene/protein and the interactions between genes/
proteins reported in the literature. It is infeasible to incorporate new
gene sets, for instance, the gene sets with different data types such as
DNA methylation, CNV or somatic mutation. The KEGG pathways that
we used in this paper can be viewed as newly defined gene sets after
pathway refinement and expansion.

The new test is very easy to implement in practice as it only requires
the calculation of a similarity graph over the observations. In practice,
one can apply our test to large data set as an efficient searching tool for
phenotype-changing pathways, as the computation is simple and effi-
cient. Moreover, under the permutation null and some mild conditions,
the test statistics converges to a chi-square distribution and sample size
in tens for each group is generally good enough for p-value approx-
imation, as we show in the simulation study.

The new test also has some limitations. First, the new test only
targets for the difference of multiple joint distributions, but cannot
detect the direction of changes. A follow-up test or a graphical visua-
lization will be needed in order to tell the direction of changes, i.e., the
up-regulation or down-regulation. For example, one could calculate an
enrichment score for the pathway being studied as in existing gene set
analyses or use a heatmap of the gene set.

Second, as we illustrated in the TCGA application, the performance
of the new method relies on a refinement of the gene set, as the ex-
istence of irrelevant genes may greatly affect the identification of genes
that differentiate phenotypes. In a case that the majority of a gene set
are uncorrelated with phenotypic change, the test will fail to identify
that gene set. One possible way to solve this problem is redefining
distance metric, for example, one can consider to use some weighted
distance measures or the £,-norm measures that are more sensitive to a
change in single gene or a small proportion of genes.

5. Conclusions

In this work, we introduced a simple but powerful multivariate test
to identify (epi)genetic pathways that drive the cancer progression.
Different from most existing gene set analyses, our test is data-driven
and nonparametric, with allowance of user-defined gene sets or path-
ways. As we see in the method section, this graph-based test can be
easily implemented for high dimensional problems. Besides the cancer
progression application presented in this paper, the new test can be also
applied to many other problems. For instance, one can test for pathways
that differentiate cancer subtypes.
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Fig. 11. Causal network for the refined ERBB pathway, predicted by the logistic
Bayesian network model introduced in Zhang et al. (2014), where each yellow
node represents the expression level of a gene, each green node represents the
overall methylation level of a gene, and each blue node represents the copy
number of a gene. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Appendix: Detailed proof for asymptotic distribution of the test statistics

Proof. To prove the theorem, we take one step back to study the statistic under the bootstrap null distribution, which is defined as follows: For each
observation, we assign it to be from sample i with probability n;/N independently of other observations. Let V; be the number of observations that are
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assigned to be from sample i. Then, conditioning on {V; = n;}i_, .. ,, the bootstrap null distribution becomes the permutation null distribution. We use
Pg, Eg, Var to denote the probability, expectation, and variance under the bootstrap null distribution, respectively.

We have

2
n; A g
Eg(R) = N—12|G| =M,

2(N — n)? 3(N = n) <
Van(R) = "¢ = 61 4 (N4 "GP 2 (6P
k=1

Let

o o
Vi—n

JNAiN (A = AiN) ’

where A; y = n;/N. Under the conditions in the theorem, as N — oo, we can prove the following results:

(1) Under the bootstrap null, (WIB, WZB, Wg, Uy, ...,U,—1) becomes multivariate normal distributed and the covariance matrix of (U3, ..., U,—1) is of
positive definite.

UiB #iB —Hi f
2 o G B — 0, where ¢;'s are constants.
t i
(3) rank(Z) = p.
Given (1), the conditional distribution of (WlB, WZB, s Wg’)’ given (U, ...,Up—,) becomes a multivariate Gaussian distribution under the boostrap null

distribution as N — oo. Since the permutation null distribution is equivalent to the bootstrap null distribution given U;=0,i=1, ..,p — 1,
(WlB, WZB,...,W,?)’ becomes a multivariate Gaussian distribution under the permutation null distribution as N — oo. Since

B B
W = —’(WiB + l—l)
(o]} e
given (2), we have (Wi, W;,...,W,)’ becomes a multivariate Gaussian distribution under the permutation null distribution as N — . Together with
(3), we have the conclusion in the theorem.

Assumption 1. Chen and Shao, 2005, p. 17
For each i € J there exists K; C L; C J such that & is independent of £ x¢ and &y, is independent of &, ..
We will use the following theorem in proving Theorem 1.

Theorem 2. Chen and Shao, 2005, Theorem 3.4Under Assumption 1, we have

sup |[ER(V) — ER(Z)I < 6,
heLip(1)

where Lip(1) = {h: R - R; ||W'|| < 1}, Z has N(0, 1) distribution and

5=2 ), (Egn6l+ EEn)E6D) + Y Elgn?|
ieg i€eg

with 7, = ZJ. Ki § and 6, = Zje L &, where K; and L; are defined in Assumption 1.For e € G, let
P I — A

gezzai =l B l,N,
i=1 f

where {J, = i} means the edge connects two observations from sample i.For k € {1, ...,N}, let
p—1 I, _i— A

=y b IN
o1 VNANA = AiN)

where {g, = i} means node k is from sample i.For e = (e_, e;) € G, let

K, =A, Ule, 8+},

L, = B, U {nodesinA,}.

Then K, and L, satisfy Assumption 1.For k € {1, ..,N}, let

Ky ={e € G uli},

Ly = {e € Gk} U {nodesinG}.

Then K; and L, satisfy Assumption 1.For j € 7, let 7= ZkeKj & 6 = ZkeLj . By Theorem 2, we have sup IER(W) — Eh(Z)I <§ for

heLip(1)
Z ~ N(0, 1), where
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N
5y L?S(IAEI +2)(IBel + 141 + 1) + 5 ) (1G] + (G| + 1)

Since o = O(/N), when A, 1B, = o(N'%), we have § - 0 as N — oo0.We next check the covariance matrix of (U, ..., U,-1). The diagonal elements of

this matrix are all 1's and the off-diagonal element (i, j), i # j is

AiNAjN
Q-0 =48

We next show result (2). Notice that 67 can be re-written as

2_ i — DN —n)(N—n = 1) Gl +
! N(N - 1)(N - 2)(N — 3) N-—n; —

_ N 2
m=2 3Gy _ 40
1 st

N | N(N-1
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IGP

Since IGI, Y, 1G> — 4IGR/N = O(N), let lim IGI/N = ao and lim (3, IGL> — 4IGP/N)/N = by, then
— 00 -

lim 67/N = 27(1 — 2)*(ao + bodi/(1 — 1)),
N-oo
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We next show (3). The diagonal elements of = are ¢?'s. The off-diagonal elements are, for i # j,
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