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ABSTRACT It has recently become evident that the bacterial stringent response is 

regulated by a triphosphate alarmone (pGpp) as well as the canonical tetra- and 

pentaphosphate alarmones ppGpp and pppGpp [together, (p)ppGpp]. Often dis- 

missed in the past as an artifact or degradation product, pGpp has been 

confirmed as a deliberate endpoint of multiple synthetic pathways utilizing GMP, 

(p)ppGpp, or GDP/GTP as precursors. Some early studies concluded that pGpp 

functionally mimics (p)ppGpp and that its biological role is to make alarmone 

metabolism less depend- ent on the guanine energy charge of the cell by 

allowing GMP-dependent synthesis to continue when GDP/GTP has been 

depleted. However, recent reports that pGpp binds unique potential protein 

receptors and is the only alarmone synthesized by the intestinal pathogen 

Clostridioides difficile indicate that pGpp is more than a stand-in for the longer 

alarmones and plays a distinct biological role beyond its functional overlap 

(p)ppGpp. 

KEYWORDS (p)ppGpp, alarmone, bacterial nucleotide signaling, pGpp, 

stringent response 

 

ucleotide alarmones, whose ribose sugar moieties are phosphorylated at two 

sites (Fig. 1), regulate bacterial gene expression and cellular processes. Low 

alarmone concentrations enforce metabolic homeostasis in some species, 

ensuring balanced outputs by related synthetic pathways (1 to 8). Almost all 

bacterial species are capable of mounting the stringent response. The few species 

that are not are mainly obligate intracellular pathogens or endosymbionts that 

colonize very stable environments (9, 10). During the stringent response, a 

detrimental stimulus such as stationary-phase onset, nutrient starvation, cell-

envelope stress, or exposure to antibiotics triggers the rapid synthesis and 

accumulation of guanosine alarmones (11 to 14). These interact with protein or 

RNA effectors to halt “housekeeping” transcriptional activity and cell replication 

and redirect the cell’s resources to crisis response mechanisms. The specific stimuli 

that provoke alarmone synthesis vary widely based on the environmental 

niches and metabolic needs of diverse bacteria (7, 10, 15 to 21). Similarly, the 

effectors that respond to alarmone accumulation can differ greatly between clades 

and species (5, 22). It has recently been determined that many bacteria maintain a 

low but nonzero concentration of alarmones during unstressed growth in 

nutrient-rich media, and that small and/or gradual increases in basal alarmone 

levels can have a profound regulatory effect on metabolism and cell growth (6 

to 8, 23). Some alarmone-regulated genes respond to fluctuations in basal 

l

e

v

e

l

s

 

w

h

i

l

e

 

o

t

h

e

r

s

 

a

r

e

 

a

c

t

i

v

a

t

e

d

 

o

n

l

y

 

b

y

 

t

h

e

 

d

r

a

m

a

t

 
Editor Anthony R. Richardson, University of 

Pittsburgh 

Copyright © 2023 Malik et al. This is an 

open- access article distributed under the 

terms of the Creative Commons Attribution 

4.0 International license. 

Address correspondence to Erin B. Purcell, 

epurcell@odu.edu. 

The authors declare no conflict of interest. 

Published 15 March 2023 

https://doi.org/10.1128/iai.00432-22
https://doi.org/10.1128/iai.00432-22
https://orcid.org/0000-0002-8736-0433
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:epurcell@odu.edu


April 2023 Volume 91 Issue 

4 

10.1128/iai.00432-

22 

2  

ic 

escalations necessary to induce the stringent response (7, 8, 24). 

It was originally thought that the stringent response was mediated by two 

closely related molecules, the “magic spot” nucleotides whose profound effect on 

cellular behavior was apparent well before their chemical structures had been 

defined (25). These molecules were found to be present on autoradiograms of 

separated bacterial cytoplasm only when cells dosed with radioactive phosphate 

were then starved, and 
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FIG 1 Structures and synthesis of guanosine alarmones. Shown are the three guanoine alarmones, pppGpp, ppGpp, and pGpp. Alarmone synthesis 

from GTP/GDP/GMP or (p)ppGpp precursors is catalyzed by synthetase enzymes and alarmone hydrolysis, and modification is catalyzed by hydrolase 

enzymes. Direct synthesis of pGpp from GTP/GDP in Clostridium difficile is omitted for clarity. 

 

were described as even more “sluggish” on chromatograms than GTP (25 to 28) 

and were soon identified as guanosine 39-diphosphate 59-diphosphate 

(guanosine tetra- phosphate or ppGpp) and guanosine 39-diphosphate 59-

triphosphate (guanosine pen- taphosphate or pppGpp) (Fig. 1) (25, 26, 28). 

Together, these canonical alarmones are known as (p)ppGpp. ppGpp and pppGpp 

largely regulate the same processes with a high degree of functional redundancy, 

although some organisms respond more strongly to one form and some 

alarmone-binding protein effectors are specific for the tetraphosphate or 

pentaphosphate forms (29 to 33). 

Alarmones are generated by synthetase enzymes that transfer a pyrophosphate 

from an ATP to the 39-hydroxyl group of a GDP or GTP substrate (Fig. 1). Most 

synthe- tase enzymes will utilize either GDP or GTP as the substrate but have a 

higher affinity for one of the nucleotides (13, 34 to 40). As the ratio of GDP to GTP 

in bacterial cyto- plasm is a dynamic parameter that changes quickly in response 

to nutrient conditions, the relative production of ppGpp and pppGpp could reflect 

substrate availability when alarmone synthesis is activated (26, 29). 

Hyperphosphorylated purine molecules beyond (p)ppGpp have been 

recognized for some time (41). Some synthetases are capable of utilizing ATP as a 

phosphoacceptor as well as a phosphodonor to generate adenosine 39-

diphosphate 59-triphosphate (adeno- sine pentaphosphate or pppApp) (42, 43). A 
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triphosphate guanosine alarmone, guanosine 39-disphosphate 59-monophosphate 

(pGpp), was difficult to detect on early chromato- grams as it migrates very closely 

to GTP, but a third “magic spot” was identified in the cytoplasm of nutrient-

limited Bacillus subtilis in 1979 (27, 44). Pyrophosphotransfer to 
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mono-, di-, and triphosphate adenosine and guanosine molecules has been 

documented for decades, but only (p)ppGpp was consistently detected in vivo and 

conclusively linked to a phenotype, and the small amounts of pGpp detected in 

some assays were easy to dismiss as artifacts or unimportant (41). It has recently 

been confirmed that some synthe- tase enzymes are capable of utilizing GMP as a 

substrate to synthesize pGpp directly (13, 33, 37, 39, 40, 45 to 47). In addition, 

hydrolase enzymes can selectively remove 59-phos- phates from longer 

guanosine alarmones (29, 33, 43, 48 to 50). 

It was initially suggested that the use of GMP as a substrate would enable 

alarmone synthesis to continue when cytoplasmic GDP and GTP have been 

depleted (38, 51, 52). This view positions pGpp as an understudy for the longer 

canonical alarmones, per- haps less potent but capable of performing the same 

role. Indeed, pGpp appears to bind many alarmone effectors with lower affinity 

than (p)ppGpp and to influence mul- tiple processes also regulated by the longer 

alarmones. (31 to 33, 53). However, evi- dence quickly emerged that pGpp is an 

independently active regulator rather than a merely tolerable substitute for 

(p)ppGpp. Synthetases that generate pGpp preferen- tially or exclusively have 

been characterized, and putative effectors that bind pGpp preferentially or 

exclusively have been identified in pulldown assays (31, 39, 40). 

There have been several excellent recent reviews of the bacterial stringent 

response, with comprehensive coverage of the genetic regulons influenced by alar- 

mone levels and the currently characterized alarmone synthetases, hydrolases, and 

protein effectors (20, 30, 54 to 56). Some explicitly limit their scope to (p)ppGpp, 

while others acknowledge the existence of and relative dearth of information 

about pGpp. However, it has become clear that the treatment of pGpp as an 

adjunct alarmone that exists mainly or only to amplify the signals produced by 

(p)ppGpp is incomplete. This review will summarize the current knowledge of 

pGpp metabolism and functionality, with a focus on the evidence that pGpp has 

functions distinct from those of (p)ppGpp and merits consideration as an 

individual signaling molecule as well as a generic (pp)pGpp alarmone. 

 

ALARMONE METABOLISM AND SENSING 

Bifunctional Rel-Spo hydrolases. In Escherichia coli and other Gram-negative 

bacte- ria, alarmone synthesis is mediated by the (p)ppGpp synthetase RelA and the 

bifunctional synthetase/hydrolase SpoT, closely related multidomain proteins whose 

C termini contain noncatalytic regulatory domains (10). Gram-positive bacteria 

typically encode a single bifunctional alarmone synthetase-hydrolase with the 

same conserved domains as RelA and SpoT, known either as Rel or as the Rel-Spo 

homolog (RSH) (35, 57). 

Synthetase enzymes catalyze the magnesium-dependent transfer of a 

pyrophos- phate from an ATP substrate to the 3’OH of a guanosine nucleotide 

precursor (58, 59). GDP is converted to a guanosine tetraphosphate alarmone, 

while GTP becomes a pen- taphosphate alarmone. The RSH/Rel enzymes typically 

utilize GDP and GTP substrates, with those from Gram-positive species displaying 

a higher affinity for GTP (34). Characterized RSH/Rel enzymes have little to no 

affinity for GMP in vitro (34, 35, 47). RelA from E. coli has been shown to be 

allosterically activated by pppGpp, ppGpp, and pGpp (46, 60 to 62). 

Alarmones are cleared from the cytoplasm via removal of the 39 pyrophosphate 

largely through hydrolysis by the hydrolase domains of bifunctional RSH/Rel 

enzymes (35, 58, 63). Characterized RSH/Rel hydrolases are capable of 
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dephosphorylating the 39 position of pppGpp, ppGpp, or pGpp, even though they 

do not generate the triphosphate alarmone (39, 46) Alarmone hydrolysis is crucial, 

as without it, cessation of cell growth and replication is irreversible. In many strains, 

individual alarmone synthetase genes may be deleted or mutated, or the entire 

suite of alarmone metabolism genes may be deleted to create alar- mone-null 

strains. Such mutants exhibit metabolic dysregulation, impaired virulence, and stress 

survival and are frequently attenuated for virulence in animal infection models (64) 

However, alarmone hydrolase genes are frequently essential if any functional 

synthetase genes are intact in the genome (65 to 67). 
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Small alarmone synthetases. In addition to a single RSH enzyme, many Gram-

posi- tive Firmicutes (also known as Bacillota) also encode one or two 

monofunctional small alarmone synthetase (SAS) enzymes with high homology to 

the synthetase domain of RSH/Rel enzymes (13, 68). There are two major families 

of SAS, RelQ (also known SAS1, SasB, or YjbM), and RelP (alternately, SAS2, SasA, 

or YwaC) (2, 10, 13, 14). RelQ homologs from Bacillus subtilis and Enterococcus 

faecalis are allosterically activated by pppGpp (46, 59, 69). The majority of 

Firmicutes encode both RelQ and RelP, although some encode only RelQ (10). The 

RelZ protein from Mycobacterium smegmatis contains an SAS domain and an 

RNase H domain and is the first identified SAS with an additional domain whose 

activity is affected by alarmone synthesis (39, 70). SAS generally utilize both GDP 

and GTP with various affinities when the activity of purified protein is assessed in 

vitro by autoradi- ography, high performance liquid chromatography (HPLC), or ion-

exchange chromatogra- phy, and SAS enzymes from E. faecalis, Cornyebacterium 

glutamicum, and B. subtilis can additionally use GMP as a substrate to synthesize a 

triphosphate alarmone (pGpp) (13, 33, 37, 39, 40, 45 to 47). RelZ is currently the 

only SAS shown to process GMP with higher af- finity than GDP or GTP (39). 

Organisms that encode SAS enzymes appear to exhibit bimodal (p)ppGpp 

metabo- lism, with RSH/Rel enzymes synthesizing or degrading (p)ppGpp very 

rapidly in response to conditional signals, and SAS enzymes exhibiting slower, 

constitutive syn- thesis (2, 51). In B. subtilis and E. faecalis, RSH activity results in 

dramatic changes to (p)ppGpp levels to induce or halt the stringent response. In 

contrast, SAS enzymes do not appear to induce a stringent response in the 

absence of RSH activity, but rather produce smaller fluctuations in (p)ppGpp levels 

in order to regulate different processes such as guanosine metabolism and to 

influence the kinetics of RSH-dependent alar- mone accumulation (1, 2, 7, 71). 

Small alarmone hydrolases. Because alarmone synthetases are toxic in the absence 

of alarmone hydrolases, the discovery of monofunctional SAS in addition to the 

bifunc- tional RSH-family enzymes strongly suggested the possibility that 

monofunctional small alarmone hydrolases (SAH) could also exist (10, 72). The first 

confirmed bacterial SAH, RelHCg from C. glutamicum, was recently characterized 

and shown to hydrolyze the 39 pyrophosphates of all three guanosine alarmones 

in vivo, although deletion of the relHCg gene had minimal effects on cell growth 

and the gene has not been highly conserved during the evolution of the genus 

Corynebacterium (38). RelHCg is most active against ppGpp, while the RSH 

homolog from this organism, RelCg, exhibits the most potent hy- drolase activity 

against pGpp, suggesting that SAH and RSH enzymes could modulate the ratios 

of the different alarmones through their differential substrate affinities, just as SAS 

and RSH enzymes do (38). Both enzymes are inhibited by high-substrate 

concentra- tions, which may be necessary to avoid a futile synthesis-hydrolysis 

cycle and allow rapid alarmone accumulation to induce and sustain a stringent 

response (38). Substrate inhibi- tion of the hydrolase domains could stabilize the 

stringent response until hydrolysis is activated by still-uncharacterized regulatory 

interactions. 

Alarmone-modifying hydrolases. Some hydrolases modify alarmones without 

abolishing their two-site phosphorylation. The guanosine pentaphosphate 

phosphohy- drolase GppA converts pppGpp to ppGpp and is thought to balance 

the relative levels of the two alarmones when the ratio of available GTP and GDP 

substrates is unsuited to the needs of the cell, or when the effectors expressed by 

a given species are more responsive to either the pentaphosphate or 

tetraphosphate alarmone (Fig. 1) (29, 48 to 50). The Nudix enzyme family 
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hydrolyzes a diverse set of substrates that each contain a nucleotide diphosphate 

linked to some other moiety X, and some of them have been shown to target 

alarmones (73). Nudix hydrolases from Thermus thermophilus and E. coli degrade 

both the 39 and 59 pyrophosphates of ppGpp, generating pGpp and ppGp 

intermediates before producing pGp (74, 75). This activity is thought to remove 

alar- mones from bacterial cytoplasm. Deletion of the T. thermophilus ndx8 

hydrolase results in ppGpp accumulation during exponential growth (74). 

Overexpression of the E. coli Nudix hydrolase genes nudG or mutT can 

complement deletion of the spoT hydrolase gene to relieve alarmone-mediated 

growth suppression (76). The E. coli Nudix proteins 
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TABLE 1 Summary of recent experiments screening for alarmone-binding effector proteinsa
 

 Corrigan et al., Zhang et al., Wang et al., Yang et al., 
Haas et al., 2022 (31) 

Alarmone 2016 (32) 2018 (75)b
 2019 (78) 2020 (33) 

Affinity capture 
Method DRaCALA DRaCALA Affinity capture DRaCALA 

E. coli S. typherium Species S. aureus E. coli E. coli B. anthracis 

pGpp n.t. n.t. n.t. 0 5 n.t. 

ppGpp 0 n.t. 56 3 33 37 

pppGpp 0 n.t. n.t. 2 21 n.t. 

pGpp n.t. n.t. n.t. 3 10 n.t. 

1ppGpp       

pGpp n.t. n.t. n.t. 0 1 n.t 

1pppGpp       

ppGpp 7 20 n.t. 12 24 n.t 

1pppGpp       

all n.t. n.t. n.t. 13 13 n.t 

aDiffusion-based screening for the ability to bind radiolabeled alarmones and pulldown assays using 

immobilized alarmones have both been used to screen cell lysates for alarmone-binding proteins. The 

number of proteins that bound or were pulled down from bacterial cytoplasm by each alarmone is 

indicated. n.t., not tested (n.t.). 
bZhang and colleagues noted that their assay did not identify 11 E. coli proteins demonstrated to bind (p)ppGpp 

in previous works but did identify 12 previously unknown proteins. 

 
 

appear to deplete cytoplasmic pppGpp more aggressively than ppGpp. In contrast, 

the Nudix-family hydrolase NahA from B. subtilis specifically converts (p)ppGpp to 

pGpp with no apparent activity toward the 39-pyrophosphate (Fig. 1) (33, 43, 77). 

Like NudG and MutT, NahA seems to demonstrate a substrate preference for 

pppGpp, as NahA appears to selectively convert pppGpp produced by the 

SasA/RelP synthetase but not ppGpp produced by the SasB/RelQ synthetase (77). 

pGpp accumulation is strongly decreased in a strain lacking nahA, indicating that 

NahA hydrolase activity rather than direct synthesis is the predominant source of 

the triphosphate alarmone (43). 

Effectors. Alarmone-sensing effectors vary among species but include DNA primase, 

transcriptional regulators, GTPases involved in ribosome maturation, and many 

kinases that govern purine biosynthesis pathways (20). DRaCALA screens of open 

reading frame libraries and affinity-capture assays performed on whole-cell lysates 

have identified a num- ber of alarmone-binding proteins, many involved in the 

regulation of purine biosynthesis and ribosome assembly (31 to 33, 75, 78). Some 

of these assays were limited to ppGpp or 1:1 mixes of ppGpp and pppGpp, while 

some included pGpp (Table 1). Many effectors were identified that bound two or 

three nucleotides, some with comparable affinities and some with a marked 

preference for one species. Notably, seven Staphyloccocus aureus pro- teins each 

exhibited slightly higher affinities for pppGpp than for ppGpp in whole-cell lysates, 

but four of them exhibited much higher affinities for ppGpp when purified, indicat- 

ing that apparent binding affinities can be influenced by environmental conditions 

(32). 

Structures have been determined for twenty-eight unique proteins bound to 

ppGpp or pppGpp, including SAS and RSH synthetases, a GppA hydrolase, and 

effectors involved in RNA processing and polymerization, protein synthesis and 

modification, and purine nucle- otide metabolism (5, 30, 79). No structures of 

protein effectors bound to pGpp have been found. Examination of the alarmone 

structures within these complexes reveals a high degree of conformational 

flexibility; when the sugar and base elements are aligned, the phosphate groups 
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can take many conformations (30). Examination of the 59-phosphate groups that 

determine alarmone identities within effector binding pockets reveals three types 

of pockets: in some complexes, the 59-diphosphate or triphosphate is completely or 

almost completely encased by its receptor, which is likely to discriminate among 

alarmone species based on the number of phosphates at this position (Fig. 2A). In 

other complexes, the 59 phosphate group is in contact with the surface of the 

protein in a solvent-exposed depression or trench (Fig. 2B), while in still others the 

5’phosphate group has limited con- tact with the protein and is primarily solvent 

exposed (Fig. 2C). 
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FIG 2 Alarmones complexed with effectors show great diversity in their 59 phosphate groups. Alarmones 

and the residues they contact within their protein or RNA binding pockets are pictured. Protein and RNA 

residues are shown in gray. Hydrogen bonds and salt-bridges are shown as dotted lines. (A) Crystal structure 

of ppGpp bound to B. subtilis Obg (PDB: 1LNZ). The 59-disphosphate is completely encased in a binding 

pocket (yellow circle) that appears sterically capable of accommodating a triphosphate, while the 39-

diphosphate is solvent exposed. This protein binds (p)ppGpp but not pGpp in vitro (33). The exclusion of 

pGpp is likely due to the direct and magnesium-mediated contacts between the protein and the 59-b-

phosphate. (B) Crystal structure of ppGpp bound to Francisella tularensis MglA-SspA (PDB: 5U51). The 59-

diphosphate contacts the surface of the protein but is solvent-exposed. (C) Crystal structure of pppGpp 

bound to E. coli PpnN (PDB: 6GFM). The 59-triphosphate extends out of the binding pocket and has no 

protein contacts. This protein is pulled out of E. coli lysate by affinity-tagged pppGpp, ppGpp, or pGpp and 

does not appear to discriminate based on 59-phosphate group size (31). (D) Crystal structure of ppGpp 

bound to the Sulfobacillus acidophilus ppGpp riboswitch (PDB: 6DME). The 59-diphosphate is enveloped in a 

binding pocket and makes numerous direct contacts with the riboswitch. The scale bar in each image 

represents 3 Å. Contact maps were generated with LigPlot1. 

 

 

In addition, riboswitches of the ykkC subtype 2a family, commonly associated 

with genes for amino acid biosynthesis, bind alarmones (80). A riboswitch 

found in the 59 untranslated region of the Thermosediminibacter oceani ilvE gene 

binds ppGpp and pppGpp with equal micromolar affinity in vitro, and ppGpp 

binding by the ilvE riboswitch from Desulfitobacterium hafniense regulates ilvE 

transcription termination (80). The affin- ities of the T. oceani riboswitch for GMP, 

GDP, and GTP are 4,000-fold, 2,000-fold, and 5,000-fold lower than that for 

(p)ppGpp, highlighting the importance of the 39 dipho- phate group for 

riboswitch ligand recognition. The same riboswitch binds pGp with 2,000-fold 

lower affinity than ppGpp, showing that the distinction between mono- and 

https://journals.asm.org/journal/iai
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diphosphate groups at both positions is significant (80). Crystal structures of a 

ppGpp- binding riboswitch from Sulfobacillus acidophilus reveal that both 

diphosphate groups contact the riboswitch, and beta-phosphate of the 59-group 

participates in multiple hydrogen bonds, suggesting that the riboswitch could 

accommodate a 59-triphosphate 
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but would be likely to discriminate against a 59-monophosphate (Fig. 2D) (81). The 

ability of 30 predicted alarmone-binding riboswitches to bind ppGpp or pppGpp 

in a modified DRaCALA assay was recently assessed, and 25 showed binding 

activity in vitro (53). Seventeen of these riboswitches bound ppGpp and pppGpp 

with similar (less than 2-fold difference) affinities, while seven had markedly higher 

affinity for ppGpp and one had higher affinity for pppGpp (53). Analysis of 

structural models of these riboswitches revealed several elements that appear to 

correlate with the ability to bind pppGpp; a con- served ACA motif at the end of 

the P1 stem-loop and the length of the P1 stem-loop are both speculated to affect 

conformational flexibility of the binding pocket for the 59-phos- phate group, thus 

its ability to physically accommodate a triphosphate (53). As with pro- tein 

effectors, no binding studies have been performed with pGpp and ribonucleotide 

effectors, so the degree of functional independence or redundancy of the 

triphosphate alarmone remains to be experimentally defined. 

 

AN EVOLVING UNDERSTANDING OF THE TRIPHOSPHATE ALARMONE pGpp 

Many paths to pGpp. Until recently, pGpp synthesis had only ever been detected 

con- currently with (p)ppGpp synthesis. RelZ from M. smegatis is currently the only 

synthetase enzyme known to have a higher affinity for GMP than GDP or GTP, but 

it is still capable of ppGpp synthesis, and the cellular alarmone pool is dominated by 

pppGpp produced by the 

M. smegmatis RSH/Rel enzyme (39). The primary source of pGpp in the B. subtilis 

alarmone pool is postsynthetic processing of (p)ppGpp by NahA rather than direct 

synthesis from GDP/GTP (33, 43, 77). pGpp is typically present in the cytoplasm at 

much lower levels than (p)ppGpp (43). However, Clostridioides difficile encodes an 

RSH homolog and a single RelQ SAS, and both enzymes exclusively produce pGpp 

and are incapable of generating longer alarmones in vitro (40). The clostridial 

enzymes generate the triphosphate alarmone despite the fact that RSHCd utilizes GDP 

as its sole substrate and RelQCd utilizes GDP and GTP, with neither enzyme capable 

of synthesizing alarmones from GMP precursors (40). This mismatch between the 

5’phosphate groups of substrates and products is due to a previously undocu- 

mented variation on canonical alarmone synthesis. The clostridial synthetases, when 

incu- bated in vitro with ATP, GDP/GTP, and no other enzymes, both hydrolyze the 

59b-phosphate bond of their guanosine substrates as a necessary step for 

pyrophosphotransfer to the 3’hydroxyl group (40). The clostridial enzymes cannot 

utilize GMP, which has no b-phos- phate, or GDPbS, a GDP analog in which the b-

phosphodiester bond has been replaced with a thiophosphate bond resistant to 

hydrolysis. B. subtilis RelQ, which does not require guanosine 59b-phosphate bond 

hydrolysis, can use both GMP and GDPbS as the substrates for alarmone synthesis 

(40). This requirement for a phosphate bond hydrolysis on the guano- sine 

phosphoacceptor as well as on the ATP phosphodonor is unique among 

characterized alarmone synthetase enzymes. 31P nuclear magnetic resonance 

(NMR) studies reveal that neither RSHCd nor RelQCd hydrolyzes guanosine b-

phosphate bonds when incubated with GTP or GDP in the absence of ATP, 

suggesting that either ATP hydrolysis or pyrophospho- transfer initiates modification 

of the guansine 5’phosphate moiety, but structural characteri- zation of the clostridial 

synthetases will be necessary before the mechanism of alarmone synthesis in this 

organism can be defined (40). 

Despite the unusual alarmone metabolism employed by C. difficile, alarmone 

function in this organism appears to be similar to that in other bacteria. 

Transcription of the rsh and relQ genes is increased by stationary-phase onset and 
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extracellular stress, and reduction of RSHCd translation by RNA interference or of 

RSH catalysis by the competitive inhibitor Relacin increases C. difficile antibiotic 

susceptibility (36, 40). In addition, it was recently reported that competition for 

nutrients during bacterial coinfection in a germ-free mouse model causes 

suppression of C. difficile protein translation, ribosome synthesis, and ATP 

production, all processes that are halted by the stringent response in other 

bacteria (20, 82). It is not known why this organism evolved the requirement for a 

second phosphate bond hydrolysis to synthesize alarmones, but it appears that 

pGpp can mediate conserved alarmone signaling in the absence of the longer 

species. 

pGpp as a distinct regulator. While pGpp may function as the sole alarmone in C. 

difficile, other organisms appear to synthesize it as part of an alarmone pool 

dominated 
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by ppGpp and/or pppGpp. It is difficult to study an individual component in a pool 

of partially redundant signals, and pGpp was often overlooked in studies designed 

to probe the extent of independence or functional redundancy between ppGpp 

and pppGpp. Alarmone-binding effectors were originally identified by probing E. 

coli open reading frame libraries with radiolabeled ppGpp and pppGpp in 

differential radial capillary action of ligand assays (DRaCALAs) or by pulling 

interacting proteins out of E. coli cell lysates with affinity-labeled ppGpp (Table 1) 

(75, 78). These assays identified multiple target pro- teins involved in alarmone 

metabolism as well as ribosome synthesis and function and purine nucleotide 

homeostasis (75, 78). More recently, pulldown assays of E. coli lysate with affinity-

conjugated pGpp, ppGpp, and pppGpp identified forty-seven potential effec- tors 

that bind two or three forms of alarmone and fifty-nine that appear to select a 

single alarmone based on the number of 59-phosphates (Table 1) (31). Of the 

twenty-nine pro- teins pulled down by pGpp, 13 bind all alarmones, 10 bind pGpp 

and ppGpp, one binds pGpp and pppGpp, and five bind pGpp exclusively, 

including a transcriptional regulator previously found to be upregulated by 

oxidative stress (31). 

The distinct biological role of pGpp within a mixed pool of guanosine 

alarmones has been best defined in Enterococcus and Bacillus species, which 

encode three synthetases and metabolize all three forms of guanosine alarmone 

(44, 46, 83). RSH/RelA has a high af- finity for GTP and mainly contributes pppGpp 

to the cellular alarmone pool when acti- vated. In Bacillus species, SasA/RelP 

preferentially utilizes GTP to generate alarmones that are modified to pGpp by the 

NahA hydrolase, while SasB/RelQ is allosterically activated by pppGpp but 

preferentially uses GDP to synthesize ppGpp (33, 43, 46, 59, 77). During the 

transition to stationary phase when nutrients become limited, roughly half of wild-

type cells display little to no protein synthesis activity. Deletion of B. subtilis 

sasA/relP increases the number of these translationally dormant cells in the 

population. Deletion of sasB/relQ reduces translational dormancy, suggesting that 

the ppGpp produced by SasB/RelQ nega- tively regulates protein synthesis in a 

subset of cells, generating metabolic heterogeneity in a genetically identical 

bacterial population. Population heterogeneity is reduced as strongly by mutation 

of the SasB/RelQ allosteric pppGpp binding site as by deletion of the gene, 

suggesting that pppGpp generated by RSH/RelA influences translational regulation 

via ppGpp produced by SasB/RelQ (77). pGpp does not directly affect SasB/RelQ 

activity in vitro, but it does prevent pppGpp from stimulating it, establishing a 

model in which pppGpp and pGpp are opposing regulators whose net activity 

determines how much ppGpp is produced (77). This model is not complete, as it 

does not explicitly account for conversion of the pppGpp produced by SasA/RelP 

into pGpp in vivo; NahA is the only hy- drolase known to modify alarmones in B. 

subtilis, but deletion of nahA does not affect pop- ulation heterogeneity, suggesting 

that enzymes relevant to this regulatory pathway have yet to be determined (33, 

77). Low levels of pGpp can be detected in the cytoplasm of a nahA-deficient B. 

subtilis, but it is not known whether this is due to the activity of another hydrolase 

or to previously undetected direct synthesis of pGpp (43). Together, the three 

alarmones appear to allow B. subtilis to establish translationally dormant and active 

subpo- pulations. Deletion of sasB/relQ is presumed to reduce cytoplasmic ppGpp, 

resulting in a more uniformly active population, while deletion of sasA/relP is 

presumed to reduce pGpp, resulting in a more uniformly inactive population. 

Depletion of either regulator makes the population more homogenous, which 
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leaves all component cells equally vulnerable to environmental perturbations (77). 

While the specific effectors that allow alarmones to regulate translational hetero- 

geneity in B. subtilis are unknown, some alarmone-binding effectors have been 

iden- tified in this organism. DRaCALAs using radiolabeled pGpp as well as ppGpp 

and pppGpp have identified proteins that bind all three guanosine alarmones 

with vari- ous affinities and others that bind the canonical (p)ppGpp alarmones 

but exclude pGpp at physiological concentrations (33). This analysis revealed that 

the tetraphosphate and pentaphosphate (p)ppGpp alarmones interact with the 

GTPases that regulate ribosome maturation and function and with enzymes 

involved in purine nucleotide homeostasis, while pGpp appears to be involved in 

nucleotide metabolism but not ribosome assembly, 
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allowing purine metabolism to be regulated independently of protein translation 

(33). In both Bacillus anthracis and E. faecalis, pGpp is a significantly more potent 

inhibitor of purine nucleotide synthesis than the longer alarmones (33, 46). 

Future directions: pGpp as a potential sole regulator. The ability of pGpp to 

function independently of the longer, more characterized guanosine alarmones 

allows cells either to decouple processes regulated by the stringent response, 

allowing one to continue in certain circumstances while the other is inhibited, or 

to integrate multiple inputs, including the relative availability of GMP, GDP, and 

GTP, when generating a cytoplasmic pool of alarmones (33, 77). The fact that 

bacteria have evolved multiple pathways to generate pGpp, either by direct 

synthesis using GMP substrates or by modification of (p)ppGpp precursors 

synthesized from GDP or GTP substrates, indicates the conserved importance of 

the triphosphate nucleotide. C. difficile is the only orga- nism currently known to 

require guanosine 59-b-phosphate bond hydrolysis for alar- mone synthesis, 

which necessitates exclusive synthesis of pGpp but precludes the use of GMP as a 

substrate (40). This suggests not only that is it beneficial for this organism to 

utilize pGpp rather than (p)ppGpp as an intracellular signal, but that it is 

additionally beneficial to abstain from generating endogenous (p)ppGpp. As 

alarmone metabolism has only been characterized in a limited number of 

organisms, it remains to be seen whether this exclusive use of pGpp is unique to 

C. difficile or more widespread. It does invite speculation as to what evolutionary 

pressures might have favored this modifica- tion of conserved alarmone 

metabolism. 

One possibility is that the use of pGpp might allow cells growing in multispecies 

communities such as biofilms adhered to the intestinal mucosa to distinguish 

between endogenously produced alarmones and exogenous alarmones produced 

by nearby cells. Many bacteria respond to extracellular signals secreted by other 

bacterial cells to regulate multicellular processes such as biofilm formation (84). 

These signals may be generated by other cells of the same species in a process 

known as “quorum sensing.” Secreted signals can also enable cross-species 

communication in mixed populations 

(85). While alarmones are not known to be exported or perceived at the cell 

surface, pulldown assays with affinity-tagged alarmones have identified several 

putative pro- tein effectors in the E. coli membrane fraction, including multiple 

confirmed or pre- dicted transport proteins (31). The nucleotide second 

messenger 39-59-cyclic diadenylic acid (c-di-AMP) is essential for E. faecalis 

growth in complex media. There are no known c-di-AMP transporters, but 

exogenous c-di-AMP can rescue the growth defects of a c-di-AMP synthetase 

mutant strain in some growth media, suggesting that c-di-AMP ei- ther exported 

or released from lysed cells could be detected by nearby cells (86). Since 

alarmones accumulate in stressed cells, it seems plausible that they could be 

released by cell lysis if not actively exported. For C. difficile, which integrates into 

mammalian gut microbial ecosystems during times of antibiotic-induced 

dysbiosis and thrives when its neighbors are struggling, the use of pGpp could 

allow sensing of exogenously produced (p)ppGpp to monitor the condition of 

nearby bacterial cells (87). 

It is also possible that guanosine alarmones produced by pathogens are 

recognized by host systems and that different alarmone species could be used to 

calibrate host immune recognition. An alarmone-null strain of Salmonella 

typhimurium used as a live vaccine in mice had a lower infectious dose than the 
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wild-type strain but a significantly higher lethal dose, suggesting that while 

alarmones are necessary for virulence, they stimulate an immune response that is 

detrimental for establishing the initial infection (64, 88). The immune response of 

mice infected with Yersinia pestis is a mix of proin- flammatory Th1-mediated and 

anti-inflammatory Th2-mediated activity, but infection with an alarmone-null 

strain of Y. pestis biases the immune response away from the proinflammatory 

response (89). The different responses could be caused by immune sensing of 

alarmones or of one of the virulence factors regulated by alarmones. Similarly, 

guinea pig infection with a rel mutant strain of Mycobacterium tuberculosis 

reduces the immune response compared to that stimulated by infection with wild- 

type M. tuberculosis (54, 90). Direct sensing of guanosine alarmones by 

mammalian 
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immune systems has never been reported, but c-di-AMP and the related bacterial 

sec- ond messenger 39–59-cyclic diguanylic acid (c-di-GMP), which are not 

produced by mammals, are detected by the innate immune sensor protein STING, 

leaving open the possibility that mammalian receptors for other bacterial 

nucleotide signals could exist (91 to 93). 

There is no experimental evidence that exogenous alarmones can be sensed by 

other bacteria or by mammalian immune cells. In a personal communication, Raue 

and Cashel have reported that E. coli is impermeable to exogenous pGpp, and to 

our knowledge the ability of mammalian immune or epithelial cells to sense 

alarmones has not been tested 

(29). It is also possible that the in vitro activity of the purified clostridial synthetase 

enzymes does not fully reflect activity in the cell and that these or other proteins could 

synthesize lon- ger alarmones under certain conditions in vivo. However, the 

dependence of clostridial alar- mone synthesis on the hydrolysis of the guanosine 

39b phosphate bond indicates that pGpp rather than (p)ppGpp plays some role in 

the C. difficile life cycle. 

 

CONCLUDING REMARKS 

For a long time, guanosine alarmones were regarded exclusively as the switch 

that governs the bacterial stringent response, which has been referred to as a 

singular pro- cess because the phenotypes it governs converge across diverse 

clades. However, the additional roles played by basal levels of alarmones in 

governing growth rate and me- tabolism and the functional diversity exhibited by 

the penta-, tetra-, and triphosphate alarmones have become undeniable. It has 

been convenient to refer to the alarmones collectively, first as (p)ppGpp and then 

as (pp)pGpp when pGpp was recognized, but it is clear that pGpp signaling 

encompasses more than a reinforcement of the processes initiated by ppGpp and 

pppGpp. While much remains to be discovered about the interaction of pGpp with 

the longer alarmones and its independent role in diverse bac- teria, it is apparent 

that it should be considered an individual entity rather than a nearly 

interchangeable part of a set. 
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