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e Insulin-producing cells (IPCs) are strongly and rapidly
modulated by locomotion

e [PC activity is inhibited during and overshoots after cessation
of locomotion

e IPC modulation is predictive of metabolic demands at
behavioral transitions

e IPC inhibition is actively driven by feedforward neuronal
pathways

| Liessem et al., 2023, Current Biology 33, 449-463
‘ ,,,,,,, ‘ February 6, 2023 © 2022 Elsevier Inc.
https://doi.org/10.1016/j.cub.2022.12.005

Authors

Sander Liessem, Martina Held,
Rituja S. Bisen, Hannah Haberkern,
Haluk Lacin, Till Bockemdihl,

Jan M. Ache

Correspondence
jan.ache@uni-wuerzburg.de

In brief

Liessem et al. show that the activity of
insulin-producing cells is inhibited during
locomotion and overshoots afterward.
The inhibition is actively driven by
neuronal pathways and stronger during
metabolically more demanding flight than
walking. This modulation serves to adjust
the metabolic state to rapidly changing
demands in behaving animals.
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SUMMARY

Insulin signaling plays a pivotal role in metabolic control and aging, and insulin accordingly is a key factor in
several human diseases. Despite this importance, the in vivo activity dynamics of insulin-producing cells
(IPCs) are poorly understood. Here, we characterized the effects of locomotion on the activity of IPCs in
Drosophila. Using in vivo electrophysiology and calcium imaging, we found that IPCs were strongly inhibited
during walking and flight and that their activity rebounded and overshot after cessation of locomotion. More-
over, IPC activity changed rapidly during behavioral transitions, revealing that IPCs are modulated on fast
timescales in behaving animals. Optogenetic activation of locomotor networks ex vivo, in the absence of
actual locomotion or changes in hemolymph sugar levels, was sufficient to inhibit IPCs. This demonstrates
that the behavioral state-dependent inhibition of IPCs is actively controlled by neuronal pathways and is in-
dependent of changes in glucose concentration. By contrast, the overshoot in IPC activity after locomotion
was absent ex vivo and after starvation, indicating that it was not purely driven by feedforward signals but
additionally required feedback derived from changes in hemolymph sugar concentration. We hypothesize
that IPC inhibition during locomotion supports mobilization of fuel stores during metabolically demanding
behaviors, while the rebound in IPC activity after locomotion contributes to replenishing muscle glycogen
stores. In addition, the rapid dynamics of IPC modulation support a potential role of insulin in the state-

dependent modulation of sensorimotor processing.

INTRODUCTION

Insulin is central to an evolutionarily conserved signaling
pathway controlling metabolic homeostasis in species ranging
from nematodes and flies to mice and humans.'~> Accordingly,
dysregulation of insulin signaling is a major cause for diseases
like diabetes and obesity,® which in turn increase the risk of neu-
rodegeneration and cognitive impairment.” Despite the impor-
tance of insulin signaling, the modulation of insulin release dy-
namics and the effects of insulin on the nervous system are not
well understood. This is largely because insulin release and
sensitivity depend on numerous internal and external vari-
ables.®® Given the unparalleled genetic toolkit available in
Drosophila melanogaster, flies can serve as a model system in
which a detailed, mechanistic understanding of insulin signaling
can be obtained in vivo. Since they also have a numerically
smaller, less complex nervous system than mice or humans,
the neuronal circuits and signaling pathways governing insulin
release and the targets of insulinergic modulation can be identi-
fied and characterized more easily. Insulin-like peptides (ILPs)

are expressed in a set of median neurosecretory cells in the
pars intercerebralis (Pl) of the insect brain, referred to as insu-
lin-producing cells (IPCs).'>'" Of the eight Drosophila ILPs
(DILPs), IPCs express DILP2, 3, and 5 in adults.'> Upon
increased IPC activity, ILPs are released into the hemo-
lymph,”™'® the insect equivalent of blood,' via IPC axon
terminals in the proventriculus, crop, aorta, and corpora car-
diaca.’®""1315717 || Ps regulate circulating sugars,'®'® which
are mainly trehalose and glucose in insects.'®?? In addition, in-
sulin itself is a modulator of neuronal circuits controlling different
aspects of food intake, metabolism, and behavior.>*>>° For
example, locomotor activity is reduced when insulin levels are
high, suggesting a general role of insulin in modulating sensori-
motor pathways.”® To date, most effects of insulin have been
shown on slower and intermediate timescales. However, there
is also evidence that insulin acts on sensorimotor pathways on
faster timescales, for example, during predation®* and escape
behavior.?"?8

Modulation of IPC activity and insulin release has been
demonstrated in the context of feeding,?*' metabolism,3*:
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nutrient sensing,
experiments were carried out in ex vivo preparations
that did not permit animal behavior. Hence, even though the
metabolic rate is dramatically increased during locomotion, "
it is presently unclear whether IPC activity is modulated by the
behavioral state. This question is particularly interesting in the
context of insect flight, which is one of the most metabolically
demanding processes in the animal kingdom.**™** Given the
key role of insulin in governing metabolic homeostasis, modula-
tion of IPC activity could adjust the metabolic rate in the context
of locomotion. We therefore investigated whether IPC activity is
modulated by the behavioral state, using in vivo patch-clamp re-
cordings and calcium imaging in behaving Drosophila.

RESULTS

IPCs are inhibited during flight

Since metabolic demands are dramatically increased during loco-
motion, we hypothesized that IPC activity is modulated by locomo-
tor state. Totest this, we performed in vivo patch-clamp recordings
from IPCs in Drosophila undergoing behavioral state transitions
(Figure 1A). First, we quantified IPC activity before, during, and af-
ter flight. In particular, we analyzed IPC activity changes during the
onset (first wingbeat) and cessation (last wingbeat) of flight. IPC ac-
tivity was heavily affected by flight (Figure 1B). In suspended,
resting animals, the baseline IPC spike frequency was 0.8 Hz (me-
dian, see Data S1 and Figure 1C), decreased significantly to 0.4 Hz
at flight onset, and remained low throughout flight (F1 versus F2,
p > 0.1). Interestingly, the spike frequency rebounded and over-
shot (from now on simplified as “rebound”) relative to the pre-flight
baseline after cessation of flight and stayed elevated for about 10 s
at 1.1 Hz before returning to baseline (Figures 1B and 1C, pre
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cation in (C) (see STAR Methods). Dashed gray line,
spike frequency before flight; solid lines, spike fre-
quency in respective intervals. Middle, spike events
from all trials. Bottom, two example recordings (ar-
rowheads, corresponding spike event traces). Initial
V., of traces is indicated.

(C) Quantification of IPC responses (median = IQR)
based on trials in (B). Lines, mean responses of in-
dividual IPCs.

See also Figure S1 and Table S1.

versus post, p < 0.05). Hence, IPCs were
strongly modulated by transitions into and
out of flight.

Next, we asked whether the strength of
IPC modulation was a function of flight per-
formance. There was no strong correlation
between the flight duration and the flight-dependent inhibition or
rebound (Figures S1A and S1B). Since higher wingbeat fre-
quencies require more energy, we also analyzed IPC activity
changes as a function of wingbeat frequency. The average wing-
beat frequency was 208 Hz, which is typical for tethered
flight,*>*® and there was no strong correlation between wingbeat
frequency and IPC activity (Figures S1C and S1D). Hence, flight-
dependent IPC modulation was robust and largely independent
of flight duration and wingbeat frequency.

A small subset of IPCs was quiescent in the baseline condition
and was therefore not considered in our initial analysis. To
assess whether these IPCs were also modulated by flight, we de-
polarized them via current injection to induce spiking or increase
spiking in spontaneously active neurons. Even when IPCs were
depolarized, the flight-dependent inhibition was strong enough
to significantly reduce spike rates across the IPC population
(Figures S1E and S1F). In summary, IPC activity was strongly
reduced during flight and rebounded after cessation of flight.

Flight modulates the IPC population activity

While the inhibition during flight was strong in the majority of
IPCs, a subset of IPCs did not seem to be affected by flight in
our patch-clamp experiments (Figures 1B and 1C). Since we
were only able to record one IPC at a time, it was unclear whether
this was due to heterogeneity within the IPC population activity.
To investigate the flight-dependent modulation of IPCs simulta-
neously in multiple cells, we recorded the IPC population via wi-
defield calcium imaging (Figure 2A). IPC somata were defined as
regions of interest (ROIs; Figure 2B) and their AF/F values were
aligned with flight behavior (Figure 2C; see STAR Methods). On
average, we were able to image simultaneously from 9 out of
the 14 IPCs (6-11 IPCs per fly, 71 total, N = 8 flies). We found
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Figure 2. Calcium imaging reveals a flight-dependent modulation across the IPC population

(A) Experimental setup for imaging IPCs expressing GCaMP6m during flight.
(B) Example reference image of IPC somata as ROlIs (color-coded as in C-E).

(C) Example traces of calcium responses during two subsequent flight bouts (blue shading). Top, wingbeat tachometer trace. Middle, AF/F of 11 IPCs and mean

response (black). Bottom, individual AF/F responses.
(D) AUC calculation. Scale bars, 0.5 AF/F. Ref., baseline reference.

(E) AUC values of IPCs at flight onset and cessation. Left, responses from first flight trial in (C). Right, average response of 3 flight trials. Dashed line indicates zero.
(F) Average AUC at flight onset and cessation with color-coded response type based on lower (—0.15) and upper (0.3) AUC thresholds (gray).
(G) Probability distribution of AF/F values before (gray), during (red), and after flight (black, all in 0.01 AF/F bins). Arrowheads, median of each distribution. AF/F

values above 0.8 are omitted.
See also Videos S1, S2, and S5 and Table S1.

a decrease in IPC fluorescence at flight onset and a dramatic in-
crease after flight that exceeded the baseline activity (Figure 2C;
see also Videos S1 and S2). Since the inhibitory effects seen in
patch-clamp were less apparent in AF/F traces, we calculated
their area under the curve (AUC; Figure 2D) and compared the
probability distribution of AF/F values during different periods.
The AUC was significantly higher after flight, compared with
during flight, in individual flight trials, when averaged per IPC
(Figure 2E), and across all flight trials (p < 0.0001, Figure 2F).
The majority of IPCs exhibited both an inhibition at flight onset
and a strong rebound at the cessation of flight (Figure 2F). How-
ever, 8% of IPCs did not show clear activity changes upon
behavioral transitions, even though they occasionally exhibited
spontaneous AF/F increases.

IPC inhibition during flight became even more apparent when
comparing the probability distributions of AF/F values, with 93%
of IPCs exhibiting a significant decrease at the onset of flight and
94% exhibiting a significant increase after flight cessation,

compared with baseline AF/F levels (Figure 2G). Thus, although
IPCs may be regarded as a functionally heterogeneous popula-
tion,*” the vast majority of IPCs display a strong, homogeneous
response to locomotor state transitions.

IPCs are modulated by locomotor activity

Different modes of insect locomotion, such as flight and walking,
use specific sets of muscles*®*° that are controlled by two inde-
pendent and fundamentally different motor systems with distinct
neuronal organization in the brain and ventral nerve cord
(VNC).°® Moreover, metabolic rates increase from rest over
walking to flight.“%*1*' We therefore asked whether the modula-
tion of IPC activity is a general feature across different locomo-
tion modes or a specific adaptation to the high metabolic
demands of flight. To test this, we recorded from IPCs in flies
walking spontaneously on a spherical treadmill (Figure 3A).
Based on individual walking trajectories, we distinguished be-
tween proper walking bouts (Figure 3) and bouts of less specific
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Figure 3. IPCs are modulated by walking, flight, and changes in metabolic state

(A) Experimental setup for in vivo patch-clamp recordings in walking flies.

(B) Representative walking trajectories with normalized IPC spike frequency (color-coded, binned as in C). Circles, start and final position of trajectory; black lines,
walking cessation; arrowhead, black example shown in (C).

(C) IPC activity in walking flies (green shading). Top, mean IPC spike frequency (in 500-ms bins) averaged across all trials. pre, W1, W2, and post indicate intervals
for quantification in (D). Dashed gray line, median spike frequency before walking; solid lines, median spike frequency in remaining intervals. Middle, spike events
from all trials. Bottom, two example recordings (arrowheads). Initial V,, of traces is indicated.

(D) Quantification of IPC responses from trials in (B). One outlier at 4.8 Hz in post omitted for clarity of inspection. In (D)—(l), dots and thin lines indicate averages of
individual IPCs, thick lines indicate population median, and boxplots IQR.

(E and F) Comparison of spike frequency (E) and V,,, changes (F) during flight and walking.

(legend continued on next page)
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locomotor activity (Figures S2A, S2C, and S2D; see STAR
Methods). The effects of walking on IPC activity were similar to
those of flight (Figures 3B-3D). Upon the onset of walking, the
IPC spike frequency significantly decreased by 0.3 Hz, increased
slightly during walking (W1 versus W2, p < 0.05), and rebounded
to 1.8 Hz after cessation of walking (pre versus post, p < 0.01,
Figure 3D). Even when all bouts of locomotor activity were
included, the IPC modulation was apparent (Figures S2C and
S2D). Combined with the strong flight-dependent modulation,
these findings suggest that the modulation of IPCs is strongly
coupled to locomotor activity in general.

Since metabolic rates increase with walking speed in in-
sects,**°? we analyzed if IPC activity was modulated as a function
of walking distance, speed, or duration (Figure S2). In our
experiments, flies walked 14.8 mm at 1.7 mm/s, over 9 s on
average, per walking bout. IPC modulation was largely indepen-
dent of these parameters (Figure S2B; Data S1). Hence, the
strength of IPC inhibition did not depend on the walking speed,
suggesting it was not directly coupled to the metabolic rate of
walking.

The difference in energy expenditure between walking speeds
is likely small, compared with that between walking and flight.
Hence, we investigated whether IPC modulation differed be-
tween walking and flight. Interestingly, IPC baseline activity
was slightly but significantly higher in flies standing on the tread-
mill (1.2 Hz, Figure 3C), compared with flies without ground con-
tact in periods between flight bouts (0.8 Hz, Figure 1C). Flies typi-
cally move their legs when they are neither standing nor flying
(Video S3), which increases the metabolic rate.®® These move-
ments seemed to lead to a reduction in IPC activity similar to
that observed during walking. Upon the onset of flight, IPC
activity was further reduced to 0.4 Hz, which was less than half
of the spike frequency during walking (0.9 Hz, Figure 3E). The hy-
perpolarization of the membrane potential (V) at the onset of
flight was also significantly stronger, compared with the onset
of walking (Figure 3F). Moreover, the spike frequency gradually
increased during walking bouts (W1 versus W2, Figure 3D),
which was not the case for flight. Hence, IPC inhibition was
stronger during more energy-demanding flight, compared with
less energy-demanding walking. This difference could either
be explained by a larger number of IPCs being inhibited by flight
than by walking or by stronger inhibition of individual IPCs.
The number of non-modulated IPCs was similar during walking
(7/29) and flight (6/31), and spike rates of individual IPCs were
lower during flight compared with walking (Figures 3E and 3F).
Therefore, the stronger inhibition of the IPC population during
flight was driven by a stronger modulation of individual IPCs
rather than the recruitment of additional IPCs.

Interactions between behavioral and metabolic state-
dependent modulation of IPCs

Next, we asked whether IPC modulation during behavioral state
transitions was comparable to effects of metabolic state
changes known to affect insulin release. Starvation reduces

¢? CellPress

DILP release from IPCs, as shown by immunofluorescence stain-
ings,>*°® so that we expected IPC activity to be low during
starvation. To quantify this, we starved flies for 24 h and
measured the IPC baseline spike frequency in glucose- and
trehalose-free saline. Starvation abolished IPC spiking almost
completely (Figure 3G). Hence, starvation had a stronger effect
on IPC activity than flight, during which only about 25% of
IPCs were completely quiescent (Figure 1C). However, both
flight and starvation strongly inhibited IPCs and hence pulled
their activity in the same direction.

Since IPC activity was affected both by metabolic and behav-
ioral state changes, we next tested whether these two effects
were interdependent. Spike frequencies were already approach-
ing zero after starvation and were accordingly not further
reduced during flight (Figure S2E). However, in starved flies,
IPCs were significantly hyperpolarized at the onset of flight
(Figure 3H, pre versus F1, p < 0.0001). Hence, IPCs were still in-
hibited. To test whether this inhibition was strong enough to
reduce IPC spike frequency during flight after starvation, we de-
polarized IPCs to initiate spiking and induced flight. IPC spike
frequency was significantly reduced at flight onset, remained
low throughout flight (Figure 3I, F1 versus F2, p > 0.05), and
increased back to baseline after cessation of flight (F2 versus
post). This activity pattern basically matched that of fed flies,
illustrating that IPC inhibition was unaffected by the metabolic
state. However, starved flies were missing the prominent
rebound excitation (pre versus post, p = 0.94) observed in fed
flies. Matching this observation, the IPC V,,, was not depolarized,
compared with baseline after cessation of flight (pre versus post,
p = 1, Figure 3H), which was the case in fed flies (Figure S1G). In
summary, the inhibition of IPCs during flight is present in fed and
starved flies, which indicates that it is independent of changes in
hemolymph sugar levels. The rebound in IPC activity after loco-
motion, by contrast, was absent in starved flies and therefore
seems to require hemolymph sugars.

IPCs are inhibited during optogenetically induced
backward walking

Mechanistically, the behavioral state-dependent modulation of
IPCs could have different origins (Figure 4A). On the one hand,
IPC activity could be reduced during locomotion due to a depletion
ofhemolymph sugar levels, which IPCs sense cell autonomously®”
and via modulatory neuronal inputs.®°¢7°® Thus, IPC modulation
would be a passive effect driven by changes in glucose concentra-
tions (Figure 4A). On the other hand, IPCs could be modulated by
neuronal activity correlated with walking and flight, such as feed-
back or feedforward signals from central modulatory, sensory, or
motor circuits. Thus, IPCs would be actively modulated to adjust
their activity to metabolically demanding states.

To understand which mechanism drives the IPC modulation,
we used optogenetics to actively induce behavioral state transi-
tions. To this end, we used the MDN-1 split-Gal4 driver line®® to
optogenetically activate a single class of command-like de-
scending neurons (moonwalker descending neurons, MDNs)

(G) IPC baseline spike frequency after starvation.

(H) Flight-dependent V,, changes after starvation.

(I) Spike frequency of depolarized IPCs during flight after starvation.
See also Figure S2, Video S3, and Table S1.
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Figure 4. IPC activity is decreased during optogenetically induced backward walking

(A) Schematic showing locomotor effects on IPC activity.

(B) Confocal image of the central brain with MDNs and IPC labeling (see also Figures S3A-S3D).

(C) Experimental setup for patch-clamp recordings during optogenetically induced backward walking.

(D) Representative backward-walking trajectories with normalized IPC spike frequency (color-coded, binned as in E). Trajectories are plotted over 25s (5 s pre,
15 s activation, and 5 s post). Circles, starting position (color, mean IPC spike frequency before MDN activation); black bar, cessation of activation.

(E) IPC activity during optogenetically induced backward walking. Plot details as in Figure 3C.

(F) Quantification of IPC responses from trials in (E). Plot details as in Figure 3D. One outlier at 6.8 Hz in post omitted for clarity of inspection.

See also Figure S3, Video S4, and Table S1.

and elicit backward walking (Figure 4B). We chose this line for
several reasons (see STAR Methods). Most importantly, the pri-
mary outputs of MDNs are located close to the motor periphery
in the VNC,®° and activation of MDNs is sufficient to induce
robust backward walking over tens of minutes.”®°° Hence,
activating MDNs provides an opportunity to directly control the
animal’s locomotor state while minimizing other effects on the
central nervous system (CNS).

To test for effects of MDN activation on behavior and IPC ac-
tivity, we recorded from IPCs in flies expressing the optogenetic
effector CsChrimson®’ in MDN-1 (Figure 4C). Optogenetic

454 Current Biology 33, 449-463, February 6, 2023

activation of MDNs for 15 s induced robust and sustained back-
ward walking (Figure 4D; Video S4). The IPC spike frequency
decreased strongly at the onset of MDN activation, remained
low throughout MDN activation (MDN1 versus MDN2,
p < 0.05), and rebounded after cessation of MDN activation
(Figures 4E and 4F, pre versus post, p < 0.001). These dynamics
were similar to those observed during flight and forward walking.

Collectively, these findings support a model in which flight and
walking, independent of whether it is spontaneous or elicited by
optogenetically induced motor commands, modulate IPC activ-
ity in a similar fashion (Figure 4F). Interestingly, the IPC
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modulation was much stronger during MDN activation than in
spontaneously walking flies, even though MDN-induced back-
ward walking was slower than forward walking. This indicates
that behavioral state-dependent IPC modulation might be
achieved actively, via a neuronal pathway, rather than passively,
via changes in hemolymph sugar concentrations. Optogenetic
stimulation of MDNs provides a strong drive to backward-
walking motor circuits, which could explain the strong effects
on IPCs during MDN-induced backward walking, despite the
relatively low-level motor activity.

Modulation of IPCs precedes transitions in behavioral
state

If the IPC inhibition was caused by locomotion-driven sensory
feedback or changes in hemolymph sugar levels, it should arise af-
ter the behavioral onset. By contrast, if IPCs were modulated by a
feedforward signal from motor centers, IPC inhibition should arise
synchronously with, or even precede, locomotor activity (Fig-
ure 4A). To disambiguate between these possibilities and identify
the mechanism responsible for IPC modulation, we analyzed the
precise timing of IPC modulation. First, we quantified the change in
Vr at flight onset and cessation. 1 s after the onset of flight, IPCs
were significantly hyperpolarized by about 2.5 mV, compared
with rest (Figure 5G, p < 0.0001). After cessation of flight, the V,,,
significantly increased by ~1 mV (Figure S1G, p < 0.0001) and
was significantly higher than baseline (p < 0.0001), likely driving
the rebound in spike frequency (Figures 1B and 1C). Interestingly,
the decrease in V,, was already evident before flight onset in the
grand average (Figures 5A and 5B) and individual example traces
(Figure S4). Moreover, the V,, slowly returned toward baseline
levels during flight, so that IPCs were significantly less hyperpolar-
ized during the last seconds of flight, compared with the beginning
(F1 versus F2, p <0.001). In other words, IPCs were hyperpolarized
just before the onset and started to depolarize before cessation of
flight. Hence, changes in IPC V,, tended to precede behavioral
transitions, suggesting that IPCs are actively modulated via a feed-
forward signal.

To further investigate the existence of a neuronal feedforward
pathway, we quantified the timing of IPC inhibition relative to
MDN activation and the onset of backward walking. To this end,
we analyzed the IPC response to MDN activation (Figure 4) in
two ways. First, we averaged the IPC V,, in a 2-s window around
the onset of backward walking, as defined by the onset of treadmill
rotations (Figure 5C). The average IPC membrane potential
showed a clear and strong decrease just before the onset of
walking, suggesting that the locomotor drive, rather than the actual
locomotion or sensory feedback, was inhibiting IPCs. Next, we per-
formed the same analysis but used the trigger of the LED driving
MDN activation as the reference point for averaging (Figure 5D).
Here, the V,,, decreased much faster and reached a 0.6-mV-larger
amplitude (—2 mV, Figure 5F). The time constant (1) approximating
the hyperpolarization was twice as fast (r = 85 ms) when using the
LED trigger, compared with actual walking (t = 178 ms, Figure 5F).
Hence, the variability of the decline in IPC V,,, was much smaller
when using the LED stimulus as the trigger, implying that MDN acti-
vation rather than the initiation of backward walking drove IPC inhi-
bition. These results suggest that the inhibition of IPCs during loco-
motion is driven by a feedforward signal that precedes locomotor
activity and changes in hemolymph sugar levels.
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The behavioral state-dependent inhibition of IPCs is
mediated by neuronal pathways

The timing of IPC activity changes suggested that a neuronal
feedforward signal is responsible for the behavioral state-depen-
dent IPC inhibition. To verify that IPCs are actively modulated via
a neuronal pathway independent of sensory feedback and
changes in sugar levels, we performed ex vivo recordings of
IPCs while driving locomotor circuits via MDN activation and
clamping the CNS to constant sugar levels (Figure 6A). Thus,
we were able to optogenetically impose a motor command
that induced a fictive locomotor state of the CNS, perhaps com-
parable to pharmacologically induced fictive motor output in
other preparations,®”°° which was (1) decoupled from changes
in behavior, (2) devoid of sensory feedback, and (3) did not lead
to changes in surrounding sugar levels. Using this preparation,
we obtained similar results as during in vivo stimulation of
MDNs. IPC frequencies were significantly reduced at the onset
of MDN activation (p < 0.05) and remained inhibited throughout
MDN stimulation (MDN1 versus MDN2, p > 0.8). Interestingly,
IPCs did not exhibit the prominent rebound after MDN activation
we observed in vivo. Instead, their spike frequency remained
lower after MDN activation (pre versus post, p > 0.5, Figure 1B;
see also Figures 2C, 3C, and 4E for comparison). Comparison of
the baseline-subtracted spike frequency after cessation of MDN
activation revealed that the spike frequency in vivo increased
significantly, whereas the spike frequency ex vivo decreased
significantly (Figure 6E). These findings suggest that the inhibi-
tion and rebound of IPC activity are independently regulated.
The inhibition of IPCs is driven by feedforward signals that are
present ex vivo, without sensory feedback or changes in hemo-
lymph sugar concentrations. By contrast, the rebound in IPC ac-
tivity must be driven by neuronal feedback, changes in hemo-
lymph sugar levels, or intrinsic properties of IPCs. Various
neuron types exhibit a cell-intrinsic post-inhibitory rebound
(PIR), defined as a period of increased neuronal excitability and
spiking following inhibition.®”®° To test if a PIR could explain
the increased spike frequency after cessation of locomotion,
we injected hyperpolarizing currents into IPCs in vivo
(Figures S5A-S5D). IPCs did not exhibit characteristic rebound
potentials (Figure S5A), which typically occur within 100 ms after
hyperpolarization.®®’%"" On the contrary, IPC spike frequency
was significantly lower after release from hyperpolarization
(Figures S5B-S5D). The rebound after cessation of locomotion
is therefore not an intrinsic property of IPCs. Since the rebound
was also absent ex vivo and after starvation, it is likely driven
by feedback pathways that require changes in hemolymph sugar
concentration.

Taken together, our results suggest a model in which the inhibi-
tion and rebound of IPC activity are independently regulated. IPC
inhibition is driven by a neuronal feedforward signal from motor
centers that actively suppresses IPC activity during locomotion
and is not simply a consequence of reduced hemolymph sugar
levels or sensory feedback (Figure 6F). The rebound in IPC activity,
by contrast, requires changes in hemolymph concentrations and is
driven by feedback signals. This modulation in IPC activity is
ideally suited to serve the increased metabolic demand during
locomotion and the need to replenish glycogen stores after loco-
motion, and it could enable differential sensorimotor processing
in different behavioral states.
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5, Flight Onset

Figure 5. IPCs are rapidly inhibited at behav-
ioral transitions

(A) Change in IPC V,,, aligned to flight onset. Upper
trace, mean V,, before (gray) and after (blue) flight
onset. Black line, median-filtered V,, trace with SD
(gray shading).

(B) Magnification of median-filtered Vy, (A) at flight
onset. The median filter follows the underlying
change in V,,, and does not change time course of
the events (see Figure S4).

(C and D) Change in IPC V,, triggered by onset of
treadmill rotation (C) and onset of LED (D). Top,
mean V,, of IPCs before (gray) and after onset
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(gray shading). Middle, rectified ball rotation (a.u.)
of all walking trials. Thick line, mean ball rotation.
Bottom panels, LED onsets.

(E) Magnification of AV, from (D). Black dashed
line, mean median-filtered V,,,. in MDN1.

(F) Average change in V,, aligned by the onset of
LED and ball rotation with respective single expo-

(9]

)
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1 n=31cells
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nential fits and R? values. Dashed lines, time con-
stants (t) for both averages.

(G) AV, at flight (blue) and MDN stimulation onset
(magenta). Dots, mean for each trial; black lines,
median.

See also Figure S4 and Table S1.
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DISCUSSION

Modulation of insulin release during locomotion is
evolutionarily conserved

Since the role of insulin is highly conserved during evolution,
genetically tractable animal models such as Drosophila are power-
ful systems for studying aspects of insulin signaling, including
those underlying human diseases such as obesity and diabetes.”®
Effects of physical exercise on circulating insulin levels are well
described in vertebrates. However, how the activity of insulin-pro-
ducing and -releasing cells ismodulated to regulate insulin levels is
still unclear. We set out to determine if and how IPCs are modu-
lated by behavioral state transitions by leveraging the powerful ge-
netic and physiological tools available in Drosophila.

We found a striking similarity in insulin regulation between hu-
mans and flies in situations where fuel stores need to be mobi-
lized. IPCs, and hence likely the secretion of insulin, were in-
hibited at the onset of locomotion. Similar observations
regarding the dynamics of insulin release were made in humans,
where insulin levels are lower during excessive physical exer-
cise.”®® This leads to the mobilization of fuel stores and the
suppression of the fuel storage effects of insulin, thus shifting
the metabolic balance toward a catabolic state. These fuel
stores, particularly muscle glycogen, need to be replenished af-
ter physical activity, which is achieved through an enhanced
sensitivity to insulin in depleted muscles.?®®? We found that
IPC activity in Drosophila rebounded and overshot at the cessa-
tion of locomotion, which could be a mechanism to rapidly

4,72-74
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replenish circulating insulin levels and
stimulate glucose uptake and glycogen
resynthesis in muscle and other tissues.
The extent to which IPCs were modulated
was tuned to the energy demands of ongoing behavior and was
stronger in flight than in walking. Thus, behavioral state transi-
tions have dramatic effects on IPC activity and hence insulin
release, suggesting remarkable similarities in insulin signaling
between flies and humans during increased physical activity.””
These similarities offer the potential to study the effects of phys-
ical activity on metabolic control in disease models.?*>®°

MDN?1

Rapid IPC modulation ensures fuel availability in
Drosophila
The regulation of fuel mobilization and metabolic fuels used to
power insect flight (carbohydrates, lipids, or amino acids) differs
between species and depends on dietary and behavioral spe-
cializations,®*™° flight muscle types,’’®” and the metabolic
state.”® Some of these differences might explain why IPC activity
is tightly coupled to both the behavioral and nutritional states in
Drosophila. Migratory locusts, as long-distance flyers, use treha-
lose as the main fuel in the initial phase of flight but switch to
energy substrates from the fat body during sustained flight.®%%4
By contrast, other species, including Drosophila, primarily use
carbohydrates to fuel flight.2°>% Here, glycogen stores are
heavily diminished in their major deposits after long periods of
flight, while there is no reduction in the amount of stored fat.%
This suggests that lipid metabolism only plays a minor role in
powering Drosophila flight, underlining the importance of predic-
tive insulin signaling to maintain hemolymph sugar homeostasis.
While the role of insulin is highly conserved, there are differ-
ences in the endocrinal regulation of energy mobilization
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Figure 6. Optogenetic activation of MDN ex vivo shows that IPCs are inhibited by a neuronal pathway that actively suppresses IPC activity

during locomotion

(A) Schematic illustrating ex vivo patch-clamp recordings from IPCs during optogenetic MDN activation.

(B) Dissected brain with attached VNC, proventriculus (PV), and gut.

(C) IPC activity during MDN activation (red shading) ex vivo. Top, mean IPC spike frequency (in 500-ms bins) across all trials. Gray dotted line, median spike
frequency before MDN activation; solid black lines, median spike frequency in MDN1, MDN2, and post. Middle, five example trials from IPC1. Initial V,

was —47.4 mV (mean).

(D) IPC responses (median = IQR) from trials in (C) and additional trials with 5-s LED stimulus. Lines indicate averages of individual IPCs.

(E) Change in spike frequency at cessation of the LED stimulus in in vivo and ex vivo. Dots, mean change in spike frequency for individual trials. Both distributions
were significantly different from zero (two-sided Wilcoxon signed rank tests, p < 0.0001).

(F) Schematic summarizing the effects of walking and flight on the IPC population.

See also Figure S5 and Table S1.

between insects. Examples of neuromodulators promoting en-
ergy utilization are adipokinetic hormone/corazonin-related pep-
tide (ACP)°® and octopamine.®’~°° However, both ACP?'%° and
the octopaminergic neurons innervating insect flight muscles are
absent in Drosophila.'® Moreover, the role of octopamine in
regulating hemolymph sugar levels in Drosophila is controver-
sial,’®>'% and its effects on flight performance are more likely
to be mediated through modulation of the CNS than via direct
modulation of the metabolic state.'® Most importantly, fuel

switching in locusts**'%® is mediated, inter alia, via release of

adipokinetic hormone (AKH) into the hemolymph,°®~'%° which
promotes glycogenolysis through activation of glycogen phos-
phatase (GlyP)—the rate-limiting enzyme of glycogenolysis."'®
In Drosophila, by contrast, loss of AKH signaling does not
seem to affect flight performance, " and AKH is unlikely to acti-
vate GlyP.*? GlyP itself, however, is crucial for Drosophila flight
performance’ ' and is negatively regulated by DILP2.""® Hence,
a decrease in IPC activity and ultimately DILP2 release at flight
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onset should increase GlyP activity, which in turn promotes the
utilization of glycogen as the main fuel source.

There are situations in which both glycogen and fat body re-
serves are diminished in Drosophila, for example, starvation.®®
We show that in a state in which energy demands are high (flight)
or glycogen and fat deposits are depleted (starvation), IPC
activity is reduced. A causal link between IPC activity and hemo-
lymph sugar homeostasis has been demonstrated by ablation of
IPCs, which increases hemolymph sugar levels,'*'® and overex-
pression of insulin, which reduces hemolymph sugar levels.'®
Moreover, insulin and hemolymph sugar levels increase after
feeding,®*'"* where we measured high IPC activity, and
decrease during starvation,'">""® where we measured very low
IPC activity. These observations highlight that our quantifica-
tions of IPC spike rates correlate with insulin release and that
the magnitude of IPC modulation we measured is physiologically
relevant in terms of modulating hemolymph sugar levels. Hence,
the IPC spike frequency changes we observed during behavioral
transitions are suited to modulate insulin release and hemolymph
sugar levels in a predictive fashion. Accordingly, the rebound
in IPC activity after cessation of locomotion was absent when
glycogen stores were depleted (starvation) or physically
removed (ex vivo). This could prevent a further decrease in
hemolymph sugar levels (hypoglycemia/hypotrehalosemia) re-
sulting from increased insulin release after locomotion. Together,
these results underline the importance of integrating internal and
behavioral states for the predictive and adaptive regulation of
IPC activity.

Anticipatory IPC modulation sets the metabolic state
during behavior

We hypothesized that IPC modulation could originate from
intrinsic properties, feedback mechanisms, or feedforward
mechanisms. Several of our findings suggest the presence of a
feedforward mechanism. First, the hyperpolarization of the IPC
membrane potential slightly preceded flight onset. Second, the
IPC hyperpolarization was more strongly correlated with optoge-
netic activation of MDNs than actual behavior. Third, and most
importantly, activation of MDNs in the absence of sensory feed-
back, muscles, actual behavior, and changes in surrounding
sugar levels was sufficient to inhibit IPCs ex vivo (Figure 6).
Hence, the inhibition of IPCs must be driven by feedforward sig-
nals. In humans and flies, anticipatory insulin release can be trig-
gered by olfactory sensory cues signaling imminent food
intake,""”""® which prepare the body for incoming nutrients
and thus prevent acute hyperglycemia.’'®'?° In our model (Fig-
ure 6F), behavioral state-dependent IPC modulation primes the
body for sudden changes in hemolymph sugar levels due to
changes in metabolic demand at behavioral transitions. Interest-
ingly, the rebound in IPC activity seems to rely on a feedback
mechanism that depends on changes in hemolymph sugar
levels: it was absent ex vivo and after starvation, and it is not
mediated via PIR and hence not an intrinsic property of IPCs.
IPCs can sense changes in glucose levels cell autonomously,®”
and indirectly via modulatory inputs from glucose-sensing neu-
rons,®°%°8 which could provide this feedback. The combination
of feedback and feedforward mechanisms could improve the
robustness of IPC modulation against perturbations, as sug-
gested for other circuits requiring robust regulation.'#'~"23
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Which neurons relay the feedforward signal from the locomo-
tor drive to IPCs? Given the relatively long latency between
MDN activation and IPC inhibition (~90 ms, Figure 5), we as-
sume that the connection between MDNs and IPCs is polysyn-
aptic and the result of distributed feedback from motor circuits
to modulatory circuits in the brain. In line with this, our initial
exploration of the hemibrain EM volume'?*'?° did not yield
direct connections between MDNs and large, median neurose-
cretory cells in the P, including the IPCs (which are not anno-
tated yet due to their anatomical similarity to other neurons).
Moreover, the primary output sites of MDNs are located in the
VNC,%® so that MDNs are very unlikely to make direct contacts
with IPCs or other modulatory neurons in the brain. Instead,
feedback from VNC motor circuits is most likely conveyed by
ascending neurons, such as the moonwalker ascending neu-
rons.®? Given its ubiquitous role in modulating sensorimotor
circuits across the CNS,'27'%° pehavioral state dependence
is likely mediated by a distributed network of neurons. For
example, the neuronal pathways controlling flight and walking
are fundamentally different,® but IPCs are inhibited during
both, suggesting that different sensorimotor pathways
converge to modulate IPCs. Since IPCs express a large
variety of receptors for classical transmitters and neuropep-
tides,®%47:55:131=134 their modulation might be achieved by a
combination of various inputs, as shown in numerous other
systems.'®*7"*° One candidate for mediating behavioral state-
dependent IPC inhibition is GABA, which exerts a constant
inhibitory tone on IPCs."*°

Behavioral state-dependent modulation of

sensorimotor pathways via insulin

One reason for an insect to take off or start walking is foraging.
Although odors are dispersed and diluted by the ambient motion
of air, flying insects can locate an odor source over tens of meters,
which requires exquisite olfactory sensitivity. In Drosophila, olfac-
tory sensitivity is modulated by the nutritional state,>*'*! which is
partially mediated by insulin. Low levels of insulin in starved flies
result in higher sSNPF-receptor expression in specific odorant re-
ceptor neurons (ORNs), enhancing their sensitivity. The inhibition
of IPCs during locomotion could be an elegant mechanism to
simultaneously serve metabolic demands and aid the detection
of food sources during locomotion,'“>"'*® since it should lead to
ORN sensitization. ORN sensitization is achieved through changes
in gene expression,®* which require timescales exceeding the
duration of a single flight or walking bout. However, Drosophila
often display long series of locomotor events, for example, during
the circadian activity peak or courtship,’**'** and they can
migrate over long distances for several hours.'**'*® Hence, the
IPC inhibition during locomotion will lead to prolonged periods of
low IPC activity on timescales sufficient to alter gene expression.
Therefore, the behavioral state-dependent modulation of IPCs
does not only serve metabolic demands but also potentially
increases the success of finding food sources by tuning the sensi-
tivity of the olfactory system during foraging. Insulin also modu-
lates sensorimotor circuits on faster timescales, like those involved
in escape behavior and pain responses.?”?%'*° Qur results show
that IPCs are modulated on equally fast timescales, demonstrating
that insulin could play a role in rapidly shaping sensorimotor
output.
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Low insulin levels have protective effects against neurodegener-
ative disorders,'®*'*" and impairment of insulin signaling extends
lifespan in Drosophila,'>'**~'** C. elegans,**"'*® and mice."®”
This is partially because reduced insulin signaling promotes anti-
oxidant defense, which in turn increases health and lifespan.’®®
Our data suggest that high locomotor activity in Drosophila re-
duces insulin levels, which might explain why a physically active
lifestyle increases lifespan and promotes healthy aging.
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SOURCE

IDENTIFIER

Antibodies

AlexaFluor 488 goat anti-chicken IgY (H+L)

AlexaFluor 555 goat anti-rabbit IgG (H+L)
AlexaFluor 647 goat anti-mouse IgG (H+L)
rabbit anti-DILP2

mouse anti-nc82 (Bruchpilot
C-terminal aa 1227-1740)

chicken anti-GFP (ab13970)

Thermo Fisher Scientific,
Waltham, MA, USA

Thermo Fisher Scientific
Thermo Fisher Scientific
Veenstra et al., Bordeaux, France'®®

Buchner, E.; Universitatsklinikum
Wiirzburg, Germany'”®

abcam, Berlin, Germany

RRID: AB_2534096

RRID: AB_2535850
RRID: AB_2535804
RRID: AB_2569969
RRID: AB_2314866

RRID: AB_300798

Chemicals, peptides, and recombinant proteins

All-trans-retinal
Vectashield Antifade Mounting Medium (H-1000)

Sigma-Aldrich, Steinheim, Germany
Vector Laboratories, CA, USA

R2500
N/A

Deposited data

Primary data

This paper

https://doi.org/10.6084/m9.figshare.21302931

Experimental models: Organisms/strains

10xUAS-myr:GFP

Bloomington Drosophila

RRID:BDSC_32197

Stock Center (BDSC)
Dilp2-Gal4/CyO BDSC RRID: BDSC_37516
R96A08-LexA-p65 at VK0O0037 This study N/A
LexOp-Dilp2::GFP at VK0001 This study N/A
20x-UAS-CsChrimson (attP2) BDSC RRID: BDSC_32197
13XLexAop2-IVS-GCaMP6m-p10 su(Hw)attP5 Chen et al.'®® N/A
VT50660.p65AD at attp2)/TM3-Ser Bidaye et al.”® N/A
VT44845.GAL4DBD(attp40)/CyO Bidaye et al.*® N/A
Oligonucleotides
Forward primer to amplify Dilp2-GFP fragment: This study N/A
GCTCGAGCCAACTTAATCCATTTGATCG
Reverse primer to amplify Dilp2-GFP fragment: This study N/A
GCGATTGTCTAGAAAAGCTTAAAGCAGAATA
Recombinant DNA
pUAST-Dilp2-GFP Wong et al.'®" N/A

Software and algorithms

Leica Application Suite X (LAS X)
Napari graphical user interface
pCLAMP 11 Software Suite
fly2p

MATLAB 2020b

Adobe lllustrator
Micro-Manager 2.0

Leica Microsystems, Wetzlar, Germany

https://napari.org/stable/
Molecular Devices, LLC., CA, USA
This paper

MathWorks, MA, USA

Adobe, San Jose, CA, USA

Edelstein et al.®?

RRID:SCR_013673
https://zenodo.org/record/7276432
RRID:SCR_011323
https://github.com/hjmh/fly2p
RRID:SCR_001622
RRID:SCR_010279
https://doi.org/10.14440/jbm.2014.36

STARXxMETHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jan M.

Ache (jan.ache@uni-wuerzburg.de).
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Material availability
Newly generated fly lines are listed in the key resources table and are available from the lead contact upon request.

Data and code availability
Raw data reported in this study have been deposited and are publicly available as of the date of publication. DOls are listed in the key
resources table.

Original Python code that is part of the fly2p module has been deposited at GitHub and is publicly available as of the date of pub-
lication. DOls are listed in the key resources table.

Microscopy data reported in this paper will be shared by the lead contact upon request.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly husbandry

All Drosophila melanogaster stocks were maintained on standard fly food (cornmeal-agar-molasses medium) at 25°C and 60% rela-
tive humidity under a 12 h/12 h light/dark cycle. All experiments were conducted on mated females that were used 3-6 days after
eclosion. For starvation experiments, flies were wet starved for 24 h in a vial that only contained a water-soaked filter paper. For op-
togenetic activation experiments, one-day-old flies were transferred onto standard fly food containing 300 puM all-trans-retinal
(R2500, Sigma-Aldrich, Steinheim, Germany). These vials were kept in the dark until the flies were used for experiments.

Fly stocks and genotypes

The genotypes used in each figure are listed in Table S1. The following genotypes were used (see also key resources table): for in-vivo
whole cell patch-clamp recordings, IPCs were visualized using w; 10xUAS-IVS-myr:GFP (Bloomington #32197) and w; Dilp2-GAL4 /
Cyo; w (Bloomington #37516). For optogenetic activation of MDNs during IPC patch-clamp recordings, the following lines were
constructed:

LexAop-dilp2-GFP

Dilp2-GFP fragment was amplified from pUAST-Dilp2-GFP'®" via PCR using a pair of primers (GCTCGAGCCAACTTAATCCATTT
GATCG and GCGATTGTCTAGAAAAGCTTAAAGCAGAATA) and was cloned into pJFRC19-13XLexAop2-IVS-myr::GFP vector via
Xhol and Xbal mediated directional cloning. The transgene was inserted into the attP landing site of VK0001 on 2™ by using the
phiC31 mediated site-specific integration.'®*"* 96A08-LexA-p65: 96A08 fragment '°® in Pcr8-GWTOPO was shuttled to the vector -
pBpLexA-p65Uw via Gateway® cloning (Invitrogen, Waltham, MA, USA). The transgene was integrated into VK00037 attP site on 2"
chromosome as mentioned above.

Finally, the following line was generated: R96A08-LexA-p65 on VK00037, LexAOp-Dilp2::GFP in VK0001; 20XUAS-IVS-CsChrim-
son.mVenus in attP2 which was crossed to MDN-1: w; VT44845.GAL4DBD(attp40)/CyO; VT50660.p65AD(attp2)/TM3-Ser.* This
line was used for optogenetic activation of a single class of command-like descending neurons (MDNs) to induce behavioral state
transitions. We chose this particular line for several reasons: First, activation of MDNs is sufficient to induce robust backward walking
over tens of minutes.”®°° Second, optogenetic activation of residual MDN terminals in the VNC drives backward walking even after
decapitation, and hence in the absence of higher brain regions. This is particularly important due to the regulatory complexity of IPC
signaling. Third, MDNs activate motor networks in the VNC and receive visual input from optic glomerulus neurons. Hence, they are
directly implicated in a sensorimotor pathway controlling locomotion, rather than setting the motivational state of the animal, which
could affect IPC activity independent of locomotion. Fourth, the targets of MDNs in the VNC are well-defined and are all close to the
motor periphery.®® Finally, in contrast to other lines (including other MDN lines), off-target labelling in MDN-1 is very sparse and the
moonwalker ascending neuron is not labelled (Figures 4B and S3). Hence, optogenetically activating MDNs provides an opportunity
to directly control the animal’s locomotor state while minimizing other effects on the nervous system. Functionality of CsChrimson in
MDNs was confirmed based on the initiation of backward walking when illuminated by a flashlight prior to experiments.

For calcium imaging experiments, we used the following compound line: R96A08-LexA-p65 at VK37, LexAOp-GCaMP6m at
attP5."%%"%% For immunohistochemistry we used the stocks listed in Table S1 and key resources table and in the figure legends.

METHOD DETAILS

Electrophysiology

Patch-clamp recordings in behaving flies were performed under daylight conditions at room temperature (RT) as described previ-
ously."?®"%° |n brief, flies were cold anesthetized at 4°C and mounted with their head and thorax fixed to a pyramid-shaped fly holder,
which left the legs and wings free to allow for flight (see Figure 1A) and walking (see Figure 3A). For the flight experiments presented in
Figures 1, 2, 3E-3I, and 5D-5F, front legs were amputated at the level of the coxa-trochanter joint and the remaining leg stumps and
the proboscis were glued to the thorax using UV glue (Proformic C1001, VIKO UG, Munich, Germany) to reduce interference with
recordings. In all other in-vivo experiments, all legs remained intact and only the proboscis was glued. On the posterior side of
the head, a small window was cut into the cuticle, exposing the IPCs. For patch-clamp recordings in ex-vivo preparations, the brain
with attached VNC, proventriculus (PV) and gut was dissected and placed on a poly L-Lysin coated slide (Figure 6). In all patch-clamp
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experiments, IPCs were visualized under a customized fluorescence microscope based on the SliceScope (Scientifica, Uckfield, UK).
Collagenase (0.5% in extracellular saline) was locally applied with a blunt patch-pipette to rupture the neural sheath surrounding the
brain in a small region over the IPCs to render the IPC somata accessible. In fed flies, the brain was continuously perfused with
carbogenated (95% 0,/5% CO,) extracellular saline with the following composition: 103 mM NaCl, 3 mM KCI, 5 mM N-Tris (hydrox-
ymethyl)methyl-2-aminoethane-sulfonic acid, 8 mM trehalose, 10 mM glucose, 26 MM NaHCO3;, 1 mM NaH,PO,, 1.5 mM CaCl, and
4 mM MgCl, (adjusted to 273-275 mOsm, pH 7.3)."%” In ex-vivo experiments the entire CNS was continuously perfused in a large
volume of extracellular saline. In starvation experiments, fly brains were perfused with extracellular glucose free saline containing
103 mM NaCl, 3 mM KCl, 5 mM N-Tris (hydroxymethyl)methyl-2-aminoethane-sulfonic acid, 20 mM sucrose, 26 mM NaHCO3, 1 mM
NaH,PO,, 1.5 mM CaCl,, 4 mM MgCl, (osmolarity adjusted to 273-275 mOsm, pH 7.3).

Patch-clamp electrodes (4-8 MQ) containing intracellular saline (40 mM potassium aspartate, 10 mM HEPES, 1 mM EGTA, 4 mM
MgATP, 0.5 mM Naz GTP, 1 mM KCI and 20 uM, adjusted to 260-275 mOsm, pH 7.3) were used for whole cell patch-clamp exper-
iments. Intracellular traces were recorded with the pPCLAMP 11 Software Suite (Molecular Devices, LLC., CA, USA) and corrected for
a 13 mV liquid junction potential.’®” Whole-cell patch-clamp recordings had to fulfill the following quality standards to be acceptable
for analysis: spike amplitudes needed to be larger than 30 mV, the resting membrane potential had to be within a -48 mV to -80 mV
range, the seal resistance before breaking into the cell needed to be larger than 6 GQ, and at least one behavioral trial (walking or
flight) meeting the criteria described below had to be recorded. In some experiments, e.g., in ex-vivo recordings, IPCs were depo-
larized via injection of a constant holding current to elicit spiking. Here, the above-mentioned quality standards for resting membrane
potential and spike amplitude did not apply. Data were collected with a MultiClamp 700B amplifier (Molecular Devices, San Jose, CA,
USA) in current clamp mode, low-pass filtered at 10 kHz and sampled (Digidata 1440A, Molecular Devices) at 20 kHz. If not explicitly
stated, no holding current was injected throughout the experiments. The ability of IPCs to elicit post-inhibitory rebound responses
was tested by injecting hyperpolarizing currents with of different amplitudes for 1 s (-50 pA, -75 pA, and -100 pA) and 15 s
(-50 pA). The interstimulus interval was 60 s and the fly was tethered as shown in Figure 1A. Data were analyzed and figures were
generated using custom-written MATLAB code (MATLAB 2020b, MathWorks, MA, USA). Subsequently, figures were further pro-
cessed in Adobe lllustrator (Adobe, San Jose, CA, USA).

Tethered flight and walking

For the behavioral experiments shown in Figures 1, 2, 3E, 3F, 3H, 3I, 5A, 5B, and 5G, flight occurred either spontaneously or was
induced by the application of gentle air puffs. Cessation of flight always occurred spontaneously. For flight analysis, we used a modi-
fied version of a wingbeat tachometer that detects wing motion via a light guide equipped with a long pass filter (760 nm and above,
co-designed and built by the University of Cologne Animal Physiology Electronics Workshop, model 969), based on a design by IO
Rodeo (https://github.com/iorodeo/light_sensor_boards). For the behavioral experiments shown in Figures 3, 4, and 5C-5G a setup
functionally very similar to the one originally designed by Seelig and co-workers was used. %% In brief, an air-supported ball (poly-
propylene, diameter: 6 mm, Spherotech GmbH, Fulda, Germany) was positioned under the fly using a 3D micromanipulator and a
camera (acA1300-200um, Basler, Ahrensburg, Germany) providing a sideview for positional control. The spherical treadmill was illu-
minated via an 850 nm IR LED (SFH4550, OSRAM, Munich, Germany) and movement of the ball was recorded to calculate the tra-
jectory of the walking fly (ball tracker).'®® For CsChrimson activation experiments, a 625 nm LED was adjusted to output ~4.4
mW/cm? intensity at the position of the fly and was transiently switched on using pCLAMP.

Calcium imaging

For imaging experiments, the preparation followed the same protocol as for whole cell patch-clamp. However, the neural sheath was
not ruptured and the calcium concentration in the saline was increased to match the composition commonly used (see for example
Seelig and Jayaraman”o) with a final concentration of: 103 mM NaCl, 3 mM KCI, 5 mM TES, 8 mM trehalose dihydrat, 10 mM glucose,
26 mM NaHCO3, 1 mM NaH,PO4, 2.5 mM CaCl, dihydrat, 4 mM MgCl, hexahydrat. All calcium imaging data were recorded with a
Prime BSI Express Scientific CMOS camera (Teledyne Photometrics, Tucson, AZ, USA) in an in-vivo fluorescence microscope
(SliceScope, Scientifica). The image acquisition was controlled with the ImageJ based software Micro-Manager 2.0."%* Time series
data were acquired in a single z-plane at a framerate of 10 Hz for 2 min per trial. The field of view was adjusted to the respective po-
sition of the IPCs in each individual fly. The genetically encoded calcium indicator GCaMP6m was excited via a tunable LED (pE-4000
universal fluorescence illumination system, CoolLED Ltd., Andover, UK) set to 470 nm. The light beam was guided through a GFP
filter set (Chroma, Bellow Falls, VT, USA) including a 495 nm long-pass filter and an excitation filter with a bandwidth of 450-
490 nm. To eliminate nonspecific background light, an emission filter with a bandwidth of 500-550 nm was used before the emitted
light was detected by the scientific CMOS sensor of the camera.

Immunohistochemistry and image acquisition

Flies were anesthetized on ice and fixed in ice-cold 4% paraformaldehyde in 0.1 M phosphate-buffered saline + 0.5% Triton-X100
(PBT, pH 7.2) for 3 h at RT on a rotarod. After a brief submersion in 70% ethanol, tissues of interest (brain only or the brain with
attached VNC) were dissected in phosphate buffered saline (PBS) followed by three 15 min wash steps in PBT. Samples were pre-
incubated overnight at 4°C in blocking solution (PBT containing 10% NGS) and then incubated in the following primary antisera: rab-
bit anti-DILP2 at a dilution of 1:2000 (RRID: AB_2569969, kindly provided by J. A. Veenstra, Bordeaux, France),'*® mouse anti-nc82
(Bruchpilot C-terminal aa 1227-1740) at a dilution of 1:50,"”" chicken anti-GFP (ab13970, abcam, Berlin, Germany) at a dilution of
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1:1000. Next, samples were washed three times in PBT for 15 min, followed by incubation in secondary antibodies: AlexaFluor 488
(goat anti-chicken IgY (H+L), 1:200, Thermo Fisher Scientific, Waltham, MA, USA), AlexaFluor 555 (goat anti-rabbit IgG (H+L), 1:200,
Thermo Fisher Scientific) and AlexaFluor 647 (goat anti-mouse IgG (H+L), 1:400, Thermo Fisher Scientific). Samples were, again,
washed three times for 15 min in PBT and mounted in Vectashield Antifade Mounting Medium (H-1000, Vector Laboratories, CA,
USA). Immunofluorescent labeling was visualized with a confocal laser scanning microscope (Leica TCS SP8 WLL) via Leica Appli-
cation Suite X (LAS X, Leica Microsystems, Wetzlar, Germany) using HC PL APO 10x/0.4, HC PL APO 20x/0.75 IMM, or HC PL APO
63%/1.2 CORR objectives. Fluorophore signals were detected in serial stacks with a minimum resolution of 1024 x 1024 pixels using
each dye’s optimal laser line settings. Images were scanned sequentially to reduce dye cross-excitation. Image brightness and
contrast were adjusted using LAS X.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data analysis, except for the preprocessing of calcium imaging, was performed in MATLAB. Statistical tests used and p-values are
described in Data S1 and the main text, the figures, or the figure captions. If not otherwise noted, values are presented as medians
throughout the text and figure legends. Medians and interquartile ranges (IQR) are listed in Data S1.

IPC recordings were temporally smoothed using a running 2 ms window and thresholds were set manually in either the recording or
the derivative of the recording to detect spikes. Accuracy of spike detection was confirmed for each experiment by manual inspection
of three different sections of the recording (beginning, middle, and end). Spike frequency changes that occurred at behavioral tran-
sitions were analyzed in different intervals. For flight, these intervals were as follows: Each trial was divided into four 5 s intervals:
before flight onset (pre), after flight onset (F1), before cessation of flight (F2), and after cessation of flight (post). The post interval
started 500 ms after cessation of flight to account for the transition period. Since flight bouts had different lengths, mid-flight IPC
activity is not depicted in the figures. For analysis of changes in membrane potential (V,,,), intracellular recordings were filtered using
a 100 ms wide running median filter, which was wide enough to eliminate the large membrane deflections during spikes. Here, the
analysis window was 1 s before and after behavioral transitions. Flight trials were included for analysis if they featured at least 10 s of
continuous flight in patch-clamp recordings and 8 s in calcium imaging experiments. The latter was chosen to match the shorter dura-
tion of calcium imaging trials we used to reduce bleaching and phototoxicity. In addition, trials of both methods were only included for
further analysis if the inter-flight intervals were at least 15 s long. Flight onset and cessation were determined by extracting the time
stamp of the first and last wingbeat in MATLAB for each flight bout. When calculating the average wingbeat frequency, we discounted
the first and last 500 ms of each flight bout to exclude transition periods. In starvation experiments, IPC baseline activity was recorded
for 8 min, from which only the last 5 min were analyzed.

Walking was determined by changes in translational velocity and thresholds for the detection of onset and cessation of walking
were set manually in MATLAB. Only trials in which the fly was resting before onset and after cessation of a walking bout were consid-
ered for analysis. Within a 10 s window (5 s before onset and 5 s after cessation of walking) the fly was allowed to rotate the ball above
threshold for a maximum of 500 ms. Locomotor trajectories reconstructed from treadmill rotations were individually inspected and
sorted into two groups. In one group, only proper walking bouts characterized by relatively straight, uninterrupted walking trajectories
were considered for analysis (45 % of all locomotor activity bouts), referred to as walking (Figures 3B and S2A). In the other group, all
locomotor activity bouts, including those in which flies were turning on the spot, struggling on the spherical treadmill, or displaying
unspecific leg movements inducing treadmill rotations were analyzed (238 bouts, referred to as locomotor activity, see Figure S2). For
spontaneous walking and locomotor activity, bouts were accepted for analysis with a minimum duration of 5 s. Spike frequency was
determined for each trial that was divided into four intervals: 5 s before walking onset (pre), 2 s after walking onset (W1/L1), 2 s before
cessation of walking (W2/L2), and 5 s after cessation of walking (post). Since the walking bouts had different lengths, the mid-walking
IPC activity is not depicted in the figures. For optogenetically induced backward walking via MDN activation, each trial was divided
into four 5 s intervals: before LED onset (pre), after LED onset (MDN1), before LED cessation (MDN2), and after LED cessation (post).
The LED stimulus duration was 15 s in all experiments. The post interval started 500 ms after cessation of backward walking to ac-
count for the transition period. To be considered for analysis, backward walking bouts had to meet the same criteria as spontaneous
forward walking bouts (defined above). In ex-vivo preparations MDNs were activated for 5 s or 15 s. Each trial was divided into four
intervals: 5 s before LED onset (pre), 2 s after LED onset (MDN1), 2 s before cessation of LED (MDN2), and 5 s after cessation of
LED (post).

In PIR experiments, spike frequency was determined over 5 s before onset, 5 s after cessation, and during 1 s of hyperpolarizing
current injections with different amplitudes (-50 pA, -75 pA, and -100 pA). During longer hyperpolarizations (15 s), only -50 pA was
injected. Mean spike frequency was binned in these three intervals (binsize was 500 ms). For all three current injection levels, the
median change in membrane potential was determined.

For calcium imaging, the motion correction of the raw video frames and the calculation of fluorescence changes was carried out
using custom-written Python code that is part of the fly2p module (https://github.com/hjmh/fly2p). For preprocessing of the data,
each frame was spatially filtered with a two-pixel-wide Gaussian filter and x/y motion corrected by using phase correlation to a refer-
ence image that was generated from the mean over 50 frames in the middle of the trial. Video S5 shows the motion corrected raw
video corresponding to Video S2. To compute fluorescence changes as AF/F = (F-Fg)/Fo, the fluorescence baseline Fy was estimated
by averaging over the 10% of lowest-intensity frames in each trial. AF/F was then calculated for each pixel over the whole time series.
Next, individual IPC somata were manually delimited as regions of interest (ROIs) based on the reference image using the Napari
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graphical user interface (https://doi.org/10.5281/zenodo.3555620). From these ROIs, mean AF/F time series values were extracted
by averaging pixels within the ROI, and stored as csv files. Further population data analysis and Area under the curve (AUC) calcu-
lation was performed in MATLAB. To determine the AUC, the baseline (reference, 5 s) was subtracted from the AF/F values that were
averaged over 5 s for onset and cessation of flight. The 2 s after the behavioral transition were accounted as a transition period and
not included in our analysis (Figure 2D). For the probability distribution of AF/F, AF/F values during flight and after flight cessation
were evaluated in 5 s long windows, excluding the first 2 s after the behavioral transition to account for the relatively slow indicator
dynamics. The AF/F value from the resting state (baseline) were calculated from all remaining AF/F values of the recording during
non-flight, excluding the 12 s after cessation of flight to account for the decay time of the calcium indicator.
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